
Towards a Generic Framework for Automating Extensive
Analysis of Android Applications

Li Li, Daoyuan Li
SnT

University of Luxembourg
{li.li,daoyuan.li}@uni.lu

Alexandre Bartel
EC SPRIDE

TU Darmstadt
alexandre.bartel@ec-spride.de

Tegawendé F. Bissyandé,
Jacques Klein, Yves Le Traon

SnT, University of Luxembourg
firstName.lastName@uni.lu

ABSTRACT
Despite much effort in the community, the momentum of An-
droid research has not yet produced complete tools to per-
form thorough analysis on Android apps, leaving users vul-
nerable to malicious apps. Because it is hard for a single tool
to efficiently address all of the various challenges of Android
programming which make analysis difficult, we propose to
instrument the app code for reducing the analysis complex-
ity, e.g., transforming a hard problem to a easy-resolvable
one. To this end, we introduce in this paper Apkpler, a
plugin-based framework for supporting such instrumenta-
tion. We evaluate Apkpler with two plugins, demonstrating
the feasibility of our approach and showing that Apkpler
can indeed be leveraged to reduce the analysis complexity
of Android apps.

CCS Concepts
•Software and its engineering → Software notations
and tools;

Keywords
Android; Static Analysis; Generic Framework; Apkpler

1. INTRODUCTION
The Android operating system has been progressively in-

vading our cyber-physical space, being embedded in a large
portion of hand-held devices such as smartphones and in-
creasingly in home appliances such as TV sets. At Google
I/0 2014, the company revealed that there were over 1 bil-
lion monthly active Android users, up from the 538 millions
recorded in June 2013. A key point in favor of the adop-
tion of Android is its large developer base which produces
perhaps the largest set yet of millions of applications for
entertainment, games, videos, financial management, etc.
Expectantly, expert and “wanna be” hackers see in this plat-
form an opportunity for distributing malicious applications.
The recent Kaspersky’s security bulletin has revealed that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC 2016, April 04 - 08, 2016, Pisa, Italy
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851784

more than 98% of mobile malware found target the Android
platform. To remedy this situation, the research community
has to provide algorithms, techniques and tools to support
a thorough analysis of Android applications when they are
pushed to a market.

Due to scalability needs and requirements of specific test
environments to perform dynamic analysis, a lot of current
research on security testing of Android applications focus
on static analysis. It allows to directly process the applica-
tion code (source or bytecode) to report potential malicious
implementation. This approach is doomed to yield over-
approximation results because on one hand the entire code,
even dead code which would never be executed at runtime,
is analyzed and on the other hand different static analy-
sis settings (e.g., path-insensitive, context-insensitive) will
also introduce imprecision results. Nevertheless, heuristics
can be devised to reduce the number of false alarms, or the
results of static analysis can be used to refine a dynamic
analysis process.

Currently, a number of tools have been developed for
static analysis of Android applications by different indepen-
dent persons (or teams). These tools however share some
functionality but present each different drawbacks or defi-
ciencies. A lot of work effort is thus recurrently wasted to
reinvent the wheel, missing the opportunity to really go be-
yond the state-of-the-art and tackle the hardest issues. Fur-
thermore, Android is fairly new, with its own specificities,
and thus there are relatively few specific tools that are ef-
ficient in the analysis of applications. As an example, the
FlowDroid [2] state-of-the-art tool does not deal with Inter-
Component Communication (ICC), one of the most impor-
tant features of Android. One solution would be to work on
improving such tools to add new capabilities. Unfortunately,
experiences by us and others, have shown that this endeav-
our is challenged by the monolithic implementation of the
tools, even when they are open-sourced. It is also difficult
to reuse the output of such tools as input of other analysis
tools because of compatibility issues. Another alternative
is to leverage on existing sophisticated Java-targeted tools.
These tools however cannot directly analyze Android apps,
although some of the functionalities that they implement are
of interest for the Android platform. Finally, even when one
wants to integrate the functionality implemented by other
tool, he/she finds this endeavour challenging as the Android
ecosystem for app analysis does not provide a platform for
maintaining, advertising and distributing reusable function-
ality components. We propose, in this paper, to fill this gap
through a generic and extensible framework for the analysis

http://dx.doi.org/10.1145/2851613.2851784

of Android Applications.
The framework will focus on making the applications ana-

lyzable by a variety of tools, instead of making tools to sup-
port different analysis approaches. Thus, to be generic, the
framework will take as input an Android application and will
output a new equivalent Android application having its code
instrumented following different strategies depending on the
need of the analysis and the capabilities of the analysis tool.
Each instrumentation strategy of the code is performed by a
plugin which addresses a specific issue for reducing the anal-
ysis complexity. For example, an instrumentation strategy
could consist in replacing ICC in an Android app with tra-
ditional Java method calls to allow its full analysis by tools
which do not take into account this specificities of Android.
With the proposed framework, we intend to make readily
reusable, through integration, a number of strategies de-
vised in the literature, e.g., we could integrate a recent work
called IccTA [9], an ICC solving strategy, to our framework.
Finally, the proposed framework will improve the analysis
outcome of state-of-the-art tools by allowing them to cover
more Android apps and to produce more sound results.

In this paper we make the following contributions:

• We discuss the main challenges for performing efficient
static analysis on Android apps, and propose a generic
and extensible framework with a plugin system which
allows developers to integrate new strategies for reduc-
ing the complexity of analyzing Android apps.

• We introduce the prototype implementation of the frame-
work as well as a few of plugins which are now available
in an open source project1.

• Finally, we present the current status in the implemen-
tation of the platform and list the major future work in
the hope of creating a synergy in the Android research
community for contributing to this framework.

2. STATIC ANALYSIS OF ANDROID APPLI-
CATIONS

We now summarize a few common challenges for tools in
the analysis of Android applications in Section 2.1. Subse-
quently, we present an outlook to these challenges by dis-
cussing in Section 2.2 how our approach deals with them.

2.1 Challenges
When analyzing Android apps, researchers and practi-

tioners are faced with several challenges. Some of them
are Java-specific, because Android source code is written
in Java. However, a number of them are mainly due to
Android-specific peculiarities. We review these challenges
to motivate our work.

Dalvik bytecode. Although Android apps are primar-
ily developed in Java, they run in a Dalvik virtual machine.
Thus, all app packages (apks) are distributed on markets
with Dalvik bytecode, and only a relatively few are dis-
tributed with source code in open source repositories. Con-
sequently, a static analyzer for Android must be capable
of directly tackling Dalvik bytecode. Thus, most Java and
Java bytecode analyzers, which could have been leveraged,
are actually useless in the Android ecosystem. As an ex-
ample, the mature FindBugs2 tool, which has demonstrated
1https://github.com/lilicoding/Apkpler
2http://findbugs.sourceforge.net

its capabilities to discover bugs in Java bytecode, can not
readily be exploited for Android programs.

Program entry point. Unlike programs in most general
programming languages such as Java and C, Android apps
do not have a main method. Instead, each app program con-
tains several entry points which are implicitly called by the
Android framework at runtime. Consequently, it is tedious
for a static analyzer to build a global call graph of the app.
Instead, the analyzer must first search for all entry-points
and build several call graphs with no assurance on how these
graphs connect to each other, if ever.

Component Lifecycle. In Android, unlike in Java or C,
different components of an application, have their own lifecy-
cle. Each component indeed implements its lifecyle methods
which are called by the Android system to start/stop/re-
sume the component following environment needs. For ex-
ample, an application in background (i.e., invisible lifetime),
can first be stopped, when the system is under memory pres-
sure, and later be restarted when the user attempts to put it
in foreground. Unfortunately, because these lifecycle meth-
ods are not directly connected to the execution flow, they
hinder the soundness of some analysis scenarios.

Inter-Component Communication (ICC). Android
has introduced a special mechanism for allowing an applica-
tion’s components to exchange messages through the system
to components of the same application or of other applica-
tions. This communication is usually triggered by specific
methods, hereafter referred to as ICC methods. ICC meth-
ods use a special parameter, containing all necessary infor-
mation, to specify their target components and the action
requested. Similarly to the lifecycle methods, ICC methods
are actually processed by the system which is in charge of
resolving and brokering it at runtime. Consequently, static
analyzer will find it hazardous to hypothesize on how compo-
nents connect to one another unless using advanced heuris-
tics. As an example, FlowDroid, one of the most-advanced
static analyzers for Android, fails to take into account ICCs
in its analysis.

Libraries. An android apk is a standalone package con-
taining a Dalvik bytecode consisting of the actual app code
and all library suites, such as advertisement libraries and
burdensome frameworks [11]. These libraries may represent
thousands of lines of code, leading to the size of actual app
to be significantly smaller than the included libraries. This
situation causes two major difficulties: (1) the analysis of an
app may spend more time vetting library code than the real
code; (2) the analysis results may comprise too many false
positives due to the analysis of library “dead code”. As an
example, analyzing all method calls in an apk to discover the
set of permissions required may lead to listing permissions
which are not actually necessary for the actual app code.

Java-specific challenges. Since Android apps are mainly
written in Java, developers of static analyzers for such apps
are faced with the same challenges as with Java programs,
including the issues of handling dynamic code loading, reflec-
tion, native code integration, multithreading and the sup-
port of polymorphism.
In the case of dynamic code loading and reflective calls, it
is currently difficult to statically handle them. The classes
that are loaded at runtime are often practically impossible
to analyze since they often sit in remote locations, or may
be generated on the fly.

Addressing the issue of native code is a different research

adventure. Most of the time, such code comes in a com-
piled binary format, making it difficult to analyze. Analyz-
ing multi-threaded programs is challenging as it is compli-
cated to characterize the effect of the interactions between
threads. Besides, to analyze all interleavings of statements
from parallel threads usually result in an exponential anal-
ysis times [16]. Finally, polymorphic features also add extra
difficulties for static analysis. As an example, let us assume
that method m1 of class A has been overridden in class B
(B extends A). For statement a.m1(), where a is an instance
of A, a static analyzer in default will consider the body of
m1() in A instead of the actual body of m1() in B, even a
was instantiated from B (e.g., with A a = new B()). This
obvious situation is however tedious to resolve in practice
by most static analyzers and thus leads to unsound results.

Let us remind at this point, that some challenges intro-
duced in this section have already mature solutions to ad-
dress them (e.g., point-to analysis for polymorphic feature).
However, all the analyzers (existed or new developed) have
to tackle them independently which renovates the wheels,
resulting in resources wasted. On the contrary, all the an-
alyzers will benefit from it if we solve each challenge as a
plugin of our framework.

2.2 Outlook
The current situation in Android research is such that

none of the state-of-the-art static analysis tools is addressing
properly all the challenges listed above. Besides, regularly
a new challenge is revealed and the different tools become
obsolete. Let us consider two of the most widely used static
analysis tools, namely FlowDroid [2] and Epicc [15]. The
former does not support ICC and partially takes into ac-
count reflection. The latter does support ICC but makes
the assumptions that reflection is not used in the programs.
This leads to a situation where none of the tools can perform
thorough analysis. To improve their analysis, we propose to
feed each tool with apps that conform to their assumptions.
Indeed, we believe it is unrealistic to attempt to improve the
implementation of each analysis tool. A component-based
approach (where functionality of each analysis tool can be
leveraged in a huge framework) is also tedious to implement
as it would require that each development team redesigns
their tool to conform to a unique interface.

We thus propose a generic plugin-based framework for
reducing the complexity of analyzing Android apps. This
will indirectly enhance the output of existing state-of-the-
art tools by enabling them to yield more sound results. In
our framework, a plugin is designed to solve an analysis chal-
lenge. It also enables cooperation among multiple plugins to
solve a complex challenge. Instead of modifying the analysis
tools themselves, plugins instrument the app code to provide
ideal inputs that will benefit all analysis tools. The opera-
tion of instrumentation consists in adding/removing/updat-
ing idempotent code (i.e., without modifying the function-
ality) to create a new app. However, currently we do not
offer a guarantee that the new app could be executed.

The plugins could implement solutions from the literature
to the mentioned challenges. For instance, we could package
the solution of TamiFlex [4] in a plugin that deals with the
Java reflection challenge. We could also package a solution
from IccTA to avoid the limitations of tools that do not
support ICC.

1:<plugin cls="AppDataCheckPlugin"
 path="IN-FRAMEWORK">args</plugin>
2:<plugin cls="CheckPointAnalysisPlugin"
 path="PluginN.jar">args</plugin>

Interface

Launcher

apkpler.xml

Plugin 1 Plugin 2 Plugin N

Plugin Set

Apkpler Framework

...

apkpler.xml example

Figure 1: The architecture of our generic framework.

3. FRAMEWORK PROTOTYPE
The main idea behind the design of the framework is

about reducing the analysis complexity of Android apps
by eliminating the challenges in the apps themselves rather
than attempting to continuously re-implement state-of-the-
art tools, with the risks of creating increasingly buggy tools.
Thus, we aim to shift the efforts on developing independent
(and non-reusable) tools onto developing plugins that could
be viewed as “sanitizers” of apps, which could benefit all
tools.

3.1 Architecture
The architecture of our framework, Apkpler, is shown in

Figure 1. Apkpler is made up of three components: Inter-
face, Launcher and apkpler.xml.

Interface is a public library, which provides the interfaces
that every plugin needs to implement. It provides a means
for developing a new plugin in a straightforward and easy
way. Basically, only one method is needed to be overrid-
den, which frees developers from being tied up with the
framework but rather giving them a chance to only focus
themselves on the plugin logic. Interface also provides some
helper utilities (e.g., SootHelper) that all its plugins can
benefit from. Besides, it maintains a key value mapping
that enables plugins to sharing data.

apkpler.xml is a configuration, which hosts a sequence
of plugins that are currently available in the plugin set.
Users of Apkpler can customize apkpler.xml for their spe-
cific purpose. There are two ways to specify a plugin’s
path. The first one is simply setting it as IN-FRAMEWORK,
which implies that the plugin (class in practice) is located
in Launcher ’s class path, e.g., Launcher directly accesses
the plugin’s source code through adding the required plu-
gin projects on its build path. The second one is to specify
the plugin’s library path. In this case, Launcher uses the
reflection mechanism to access the specified class.

Launcher is the entry-point of Apkpler. At first, it loads
apkpler.xml to extract a sequence of plugins the user spec-
ifies. Then, it launches all the plugins one by one. Note
that because of apkpler.xml, Launcher does not need to be
modified for different aims of instrumentation.

3.2 Work Process
The work process of our framework is shown in Figure 2.

As input, the framework is fed with an Android app whose
Dalvik bytecode is transformed into Jimple code which is
an intermediate representation used by Soot [7], a Java op-
timization framework. This transformation process is pow-
ered by Dexpler [3], a Dalvik to Jimple code translator.

Android App Jimple Updated
Jimple... ...

New
Android App

INPUT FRAMEWORK

OUTPUT

Plugin 1

Plugin n New
Jar File

Figure 2: The work process of our generic framework.

Next, one can select and load a series of plugins to instru-
ment the Jimple code for specific purposes (e.g., removal
of library code). After the instrumentation step, the up-
dated Jimple code can either be translated to Java bytecode
and archived into a JAR file, or translated back into Dalvik
bytecode and re-packaged into a new Android application.

The newly generated Android application is functionally
equivalent to the original application, but is more convenient
for analysis. In the case where the output is a new Jar file,
some plugins are automatically selected (e.g., designation of
the main entry point) to remove essential Android-specific
characteristics.

3.3 Checkpoint mechanism

Benchmarking AppCheckPoint 1

CheckPoint 2

Plugin p1 for evaluation

CheckPointAnalysis
for Plugin p1

Apkpler-Framework New Generated App

Benchmarking App
Meta data

Evaluation Result

(1)

(2)

(6)
(5)

(4)

(3)

Figure 3: The work process of the checkpoint mechanism.

In order to evaluate the efficiency of integrated plugins,
Apkpler provides a checkpoint mechanism for the plugin
writers to build test suites for assessing the performance
of their plugins. Thus, the checkpoint mechanism plays the
role of a statistic helper, which is able to report the per-
formance of a plugin in terms of time cost, instrumentation
impacts, etc., and eventually can be used to build a rank-
ing system to discriminate efficient plugins (among multiple
similar-functionality plugins).

Given a plugin p1, e.g., an approach for simplifying anal-
ysis of Android apps, that must be evaluated, and a set
of benchmarking apps, that we know their meta-data (the
expected results if p1 applied) in advance. Figure 3 illus-
trates the work process of applying our checkpoint mech-
anism for p1. Particularly, checkpoints (CheckPoint 1 and
CheckPoint 2) are performed by a built-in plugin called Ap-

pDataCheckPlugin, which records the current state (e.g., the
execution time and the call graph) of a given app. Devel-
opers (or plugin verifiers) are however allowed to provide a
meta-data file with the specifications of an app according

to the given plugin as well as a customized version of the
plugin-specific CheckPointAnalysis for p1. These elements
are used in the checkpoint mechanism to check whether the
instrumentation impacts for a given app match the expected
specifications, available as a meta-data file.

3.4 Summary of benefits
We now recall three main benefits to the adoption of the

proposed framework: 1) Easing new development: de-
velopers may now readily implement a new analysis tool by
focusing on the basic static analysis process and some spe-
cific searches. Indeed, any other common strategy, such as
reduction of ICC or removal of library code, will be pro-
vided in the form of a framework plugin; 2) Addressing
challenges collaboratively: if a challenge is so impor-
tant that it hinders static analysis tools, a synergy could
be created around the development of a corresponding plu-
gin. Existing implementations from the literature may also
be directly integrated; and 3) Leveraging state-of-the-
art tools: with our proposed framework, existing tools,
including FlowDroid, may now be enabled to perform more
extensive analysis.

Overall, Apkpler reduces the analysis complexity of An-
droid apps to indirectly enhance the analyzing ability of An-
droid app analyzers. Given a feature fi (e.g., ICC) which
represents an app’s basic characteristic that an analyzer
needs to tackle in order to yield that feature-aware results.
Let us assume that the analysis complexity of an Android
app a is W , which corresponds to the analysis complexity
of its n features (from f1 to fn). If we assume that the
analysis complexity of feature fi is wi, then W =

∑n
i=1 wi.

Given a plugin pi that removes feature fi from a (e.g., by
identically transforming to other features). After launching
Apkpler with pi, the new generated app a′ of a does not
contain feature fi and its analysis complexity consequently
reduces to W − wi.

4. EVALUATION
Our primary evaluation addresses the following research

questions.

RQ1 What is the time performance introduced by Apkpler
itself? Is it scalable for a large set of Android apps?

RQ2 Is Apkpler able to enhance existing tools to perform
more extensive analysis?

RQ3 How is Apkpler able to evaluate the effectiveness of
integrated plugins?

All the experiments discussed in this section are performed
on a Core i7 CPU running a Java VM with 8GB of heap
size.

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

●

● ●

●

●●

●

●

●

●●

● ●●

●

●

●

●

●●

●

●●

●

●

●● ●● ●●● ●●●

●

● ●●

●

●●●

●

●●

●

●

●

●

● ●●● ●

●●

●

●

●● ●●●

●

●

● ●● ● ● ●

●

●●

●●

●

●

● ●

●

●● ●●

●

●

●

● ● ●

●●●

●

● ● ●

●

●

●

●

●

●● ● ●

●

●

●● ● ●●● ●● ●●● ● ●●

●

●● ●

●

●

●

● ●

●●

● ● ●●

● ●

●●

●

● ●

●

●

●

●●●● ●●

●

●

●●● ●●

●

●

● ●● ●● ●● ●● ● ●● ●●●●●

●

●● ●

●

● ●●●● ●

●

●● ● ●●●

● ●

●

● ●●● ●●

●

●●●

●

●

●

● ●

●

●

●

● ●● ●

● ●●

●

●

●

●

● ●

●

● ●

●

●● ●●● ● ● ●

●

●●

●

●●●

●

●● ●●

●

●

●

●

●●

●

●●●●

●

●● ●●

0 500 1000 1500 2000

0
5

1
0

1
5

2
0

2
5

Bytecode Sizes (KB)

R
u

n
n

in
g

 T
im

e
 (

s
)

Figure 4: Time performance of Apkpler (without plugins)
against the bytecode size.

4.1 RQ1: Time performance of Apkpler
We evaluate the scalability of Apkpler by assessing the

runtime performance of the framework, in particular for un-
packing and repackaging Android apps. For Apkpler to be
usable in practice in real-world scenarios with hundreds of
applications. We evaluate the time performance by running
the framework with the ICC plugin described in Section 4.2
on a set of 300 Android apps randomly selected from Google
Play store. Fig. 4 shows the overhead cost of Apkpler (i.e.,
without considering the time cost of plugins). This figure
shows that the run time required by Apkpler is less than
5 seconds for over 95% of the apps, regardless of the app’s
bytecode size (i.e., the size of classes.dex). This evaluation
reveals an acceptable overhead costed by Apkpler.

4.2 RQ2: Extensive analysis support for ex-
isting analyzers

To evaluate the feasibility of our approach, we have im-
plemented a few plugins for Apkpler. In this section, we
show two of them to illustrate how our approach is able to
support extensive analysis for state-of-the-art Android app
analyzers.

Renaming duplicate class. Android builds on the Linux
kernel whose file systems follow a strict case-sensitive nam-
ing. An Android app can thus contain two classes with the
same names which only differ in the case. However, be-
cause some PC-based file systems (e.g., Mac OS by default)
are case-insensitive, such names will cause problems for PC-
based analyzers (e.g., Soot [7] and Dare [13]). When one
dumps the app, a class will be overwritten by its duplicated
sibling (names with different case), leading to errors dur-
ing analysis3. We have noticed that under Mac OS 10.9.2,
analysis of both Soot and Dare are affected with the case-
sensitive issue.

Previously, a Soot plugin4 was introduced to solve this
issue. However, this plugin was not reusable for Dare. In
order to address it for any other tool we implemented a

3e.g., Soot reported a “class com.adwo.adsdk.s read in
from a class file in which com.adwo.adsdk.S was ex-
pected” error on a Genome [19] app whose SHA 256
hash is 0015AE7C27688D45F79170DCEA16131CE5579-
12A1A0C5F3B6B0465EE0774A452
4Commit 585fe047c18425653ba79a5c609c236f96f90aa9

plugin for our framework to detect and consistently rename
any such duplicated sibling classes. This plugin allowed Dare
to successfully analyze 448 (nearly 36%) more apps from the
Genome [19] dataset on the Mac platform.

Supporting ICC. A substantial portion of the function-
ality of an Android app (e.g., starting the music service,
launching a phone call, etc.) is realized through communi-
cation between components, which on the other hand also
offer opportunities for “malicious apps” to exploit. Unfortu-
nately, most state-of-the-art tools, including FlowDroid [2],
PCLeaks [10] and AndroidLeaks [6] fail to take ICCs into
account in their analysis, yielding unsound results.

To address this challenge for static analysis, we have im-
plemented a plugin based on IccTA [9] which is a taint anal-
ysis tool for detecting ICC-based privacy leaks in Android
apps. The plugin instruments the app code by adding glue
code to directly connect components using the Java class ac-
cess mechanism (e.g., new instance) and building on the ICC
links reported by Epicc [15] and IC3 [14]. As a result, the
newly generated app does not contain ICC calls. We have
instrumented some apps from the DroidBench benchmarks5

and fed them to FlowDroid which then became able to suc-
cessfully detect all inter-component leaks. It is worth to
mention that the instrumented apps (by applying Apkpler)
does not slow down the analysis of FlowDroid (13 seconds
on average), comparing to the time cost of analyzing the
original apps (12 seconds on average).

4.3 RQ3: Benchmarking integrated plugins
As introduced in Section 3.3, the checkpoint mechanism

of our framework provides a means for Apkpler to evaluate
the effectiveness of integrated plugins. In this section, we
provide an example of leveraging the checkpoint mechanism
through a case study: we evaluate the Rename duplicate

class plugin (cf. RDC-plugin) introduced in Section 4.2.
In order to evaluate RDC-plugin, we have built a bench-

mark app set containing 20 apps randomly selected from
such apps that suffer from the duplicated class name prob-
lem in the Genome project. At each checkpoint, before and
after executing RDC-plugin, the states of apps are logged
into different files separately. Further more, we implement
a RDC-specified checkpoint analysis plugin (cf. RDC-CA-
plugin) through our built-in framework, which analyzes the
aforementioned two files and computes the instrumentation
impacts. By comparing the impacts with pre-defined meta-
data of the benchmark apps, RDC-CA-plugin is able to de-
cide whether a given test (a benchmark app) passes or not.

In our example, RDC-plugin passes 19 test cases, failing
one test case. Further investigation discovers that the reason
is caused by the existence of inner classes. Let us take class
x as an example, the plugin correctly renames class x but
misses the chance to also rename its inner class x$1, leaving
class x$1 unchanged. The latest version of RDC-plugin has
taken into account this situation.

5. RELATED WORK
To the best of our knowledge, Apkpler is the first approach

that aims at reducing the complexity of Android apps in
the hope of enhancing the output of analyzers. There are
however a number of frameworks(e.g., [12] for training) for

5http://sseblog.ec-spride.de/tools/droibench/

http://sseblog.ec-spride.de/tools/droibench/

the development of applications. Faruki et al. [5] presents
an automated app vetting and malware analysis framework,
which yields unified results that combine the strengths of
several complementary approaches. Wei et al. [17] propose
a general framework called Amandroid for security vetting
of Android apps. Like Apkpler, Amandroid also enables a
plugin-system for specific analysis. However, it limits itself
on static taint analysis, i.e., from source to sink. Apkpler
however, by focusing on instrumenting the app, will improve
various kinds of analysis. Furthermore, although for simplic-
ity we focused on discussing static analysis, our framework
is also able to support dynamic analysis needs. For example,
a plugin could be dedicated to injecting specific statements
into analyzed apps to be able to control the app’s execution
flow (e.g., to skip time bombs, which cause the app to be
executed only at a certain time) at runtime.

Code instrumentation has been widely used in the field
of Android app analysis [1]. For example, IccTA [9] instru-
ments Android ICC to explicitly connect two components to
enable inter-component static taint analysis. AppSealer [18]
instruments vulnerability-specific patches for Android ap-
plications to prevent component hijacking attacks. Unfor-
tunately, contrary to Apkpler, those instrumentation are not
currently reusable.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a generic plugin-based frame-

work called Apkpler which leverages reusable plugins to in-
strument Android apps for reducing their analysis complex-
ity. The newly generated app (with reduced analysis com-
plexity) can directly benefit state-of-the-art analysis tools
by supporting them performing more extensive analysis.

As future work, we plan to enrich Apkpler in a number of
directions (as follows), so as to produce a full-fledged frame-
work.
Large set of plugins. We are currently implementing

more plugins to be integrated into the framework (e.g., we
have implemented a plugin for reducing Android reflections).
A few specific analysis challenges have been addressed in dif-
ferent tools from the literature. We plan to invite authors
of such approaches to package their implementation into a
reusable Apkpler plugin. For example, We are interested
in integrating ApkCombiner [8] into our framework, in fa-
vor of existing analyzers to prevent collusion attacks among
multiple Android apps.
Detection of conflicts. In a second direction, we plan

to address the possibility for two plugins to conflict in the
way they instrument the app code. Thus, we can provide a
consolidation check during the selection of plugins to load
for instrumenting an Android app.
Support for dynamic analysis. Finally, we plan to ex-

tend the framework to support dynamic analysis. To that
end, we must ensure (or at least verify) that the instrumen-
tation performed by the plugins still produce code that is
executable.

7. ACKNOWLEDGMENT
This work was supported by the Fonds National de la

Recherche (FNR), Luxembourg, under the project AndroMap
C13/IS/5921289.

8. REFERENCES
[1] Steven Arzt, Siegfried Rasthofer, and Eric Bodden.

Instrumenting android and java applications as easy as abc.
In RV, 2013.

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric
Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon,
Damien Octeau, and Patrick McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In PLDI, 2014.

[3] Alexandre Bartel, Jacques Klein, Martin Monperrus, and
Yves Le Traon. Dexpler: Converting android dalvik
bytecode to jimple for static analysis with soot. In SOAP,
2012.

[4] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati,
and Mira Mezini. Taming reflection: Aiding static analysis
in the presence of reflection and custom class loaders. In
ICSE, 2011.

[5] Parvez Faruki, Shweta Bhandari, Vijay Laxmi1 Manoj
Gaur, and Mauro Conti. Droidanalyst: Synergic app
framework for static and dynamic app analysis. 2015.

[6] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao
Chen. Androidleaks: automatically detecting potential
privacy leaks in android applications on a large scale. In
TRUST, 2012.

[7] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie
Hendren. The soot framework for java program analysis: a
retrospective. In CETUS 2011.

[8] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques
Klein, and Yves Le Traon. ApkCombiner: Combining
Multiple Android Apps to Support Inter-App Analysis. In
IFIP SEC, 2015.

[9] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques
Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer,
Eric Bodden, Damien Octeau, and Patrick Mcdaniel.
IccTA: Detecting Inter-Component Privacy Leaks in
Android Apps. In ICSE, 2015.

[10] Li Li, Alexandre Bartel, Jacques Klein, and Yves Le Traon.
Automatically exploiting potential component leaks in
android applications. In TrustCom, 2014.

[11] Li Li, Tegawendé F. Bissyandé, Jacques Klein, and Yves
Le Traon. An Investigation into the Use of Common
Libraries in Android Apps. In Technique Report, 2015.

[12] Jeremy Ludwig, Robert Richards, Bart Presnell, and Dan
Fu. A general framework for developing training apps on
android devices. In I/ITSEC, 2012.

[13] Damien Octeau, Somesh Jha, and Patrick McDaniel.
Retargeting android applications to java bytecode. In FSE,
2012.

[14] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh
Jha, and Patrick McDaniel. Composite constant
propagation: Application to android inter-component
communication analysis. In ICSE, 2015.

[15] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre
Bartel, Eric Bodden, Jacques Klein, and Yves Le Traon.
Effective inter-component communication mapping in
android with epicc: An essential step towards holistic
security analysis. In USENIX Security, 2013.

[16] Martin Rinard. Analysis of multithreaded programs. In
Static Analysis, pages 1–19. Springer, 2001.

[17] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby.
Amandroid: A precise and general inter-component data
flow analysis framework for security vetting of android
apps. In CCS, 2014.

[18] Mu Zhang and Heng Yin. Appsealer: Automatic generation
of vulnerability-specific patches for preventing component
hijacking attacks in android applications. In NDSS, 2014.

[19] Yajin Zhou and Xuxian Jiang. Dissecting android malware:
Characterization and evolution. In S&P, 2012.

	Introduction
	Static analysis of Android applications
	Challenges
	Outlook

	Framework Prototype
	Architecture
	Work Process
	Checkpoint mechanism
	Summary of benefits

	Evaluation
	RQ1: Time performance of Apkpler
	RQ2: Extensive analysis support for existing analyzers
	RQ3: Benchmarking integrated plugins

	Related Work
	Conclusion and Future Work
	Acknowledgment
	References

