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Abstract—Parameter values are important elements for un-
derstanding how Application Programming Interfaces (APIs) are
used in practice. In the context of Android, a few number of API
methods are used pervasively by millions of apps, where these
API methods provide app core functionality. In this paper, we
present preliminary insights from ParamHarver, a purely static
analysis approach for automatically extracting parameter values
from Android apps. Investigations on 100,000 apps illustrate how
an in-depth study of parameter values can be leveraged in various
scenarios (e.g., to recommend relevant parameter values, or even,
to some extent, to identify malicious apps).

I. INTRODUCTION

In recent years, we have been observing the spreading of
Android support for numerous devices, varying from small
devices such as smart phones and watches to large devices
such as fridges, TV sets, etc. This momentum of Android is
accompanied by the development community who produces
large numbers of apps — 1,6 million apps as of July 2015 —
that users leverage in all activities of their daily life (from
email and social networking to text processing and banking
operations).

Unfortunately, the high market share of Android has con-
tributed to making him a target of choice for malware writers.
For example, a number of malicious apps have harmed users’
finances by sending premium SMS messages with payments
being collected by malware writers. In such cases, however,
an analyst could easily prevent the malicious behaviour if he
could check the value phone number beforehand (e.g., by
extracting the value of the first parameter of SMS-sending
API method sendTextMessage). To allow a more systematic
check by any app analyst, one solution could be to build a
blacklist of premium numbers by collecting, based on a large
set of Android apps, all constant values that are passed to the
sendTextMessage API method.

A recent study with the Harvester [11]] approach has demon-
strated that sensitive runtime data from Android apps can be
used to identify malware. With the Bouncer, Google Play’s
maintainers are already leveraging runtime data to filter out
those apps that violate the store’s policy (e.g., sending SMS
to their blacklisted phone numbers). Such sensitive data often
involve parameter values for some sensitive Android API
methods.

We argue that, besides malicious app identification, a har-
vest of parameter values can be leveraged to support other
analyses. Consider for example an API method m, and the set
s of parameter values that m uses. If s is collected from a

large enough dataset of apps, one should be able, based on s,
to puzzle out what are the standard uses of m in practice. Thus,
building on the harvested values, one can for instance suggest
appropriate parameter values to developers who would want to
use m in the future. This recommendation is often essential in
cases where proper documentation is lacking. As an example,
let us consider API method getLastKnownLocation(provider)
which takes a string parameter named (“provider”). In the
official documentatiorﬂ the explanation for the parameter
value simply states: “provider: the name of the provider”,
which may be insufficient for guiding developers.

In this paper, we aim to investigate to what extent parameter
values can be harvested and leveraged in Android analyses.
To fulfil this endeavour, we first need to extract all possible
parameter values of a given set of API methods. Unfortunately,
state-of-the-art works such as Google Bouncer and Harvester
are not publicly available. Furthermore, both the Bouncer and
Harvester are dynamic and thus require runtime execution of
apps. Such approaches may not scale to app market sizes, and
may also be bypassed by sophisticated malware (e.g., such
malware often perform malicious behaviour at a specific time
and can even hide their behavior when they detect a testing
environment).

To mitigate the limitations of dynamic analysis, and to
scale our investigations, we propose an approach called
ParamHarver for harvesting APl parameter values purely
statically. ParamHarver performs backward string analysis to
extract the possible parameter values of a given API method.
Overall, we make the following contributions:

e a static analysis tool called ParamHarver that collects
preset (i.e., hard-coded constant) parameter values for a
given set of Android API methods.

e an evaluation of ParamHarver’s usability for a set of
100,000 Android apps.

e a preliminary study on the parameter values reported
by the experiments performed on the dataset of 100,000
Android apps.

II. EXTRACTION OF PARAMETER VALUES

To motivate our work on ParamHarver, we discuss a real-
world example in Section Subsequently, in Section [II-B]
we discuss the details for implementing ParamHarver, which

Thttp://developer.android.com/reference/android/location/Location
Manager.html#getLastKnownLocation(java.lang.String)



l|class com.shugi.controller.BookMark$10
implements OnClickListener {

2 public void onClick (View view) {

3 String[] nums = {

4 "13720072005", "13720062005",

5 "13701370135", "13720000800"

6 i

7 long tm = System.currentTimeMillis();
8 Random r = new Random (tm) ;

9 int seq = r.nextInt (4);

10 String number = nums[seq];
11 Util.sendSMS ("SQ", number);
12 }

13|}
14|class com.shugi.common.Util {

15 public static boolean sendSMS (String sO,
String sl) {

16 SmsManager sm = SmsManager.getDefault ();

17 sm.sendTextMessage (s1, null, s0O, null, null);
18 }

19|}

Listing 1: A code snippet extracted from a real-world

Android app whose package name is com.shugi.controller. Some
irrelevant code are excluded for simplicity reasons.

in summary performs inter-procedural string analysis to collect
parameter values of Android API methods.

A. Motivating Example

Listing |1f shows a code snippetﬂ taken from a real-world
Android app called com.shugi.controller. This snippet sends
a text message through the Android API sendTextMessage,
which include two relevant string arguments: s/ and sO
(line 17). In order to extract their values, backward string
analysis is needed. Furthermore, both s/ and s0 are parameters
of sendSMS (line 15), and are actually defined in method
onClick (line 2). Thus, the backward string analysis must also
be inter-procedural.

As shown in lines 3-6 within onClick(), there are actually
four (premium) phone numbers defined in the array nums.
In other words, these four numbers are possible parameter
values of sendTextMessage(). If these numbers are successfully
harvested, we could use them later on to infer whether the in-
vestigated app is likely malicious or not by simply comparing
them with a set of known premium numbers (or vulnerable
numbers).

B. Implementation
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Fig. 1: The main working process of ParamHarver.

2Note that we have rewritten this snippet to Java source code in order to
ease the understanding.

Fig.[I]illustrates the main working process of ParamHarver,
which takes as inputs an Android app and a set of Android
API methods along with their meta-data (configured by users
of ParamHarver) which indicate precisely the position of
interested string parameters that ParamHarver tracks. As an
example, the meta-data for method sendTextMessage() in List-
ing (1| is sendTextMessage : 1,3, requesting ParamHarver
to harvest the value of the first and third parameters of
sendTextMessage(). ParamHarver performs backward string
analysis for every concerned parameters and outputs their
values. The backward tracking will keep iterating until 1) the
parameter value is localized or 2) the root of the control-
flow graph (CFQG) is reached, as it is the case for dynamically
generated values. If the first constraint is met, ParamHarver
simply outputs the identified values. Otherwise, the second
constraint is met, indicating that the parameter value is not
correctly extracted. In this case, ParamHarver returns a regular
expression (.*), showing that the parameter value could be po-
tentially everything. Existing works such as the one presented
by Octeau et al. [9] can be leveraged to mitigate this.

ParamHarver is implemented on top of COAL, a constant
propagation language and solver [[10]. Because Android apps
do not have a single entry-point (e.g., main() in Java apps),
ParamHarver artificially builds a dummy main method that
takes into account both lifecycle and callback methods, fol-
lowing our previous experiences [2]], [4].

III. EMPIRICAL INVESTIGATION

In this section, we evaluate ParamHarver empirically on
a set of 100,000 real-world Android apps, in an attempt to
address the following research questions:

e« RQI1: What is the distribution of parameter values of
Android API methods.

e RQ2: Is it feasible to recommend possible parameter
values for a given Android API method?

o RQ3: Is it feasible to flag malicious apps based on the
harvested parameter values?

e RQ4: Is it feasible to perform trend analysis on the
harvested parameter values?

A. Experimental Setup

As introduced in the previous section, ParamHarver takes
as inputs two artifacts: Android Apps and API methods.

Android Apps. We randomly select 100,000 Android ma-
licious apps from a data set of over 2 million apps previously
collected from Google Play and other third-party markets (e.g.,
appchina, anzhi, etc.) [1f, [3]. In this study, we consider an
Android app to be malicious if at least five anti-virus products
hosted on ViIusTota have flagged it as such.

Android API methods. In this experiment, for simplicity
reasons (i.e., to reduce execution time, as well as manual
evaluation efforts), we select the top 10 most used Android
API methods for our preliminary investigation. In order to

3https://www,virustotal.com: A free online virus, malware and url scanner
that hosts over 50 anti-virus products including AVG, McAfee, et al.



collect these top 10 API methods, we first performed a quick
study based on the sampled set of 100,000 apps. The study
results are shown in Table [ Note that in this study we
only consider such API methods that have at least one string
parameter.

TABLE I: The top 10 used Android API methods (with taking at
least one string parameter).

Seq  Method Name Class Name Count
1 getLastKnownLocation =~ LocationManager 40,609
2 requestLocationUpdates ~ LocationManager 18,070
3 isProviderEnabled LocationManager 8,105
4 putString Settings$System 3,746
5 sendTextMessage SmsManager 3,414
6 getAccountsByType AccountManager 2,089
7 putlnt Settings$System 1,666
8 restartPackage ActivityManager 1,272
9 setVideoPath VideoView 956
10 getProvider LocationManager 922

B. Overall results

Many apps in the sampled dataset of 100,000 apps do not
use the top 10 API methods. Thus, we immediately filter such
apps from the study.Besides, ParamHarver fails on some apps
due to time/memory constraints.As a result, 22,681 apps are
considered for further analysis.

Fig. [2] plots the distribution of the number of top-10 API
methods used by the examined Android apps. The median
and mean value are 2 and 3.56 respectively. We further
perform a correlation study (through Spearman’s tho) between
the number of API methods and the size of code in apps
(i.e., the size of DEX file). The spearman correlation results
(rho = —0.0046,p — value > 0.1) indicates that these two
variables are not significantly correlated.

#. of APIs per App
T

T T T T T
1 2 3 4 5 6 7

Fig. 2: The number of API methods per app without considering
outliers.

C. Duplication of Parameter Values

Table [[T] illustrates the overall results of our study. The sec-
ond column indicates the position of the considered parameters
for a given APIL, e.g., 1 means the first parameter. The third
and fourth column shows the number of values harvested by
ParamHarver, where (T) means the total number of success-
fully harvested values (excluding (.*), NULL-CONSTANT and
empty results) while (D) means the number of distinct values.

The huge difference between the third and fourth column
suggests that most parameter values are used in duplicate. This
is insightful, as most parameter values are independently used

TABLE II: The investigation results.

Method Name Parameter Seq  Count (T)  Count (D)
getLastKnownLocation 1 32,832 3
requestLocationUpdates 1 11,691 5
isProviderEnabled 1 7,985 6

. 2 1,330 33
putString 3 185 11
sendTextMessage ; 6,33; | (5)(5)
getAccountsByType 1 2,034 8
putInt 1 1,666 24
restartPackage 1 187 48
setVideoPath 1 22 8
getProvider 1 127 5

by many different apps, we would expect that this situation
happens only in API methods whose parameter values are
defined in advance, e.g., getLastKnownLocation(). However,
we would not think it likely that this also happens in other
API methods whose parameter values are strongly correlated
to developers’ requirements. Let us take sendTextMessage() as
an example, it has two parameters (the first one indicates the
target phone number and the third one indicates the message
context) that are totally correlated to developers’ requirements.
In our observation, phone number 706909990999, as the first
parameter, has been used 43 times. message cxye, as the third
parameter, has been used 127 times.

We further investigate the reason why 106909990999 is used
as a target phone number by 43 apps to send SMS. Interest-
ingly, among the 43 apps, we collect seven distinct package
names, meaning most of them are actually variants of same
apps. Even there are seven distinct package names, all of them
are signed by one of two distinct certificates. Additionally,
those 43 apps shared the same prefix (com.feedov) for their
package names. Based on these evidences, we can observe
that duplicated parameter values could be leveraged to
find app variants. The investigation results on message cxye
has also confirmed this finding.

D. Recommendation of Parameter Values

Table comparatively summarizes the parameter values
that are harvested by ParamHarver on the four methods of
class LocationManager. The three most used values (in gray)
are powered by the basic Android SDK while the remaining
values are powered by third-party services. The most used
values, without any doubt, are “gps” and “network”. “go2map”
is the least used value, which is used only one time.

Being the fact that parameter values in Android API meth-
ods are usually used in duplicate, we believe our approach
could be leveraged to recommend possible parameter values
for API methods. Recall that in the introduction we have
shown the insufficient documentation of Android API meth-
ods, where it is difficult to know what should be the parameter
value of the API method getLastKnownLocation(). Now, with
our approach, we could give a hint to developers that the first
three values (“gps”, “network” and “passive”) are relevant to
their needs, although the other four values are also possible.
Furthermore, “gps” or “network” are even more applicable
than “passive”, as indicated by the huge difference of used
times among them.



TABLE III: Comparative results of LocationManager-related API methods.

Method Name 2ps network  passive | lbs go2map MapABCNetwork  AutonavicellLocationProvider | Total
getLastKnownLocation 15,263 17,550 19 0 0 0 0 32,832
requestLocationUpdates 3,714 7,916 9 51 1 0 0 11,691
isProviderEnabled 6,469 1,494 1 17 0 1 3 7,985
getProvider 53 56 0 6 0 3 9 127
Total 25,499 27,016 29 74 1 4 12 52,635

TABLE IV: The harvested phone numbers and their status (C =
Count, S = Status, v/ = premium, X = non-premium, ?= unknown).

TABLE V: Malware identification results.

Family Count  Numbers
Number C S Number C S DroidDream 2/16 10001
10086 129 X || 1066185829 2 7 YZHC 22/22 10086
106909990999 43 v || 1066953930 2/ zHash 11/11  10655133,10001,10086,10010
10659811002 14 v || 3354 12 Geinimi 5/69  3353,10001,13564332483
10001 13 X 3353 1 ? FakePlayer 6/6 7132,3353,3354
7132 12 2 18703750375 1 x Asroot 1/8 10001
12114 10 X || 15919831203 1 x BaseBridge 46/122  10001,10086
10010 7 X 15860282110 1 X BeanBot 8/8 10086
1065515810002 6 v || +19494368398 12 Pjapps 21/58  10086999,10086,10010
106588003013891 6 v I|lo 1 2 HippoSMS 4/4 1066156686
1065889915 6 v || 04800 1 ? Bgserv 9/9 10086,10010
13811558614 6 X || 10086999 1 x DroidDreamLight 1/46 10086,10010
15919479044 6 X || 1065-5021-80133 1 v RogueSPPush 9/9 10086
1065843601 5 v || 1065-71090-88877 1 v Zsone 1212 10655133,1066953930,106601412004,
1065880004 3 v || 1065-9020-5111-191 1 " 1066185829,10086,10010
10660596 3V || 1065505796084 1 v NickySpy 172 15859268161
1066156686 3 v || 10655133 1 v
13701370135 3 x || 10655576 1 v
13720000800 3 X || 10657525748900014 1 ot
13720062005 3 X || 106580808 1 v
13720072005 3 X || 10658422 1 v
1065502182177 2 v || 10659057110094 1 v
10657109050762 2 v || 1066017801 1 v Mobile
10658368 2/ || 10669079 1 v
10658424 2 v/ || 123987651017 1 ?
1065902163958 2/ || 13564332483 1 x Tetocon
106601412004 2V || 13640534425 1 x
1066057101 2/ || 15239463832 1 X Telocom
1066057103 2 v || 15859268161 1 x Unicom
15645027999 2 x || 400 1 x
13823308135 2 X || 4860008 1 ?
13646870394 2 X || 7838613121 1 ?
106901952345 2/ || 9494367679 1 ? (a) Normal number. (b) Premium number.
1069003801012038 2 Vv

E. Parameter Values for Malware Identification

As indicated by [I1], some sensitive runtime data (or pa-
rameter values of API methods) in Android apps can actually
be used for identifying malicious apps. Indeed, as shown in
Section [[II-C} many sensitive parameter values are actually
used in many samples, making them good candidates for
blacklisting.

Let us consider method sendTextMessage() as an example.
Malicious apps could use it to silently send SMS to premium
numbers, causing a high financial harm to users. In our
investigation, we have harvested 65 phone numbers, which
are listed in Table [V} To verify whether our findings are
able to identify other malicious apps, we take the list of
numbers in Table [V]as a blacklist to evaluate the MalGenome
project [13]]. With this simple setting, we are able to flag 158
(out of 1,260) apps as malicious. Table |V| illustrates more
details on our findings, where we classify our findings through
their family labels. Interestingly, only based on a blacklist of
phone numbers, we are able to flag malicious apps from 15
families. Additionally, all apps of 8 families (out of 15) are

Fig. 3: Distribution of the usage of phone numbers in different service
providers of China.

fully identified.

F. Parameters for Trend Analysis

After harvesting a large set of parameter values, we could
based on them to perform trend analysis. we now show
an example of trend analysis that we observed through the
harvested phone numbers.

In china, mainly, there are three service providers (SPﬂ
1) China Mobile, whose normal service numbers start from
10086, while premium numbers start from 10657 or 10658;
2) China Telecom, whose normal service numbers start from
10001 while premium numbers start from /0659; and 3) China
Unicom, whose normal service numbers start from 10010
while premium numbers start from 1065ﬂ Based on these
information, we manually evaluated the harvested numbers (cf.
Table V) and classified them into three categories: 1) known

“https://en.wikipedia.org/wiki/Telecommunications_industry_in_China.
Shitp://www.miit.gov.cn/n11293472/n11293832/n11293907/n11368223/
n12977312 files/n12977310.doc



premium numbers (v'); 2) known non-premium numbers (X),
note that these numbers however could also be used for
malicious purpose as all of them are harvested from malicious
apps; and 3) unknown numbers (?), for which their statuses
need to be further investigated.

Fig. 3 presents the distribution of the use of service numbers
in different SPs: the normal service is in Fig. while the
premium service is in Fig. Both figures have shown that
there are more malicious apps that target China Mobile than
the other two SPs, suggesting that China Mobile occupies more
marketing shares than the other SPs. This trend is actually
reflecting the real situation, where China Mobile is currently
dominating the Chinese SP market shares. Finally, we note
that both Telecom and Unicorn account for less than 25%
for normal numbers but increase to over 50% for premium
numbers. This result suggests that malware writers tend to
diversify their SP targets.

G. Threats to Validity

At the moment, our approach is unaware of obfuscation,
which may lead to incomplete results. Like many other static
analysis approaches, our approach is unaware of native code,
multi-threads and reflections. Besides, our static analysis is
also unaware of the inter-component communication (ICC)
mechanism. Other approaches could be leveraged to mitigate
these kinds of threats (e.g., IccTA [4] for the ICC mechanism).
So far, we perform string analysis for parameters, in our future
work, we plan to extend this work to also support the analysis
of object parameters.

IV. RELATED WORK

There are several approaches closing to our work. One
of the most sophisticated ones is Harvester [[11], which is
dedicated to extract runtime values from any position in the
Android code. Although it is not the focus, Harvester could
be also leveraged to extract the parameter values from all
the Android API methods in Android apps. However, the
implementation between Harvester and our tool ParamHarver
is quite different. As Harvester needs to execute the apps while
ParamHarver is a pure static approach which does not need
to really launch the apps.

Another related work is Precise [[12], which recommends
parameters of API methods automatically so as to ease the
use of API methods, as the API documentations are usually
incomplete. Precise mines existing code base (through certain
scenario) to build a parameter usage database and then based
on it to provide on-demand queries for parameter candidates
through concrete usage patterns. Our work can be taken as a
simplified version of Precise, based on the harvested practical
parameters, we are also able to recommend the appropriate
parameter candidates.

There are a batch of works that investigate the Android API
methods [6]—[8]] or libraries [5]. Although those works are not
focusing on the parameters of API methods, we believe that
our findings (the harvested parameter values) can be useful for
them. For example, a suddenly increase of parameter values

(starting from a specific API version) would suggest that the
API or library is probably updated (e.g., to provide more
functions).

V. CONCLUSION AND FUTURE WORKS

In this paper, we have first presented a tool called
ParamHarver to automatically harvest parameter values of
Android API methods. Then, we launched ParamHarver on
a set of 100,000 apps with 10 top used Android API methods.
In the next step, we perform a preliminary investigation on
what we can gain from the harvested parameter values, from
which we show that 1) parameter values could be leveraged to
find app variants; 2) parameter values harvested from a large
set of apps could be used to recommend appropriate values
for practical use of API methods; 3) parameter values of some
sensitive API methods can be used to identify malicious apps;
and 4) parameter values, to some extend, can be leveraged to
perform trend analysis.
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