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Abstract App updates and repackaging are recurrent in the Android ecosystem, filling markets with

similar apps that must be identified. Despite the existence of several approaches to improve the scalability

of detecting repackaged/cloned apps, researchers and practitioners are eventually faced with the need for

a comprehensive pairwise comparison (or simultaneously multiple app comparisons) to understand and

validate the similarities among apps. In this work, we present the design and implementation of our

research-based prototype tool called SimiDroid for multi-level similarity comparison of Android apps.

SimiDroid is built with the aim to support the comprehension of similarities/changes among app versions

and among repackaged apps. In particular, we demonstrate the need and usefulness of such a framework

based on different case studies implementing different dissection scenarios for revealing various insights

on how repackaged apps are built. We further show that the similarity comparison plugins implemented

in SimiDroid yield more accurate results than the state-of-the-art.
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1 Introduction

Android OS has attracted a considerable number of developers and users in recent years. App

markets are thus now filled with millions of diversified Android apps offering similar functionalities.

While many of such apps are revised versions of one another that are distributed by the same developers

to meet user requirements on updated functionalities or to adapt to third-party market opportunities, a

large proportion of apps however represent cloned or repackaged versions built by third-party developers

to redirect advertisement revenues [1, 2] or to efficiently construct and spread malware [3–5].

The research community has recently proposed a large body of works dealing with the detection of

cloned/repackaged apps in the Android ecosystem [6–9]. Such works generally output a verdict (Yes/No)

on whether an app is a repackaged version of another, without actionable details on how the decision

was made and where the similarity lies. Yet, there is a need for the research, development and even user

communities for understanding the differences among app versions. For example, market maintainers

and users often need to identify what has been modified in the latest app release, in order to ensure

that the updated code is in line with the “what’s new” descriptions. Developers can benefit from casual

impact analyses assessing whether some specific modifications may impact app ratings or cause apps

to be removed from markets [5]. Finally, researchers can build change recommendation approaches by

mining app versions, and propose detection approaches for locating malicious payloads in repackaged

malware samples [10].

Unfortunately, the state-of-the-art studies on repackaged/clone app detection building on internal

heuristics are tedious to replicate, while the associated prototype tools are not available for furthering

research in these directions [11]. Most of repackaged app detection works [6–9,12–44] indeed do not come

with reusable tools for the research community. To the best of our knowledge, Androguard [45] and

FSquaDRA [46] are the main publicly available tools for app similarity analysis. The former performs

pairwise comparison at the Dalvik bytecode level while the latter conducts its similarity analysis based on

resource files. Both approaches, however, do not offer any explanation on the differences among similar

apps, thus failing to provide opportunities for further analysis.

Detecting repackaged apps is a challenging endeavour. In recent years, the community has focused

on meeting market scalability requirements with approaches that leverage fast resource-based similarity

comparisons or machine learning techniques. Nevertheless, the results of such approaches must eventually

be vetted and further broken down via a pairwise comparison of suspicious repackaging pairs.

In this work, we propose to fill the gap in repackaged app research by designing and prototyping

a framework for automated, comprehensive, multi-level identification of similarities among apps with
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facilities for explaining the differences and similarities. SimiDroid is designed as a plugin-based framework

integrating various comparison methods (e.g., the code-based comparison at the statement level or at the

component level, and resource-based comparison). By considering various aspects in a pairwise similarity

check, SimiDroid offers opportunities for a fine-grained comprehension of app updating and repackaging

scenarios such as understanding the evolution of Android app vulnerabilities [47] or dissecting piggybacked

malicious Android apps [3].

Overall, in this paper, we make the following contributions.

• We present the design and implementation of SimiDroid, contributing with a reusable tool to the

community for detecting similar Android apps and explaining the identified similarities at different

levels which can be further enriched via plugin implementations.

• We have implemented several similarity comparison methods as plugins for the current release

of SimiDroid. These methods are borrowed from descriptions in the state-of-the-art literature,

covering code-based and resource-based similarity comparisons.

• Finally, we investigate a number of case studies on real-world apps to demonstrate the suitability

of SimiDroid in providing explanation hints for different usage scenarios.

This paper is an extended version of a conference paper entitled “SimiDroid: Identifying and Explain-

ing Similarities in Android Apps”, which has been published at the 16th IEEE International Conference

On Trust, Security And Privacy In Computing And Communications. In the previous version, we have

introduced our research-based prototype tool called SimiDroid for supporting the identification and ex-

planation of similarities between two given Android apps. In this work, we additionally introduced two

parameters to customise the artefacts to-be analysed. These two parameters provide a means for users

to perform customised analyses such as to perform similarity analysis in a way that common libraries or

certain resource files are not considered. We also extended SimiDroid to support the similarities analysis

among multiple Android apps simultaneously, which subsequently allows the users of SimiDroid to cluster

Android apps into different categories based on their similarities.

Except for the tool extension, we have refined our experiments with more empirical findings. For

example, we enhanced our exploration study in RQ3 by discussing a new category of changes that are

recurrently targeted by repackagers. Furthermore, we added a new research question specifically for

evaluating the capability of conducting similarity analysis for multiple Android apps at the same time.

https://github.com/lilicoding/SimiDroid
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Last but not the least, we also updated many sections such as the abstract and introduction sections to

reflect the latest state of this work.

The remainder of this paper is structured as follows. Section 2 provides necessary background

information on Android app packaging and clarifications on the terminology related to similar Android

apps. Section 3 details the architecture and workflow of SimiDroid. Section 4 presents the evaluation

results of this work, including the research questions and answers. Section 5 discusses the threats to

validity. Section 6 provides concluding remarks.

2 Background

We provide an overview of the structure of an Android app package and clarify the terminology used

in the literature related to the topic of similar apps.

2.1 Android App Packaging

An Android app (packaged as an APK file) is actually an archive (i.e., ZIP file) assembling various

files (cf. Listing 1), mainly including the following:

1. a configuration file named AndroidManifest.xml : important information such as the declared per-

missions and the list of components are specified in this file.

2. a bytecode file named classes.dex representing the main app code in DEX format;

3. a res directory storing various resource files, including pictures and layouts that define the app’s

“look and feel”.

4. others, such as the META-INF directory storing the certificate of authors, and the assets directory

which can be used to store raw data.

This structure simplifies similarity analysis either on the code included in DEX files or on resources

available in the dedicated directories.

2.2 Terminology on Similar Apps

State-of-the-art works have used various terms in the literature to refer to the concept of similar

Android apps. In particular, reusing (and cloning) is (are) often used to describe the process of leveraging

parts or the entirety of existing code to build new programs. This reuse process is also referred to as code

4



1 Example.apk

2 |-- AndroidManifest.xml // main config

3 |-- classes.dex // main app code

4 |-- res // resource files

5 | |-- drawable

6 | |-- layout

7 | |-- ... ... // menu , raw , etc.

8 |-- META -INF // signature

9 |-- ... ... // lib , assets , etc.

Listing 1: The main structure of an Android APK.

plagiarism in markets when third-party developers have no right to exploit other developer’s efforts. In the

Android community, repackaging is consistently used for referring to the process of cloning Android apps.

In this case, developers first unpack the app and then perform necessary changes on the disassembled

files before repackaging them back into a new app version (which is now referred to as a repackaged app).

Generally, repackaging is different from reusing, where repackaging will likely reuse the original resources

(of the original app) while reusing may not necessarily be involved in a repackaging process. Indeed,

developers can reuse some code snippets of other apps without repackaging them. Moreover, repackaging

processes do not necessarily involve a change in the code of a given app. Only modifying metadata or

resource files could be sufficient to divert app ownership and, hence, associated revenues. The literature

reserves the term piggybacking for repackaging cases where additional code manipulation (e.g., insertion

of a malicious payload) is performed on the original app [34].

2.3 Related Work

The related work of this paper lies mainly in two folds: 1) identifying similar Android apps and

2) explaining similar Android apps. We now detail them in Subsection 2.3.1 and Subsection 2.3.2,

respectively.

2.3.1 Identifying Similar Android Apps

Similarity identification of Android apps, which is also referred by literature works as repackaged/-

cloned apps identification (or reuse/plagiarize detection), has been recurrently addressed by state-of-the-
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art works. As an example, AndroidSOO [19] leverages the string offset order symptom to quickly flag

if a given Android app is repackaged. Similarly, Li et al. show that duplicated permissions and dupli-

cated capabilities, which can be extracted from the Android manifest file, could be also taken as reliable

symptoms to achieve the same purpose [3].

Excepting symptom-based approaches, researchers also rely on dynamic analysis to identify similar

Android apps [48]. For example, DroidMarking [29] and AppInk [38] leverage watermarking techniques to

check at runtime if the installing app is repackaged from other apps. Comparably, DIVILAR [21] provides

a self-defense technique, where the app itself is instrumented with diversified virtual instructions that

will eventually be executed in a specialized engine, to mitigate the spread of similar (but fake) apps.

Another recent direction of detecting similar Android apps is to leverage machine learning based

techniques. Indeed, both supervised learning [12, 23, 33] and unsupervised learning [27, 36, 43] have been

investigated by state-of-the-art works. As an example of supervised learning, DroidLegacy [23] takes the

frequency of API calls as features to conduct 10-fold cross validation for the purpose of automatically

classifying malware samples, including repackaged ones. As an example of unsupervised learning, Res-

Droid [27] adopts a clustering-based approach to coarsely group similar Apps into same clusters, so as to

reduce the computing space of other fine-grained comparison approaches.

All the aforementioned approaches attempt to detect similar apps in a way that they do not need

the knowledge of original apps. The results of those approaches, however, also need to be vetted through

a comprehensive pairwise comparison (e.g., to confirm the final accuracy). Actually, like SimiDroid, the

majority work in the literature in detecting similar Android apps at the moment is still based on pairwise

similarity comparison [6–9,13–15,18,20,22,24,25,28,30–32,34,37,39–42,44–46,49,50].

However, these approaches do not provide a means for analysts to quickly explain how and why the

compared two apps are similar (or dissimilar). SimiDroid is thus presented to fill this gap, aiming for not

only detecting similar Android apps but also explaining why given two apps are similar (or dissimilar).

2.3.2 Explaining Similar Android Apps

To the best of our knowledge, there is no systematized work on explaining similarities in Android

apps. However, there do exist several works that perform manual or empirical understanding related

to the similarity of Android apps. The most advanced work is presented recently by Li et al., who

have empirically dissected the piggybacking processes of Android apps [3]. Unfortunately, their empirical

investigations are mainly done in manual and there is no supporting tool associated. Our work, namely

SimiDroid, can actually be leveraged to support their findings.
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Despite the piggybacking processes, researchers are also interested in understanding code reuse in

Android markets. Indeed, Ruiz et al. [24, 44] have empirically investigated thousands of apps across five

different categories, in an attempt to understand the code reuse (in class level) of Android apps. Li

et al. [49] and Linares-Vasquez et al. [25] have investigated the Android reuse studies in the context of

library usages [51, 52]. As experimentally illustrated by Li et al., the appearance of common libraries

could cause both false positives and false negatives for detecting piggybacked apps.

The objective of this paper is to provide a generic framework for automated, comprehensive, and

multi-level identification of similarities (or reuses) among apps. Our work, along with other plugins,

can be taken as a keystone for supporting the replication of existing similarity-based studies and for

facilitating the development of new similarity-based studies.

3 SimiDroid

Feature 
Extraction

Similarity
Comparison

Similarity
Profile

Apps

Changes
Mining

Explanation
Hints

Fig. 1: An overview of the working process of SimiDroid.

Our objective is to provide to the community an extensible framework for supporting the com-

prehension of similarities among Android apps. The framework aims at contributing to answering to

questions such as “to what extent are app X and app Y similar?” and “what are the changes that have

been applied to app X in order to build app Y?”. We expect the answers to these questions to consider

different aspects of Android app packages and to propose different granularity of details.
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Plugin1

key1 --> Value1
... ...

keyn --> Valuen

key: setSortOrderSummary()
value: {InvokeStmt, AssignStmt|0��InvokeStmt|2131099690}

key/value concrete example:

Fig. 2: The working process of a plugin of SimiDroid. The key/value concrete example is extracted from

app FFE44A, for which we will provide more details on how the value is formed in Fig. 3.

We design SimiDroid as a plugin-based system which can independently load various comparison

techniques at different levels. As introduced earlier, SimiDroid implements pairwise comparison schemes

to dissect the similarities and differences among suspected updates of app pairs. Fig. 1 illustrates the

overall working process in SimiDroid. Two apps are provided as inputs and SimiDroid yields a similarity

profile and some explanation hints as output. The similarity profile summarizes similarity facts relating

to the similarity scores at different levels. The explanation hints highlight the detailed changes revealing

the differences among the apps (e.g., string encryption has been applied).

SimiDroid works in three steps by first extracting the necessary features, then generating a similarity

profile for the compared two apps, and finally mining changes for providing hints for analysts to explain

the similarities (or dissimilarities). We now detail these three steps in Subsection 3.1, Subsection 3.2,

and Subsection 3.3 respectively.

3.1 Feature Extraction

A plugin implements a similarity computation approach by providing heuristics for extracting the

features that it considers for comparing apps. In general, a SimiDroid plugin provides a representation

of an app with a set of key/value mappings of the selected features. Fig. 2 illustrates the case of a plugin

considering code statements as features.

With this schema, SimiDroid offers a straightforward way for practitioners to integrate new plugins

implementing comparisons that take into account a variety of app aspects. In practice, there are a few

classes that could be extended (overriding some methods) to integrate the plugin logic (i.e., how features

are extracted) into the framework. Currently, we have developed three different plugins in SimiDroid

implementing similarity computation following the aspects suggested by the literature: method-based
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$r3 = $r1.getEntry();
InvokeStmt

$r2[0] = $r3;
AssignStmt|0

$r4 = $r0.getString(2131034217,$2);
InvokeStmt|2131034217

activity:bander.fileman.TextViewer
android.intent.action.EDIT:android.intent.action.VIEW

$r3 = $r1.getEntry();
InvokeStmt

$r2[0] = $r3;
AssignStmt|0

$r4 = $r0.getString(2131099690,$2);
InvokeStmt|2131099690

activity:bander.fileman.TextViewer
android.intent.action.EDIT:android.intent.action.VIEW

res/layout/main.xml
E40448C6ECED431A2FCC20017CCDE920

==

!=

==

==

!=

Method-based Comparison

Components Comparison

Resources Comparison
res/layout/main.xml

0240F5D10CA2140B9D3866247A2FE5D3

Fig. 3: Examples on method-based, component-based, and resource-based comparison. The compared

two apps are FFE44A (Left) and 1CA20C (Right). The code snippet shown in the method-based

comparison block is extracted from method setSortOrderSummary().

comparison, component-based, and resource-based comparison. Fig. 3 showcases pairwise comparison

results on these aspects, for which we now detail them as follows.

3.1.1 MPlugin - Method-based comparison

The first plugin implements a common similarity computation method based on app code, at the

level of methods. We design the feature extraction of this plugin to yield method signatures and abstract

representations of statements. The latter representations are derived from the statement’s type (e.g.,

if-statement, invoke-statement) instead of the exact statement string. These features have been

introduced in the previous work [3] not only to implement fast pairwise comparison but also to be

resilient, to some extent, to obfuscation, i.e, the comparison will not be impacted in cases where variable

names differ but will be impacted in cases where code structure changes (e.g., hide the real method call

through reflection [53]). MPlugin further extracts all constants (numbers and strings) as features for

comparison.

The first block of Fig. 3 presents a concrete example of how method values (statement types in

particular) are formed and compared. By considering constant strings/numbers, SimiDroid is capable

of identifying fine-grained changes. For example, as shown in Fig. 3, SimiDroid spots that the constant

number in the getString() method call is different between the pair of apps, giving hints for analysts on

where to focus to understand the motivation behind the change (e.g., the value of $r4 could eventually

be changed).
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For some cases, where a certain part of the code should not be considered for similarity analysis,

e.g., alleviate the impact of common libraries, we should provide the flexibility to support that. To this

end, we introduce into this plugin a parameter, namely LibrarySetPath, to support customised code-level

similarity analysis. The value of parameter LibrarySetPath should point to a file containing a list of Java

packages (one package per each line). When parameter LibrarySetPath is enabled, SimiDroid will ignore

all the methods under the packages configured via the parameter.

3.1.2 CPlugin - Component-based comparison

The second plugin extracts app features at the component level, where key/value mappings are

inferred from component names, and other Android package information that is component capabili-

ties including action, which describes the type of behaviour matched by the component (e.g., MAIN

component) and category, which specifies what the component represents (e.g., LAUNCHER). CPlugin,

although it appears to offer a higher-level overview than MPlugin, can be leveraged to better understand

the types and capabilities of the malicious piece of code injected into piggybacked apps [3].

The second block of Fig. 3 presents a concrete example of how components are compared. This

comparison will identify changes in the capabilities reported of an existing or a new component, providing

hints to further the analysis when there is a suspicion on the mismatch between one app behaviour and

the capability exposed by the other. For example, if the LAUNCHER component is switched from one

component to another, there is a hint of piggybacked app writer that intends to divert user attention for

triggering malicious code execution.

3.1.3 RPlugin - Resource-based comparison

The third plugin builds on resource file comparisons to detect similar apps. The assumption in the

literature is that, during repackaging and cloning, these files are unlikely to be modified. Although some

recent experiments have shown that resource files can be manipulated during app repackaging, such mod-

ifications are generally not extensive. The feature extraction process generates key/value mappings using

hash values of the files’ content. RPlugin can thus identify when a resource file has been “compromised”

(e.g., as shown in the third block of Fig. 3, the resource files share the same name but have different

hashes).

Similar to LibrarySetPath, a parameter introduced in the MPlugin for customising the code to be

excluded, we also introduce a parameter, namely ResExtensionSetPath, to customise the resource files

that are not wanted for the similarity analysis. The value of parameter ResExtensionSetPath should
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point to a file containing a list of file extensions (one per each line). When the parameter is enabled, all

the files having extensions configured via the parameter will be ignored by SimiDroid.

//App DB2CB6BC378FA5ED47047D5AA332F69A4F4663CDA3C9AF2498403654E27CE61A
public class com.unity3d.player.UnityPlayerProxyActivity extends android.app.Activity {
protected void onCreate(android.os.Bundle) {
    specialinvoke $r0.<android.app.Activity: void onCreate(android.os.Bundle)>($r1);
+ staticinvoke <com.gamegod.touydig: void init(android.content.Context)>($r0);
  $r2 = newarray (java.lang.String)[2];
}}

Hook: trigger the execution 
          of malicious payload

Fig. 4: A Hook Example.

3.2 Similarity Comparison

At the end of the feature extraction step, for a given pair of Android apps (app1, app2), SimiDroid

conducts the similarity comparison on top of the two sets of extracted key/value mappings (map1 and

map2). The computation is implemented in SimiDroid to quantify and qualify the extent of similarity

between the pair of apps. We adopt the following four metrics to measure similarity:

• identical, when a given key/value entry is matched exactly the same in both maps. For example,

given keyx ∈ keys(map1), we consider it as identical as long as it exists also in map2 and its value

is exactly the same between the two compared maps, (i.e., map1[keyx] = map2[keyx]).

• similar, when a given key/value entry slightly varies from one app to the other in a pair, more

specifically when the key is the same but values differ. For instance, given an entry from app1 with

key keyx ∈ keys(map1), we consider it to be similar to an entry from app2 when keyx exists also

in map2 but its value is different from the one in map1 (i.e., map1[keyx] ∕= map2[keyx]).

• new, when a given key/value entry exists only in map2 but not in map1. Thus, given a key keyx ∈

keys(map2), we consider it as new as long as it does not exist in map1 (i.e., keyx ∕∈ keys(map1)).

• deleted, when a given entry existed in map1, but is no longer found in map2. For instance, give

a key keyx ∈ keys(map1), we consider it as deleted as long as it does not exist in map2 (i.e.,

keyx ∕∈ keys(map2)).

Based on these metrics, we can now compute the similarity score of the given two apps (app1, app2)

using Formula 1. The similarity score is computed based on the ratio of items that are identical (i.e.,

kept the same) between the compared two apps, where total-new denotes all the items available in app1

while total-deleted stands for all the items available in app2. Consequently,
identical
total−new is the retained ratio
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from app1’s point of view while identical
total−deleted is the unchanged ratio from app2’s point of view. In this

work, we simply consider the larger one as the similarity score for the pair. Given a pre-defined threshold

t, which can be computed based on a set of known repackaging pairs, it is then possible to conclude with

confidence that the given two apps are similar (i.e., similarity ≥ t).

similarity = max{ identical

total − new
,

identical

total − deleted
} (1)

where

total = identical + similar + deleted+ new (2)

We remind the readers that this similarity comparison step is generic and common to all plugins.

Thus, plugin developers do not need to modify the implementation of this step for supporting the simi-

larity analysis of their plugins. However, in order to explain beyond the current metrics, which illustrates

what entries are kept, modified, newly added or deleted, developers are enabled to extend this step as well

for performing more fine-grained similarity analyses and therefore providing more detailed explanations.

3.3 Changes Mining

Finally, SimiDroid attempts to mine the changes, based on the generated similarity profile, to provide

hints for analysts to quickly identify and thus explain the similarities between compared Android apps.

This changes mining module cannot be fulfilled without the support of plugins integrated to SimiDroid.

Plugin developers are expected to provide necessary auxiliary code in order to support this module

to hunt for changes. The auxiliary code can be added before or after the similarity comparison. In

order to achieve that, SimiDroid provides callback methods for plugin developers to implement (i.e., pre-

comparison callback for such auxiliary code that needs to be executed before the similarity comparison

and post-comparison callback for such auxiliary code that needs to be executed after the comparison).

As an example, in order to perform a similarity analysis without considering the appearance of common

libraries for our method-based comparison plugin, we implement a pre-comparison callback to exclude

common libraries, where the pre-comparison callback will be excluded before the similarity comparison

is conducted.

In the current implementation of MPlugin (i.e., the Method-based comparison plugin), we have

implemented a post-comparison callback for inferring the changes between two similar methods. Infor-

mation on those changes can provide fine-grained explanations on what has been modified between the

considered pair of apps and, to some extent, why those changes are made. As a use case, given a pair of

similar apps (a1 → a2), where a2 is a piggybacked version of a1 with some malicious payloads injected,
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by inferring the changes between similar methods, we would be able to understand how the injected

malicious payloads are triggered.

Consider the example depicted in Fig. 4 representing a code snippet extracted from an Android app

whose sha256 starts with DB2CB6 . The added line (starting with ‘+’ symbol) is actually a hook, i.e., a

piece of code injected to trigger the malicious payload, during the execution of original benign code (here

from an app whose sha256 starts with FFDE8B). This example illustrates that the malicious payloads

could be triggered by a single method call. By following the execution path of this hook, analysts can

locate the malicious payload and understand the grafted malware behaviour.

For CPlugin (i.e., the Component-based plugin implementation), we have also implemented a post-

comparison callback to check if the newly added components have shared the same capabilities as such

of the original components. Doing so is indeed suspicious since there is no need for a benign app to

implement several components with the same capabilities (e.g., two PDF reader components in the same

app). Consider again the piggybacked app (DB2CB6 ) whose code excerpt was provided in the previous

example. The analysis has revealed that this app has declared two broadcast receivers (cf. lines 1 and

8 of Listing 2) to be notified of both PACKAGE ADDED and CONNECTIVITY CHANGE events. In

other words, when one of these two events comes, both components (receivers) will be triggered to handle

the events. Such a behaviour is suspicious as in a typical development scenario, there is no need for a

duplication of event listening.

3.4 SimiDroid for Multiple Apps

Towards supporting similarity analysis of multiple Android apps, we go one step further in this work

by extending SimiDroid to take as input multiple Android apps that analysts would like to dissect at the

same time. Given a set of Android apps, the working process of the extension is straightforward. For

every two apps in the given set, SimiDroid performs its default pairwise comparison (for whatever plugins

it has configured) as detailed in the previous section (cf. Subsection 3.2) and records its analysis results.

The results of each pair are then merged in the end to highlight and thereby explain the similarities

(or dissimilarities) of the considered apps. The output of this extension is a matrix which demonstrates

the similarity scores of any two given apps and a list of explanation hints that summarise the changes

among some of the considered apps. Table 1 presents an example of a possible matrix, which involves

the similarity results of four Android apps (i.e., a1, a2, a3, and a4).

Through this paper, we uniquely name an app with the first six letters of its sha256.

13



1 receiver: "com.kuguo.ad.MainReceiver"

2 intent -filter

3 action: "android.intent.action.PACKAGE_ADDED"

4 data: "package"

5 intent -filter

6 action: "android.net.conn.CONNECTIVITY_CHANGE"

7

8 receiver: "net.crazymedia.iad.AdPushReceiver"

9 intent -filter

10 action: "android.intent.action.PACKAGE_ADDED"

11 data: "package"

12 intent -filter

13 action: "android.net.conn.CONNECTIVITY_CHANGE"

14 intent -filter

15 action: "android.intent.action.BOOT_COMPLETED"

16 }

Listing 2: An Example of Duplicated Component Capabilities.

Table 1: An Example of A Similarity Matrix.

apps a1 a2 a3 a4

a1 - 0.81 0.74 0.2

a2 0.81 - 0.92 0.3

a3 0.74 0.92 - 0.4

a4 0.2 0.3 0.4 -

Clustering Similar Apps. Based on the aforementioned similarity matrix, we go one step deeper

in this work to group highly similar apps into clusters. More specifically, we consider the matrix represents

an undirected graph, where each app represents a node while each similarity between two apps represents

an edge (the similarity is then the weight of this edge). To this end, as shown in Fig. 5(a), we are able
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to construct a strongly connected graph. Given a threshold t, we consider two apps are similar as long

as their similarity is bigger than t. Then, we break all the edges that connect two dissimilar apps (i.e.,

their similarity is less than t). After this step, the remaining sub-graphs represent different clusters of

similar apps that can be further leveraged to perform more advanced analyses. Indeed, as shown in

Fig. 5(b), with a threshold at 0.8, four out of six edges are excluded from the graph, resulting in two

sub-graphs (i.e., two clusters: one with a1, a2, a3 and another with a4). Despite this clustering approach

is straightforward, it does become useful when the number of considered apps increases (e.g., over 1000)

as well as the threshold changes (especially when we need to dynamically adjust it).

a1

a4a3

a2 a1

a4a3

a2
0.81

0.74

0.2

0.92

0.3

0.4

0.81

0.92

(A) (B)

t = 0.8

Fig. 5: Constructed Graphs for Clustering Similar Android Apps.

3.5 Implementation

SimiDroid, along with the current MPlugin, CPlugin and RPlugin plugins, is implemented in Java.

MPlugin, the method-based comparison plugin, is implemented on top of Soot, a framework for analyzing

and transforming Java and Android apps [54]. Code statements in MPlugin are processed at the Jimple

code level, an intermediate representation (IR) provided by Soot in default. The transformation from

Android bytecode to Jimple code is done by Dexpler [55], which has now been integrated into Soot as a

plugin. CPlugin, the component-based comparison plugin, leverages the axml library to directly extract

component information from the compressed Android Manifest file in order to facilitate the extraction

process.

4 Evaluation

Our evaluation addresses the following research questions:
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• RQ1: Can the prototype implementation of SimiDroid detect similar apps in a set of real-world

apps?

• RQ2: Can SimiDroid be used to detect similar apps without taking common libraries into consid-

eration? If so, what is the impact of excluding common libraries on the performance of SimiDroid’s

similarity analysis?

• RQ3: How does SimiDroid compare with existing tools?

• RQ4: What is the extent of details that SimiDroid can provide to support the comprehension of

similarities within a pair of apps?

• RQ5: Can SimiDroid be leveraged to cluster multiple Android apps into categories based on their

similarities?

All the experiments discussed in this section are conducted on a Core i7 CPU running a Java VM

with 8 GB of heap size.

4.1 RQ1: Detection

For a start, we acknowledge that pairwise similarity analysis in general (including the one explored

by SimiDroid) cannot scale to market datasets [3]. For example, for the 2 million apps available on

Google Play, there are C2
2∗106 candidate pairs to compare. Therefore, we emphasize at this point that

the objective of SimiDroid is not to identify all the similar apps among a large set of apps, but rather to

confirm suspicions on a pair of apps and provide details, at different levels, for supporting explanations on

their similarity. We will show later how SimiDroid is useful for identifying similarities among a (relatively

big) number of apps.

We evaluate the detection ability of SimiDroid using an established comprehensive benchmark [3] of

piggybacked apps with about 1,000 pairs of apps. Each pair is formed by an original benign app and its

counterpart piggybacked malware (i.e., a malware built by grafting a malicious payload to the original

benign app). The assessment thus consists in computing the capability of SimiDroid to identify each pair

in the set. This evaluation is performed based on each of the plugins integrated into SimiDroid.

The real apps are downloaded from AndroZoo [56].
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Fig. 6: Distribution of similarity scores computed through method-based, component-based, and resource-

based comparisons.

Fig. 6 shows the distribution of similarity scores that SimiDroid computes for Method-based, Component-

based and Resource-based comparisons, where the median values are 0.9996, 1, and 0.8661 respectively.

By far, the similarity scores based on resource-based comparison are lesser than those provided

by code-based approaches (including both method and component-based comparisons). Using Mann-

Whitney-Wilcoxon (MWW) tests, we further confirm that the difference of similarity scores between

resource-based and code-based comparison is statistically significant . This finding is also in line with

recent findings in the literature [3], revealing that resource files can be extensively manipulated during

piggybacking.

Both method and component-based comparisons have achieved high similarity scores (cf. Fig. 6),

suggesting that app cloning will unlikely modify the app code in an invasive manner. This finding is also

in line with the practice of repackaging and code reuse where repackagers have shown to pay the least

efforts in code changes, to allow easier automation of the repackaging process.

The scores of component-based comparison are slightly higher than the scores computed through

method-based comparison. This indicates that in contrast to methods, component capabilities are even

rarely changed during app cloning. Indeed, in our experiments, 85% of investigated pairs do not modify

the component capabilities of the original apps.

Roughly speaking, over 50% of the pairs have no modification at the component level.

Note that on some corner case apps, a plugin may fail to compute the similarity of a given pair (e.g., fail to

extract features). We have dropped such pairs from the results.

The reported p-value indicates that the difference is significant at a significance level α = 0.001. Because

p-value < α, there is one chance in a thousand that the difference between the compared two datasets is due to a

coincidence.
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In order to present a fair comparative study, we also compute the similarity scores via SimiDroid

for a set of 1000 pairs of Android apps, which are randomly selected from Google Play. Since the

selection is conducted randomly, we, therefore, expect that for these pairs the similarity results reported

by SimiDroid would be low. Indeed, the median similarities are 0, 0, and 0 for Method-based, Component-

based, and Resource-based comparisons respectively, showing that SimiDroid is capable of flagging similar

(or dissimilar) Android apps.

Result of RQ1: SimiDroid is reliable to detect similar Android apps. In general, code-based

similarity analysis is more accurate than resource-based similarity analysis.

4.2 RQ2: Exclusion of Libraries

Recall that we have introduced two parameters for SimiDroid to perform customised similarity

analysis, e.g., discarding unwanted code and resource files. We would like to also evaluate the validity of

these two parameters. To this end, we re-launch SimiDroid on ten randomly selected benchmark app pairs

with these two parameters enabled, respectively. The experimental results confirm that both parameters

have significantly impacted the experimental results. Our manual investigation further confirms that the

changes brought along by these parameters are also valid.

Now, let us demonstrate the usefulness of the newly introduced parameters via a concrete example,

i.e., leveraging parameter LibrarySetPath to investigate the impact of common libraries to pairwise simi-

larity analysis of Android apps. We enable the parameter by giving as input the list of common libraries

released by Li et al. [49]. As long as a library is identified in a given app, the library code will not be

taken into account for computing the overall similarity of Android apps.

We again launch SimiDroid on 500 randomly selected app pairs from the benchmark dataset. Among

the 500 app pairs, without considering library code, 75.8% of them have their similarity scores increased,

18.6% of them have no change, while around 6% of them (i.e., 28 pairs) have their similarity scores

reduced. Fig. 7 further presents the distribution of similarity scores computed via method-based com-

parisons, where common libraries are considered and are discarded, respectively. It is worth to note

that, three of 28 pairs with reduced scores have their similarity scores even down to under 80%, the

threshold used by Li et al. [49] to flag potential repackaged Android apps. That is to say, these three

app pairs would have been falsely included in the benchmark as repackaged app pairs. This evidence,

on one hand, shows that our newly introduced library exclusion parameter is effective for SimiDroid to

We also added android.support package into the whitelist because it has been explicitly neglected.
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discard common libraries when performing similarity analysis, on the other hand, demonstrates that the

consideration of common libraries can indeed impact the performance of pairwise similarity analysis of

Android apps (sometimes even introduce false positive results).

WithLib WithoutLib

0.
99
85

0.
99
95

Fig. 7: Distribution of similarity scores computed via method-based comparisons, where common libraries

are considered and excluded, respectively.

Result of RQ2: The performance of pairwise similarity analysis of Android apps can indeed be

impacted by common libraries.

4.3 RQ3: Comparison

We compare SimiDroid against the available implementation of two state-of-the-art works, namely

AndroGuard [45] and FSquaDRA [46], covering respectively code-based and resource-based similarity

analysis.

AndroGuard. AndroGuard is probably the first available tool presented to the community for

detecting the similarity of two Android apps. Like with MPlugin in SimiDroid, the similarity of Andro-

Guard is computed at the method level and is calculated based on the same four metrics leveraged by

SimiDroid (cf. Subsection 3.2). However, the comparison between the content of two methods is different.

Instead of comparing all the statements inside a given method, AndroGuard leverages state-of-the-art

compressors to compute the similarity distance between two methods. AndroGuard currently uses the

Normalized Compression Distance (NCD).
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FSquaDRA. FSquaDRA is an approach that detects repackaged Android apps based on the re-

source files available in app packages. It performs a quick pairwise comparison with an attempt to

measure how many identical resource files are shared by a candidate pair of apps.

We run both AndroGuard and FSquaDRA on the same benchmark (≈ 1, 000 pairs that we have used

in previous RQ. Fig. 8 comparatively plots the distribution of similarity scores calculated by SimiDroid,

AndroGuard, and FSquaDRA, respectively. The similarity results computed by the state-of-the-art works

are also in line with the conclusions reached previously in answering RQ1: code-based similarity results

(i.e., AndroGuard) are generally better than resource-based similarity results (i.e., FSquaDRA). We have

also confirmed that the differences are significant using MWW tests at the significance level of 0.001.
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(b) Resource-based.

Fig. 8: Comparison results among the similarity scores of SimiDroid (code-based), AndroGuard, and of

SimiDroid (resource-based), FSquaDRA.

As shown in Fig. 8, the median value of SimiDroid is slightly higher than the median value of

AndroGuard, although the difference between the two is not statistically significant when checked with

MWW tests (i.e., p-value > 0.001). In order to compare the precision of these two code-based similarity

analysis tools, we plan to manually compare the results yielded by these two apps. To this end, we

randomly select ten pairs for manual investigation. Table 2 enumerates the randomly selected pairs.

In this work, instead of manually investigating all the methods, which needs a lot of efforts and

is hard to perform in practice, we have decided to focus only on the reported similar methods. Those

similar methods are actually quite suitable for our purpose, as they have embraced the exact changes

between the compared two apps. As shown in Table 2, 8 out of 10 of the selected app pairs share the

same number of similar methods (per pair) by both AndroGuard and SimiDroid. We then manually

investigate the cases of app pairs where the reported numbers of similar methods differ by AndroGuard

and SimiDroid. We found that this is mainly due to false negative results of AndroGuard, which has
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Table 2: The randomly selected ten piggybacking pairs and their code-based similarity results yielded

by AndroGuard and SimiDroid.

AndroGuard SimiDroid

Original Piggybacked Identical Similar New Deleted Score Identical Similar New Deleted Score

FFDE8B DB2CB6 618 1 875 0 99.84% 1043 2 1300 0 99.81%

2326A8 7D6D97 1422 0 1727 0 100.00% 2445 1 4384 0 99.96%

E2CEED E9B8EE 264 5 1178 0 98.14% 390 5 2299 0 98.73%

8C23C6 5ADAE7 92 1 950 0 98.92% 124 1 1730 0 99.20%

A0087E 296792 3143 1 276 0 99.97% 7090 1 460 0 99.99%

1B8441 172F27 3965 1 834 0 99.97% 8488 1 1300 0 99.99%

00C381 2DC271 905 1 294 0 99.89% 1418 1 460 0 99.93%

93E50D 664F22 1225 1 1210 0 99.92% 2042 1 2786 0 99.95%

9E49AE 29A23A 1386 1 1000 0 99.93% 2172 1 1892 0 99.95%

321DA9 86E88F 829 1 184 0 99.88% 1390 1 474 0 99.93%

failed to report a similar method for both cases. We now provide more details on these two candidate

pairs.

Case Study 1: FFDE8B → DB2CB6. For this app pair, SimiDroid reports two similar methods

while AndroGuard reports only one similar method. The two similar methods reported by SimiDroid

are onCreate() in class UnityPlayerProxyActivity and onDestroy() in class UnityPlayerActivity. We have

shown in Fig. 4 as a motivating example that the first similar method, namely onCreate(), has indeed

been manipulated to trigger the execution of package com.gamegod.touydig. Now we present the code

snippet of the second similar method, namely onDestroy(), in Listing 3, where one statement (line 6) has

been added to the original app. The purpose of this injection is to clean the changes due to the execution

of injected malicious payloads, which are triggered by the first similar method onCreate() (cf. Fig. 4).

Case Study 2: 2326A8 → 7D6D97. For this candidate pair, AndroGuard reports no similar

method while SimiDroid yields one similar method, which is onCreate() of class SocialPluginUnity-

Activity. Through manual investigation, as shown in Listing 3, we confirm that onCreate() of class
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1 //Case Study 1: The second similar method identified between apps \emph{FFDE8B} and

\emph{DB2CB6 }.

2 public class com.unity3d.player.UnityPlayerActivity extends android.app.Activity {

3 protected void onDestroy () {

4 $r0 := @this: com.unity3d.player.UnityPlayerActivity;

5 specialinvoke $r0.<android.app.Activity: void onDestroy () >();

6 + staticinvoke <com.gamegod.touydig: void destroy(android.content.Context) >($r0);

7 $r2 = $r0.<com.unity3d.player.UnityPlayerActivity: com.unity3d.player.UnityPlayer a>;

8 virtualinvoke $r2.<com.unity3d.player.UnityPlayer: void

configurationChanged(android.content.res.Configuration) >($r1);

9 return;

10 }}

11 //Case Study 2: The unique similar method identified between apps \emph {2326 A8} and

\emph{7 D6D97 }.

12 public class com.platoevolved.socialpluginunity.SocialPluginUnityActivity extends

com.unity3d.player.UnityPlayerActivity {

13 public void onCreate(android.os.Bundle) {

14 $r0 := @this: com.platoevolved.socialpluginunity.SocialPluginUnityActivity;

15 $r1 := @parameter0: android.os.Bundle;

16 specialinvoke $r0.<com.unity3d.player.UnityPlayerActivity: void

onCreate(android.os.Bundle) >($r1);

17 + virtualinvoke $r0.<com.platoevolved.socialpluginunity.SocialPluginUnityActivity: void

dywtsbn () >();

18 return ;}

19 + public void dywtsbn (){

20 + com.platoevolved.socialpluginunity.SocialPluginUnityActivity $r0;

21 + android.sowsyr.RerhnAndroid $r1;

22 + $r0 := @this: com.platoevolved.socialpluginunity.SocialPluginUnityActivity;

23 + $r1 = new android.sowsyr.RerhnAndroid;

24 + specialinvoke $r1.<android.sowsyr.RerhnAndroid: void <init >( android.content.Context) >($r0);

25 + virtualinvoke $r1.<android.sowsyr.RerhnAndroid: void GVern () >();

26 + return;

27 +}

28 }

29 //Case Study 3: Redirecting ad revenue from between \emph{EF2BDA} and \emph {87880D}.

30 public class com.gameneeti.game.deckbowling.Start extends android.app.Activity {

31 void callAdds () {

32 $r1 = $r0.<com.gameneeti.game.deckbowling.Start: com.google.android.gms.ads.AdView adView >;

33 - virtualinvoke $r1.<com.google.android.gms.ads.AdView: void

setAdUnitId(java.lang.String) >("a1522d5c390a573");

34 + virtualinvoke $r1.<com.google.android.gms.ads.AdView: void

setAdUnitId(java.lang.String) >("ca -app -pub -8182614411920503/1232098473");

35 }}

Listing 3: Case study illustrative code snippets extracted from real android apps.
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SocialPluginUnityActivity is indeed a similar method which has been tampered with inserting a call to

dywtsbn(), implemented as part of the newly injected payload within the same class as onCreate().

Result of RQ3: SimiDroid outperforms both code-based (AndroGuard) and resource-based

(FSquaDRA) similarity analysis tools for detecting similar Android apps.

4.4 RQ4: Support for Comprehending Repackaging/Cloning Changes

We now investigate the enabling potential of SimiDroid for comprehending the details in Android

app similarities. To the best of our knowledge, little work has focused on systematizing the explanation

of similarities among apps.

On top of the detection module (i.e., feature extraction plugin + similarity comparison plugin),

a change mining module implements specified analyses (before or after the comparison) for providing

insights into the nature and potential purpose behind the changes. Those analyses are specified by lever-

aging archived knowledge from the literature and can be extended by practitioners based on their manual

investigation findings. We now enumerate and discuss several analysis directions that are currently im-

plemented in SimiDroid and that have been used i) to characterize suspicious intent in repackaging, ii) to

recognize symptoms of piggybacking, iii) to hint on malicious payload code, or iv) to measure the impact

of library code in app similarity computation.

Table 3: Explanation statistics.

Explanation Type Number of Pairs Number of Times

Constant String Mismatch 110 476

Constant Number Mismatch 122 2,447

New Method Call 523 2,259

Library Impact 422 422

Duplicated Component Capability 611 60,312

Resource File Rename 160 994
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4.4.1 Constant String Replacement

Online documentation of advertisement integration into Android app exposes how ad revenues are for-

warded on the basis of an ad ID tied to the app owner. We have implemented an analysis in SimiDroid

that focuses on changes related to constant string replacement: we focus on cases where only the string

varies while the associated code statement (i.e., statement type and statement context method) does not

vary. This analysis presents a suspected case of redirecting ad revenues, illustrated by the following case

study.

Case Study 3: EF2BDA → 87880D (Redirect ad revenue). When repackaging app EF2BDA

into 87880D, attackers have also changed the ad ID (‘a1522d5c390a573’ in EF2BDA) to match their own

(line 36 in Listing 3) on the call to API method setAdUnitId(), so as to redirect the revenue generated

by app EF2BDA.

The constant string replacement analysis has also allowed confirming obfuscation of code to pre-

vent repackaging detection. In addition to constant strings, SimiDroid also harvests the replacement

of constant numbers between similar methods. The method-based comparison in Fig. 3 has actually

demonstrated the case where a constant number in a method of app FFE44A is updated in app 1CA20C,

leading eventually to a change in the selected entry. As shown in Table 3, SimiDroid has identified 476

cases (within 110 pairs) where constant strings are replaced and 2,447 cases (within 122 pairs) where

constant numbers are replaced among the evaluated benchmark pairs (nearly 1000).

4.4.2 New Method Call

A new method call in a cloned app code is a relevant starting point for tracking a potential injected

payload. Indeed, repackagers, as established in a previous study [3], often modify existing code to insert

a single method call for triggering the redirection of control flow from the execution of original benign

code into the newly added (likely malicious) code. Listing 3 shows examples of such method call insertions

identified by SimiDroid at key points of an Android program, i.e., when an activity is created/launched

(line 18) or when it must be stopped/destroyed (line 6). Actually, SimiDroid has found 2,259 cases

(within 523 pairs) where new method call is introduced during repackaging (cf. Table 3).
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4.4.3 Library Impact

As shown by Li et al., the presence of common libraries can cause both false positives and false negatives

when attempting to detecting repackaged/cloned apps [49]. We have specified a change analysis after the

identification of similarities to further differentiate changes within libraries from those within app core

code. We thus use a library exclusion filter based on a whitelist of libraries borrowed from [49]. Among

the analyzed pairs, SimiDroid reports different similarity scores for 422 pairs when common libraries are

excluded (cf. Table 3). This analysis further allows to avoid false positives and to reduce the rate of false

negatives in making a detection decision on whether two apps constitute a repackaging pair.

Case Study 4: 29C2D4 → 287198 (False Positive). By considering common libraries, the

similarity of these two apps is 86%. Giving a threshold of 80%, we have reasons to believe that these two

apps are cloned from one another. However, after excluding common libraries, the similarity of these two

apps falls down to 0, demonstrating that a naive similarity analysis could be misled by common libraries

and yield false positive results.

Case Study 5: F3B117 → 25BC25 (False Negative). After excluding common libraries, the

similarity of these two apps reaches to 84%, leading to a decision that these apps constitute a repackaging

pair (if we consider also 80% as the threshold). Comparing with the case where libraries are considered

(47% similarity score), one would have missed the chance to suspect the pair of apps, resulting in a false

negative result.

4.4.4 Duplicated Component Capabilities

Building on findings in the literature [3], we identify hints on repackaging in similar apps by focusing

on duplication in Manifest entries. In particular, duplicated component capabilities can be taken as a

symptom to quickly confirm piggybacking as it is indeed suspicious for a normal benign app, developed

from scratch, to implement several components that listen to the same event, or that can realize the

same action (e.g., play videos). In our experiments, we have shown (cf. Listing 2 example) fine-grained

changes in 611 piggybacking apps presenting such a symptom, in contrast to their original counterparts.

Case Study 6: 3FC49C → A02FE8 (Duplicated Capabilities). When analysing this pair,

SimiDroid yields surprisingly 45,682 duplicated capability cases, which are mainly contributed by action

android.intent.action.VIEW, which has been declared in total 243 times for 213 components (A2
213 =

45, 156).
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Fig. 9: Distribution of resource directories ranked based on the number of resource files (inside the

directory) renamed.

4.4.5 Resource File Rename

Finally, we have implemented an analysis rule to hint on extensive resource file renaming. This practice

is indeed more common in piggybacking processes than in mere app updates [3]. The possible intention

behind such a behaviour could be that attackers attempt to fool resource-based comparisons and hence

to bypass the detection of resource-based repackaged detection approaches which are easily applicable at

market scale. Fig. 9 outlines the distribution of resource directories involving resource file renames. The

most favoured resources are inside the res directory where the majority of files are pictures. In total, as

shown in Table 3, SimiDroid harvests 994 cases where a resource file is renamed among 160 piggybacking

pairs.

Case Study 7: 740E84 → 938A1D (Resource File Rename). SimiDroid reports a case where

two resource files are exactly the same in content (same hash code) but have different names between

the compared two apps. Particularly, the resource file named assets/skeleton/skeleton kaboom blue.json

in the first app has been renamed to assets/skeleton/skeleton kaboom red.json in the second app.
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Table 4: Top 10 malware families ranked based on their number of variants. Note that such clusters

containing only a single malware are ignored.

Family # Variants # Clusters # Variants in Clusters

fakeinst 429 15 205, 56, 31, 16, 19, 25, 24, 6, 6, 4, 4, 4, 3, 2, 2

dowgin 156 11 90, 8, 4, 4, 4, 3, 3, 3, 2, 2, 2

adwo 148 4 80, 50, 3, 2

gappusin 117 13 19, 7, 6, 6, 4, 3, 2, 2, 2, 2, 2, 2, 2

kuguo 108 4 65, 3, 2, 2

smsreg 75 4 19, 15, 3, 2

airpush 52 4 15, 2, 2, 2

smsagent 49 2 37, 2

admogo 48 2 43, 2

opfake 47 8 15, 8, 6, 4, 4, 3, 2, 2

Result of RQ4: SimiDroid is capable of supporting the comprehension of similarities within a pair

of Android apps. The explanation hints reported by SimiDroid can indeed provide an opportunity

for analysts to readily identify noteworthy changes, offering explanations on the likely intent of such

changes.

4.5 RQ5: Similarity App Cluster

As mentioned in Subsection 3.4, one benefit that our extension to SimiDroid for simultaneously

analysing multiple Android apps can be leveraged is to group similar apps into clusters among a large

set of Android apps. In this work, we evaluate this hypothesis through a real challenge where security

analytics would like to understand the diversity of malicious apps belonging to a given family. Although

27



those apps, which are from the same malware family, should semantically share the same malicious

behaviour, their implementation could vary dramatically (e.g., they may be variants of different root

malware that are developed from scratch). Therefore, it is useful to have an automated approach that

systematically groups apps (e.g., from the same malware family) based on their characteristics into

different clusters. Indeed, the clustering result provides a similarity overview of all the involved apps,

and hence can be leveraged to quickly answer the following questions: how many malware variants exist

in the family, or how many malware share the same code structure.

In this work, we randomly select 2,000 malware from VirusShare, a well-known source sharing viruses

including Android malicious apps. Since our goal here is to conduct similarity analyses for such apps

that are from the same malware family, we need to cluster the 2,000 apps into different families based

on their malicious behaviour. To this end, we resort to a malware labelling tool called AVClass [57] to

assign Android malware to different families. AVClass takes as input the anti-virus labels and outputs

the most likely family name for each malware sample, where the anti-virus labels can be obtained from

VirusTotal.

Among the 2,000 randomly selected malware, AVClass flags 89 of them as ‘SINGLETON’, indicating

that there is no family name found for these apps. In this work, we exclude these 89 apps from consid-

eration. The remaining 1,811 malware are grouped by AVClass into 150 clusters, where the number of

variants in each family varies from 1 to 429. Fig. 10 illustrates the detailed distribution of the number of

variants available in those clustered families. The median value indicates that around half of the families

have at least two variants in their families.

2 4 6 8 10

Variants

Fig. 10: Distribution of the number of variants available in clustered families.

Table 4 presents the top 10 families ranked based on their number of variants. Family fakeinst, is the

most favoured one that has 429 variants appeared in our randomly selected 2,000 malware, accounting

https://virusshare.com
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for roughly 20% of Android malware. As revealed by Kaspersky, fakeinst apps are the first type of active

SMS trojan that targets users in 66 countries. Thanks to SimiDroid, as shown in the third column of

Table 4, we find that those 429 variants are actually from 15 root malicious apps, which are recurrently

copied and repackaged to form new variants (with small changes). From Table 4 we can also observe that

for each family there is a cluster that contains significantly more variants comparing with others (e.g.,

205 for fakeinst and 90 for dowgin), suggesting that attackers attempt to implement their malicious apps

based on popular ones, making this cluster of malware variants even more popular in the family.

We further go one step deeper to investigate whether the apps in the largest cluster of each family

are actually cloned from the same app (i.e., sharing the same package name) or are developed by the same

attacker (i.e., sharing the same developer signature). Table 5 summarises the statistics we have obtained,

where x/y in the second column shows that we could not obtain the metadata for y − x apps due to

tooling errors, e.g., our tool-chain cannot successfully extract metadata for 4 (i.e., 15−11) apps in family

airpush) Interestingly, for some clusters such as smsreg and smsagent, all their apps (or the majority of

them) are actually modified from the same root app and are manipulated by the same developer. This

evidence suggests that attackers are continuously updating their malware so as to bypass the emerging

malware-detecting approaches. Instead of updating from the same original app, some attackers are

preferred to introduce into a malware family different apps. For example, all the 80 apps in cluster adwo

are developed by the same attacker, while are developed based on different root apps, i.e., they all share

different unique package name.

Since the clustering approach of SimiDroid adopts the same similarity analysis algorithms from the

pairwise comparison approach, which has been experimentally shown reliable, the performance of the

clustering approach should be also reliable. Indeed, by taking as input the 80 adwo apps mentioned

before, SimiDroid would still group all of them into the same cluster. Similarly, as another experimental

example, SimiDroid groups 10 randomly selected Google Play apps into 10 clusters, i.e., one app in a

cluster. Our manual observation confirms that those 10 apps are indeed different from each other.

http://securityaffairs.co/wordpress/24427/malware/fakeinst-first-sms-trojan.html
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Table 5: Statistics of the apps in the largest cluster of each family.

Family Variants # Package Name # Signature

fakeinst 191/205 143 143

dowgin 88/90 2 13

adwo 80/80 1 80

gappusin 19/19 8 9

kuguo 65/65 1 18

smsreg 19/19 19 19

airpush 11/15 1 2

smsagent 37/37 37 37

admogo 43/43 1 43

opfake 15/15 4 15

Result of RQ5: The capability of analysing simultaneously multiple Android apps makes

SimiDroid capable of clustering Android apps into different categories based on their similarities,

and hence eases the job of code analysts, e.g., it can help security analysts to quickly understand the

implementation differences of a set of malware, though they may belong to the same family.

5 Threats to Validity

Our approach and the experiments presented in this paper introduce a few threats to validity. First of

all, the current implementation of SimiDroid does not provide strong obfuscation resilience. For example,

if the method names (or component names) are changed due to obfuscation, SimiDroid can no longer

compute a reliable similarity score for these candidate apps. Nevertheless, the main usage of SimiDroid
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is not to detect cloned apps in the wild within a large scale of apps, but to vet and confirm the similarity

of suspicious candidate pairs, giving by other coarse approaches.

Second, the comparison between AndroGuard and SimiDroid may not be perfect since these two

tools leverage totally different fundamental tools to compute the similarities between two apps. For

example, as shown in Table 2, for app DB2CB6, the total number of methods considered by AndroGuard

is 1,494 (618 + 1 + 875) while by SimiDroid is 2,345 (1,043 + 2 + 1,300). The reason why AndroGuard

yields fewer methods than SimiDroid is that AndroGuard attempts to perform 1 → n comparisons while

SimiDroid performs 1 → 1 comparisons. As a result, n similar methods will be counted only once.

Furthermore, thanks to our manual verification, we have also confirmed that AndroGuard will likely

yield both false positive and false negative results in terms of identifying similar methods.

Finally, the similarity analysis among multiple Android apps provided by SimiDroid is quite straight-

forward, where only the similarity (i.e., the weight between two nodes) is considered at the moment. In

our future work, we plan to consider more artefacts such as the degrees of the nodes in the graph to make

the clustering results more persuasive.

6 Conclusions

We introduce a new framework, SimiDroid, for supporting researchers and practitioners in the anal-

ysis of similar apps (by performing either pairwise comparison for two apps or multiple apps comparison).

SimiDroid integrates plugins implementing the extraction of features, at different levels, for the compu-

tation of similarity scores. This framework is targeted at confirming that two apps are indeed similar

and at detailing not only the similarity points but also the modifications in changed code.

Using a benchmark of piggybacking pairs, we have shown how SimiDroid is accurate in detecting

similar apps, and the extent to which it can support the analysis of changes performed by malicious

app writers when repackaging a benign app. With this framework, we contribute to supporting the

community in the realisation of extensive studies on app similarities to further experiment in their fast,

accurate and scalable approaches.
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