
Revisiting the Impact of Common Libraries for Android-related Investigations

Li Lia, Timothée Riomb, Tegawendé F. Bissyandéb, Haoyu Wangc, Jacques Kleinb, Yves Le Traonb

aFaculty of Information Technology, Monash University, Australia
bInterdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg

cSchool of Computer Science, Beijing University of Posts and Telecommunications, China

Abstract

The packaging model of Android apps requires the entire code to be shipped into a single APK file in order to be installed and
executed on a device. This model introduces noises to Android app analyses, e.g., detection of repackaged applications, malware
classification, as not only the core developer code but also the other assistant code will be visited. Such assistant code is often
contributed by common libraries that are used pervasively by all apps.

Despite much effort has been put in our community to investigate Android libraries, the momentum of Android research has not
yet produced a complete and reliable set of common libraries for supporting thorough analyses of Android apps. In this work, we
hence leverage a dataset of about 1.5 million apps from Google Play to identify potential common libraries, including advertisement
libraries, and their abstract representations. With several steps of refinements, we finally collect 1,113 libraries supporting common
functions and 240 libraries for advertisement. For each library, we also collected its various abstract representations that could be
leveraged to find new usages, including obfuscated cases.

Based on these datasets, we further empirically revisit three popular Android app analyses, namely (1) repackaged app detection,
(2) machine learning-based malware detection, and (3) static code analysis, aiming at measuring the impact of common libraries
on their analysing performance. Our experimental results demonstrate that common library can indeed impact the performance
of Android app analysis approaches. Indeed, common libraries can introduce both false positive and false negative results to
repackaged app detection approaches. The existence of common libraries in Android apps may also impact the performance of
machine learning-based classifications as well as that of static code analysers. All in all, the aforementioned results suggest that
it is essential to harvest a reliable list of common libraries and also important to pay special attention to them when conducting
Android-related investigations.

1. Introduction

Rapidly, Android has grown as a popular programming plat-
form for developers and a worthwhile operating system for man-
ufacturers. Of the 432 million smartphones sold in the last quar-
ter of 2016, over 81% of them are actually equipped with An-
droid, which is far beyond the occupation of other mobile op-
erating systems such as iOS [1]. In addition to smartphones,
Android now is also used for household and office devices such
as tablets, personal computers, TV sets, fridges, washing ma-
chines, etc., run a diversity of applications.

Unfortunately, because these apps pervade all human activ-
ities, malicious or malfunctioning apps have become important
threats that can lead to damages ranging from benign (e.g., app
crashes) to critical (e.g., financial losses with malware sending
premium-rate SMS, reputation issues with private data leaks,
and potentially loss of human lives when apps will run on An-
droid cars). These threats are further exacerbated in an ecosys-
tem where thousands of apps written by hundreds of third-party
developers are made readily available for download by users.
GooglePlay, the official market for free and paid Android apps,
now has over 3 million apps in various categories from pro-
ductivity and messaging to games and social networking. An-
tivirus vendors, which regularly report on the status of malware

spreading, have revealed that Android is now a target of choice
for malicious attacks [2].

The research community has produced a large body of work
for mitigating the emerged threats in the Android ecosystem,
essentially to guard the security and privacy of users. For scal-
ability and practicability reasons, a substantial number of the
proposed approaches [3, 4, 5] rely on static analysis to parse the
entire code shipped in the app package to find security problems
in code instructions, to extract features for further processing or
simply to compare apps in large repositories. Unfortunately, be-
cause Android development paradigm allows to easily include
third-party code, in the form of libraries, a significant portion
of an app is eventually irrelevant to certain analyses (e.g., pig-
gybacking analysis). Common libraries embedded in app code
thus constitute a significant barrier for the static exploration of
applications code. There are indeed a number of research di-
rections where tasks are hindered by the presence of common
libraries in app code:
Repackaging detection. Techniques for comparing apps to de-
tect repackaged apps by computing their similarities may pro-
vide inaccurate results when common libraries are pervasively
used. In a preliminary study, Wang et al. [6] have found that
over 60% of Android apps’ code is contributed by common
libraries. To increase accuracy in detection, most recent ap-

Preprint submitted to Elsevier January 23, 2020

proaches have been considering filtering out such libraries, us-
ing heuristics.
Malware detection. Recently, researchers have been focusing
on machine learning techniques as scalable means to identify
malicious apps in large datasets. To that end, they usually ex-
tract static features from the code. Unfortunately, the presence
of library code may create significant noise making it hard to
discriminate benign features from malware-specific ones. To
account for such noise, some approaches, such as MUDFLOW [7],
assume that advertisement libraries, which are common libraries,
are trustable. Thus, they simply ignore all results related to ad
libraries, so as to focus on the real app code. In the case of
MUDFLOW, 12 frequently used advertisement frameworks are
considered. Although these 12 libraries are not representative,
it does show the necessity to exclude common libraries for mal-
ware detection.
Code analysis. Besides the false positives that may arise due
to over-approximation, static code analysis is also often chal-
lenged by computing power and memory requirements. In the
case of FlowDroid [8], the state-of-the-art static taint analysis
tool for Android apps, it was reported that the analysis time can
be too high [7]. Let us refer back again to Wang et al.’s findings,
where 60% of app’s code are contributed by common libraries,
which would thus indicate roughly that over half of the CPU
and memory consumption could be wasted on irrelevant library
code, threatening the performance of the analyzer.

The aforementioned cases constitute strong motivations for
automatically identifying once a large set of common libraries
from market-scale apps, which could then be used by other ap-
proaches to immediately take such libraries into account. A
straightforward solution for achieving such a task is to build a
comprehensive whitelist of common libraries. Wang et al. [6]
claim to have collected more than 600 different common li-
braries to improve their repackaged app detection process. Other
approaches [9, 10, 11, 12] build on top of limited whitelists col-
lected using simplistic heuristics and containing between only
9 (AdDroid [10]) and 103 (Bootk et al. [11]) libraries.

In this paper, we investigate the use of common libraries
in Android based on a dataset of around 1.5 million apps col-
lected from the official Google Play market. In particular, we
build and maintain a comprehensive whitelist of 1,113 Android
common libraries that we share with the communities. Our
approach identifies common libraries based on the assumption
that they are used by many apps as such, i.e., without developer
modification. We further label those libraries to distinguish be-
tween advertisement libraries (or ad libraries, a specific type
of common libraries) and others, using heuristics defined from
our manual investigations.

The initial goal of this work is to provide a comprehensive
and publicly accessible whitelist of Android libraries and their
unique representations. Beyond that, based on the collected
dataset of libraries, we revisit several research directions re-
lated to the impact of common libraries w.r.t. various Android-
related investigations. Notably, we explore the impact of com-
mon libraries for repackaged Android apps detection, machine
learning-based malware detection, and static Android app anal-
yses, etc. In particular, we aim at answering the following three

research questions:

• RQ1: What is the impact of common libraries on the
performance of repackaged apps detection?

• RQ2: What is the impact of common libraries on the per-
formance of machine learning-based malware detection?

• RQ3: What is the impact of common libraries on the
performance of static analysis of Android apps?

Finally, towards better understanding the usage of libraries
in real-world Android apps, we further design and implement
a library representation tool called LibRepresenter. The main
function of this tool is to compute abstract representations of
common libraries. Given a Java package name (or library), Li-
bRepresenter will form an abstract string based on its structural
information to represent it. The rationale behind this abstrac-
tion (or representation) is that it provides a means to directly
search and compare libraries among a large set of Android apps
while being resilient to simple obfuscations (e.g., renaming).
To demonstrate the usefulness of this library representation, we
further empirically explore the following two research ques-
tions.

• RQ4: Are libraries used differently by benign and mali-
cious apps? If different, to what extent can the usage of
libraries be used for learning anti-virus predictions?

• RQ5: Can abstract representations of common libraries
be useful to identify their obfuscated counterparts?

Overall, in this work, we make the following contributions:

• An approach to automatically harvest common libraries
from market-scale Android apps. In this work, we col-
lect 1,113 common libraries from a dataset of around 1.5
million Android apps.

• A discriminative study of advertisement libraries, for which
240 common libraries are recognized as ad libraries.

• An empirical investigation and evaluation of the use of
common libraries in Android apps. We show that there
are indeed significant differences in the use of common
libraries between benign and malicious apps. Besides,
we also show that our harvested common libraries are
indeed useful for other approaches, e.g., to reduce both
false positive and false negative rates for piggybacked
apps detection (i.e., a special type of repackaged apps
where the repackaged version has been injected with some
payloads), and to improve the time performance of static
code analysers.

• A benchmark of library variants (i.e., the different ver-
sions, modified either by the app developers or by attack-
ers, of the same library) and obfuscated library versions,
that we make available online to the Android research
community aiming at facilitating further researches to-
wards performing better and securer libraries to app de-
velopers. This benchmark of library variants and obfus-
cated versions, along with the identified two whitelists

2

of libraries as well as the various prototype tools imple-
mented in this work are made available online to the An-
droid research community at:
https://github.com/serval-snt-uni-lu/CommonLibraries.git.

This paper is an extended version of a conference paper
published at the 23rd IEEE International Conference on Soft-
ware Analysis, Evolution, and Reengineering [13]. Compared
to the conference version, this work has refined our previous
approach by going one step further to represent common li-
braries with unique abstractions that could be later leveraged
to identify library variants (different versions) as well as obfus-
cated library versions. To do so, we have designed and imple-
mented a prototype tool named LibRepresenter, which repre-
sents, based on the structural information of Android app code,
every package of an Android app into a unique abstraction that
provides a means for analysts to identify library variants and
pinpoint obfuscated library versions. To further demonstrate
the usage of our collected common libraries, we present an-
other static analysis tool called LibExcluder, which takes as in-
put an Android app and outputs a new app version where the
code from a given set of libraries are removed. Based on these
two tools, we then added two new research questions. The first
added research question explores the usability of LibExcluder
in improving time performance of static code analysers. The ex-
perimental results demonstrate that excluding common libraries
can indeed increase the performance (i.e., reduce the CPU and
memory consumption) of state-of-the-art tools, where not only
time consumption is reduced but also successful analysing rate
is increased. The second research question explores the use-
fulness of our collected library representations for which we
seek to identify obfuscated library versions based on the ab-
stracted representation thanks to LibRepresenter. The empirical
results show that our approach is promising to be leveraged to
identify obfuscated library counterparts. Furthermore, we have
improved the abstract, introduction, threats to validity, related
work, conclusion sections with up-to-date discussions.

The rest of this paper is organized as follows: After the gen-
eral introduction section, we discuss the closely related studies
in Section 2. Then, we introduce two concrete examples to bet-
ter explain the problems we attempt to address in Section 3.
Next, we present our approach and its implementation details,
including that of LibExcluder, in Section 4 and Section 5, re-
spectively. In Section 6, we present our investigated data set
and the overall results. We then empirically evaluate our find-
ings in Section 7, followed by a discussion of limitations in
Section 8. Finally, in Section 9, we conclude this paper.

2. Related Work

In this section, we discuss a batch of works that investigate
the issues related to libraries and show that even if libraries are
not harmful by themselves, they threaten the validity of other
approaches. After that, we also summarise the works that are
dedicated to the identification of Android libraries.

2.1. Problems of Libraries
As reported by Hu et al. [14], Android libraries are cur-

rently suffering three threats: 1) the library modification threat,
where normal libraries can be modified to be malicious. Our
previous work has also confirmed this findings [15]. 2) the
masquerading threat, e.g., a well-known malware family called
DroidKungFu uses names such as com.google.update to pre-
tend the services are provided by Google [16]. 3) the aggressive
library threat, where some legitimate libraries have aggressive
behaviours such as collecting users’ email address.

Other works [17, 3, 11, 18] done by us and by others, have
also shown that some libraries frequently and aggressively col-
lect (leak) users’ private information. For instance, the most
common leaked information is the device id, which is used by
ad libraries to uniquely identify a user. These findings are in
line with the investigation of Stevens et al. [19], in which the
authors show that, through libraries, users can be tracked by a
network sniffer across ad providers and by an ad provider across
apps.

Recently, Derr et al. [20] have investigated the updatability
of third-party libraries on Android and have empirically found
that many Android apps access into outdated libraries and their
developers do not attempt to update them in order to avoid
ostensible re-integration efforts and version incompatibilities.
They have also demonstrated that over 95% of vulnerable li-
braries can be easily fixed through a drop-in replacement of the
vulnerable library with the fixed version. This evidence sug-
gests that problematic libraries are likely to stay in the Android
ecosystem that would continuously infect Android app users
and most of those infections could be easily avoided. The li-
brary variants and obfuscated versions identified in this work is
actually our first step towards providing a reliable benchmark
for researchers and practitioners to investigate the updates of li-
braries and hence to invent intelligent techniques for automated
library updates.

For advertisement library, Stevens et al. [19] argue that ad li-
braries usually require permissions beyond their real needs and
some badly programmed libraries use Android’s Javascript ex-
tension mechanism insecurely. AdRisk [9] focuses on detecting
privacy and security risks posed by ad libraries. Most notably, it
shows that some libraries even execute untrusted code from in-
ternet sources. Moreover, those untrusted snippets are fetched
through an unsafe mechanism, which by itself has caused se-
rious security risks. Gui et al. [21] have shown that free ad li-
braries actually come with a hidden cost for developers such as
the rating of apps. As reported by Mojica et al. [22], ad libraries
are indeed impacting the ratings of Android apps.

Although our work in this paper is not dedicated to identify-
ing problems of libraries, our findings, the list of common (ad)
libraries, can definitely benefit other approaches (e.g., API stud-
ies [23, 24, 25, 26, 27, 28]) by giving them a good starting point
for thorough analysis. For instance, Mojica et al. [23] leverages
Software Bertillonage [29] to investigate reuse among Android
apps. They have found that most of the classes reused are actu-
ally from third-party libraries. With the help of our large com-
prehensive common library set, the precision of their results
could be much improved.

3

com.adobe.air
com.adobe.flashplayer

com.adobe.flashruntime
com.android.pushshow
com.android.systemtool

air.start.game

29C2D4.apk
(air.starq.game.ZRcards9ers)

287198.apk
(com.taiweishiye.tom.pkjjtss)

similarity = 86%

com.adobe.air
com.adobe.flashplayer
com.adobe.flashruntime
com.android.pushshow
com.android.systemtool

com.taiweishiye.tom
similarity = 0%

include libraries

exclude libraries

(a) False Positive.

com.baidu
cn.domob.android

com.v123.util
com.v123.db

com.v123.activity

F3B117.apk
(com.v123.activity)

25BC25.apk
(com.v123.activity)

similarity = 47%

com.baidu
net.youmi.android

com.v123.util
com.v123.db
com.v123.activity

similarity = 84%

include libraries

exclude libraries

(b) False Negative.

Figure 1: Two motivating examples show the importance of excluding common libraries in order to perform precise repackaged apps detection.
Note that F3B117.apk and 25BC25.apk are actually signed by different certificates although they share a same package name.

2.2. Research Works threatened by Libraries
Researchers have noticed Android libraries will definitely

influence the results of app clone detection [6, 30, 31, 32], where
most of them use a list of libraries as a whitelist. As an exam-
ple, Chen et al. [30] leverage a whitelist containing 73 libraries
in their approach, which is far away from being a complete
whitelist of existing libraries, as shown by Wang et al. [6], over
600 distinct libraries have been identified. However, this list is
not publicly available. Besides, compared to our findings in this
paper, this list is also considerably incomplete.

For clone detection, it is important to detect and filter out
third-party libraries, as the results may be doomed if the stud-
ied apps are dominated by common libraries. As an example,
the very first approach presented by Linares et al. [33] shows
that the results are statistically and significantly different be-
tween including and excluding third-party libraries. Not only
for clone detection, but also for machine learning-based mal-
ware detection, the results are threatened by common libraries.
MUDFLOW [7], as an example, uses a list of 12 well-known ad
libraries as a whitelist, to exclude such features that fill in them.
A later work, done by Li et al. [34], has also leverage that list
in their machine learning-based malware detection.

Our work, in this paper, provides a comprehensive list of
common libraries, that can be leveraged by other approaches
and thus to significantly refine their results.

2.3. Identification of Libraries
Wang et al. [6] use an automated clustering technique to

detect common libraries, in which they have found over 600
distinct libraries. Similarly, Ma et al. [35] and Li et al. [36]
also leverage clustering based approaches to detect common li-
braries in Android apps. Our approach is in line with their as-
sumptions on common libraries, however, we come up with a
different approach and we also discriminate ad libraries from
common libraries, for which they have not. Soh et al. [37]
present a tool called LibSift aiming at detecting third-party li-
braries based on package dependencies which are resilient to
common obfuscations. Another approach called AdDetect [38],

identifies Android ad libraries through their semantics (e.g., the
usage of Android components, or specific APIs) and then per-
forms an ML-based classification to detect ad libraries. How-
ever, these approaches do not report any findings that can ben-
efit the Android research community (e.g., library code may
impact the detection of repackaged Android apps).

3. Motivating Example

We now motivate our work by discussing the impact of fil-
tering out libraries from apps when performing repackaging de-
tection. Repackaging is an operation that consists in taking
an existing app, unpacking it, then modifying it by adding a
(generally malicious) new payload and re-signing it, before dis-
tributing it as a new app. Like repackaged apps (where a pay-
load is not necessarily added), repackaged apps are now perva-
sive in the Android ecosystem where they further constitute an
easy way to build and distribute malware [39, 40, 41]. A typical
approach for detecting repackaged apps consists in performing
pairwise comparisons to identify the original app that was ac-
tually repackaged. However, in the process of computing simi-
larity, libraries, which may account for a large portion of apps,
can influence towards inaccurate results. We present two real-
world examples of pairs of apps where the presence of libraries
can lead to a mislabelling of a legitimate app as repackaged or
a failure to flag a repackaged app as such.

3.1. Mislabeling Legitimate apps as Repackaged

We consider in Fig. 1a the case of two apps1 collected from
an Android market. The packages in their code structure are
very similar when considering the common libraries that they
integrate: one app has 86% of its code2 that is also contained in

1Unique package names: air.starq.game.ZRcards9ers and
com.taiweishiye.tom.pkjjtss.

2The percentage is computed based on method level, where more details
will be given in Section 4.2.

4

the other app. However, considering the results of a prior inves-
tigation of a set of 1,169 known legitimate/repackaged app pairs
where we found that most of the similarity degree ranges be-
tween 81% and 100%, we could set a threshold of 80% for iden-
tifying repackaging cases. This threshold has also been used
by other studies [42, 43] and has been experimentally demon-
strated to be reliable to highlight repackaged Android apps.
This, unfortunately, would lead to a mislabeling in the above
case. Indeed, a detailed analysis of both apps shows that they
are actually using several common libraries (e.g., com.android
and com.adobe). Excluding such libraries from the similarity
computation, the similarity degree falls down to 0%, leaving no
room for a false positive prediction.

3.2. Missing True Repackaged Apps

We now consider in Fig. 1b two apps which are known to
be a legitimate/repackaged app pair. These apps share the main
package called com.v123.activity. However, library cn.domob.android
was replaced in the repackaged app with the library net.youmi.android
to redirect the revenues of the legitimate app to another devel-
oper. Nevertheless, although these two apps are repackaged
from one to another, their similarity degree is only at 47%,
which would constitute a false negative in our detection scheme
with a threshold of 80%. However, if the detection system iden-
tified first the common libraries and dismissed them during the
pairwise comparison, the similarity degree would reach 84%,
leading to a successful prediction.

Overall, the validity of pairwise comparison for repackag-
ing detection could be threatened when substantial parts of app
code are common library code. Thus, to limit both false posi-
tives and false negatives, library filtering is now more and more
considered in state-of-the-art repackaging and repackaging de-
tection approaches [6, 44, 30]. However, the whitelists that they
leveraged is built based on manual investigations or automati-
cally with limited datasets. Furthermore, these whitelists are
seldom available to other researchers in the community.

4. Methodology

In this section, we provide details on the approach that we
have devised to collect common libraries and their unique rep-
resentations (abstractions).

Fig. 2 illustrates the general process of our approach, which
is dedicated to harvest common libraries in Android apps, iden-
tify advertisement libraries among them, and represent the li-
brary with comparable abstractions. First, for our approach to
make sense, we need a large and representative dataset of An-
droid apps. Then, as a first step, we visit all the apps in the
dataset and rank all packages in terms of the frequency of their
appearance in apps. For the sake of simplicity, we assume that
a package with the same name in several apps is a candidate
library. Thus, Step 1 outputs a ranked list of candidate libraries,
where the highest ranked candidate library has the most recur-
ring package name in the dataset. In the second step, we per-
form a more fine-grained pairwise comparison of candidate li-
brary code within apps. The objective of Step 2 is to confirm

as common library packages those recurring packages that have
the same name and are very similar in their code. Next, in Step
3, we further investigate the harvested libraries to label those
that are advertisement libraries and thus may be treated differ-
ently in some Android analysis approaches. Finally, in Step 4,
we design and implement a prototype tool called LibRepresen-
ter that leverages code structural information to represent app
packages with an abstract string that could then be leveraged to
support quick comparison of different libraries.

We now provide details on how each step works in the fol-
lowing four subsections.

4.1. Step 1: Candidate Libraries Extraction
We assume that common libraries are such software pack-

ages that are:

• used in a large number of apps – recurring packages have
a very high probability of being common libraries.

• used by developers without modifications – their code
must be similar across apps. Hu et al. [14] have found
that over 80% of libraries are indeed used without modi-
fication in their dataset of 100,000 Google Play apps.

Building on those assumptions, and leveraging a large dataset,
we extract all package names from Android apps and cluster
them based on their frequency of occurrence in the dataset.
Theoretically, packages that appear in at least two apps could be
taken as candidate libraries3. To reduce the number of distinct
packages considered as candidate libraries, and which must be
further processed we consider two constraints:

• We only consider the first three segments4 of package
name or the entire name if there are less than 3 segments.
With this constraint, we manage to limit the number of
redundant sub-packages while still guaranteeing a large
diversity in package names.

• We also exclude packages with names starting with an-
droid.support. Indeed, there are many sub-packages within
this package and they are used pervasively in Android
apps. Furthermore, since these are part of the Android
framework, we do not consider them in our study5.

4.2. Step 2: Common Libraries Confirmation
Because package naming is done in Java programming with

limited constraints, any two packages may share the same name
while being completely different in terms of code functionality.
Also, the frequency of a package name may actually be con-
tributed by repackaging operations, obfuscation activities (e.g.,

3Actually this may not be true if the apps are from the same developer.
However, since we are performing experiments on a large set of apps, this small
deviation will not impact our final results.

4In this paper, we use the term segment to describe each domain of different
levels, e.g., for package org.example, we say it contains two segments, which
are org and example.

5Nonetheless, we do consider android.support.* as a common library in this
work.

5

Step 1
Candidate Libraries

Extraction

Step 2
Common Libraries

Confirmation
AndroZoo Dataset

(input)

(output)
Common Libraries

Step 3
Ad Libraries
Confirmation

(output)
Ad Libraries

Step 4
Library Representation

(output)
Library Unique Abstractions

Figure 2: Approach overview.

Library
Candidates

one segment
package obfuscated prefix of other

packages

NO NO
similar code

structure
Common
Libraries

YES
less than
10 apps

NO NO

Non-Libraries
(Discard)

YES YES YES YES NO

Figure 3: Refinement process for common libraries identification

a.a.a or com.a are recurrent in many obfuscated apps) or sim-
plistic naming (e.g., debug or mobile package names). Thus,
we must refine the list collected in the previous step with code
similarity measurements to find actual code packages used as
common libraries.

Beforehand, given the expensive property of pairwise com-
parison, we use heuristics to exclude from the candidate li-
braries outputted by Step 1, those packages which would be
irrelevant. Our refinement process is shown in Fig. 3.

1) At first, we focus on those packages whose names appear
in more than 10 apps to reduce the number of candidate libraries
to the most relevant ones.

2) Then, we remove such packages whose names contain
only one segment. Although such short names are indeed likely
to be redundant in several apps, they are not likely to be those
of packages that will be distributed as common libraries. In-
deed, to prevent package name collisions, one convention in
Java package naming6 recommends organisations/development
teams to use their reversed Internet domain names (e.g., com.facebook)
to begin their package names, which justifies our assumption
that common libraries, intended for wide distribution, have pack-
age names with several segments.

3) Next, we undertake to exclude packages with obfuscated
code. However, because there is currently no advanced ap-
proach for checking whether a package is obfuscated or not,
we build on a naive approach based on observations that we in-
spect from several obfuscated apps: every package that contains
a single letter segment (e.g., d of com.idreamsky.d) is consid-
ered as obfuscated.

4) To further reduce the number of candidates, we exclude
such packages that are prefixes of other packages (e.g., we re-
move package com.sansec if package com.sansec.AESlib ex-
ists). The idea behind this decision is that on the one hand long
packages would indicate more fine-grained examination while,
on the other hand, short packages would increase the chance of

6https://newcircle.com/bookshelf/java_fundamentals_

tutorial/packaging

being duplicated (by accident).
5)In this step, we perform package similarity analysis to

discriminate common library packages from normal app code
package. Given p, a package name, and A, a set of apps which
include a package named p, our similarity analysis works in
three steps:

• 1) Pairwise combinations of apps. We consider all the
pairwise combinations of apps with package name p. Re-
call that every considered package name p was selected
as a candidate because it appears in at least 10 apps. Thus,
for any given p, there are at least

󰀃10
2

󰀄
= 45 pairs to com-

pare. Google’s ad package com.google.ads is the one for
which A is the largest (247,394 apps), leading to over 30
billions pairs that require comparisons. For scalability
reasons, we randomly selected for each case of a package
name p, 10 pairs of apps, allowing us to assess whether
this package name indeed represents a common package
code across the apps.

• 2) Method Comparisons. Analysis of a pair of apps is
performed by computing the similarity between their meth-
ods. This similarity takes into account not only the sig-
natures of apps but also their respective contents. Two
methods, from two different apps, with the same signa-
ture are said to be identical only when their contents are
the same. Otherwise, they are simply said to be simi-
lar. Such methods may exist between two packages of
the same library in several cases: a method in one li-
brary package may be modified to insert malicious pay-
load during repackaging operations; different obfusca-
tion algorithms applied on different apps that include the
same library may produce methods with the same signa-
ture but different contents. To limit the impact of obfus-
cation, we proceed to abstract the contents of methods
by comparing the types of statements (e.g., “invoke”) in
the Jimple code, leaving out all names of variables/field-
s/methods. However, since obfuscation is not expected
to modify SDK API methods, we also take into account

6

https://newcircle.com/bookshelf/java_fundamentals_tutorial/packaging

the names of such methods. Eventually, the similarity of
methods is computed as a simple text differencing.

• 3) Similarity Analysis. In the last step, we finally per-
form pairwise similarity analysis for packages with the
same name p. There are two thresholds, namely tp and
ta, which are involved in the similarity analysis. First, we
consider that two packages p1 and p2 correspond to the
same common library p if p1 and p2 are identical or are at
least similar up to a threshold tp. Second, because of the
known common phenomenon of repackaging in Android,
which may nullify the package similarity (because they
are probably from the same original app), we must dis-
miss cases where the similarity score of the pair of apps
(app1 and app2) is higher than a threshold ta. Note that
the similarity between apps is computed at the method
level (i.e., what percentage of methods are identical or
similar between the apps?).

Algorithm 1 Package similarity analysis.

1: procedure SIMILARPACKAGES(p, app1, app2, tp, ta)
2: Input: p: package
3: Input: tp, ta: thresholds for package-related, all

methods
4: Output: T RUE: p is similar between app1 and app2
5: s ← new InnerStorage()
6: MS1 ← getMethodSignatures(app1)
7: MS2 ← getMethodSignatures(app2)
8: for all msi ∈ MS1 do
9: if msi ∈ MS2 then

10: if content(msi,MS1).equals(content(msi,MS2))
then

11: store(s, p,msi,“identical”)
12: else
13: store(s, p,msi,“similar”)
14: end if
15: else
16: store(s, p,msi,“deleted”)
17: end if
18: end for
19: MS2.removeAll(MS1)
20: for all msi ∈ MS2 do
21: store(s, p,msi,“new”)
22: end for
23: totalpkg ← total(s.pkg)
24: totalall ← total(s.all)
25: simiscorepkg ←max(s.pkg.identical

totalpkg−s.pkg.new ,
s.pkg.identical

totalpkg−s.pkg.deleted)

26: simiscoreall ← max(s.all.identical
totalall−s.pkg.new ,

s.all.identical
totalall−s.all.deleted)

27: if simiscorepkg >= tp && simiscoreall <= ta then
28: return T RUE
29: else
30: return FALSE
31: end if
32: end procedure

To summarize, as illustrated in Algorithm 1, for similarity

analysis, given a pair of apps (app1, app2), we compute four
metrics (cf. lines 8-22): identical (i.e., the number of meth-
ods that are exactly the same, both in terms of signatures and
implementation), similar (i.e., the number of methods having
the same signature but with different contents), deleted (i.e.,
the number of methods that exist in app1 but not in app2), and
new (i.e., the number of methods existing only in app2). These
metrics are good indicators for comparison and have been lever-
aged in state-of-the-art Android similarity tools, such as Andro-
guard [45] to compute similarities among Android apps. Basi-
cally, the problem of identifying similar libraries can be trans-
ferred to counting the number of identical methods shared by
given two Android apps. The more methods shared by two
apps, the more similar these two apps should be. Given these
metrics, we can compute the similarity between the pair (app1,
app2) using Formula 1 (cf. lines 25-26).

similarity = max{ identical
total −new

,
identical

total −deleted
} (1)

where

total = identical + similar+deleted +new (2)

Note that we use the same formula to perform the similar-
ity analysis of a given pair of packages (p1, p2), except that the
metrics are computed by counting methods in packages rather
than in apps (e.g. identical is the number of methods that are
exactly the same in p1 and p2, deleted is the number of meth-
ods that exist in p1 but not in p2, etc.). This is actually the main
reason (i.e., flexibility) that we decide to implement the similar-
ity computation algorithm by ourselves, despite that there are
already several existing ones proposed to the community (e.g.,
Androguard [45], WuKong [6], and the approach introduced by
Mojica et al. [23]). Nonetheless, this choice should not impact
our approach toward identifying common libraries in Android
apps.

4.3. Step 3: Identification of Ad Libraries
A specific example of the type of widespread common li-

braries in Android is advertisement libraries. Such libraries are
indeed used pervasively as they constitute one of the main ways
for app developers to be rewarded for their development effort.
Ad libraries are also often inserted during repackaging to redi-
rect revenues. Their presence in an app also often lead antivirus
products to flag them as adware. Recent approaches for An-
droid security analysis are now processing ad library code in
a specific way to reduce false positives. For example, MUD-
FLOW [7] simply does not report any potentially sensitive data
leaks through ad libraries, as they might be legitimate. To that
end, they have leveraged a limited whitelist of 12 libraries. In
this context, we propose to further mine our collected set of
common libraries to identify a large set of ad libraries which
could be leveraged to improve the results of Android analy-
ses. To that end, we consider a basic method of detection based
on the library name and a more semantic method based on the
characteristics of ad libraries, where these two methods are sup-
posed to be complementary to one another.

7

4.3.1. Keywords matching
We note that ad library package names generally contain

keywords that include the term “ad”. Widespread examples
of such packages are com.google.ads and com.adsdk.sdk. Un-
fortunately, simply matching “ad” in the package name would
lead to a substantial portion of false positives as several library
package names have “ad” in their segments which are common
words (e.g., shadow, gadget, load, adapter, adobe). Thus, to
work around this limitation, we collect all English words con-
taining “ad” from SCOWL7 (accounting for a total of 13,385
words, including the aforementioned common words such as
shadow, addition, radio, adobe, etc.), and dismiss packages con-
taining such words as potential ad libraries. Note that many ad
libraries, including famous ones such as cn.domob and com.mopub
do not contain “ad” keyword. Therefore, we additionally resort
to a semantic method, detailed in the next subsection, based on
the characteristics of ad libraries to supplement this keyword
matching approach.

4.3.2. Ad features investigations
We consider samples from a list of ad packages summarized

by Grace et al. [9] and manually investigate how ad libraries
differentiate from other common libraries and infer a set of fea-
tures whose presence in a package would justify the tag of ad
library.

• 1) Internet usage: All investigated libraries unsurpris-
ingly require access to the Internet to remotely upload to
a server some viewing statistics and update ad contents.
Thus, apps integrating add libraries also require permis-
sion android.permission.INTERNET. Given this fact,
we can already exclude a number of common libraries,
which appear in apps without Internet access. However,
given that an app may request the INTERNET permis-
sion for its own needs, we cannot immediately state that
a common library in such an app is an ad library. Instead,
we must investigate whether the code of such an app in-
deed declares uses Internet-related APIs. To that end, we
leveraged the whitelist of such APIs, originally shared by
PSCout [46], to produce candidate ad libraries among the
common libraries.

• 2) Components declaration: Our manual investigations
have also revealed that ad libraries often contain compo-
nents, mainly Activities, for facilitating users’ ad-related
interactions (e.g., switching to a new full-screen ad page
when users click on an advertisement banner). As a con-
crete example, MoPub8 is an advertisement library tar-
geting both Android and iOS. To integrate this library in
their apps, developers must declare four components in
their apps’ manifest file. One component, in particular,
MraidVideoPlayerActivity is necessary for video ads to
work properly. Thus, when a library package is associ-
ated with a declared component, we flag it as a potential
ad library.

7Spell Checker Oriented Word Lists: http://wordlist.aspell.net
8https://github.com/mopub/mopub-android-sdk

• 3) Views declaration: In Android, advertisements are gen-
erally set to be visualized, which form in Android pro-
gramming imply the use of view gadgets (i.e., classes
extended from android.view.View). Thus, we check
whether there are View-based classes under a common li-
brary to flag it as a candidate ad library.

4.4. Step 4: Library Representation
Our identified common libraries are based on Java package

names that can be easily manipulated by name-based obfusca-
tion techniques (e.g., to protect legitimate code by app devel-
opers or to protect tampered code by attackers) or simply by
modification of human beings (e.g., by attackers to inject vul-
nerable code into the original code base). As demonstrated by
Li et al. [47, 42], attackers are well motivated to tamper com-
mon libraries so as to perform repackaging attacks on Android
apps. Indeed, by just tampering a single popular library, all the
apps that access into that library could be contaminated.

Both obfuscation and modification operations produce dif-
ferent variants of the original library. Because of security rea-
sons (e.g., to detect vulnerable apps), there is a strong need to
identify different library variants. Indeed, by investigating the
changes among the different variants of the same library, app
analysts can observe promising insights that can eventually be
leveraged to locate vulnerabilities in Android apps or under-
stand the reasons and intentions behind the obfuscation/modifi-
cation operations.

Towards identify library variants as well as obfuscated li-
brary versions, in this work, we design and implement another
research-based tool called LibRepresenter. Given a Java pack-
age name (or library), LibRepresenter represents it via an ab-
stract string that is formed based on its structural information.
The rationale behinds this abstraction (or representation) is that
it provides a means to directly search and compare libraries
among a large set of Android apps. Because of obfuscation,
some structural information is modified and hence cannot be
leveraged to directly form the unique representation. To this
end, LibRepresenter provides two types of abstractions: one
with limited information that is supposed to be used for pin-
pointing obfuscated library versions while another one with more
comprehensive information that can then be leveraged to iden-
tify library variants.

The representation of common libraries conducted by Li-
bRepresenter is mainly in two steps:

• 1) Structural Tree Construction. Given an Android app,
LibRepresenter builds a tree to model its structural in-
formation, hereinafter we call this tree as structural tree.
In particular, for every method presented in the app, we
model all the segments of its Java packages as well as its
class and method name as nodes and the logic sequence
of those segments, class/method names as edges. As an
example, Fig. 4 illustrates an example of simplified struc-
tural tree that is constructed based on the ActivityMessen-
ger class9, which is available in app ServiceCommunica-
tion1 of the DroidBench repository. Method names such

9https://github.com/secure-software-engineering/DroidBench/blob/master/

8

edu

mit

ActivityMessenger

sayHello onStartonCreate

icc_service_messages

onStop

ActivityMessenger

onCreate onStoponStart sayHello

(1)

(2)

Figure 4: An example of a simplified structural graph (without consid-
ering the dashed edges) and the process of rearranging nodes (replac-
ing edge (1) with edge (2)).

as onStart and sayHello are always presented in a struc-
tural tree as leaf nodes and are always children nodes of
such nodes that are formed based on class names (e.g.,
ActivityMessenger).

Since we want to represent library code with unique ab-
straction strings, we need to rearrange the constructed
structural tree to avoid potential inconsistencies, e.g., the
sequence of integrated nodes. To this end, for each non-
leaf node, we rearrange its all children nodes in a way
that all these nodes are presented, from left to right, fol-
lowing alphabetical order. As shown in Fig. 4, after the
rearrangement, the onCreate node has been moved to the
leftmost place while the sayHello node is moved to the
rightmost place.

• 2) Library Abstraction. After the construction and rear-
ranging of the structural tree, LibRepresenter represents
each node (or library) based on all its children nodes. All
specifically, these children nodes are visited and recorded
in a breadth-first manner and the final abstraction string
is made up of two parts: (1) concrete part, where node
names are leveraged; and (2) abstract part, where de-
clared modifiers for leaf nodes (i.e., every leaf node rep-
resents a Java method) while the number of children nodes
for non-leaf nodes is leveraged. Listing 1 presents the
representation of package edu.mit.icc service messages,
yielded by LibRepresenter.

The combination of these two parts can be leveraged to
identify library variants that have small changes out of
the whole code structure while the abstract part per se
can be leveraged to identify possible obfuscated versions.
So far, advanced obfuscated techniques that could change
the code structure of libraries are not addressed by Li-
bRepresenter. Nevertheless, as demonstrated by Wang

eclipse-project/InterComponentCommunication/ServiceCommunication1/
src/edu/mit/icc service messages/ActivityMessenger.java

and Rountev [48], most Android apps are actually ob-
fuscated by the default obfuscator ProGuard that usually
performs name changes only. As a result, although only
simple structural information is leveraged, we would ex-
pect that LibRepresenter could still be useful for many
Android apps towards identifying obfuscated library ver-
sions. It is worth to mention that, so far, LibRepresenter
only records basic attributes to represent the code struc-
ture of Android apps. It is however quite easy to extend
the current implementation to further include more at-
tributes (e.g., the number of statements for each method,
a.k.a. leaf node) and thereby to improve the accuracy of
detecting library variants and obfuscated versions.

4.5. Implementation details

We implement our approach through several languages such
as Java and shell/Python scripts. In step 1, we leverage Ap-
ktool10 to disassemble Android apps. Given an Android app,
we extract the prefixes of paths of smali files (a format used by
Apktool to represent Android apps’ code) to represent its pack-
ages. Then, we cluster all the packages of investigated apps
together and rank them through their repeated times. The pack-
ages whose size are greater than a given threshold are selected
as library candidates.

The code similarity analysis in step 2, the ad library confor-
mation in step 3 and the library representation work in step 4 are
all implemented in Java. More specifically, both of them lever-
age Soot [49, 50] to achieve their functionality and work in the
Jimple code level, where Soot is a framework for analysing and
transforming Java/Android apps while Jimple is an intermedi-
ate representation of Soot. The transformation from Android
Dalvik bytecode into Jimple code is powered by Dexpler [51],
which currently is available as a plugin in Soot.

5. LibExcluder

So far, based on the process described in the previous sec-
tion, we are able to harvest a set of common libraries. In order
to facilitate the usage of identified common libraries, we design
and implement a research-based tool named LibExcluder. The
objective of LibExcluder is to remove library code from a given
Android app and therefore presenting to existing state-of-the-
art approaches a new app version where library code no longer
exists. Without any modification (i.e., being non-invasive), ex-
isting approaches such as FlowDroid [8] and IccTA [3] can ben-
efit from our work by performing a library-free analysis.

Fig. 5 illustrates the working process of LibExcluder, which
takes as input two artefacts: a given Android app and a whitelist
of common libraries, and outputs a new app version, which is
generally as same as the inputted one except that some code
that belongs to any library configured in the whitelist are ex-
cluded. The implementation of LibExcluder relies on four main
steps: First, it unpacks the given Android app and builds a call

10https://ibotpeaches.github.io/Apktool/

9

1 concrete part: (icc_service_messages ,

2 (ActivityMessenger$1 ,<init >/[], onServiceConnected /[...] , onServiceDisconnected /[]),

3 (ActivityMessenger ,<init >/[...] , bindService /[], getSystemService /[],

4 onCreate /[...] , onStart /[...] , onStop /[...] , sayHello /[...] , setContentView /[], unbindService /[]),

5 (BuildConfig ,<init >/[]) ,

6 (MessengerService$IncomingHandler ,<init >/[...] , handleMessage /[...]) ,

7 (MessengerService ,<init >/[...] , getApplicationContext /[], onBind /[...]) ,

8 (R$attr ,<init >/[]) ,(R$id ,<init >/[]) ,(R$layout ,<init >/[]) ,(R$string ,<init >/[]) ,(R,<init >/[]))

9
10 abstract part: (10 ,(1 ,65537/0/0) ,(1 ,65537/0/0) ,(1 ,65537/0/0) ,(1 ,65537/0/0) ,(1 ,65537/0/0),

11 (1 ,65537/0/0) ,(2 ,1/1/2 ,65536/1/1) ,(3 ,0/0/0 ,1/1/3 ,65537/0/2) ,(3 ,1/1/0 ,1/2/1 ,65536/1/0) ,

12 (9 ,0/1/0 ,0/1/0 ,0/1/0 ,0/3/0 ,1/1/4 ,4/0/1 ,4/0/2 ,4/1/1 ,65537/0/1))

Listing 1: The real representation of package edu.mit.icc service messages, which contains more elements comparing to the simplified
structural tree shown in Fig. 4.

Common
Libraries

(1) Disassemble &
CG Construction

(2) Library Code
Location

(3) Library Code
Exclusion (4) Reassemble

Figure 5: LibExcluder Overview.

graph (CG) based on the unpacked bytecode. Then, it goes
through all the libraries configured in the whitelist and attempts
to locate all the library code. Next, after identifying all the
library-related code, LibExcluder then removes them from the
constructed call graph. In practice, in order to make the re-
maining code self-compilable, the removed library code is set
to phantom to ensure that the modified code is still analyzable
by static analyzers. Finally, in the last step, LibExcluder re-
assembles the changed code to a new Android app, which now
does not contain any library code. Instead of analyzing the orig-
inal app, existing analyzers, without any modification, can now
focus on the new version to perform a library-free analysis.

LibExcluder is implemented following the same code in-
strumentation strategy introduced by other approaches such as
IccTA [3] and DroidRA [52]. Unfortunately, it shares the same
drawbacks as well. For example, we cannot guarantee that the
newly generated app version will be executable. Nevertheless,
the goal of LibExcluder is not to generate executable Android
app, but to generate an app version that is capable of support-
ing static analysis approaches. As shown in Section 7, LibEx-
cluder is indeed capable of improving the performance of exist-
ing static analyzers.

6. Dataset and Results

In this section, we first disclose our evaluated data set in
Section 6.1 and then we present our overall findings including
both common libraries and also ad libraries in Section 6.2. Fi-
nally, we present further statistics on the libraries in Section 6.3
and Section 6.4.

6.1. Dataset

Our data set is made up of 1,455,516 (around 1.5 million)
apps that are collected from the official Google market (Google
Play) over several months. This dataset has already been ap-
plied to large-scale experiments on Android researches such
as malware detection [41, 53, 34] and repackaged apps detec-
tion [15]. We have sent all the apps into VirusTotal to check
whether they are malicious or not. Among the 1,455,516 apps,
311,490 (nearly 21%) of them are flagged by at least one anti-
virus product hosted on VirusTotal while 65,079 (nearly 4%)
apps are flagged by at least five anti-virus products.

6.2. Overall Results

Table 1: Summary of our investigation results.

Type Number
#. of packages (total) 7,710,505
#. of packages (distinct) 676,674
#. of packages (Nshared apps > 10) 19,725
#. of packages (one segment) 613
#. of packages (obfuscated) 1,461
#. of packages (prefix of others) 919
Size of final set of candidate common libraries 16,732

Table 1 illustrates the overall results of our investigation
on a data set of around 1.5 million apps. In total, we collect
676,674 distinct package names, where we filter out 656,949
package names that are used by at most 10 apps, leading to a set
of 19,725 package names. We further dismiss 2,993 from con-
sideration by applying our library refinement process. Those

10

2,993 package names are composed of 613 one segment pack-
ages, 1,461 obfuscated packages and 919 packages that are pre-
fixes of other packages. Finally, we perform pairwise similarity
analyses for 16,732 packages. For each package, we randomly
select 10 pairs of apps to do the comparison. As long as there
are positive results, we consider it as a common library and vice
visa.

6.2.1. Results of Common Libraries

Table 2: Results of common libraries with different thresholds: tp for
package-level and ta for app-level. Common libraries are select if and
only if their package-level similarities are bigger than tp while their
app-level similarities are smaller than ta.

tp\ta 0.1 0.2 0.3 0.4
0.9 1,113 2,148 3,173 4,072
0.8 1,363 2,564 3,715 4,685
0.7 1,573 2,898 4,117 5,144
0.6 1,735 3,179 4,452 5,509

Our common libraries selection is actually depending on the
two thresholds introduced in Section 4: ta for app-level similar-
ity and tp for package-level similarity. The precision of our
results is positively correlated to tp while negatively correlated
to ta. Indeed, the bigger tp is, the higher the probability that a
given candidate library is an actual common library, giving the
assumption that libraries are not modified when they are used
among apps. On the other hand, the smaller ta is, the lower the
probability that the compared two apps are repackaged from
one to another. Recall that if two apps are repackaged from one
to another, the similarity of packages would become meaning-
less, as in this case, most packages would be the same, without
being necessarily common libraries.

Table 2 illustrates the results of common libraries with dif-
ferent thresholds. The final number of common libraries range
from 1,113 to 5,509. To better refer to our results in the remain-
der of the paper, we name CLp,a the set of Common Libraries
that are selected with the thresholds tp and ta. For example,
CL6,4 stands for a “loose” set of common libraries we harvest
with tp = 0.6 and ta = 0.4. CL9,1 stands for a more precise set of
1,113 common libraries we harvest with tp = 0.9 and ta = 0.1,
which although the number of libraries is smaller than CL6,4,
contains potentially less false positives (i.e., more precise than
CL6,4). Therefore, in this work, we consider CL9,1 as the de-
fault common library set and recommend users to leverage this
set for their future investigations.

6.2.2. Results of Ad Libraries
We then distil ad libraries from the previously harvested

common libraries. We start from the CL6,4 library set and per-
forms two types of refinement: 1) ad-related keywords match-
ing and 2) ad characteristic-based investigation. The refinement
results are presented in Table 3.

Ad-related keywords matching. By following the process
described in Section 4.3, we were able to automatically harvest
275 ad libraries.

Table 3: Results of ad libraries.

Description #. of Libraries
Ad-related keyword matching 275
Ad characteristic-based investigating 822
Merge (conservative ad libraries) 1050
Manual confirmation (keyword matching) 222
Manual confirmation (characteristic investigating) 137
Merge (precise ad libraries) 240

Ad characteristic-based investigating. We have observed
three characteristics that ad libraries may have in Section 4.3.
Fig. 6 shows the results of our investigation. Among the 5,509
libraries in CL6,4, 1,248 of them request the INTERNET per-
mission, 1,560 have declared View gadgets and 1,388 have de-
clared components. The intersection results are also illustrated
in Fig. 6. In this work, we take the intersection of all the three
characteristics as potential ad libraries, leading to a set of 822
ad libraries.

In the next step, we merge the aforementioned two ad li-
braries sets, leading to a set of 1,050 ad libraries. In the remain-
der of the paper, we name this set AD1050.

Comp-declaration
1,388

VIew-declaration
1,560

INTERNET-permission
1,248

1,202

888 936

822

Figure 6: Investigation results of different characteristics for ad li-
braries. Besides the 822 ones presented in this figure, we harvest in
total 1,050 ad libraries, where 275 of them are collected via an ad-
related keyword matching approach.

Manual confirmation. As far as we know, AD1050 is cur-
rently the largest set of ad libraries existing in the community.
However, because we start from CL6,4, mainly to start with
the biggest set (minimizing the miss of libraries), AD1050 may
contain false positives. To this end, we perform a fast but ag-
gressive manual refinement, where only clear ad libraries11 are
taken into account. As a result, 240 libraries are confirmed as
ad libraries12, hereinafter we refer to this set as AD240. These
240 ad libraries are found to be accurately labelled, forming
a golden set of ad libraries. We argue that a golden set of ad
libraries is important, which plays as a core base that makes
it possible for other approaches to also yield reliable dataset-
s/results. Indeed, if a non-ad library is considered to be an ad
library, all the findings observed based on the ad library would
be consequently false alarms.

11We search each library on Google and manual go through the top 10 results.
We consider a package is indeed an ad library as long as its corresponding web
pages have explicitly claimed that it functions advertisements.

12This does not mean the remaining 810 libraries are not ad libraries (i.e.,
not false positives). It is likely that our fast refinement approach is not enough
to reveal all the library packages.

11

adware adwo adsware addisplay multi ads adswo adrads

Baseline
AD−1050
AD−240

0
2
0
0
0

4
0
0
0

6
0
0
0

Figure 7: Investigation results of comparing our ad libraries to the
adware results of VirusTotal.

Completeness of our harvested ad libraries VirusTotal is
a free service that hosts about 60 antivirus products for analyz-
ing suspicious files, including Android apps. Along with en-
tirely malicious apps, VirusTotal is also able to identify adware
and provide information on the labels. However, AV labels are
not homogeneous, and there is no standard for naming malware
and adware. After manually inspecting several results of Virus-
Total, we have observed seven keywords (adware, adsware, ad-
display, adswo, adwo, adrads, and “multi ads”) that are com-
monly leveraged by VirusTotal AV to tag adware.

In this study, we first select a set of apps that are flagged
by VirusTotal as adware, and then we inspect whether those
apps could have been tagged as adware based simply on pack-
age matching with our harvested libraries. In this study, we
consider 10,000 randomly sampled apps which are flagged by
at least one antivirus product of VirusTotal (the flagged labels
are not necessarily for adware). Among the 10,000 apps, 8,120
(81.2%) of them are flagged as adware following the keywords
described above. Based on the two ad sets that we have har-
vested before, we are able to flag 5,045 of them for AD240 and
6,916 of them for AD1050 as adware, giving a completeness of
62% and 82%, respectively.

Fig. 7 presents the fine-grained results, categorized through
different ad-keywords. Our harvested ad libraries perform al-
most perfectly for five keywords out of the total seven key-
words. However, the performance on “adware” and “addisplay”
keywords are less stable, indicating that our harvested ad li-
braries are still missing some less widespread libraries.

We now evaluate the recall of VirusTotal in terms of the
usage of advertisements by comparing with our findings. In
order to evaluate the recall of VirusTotal, we have to collect a set
of apps that are indeed adware. To this end, we manually select
and confirmed 30 ad libraries from our findings to perform the
experiments. These 30 libraries are actually used by 33,475
apps in our data set, for which we send all of them to VirusTotal.

Among the 33,475 apps that we examine, 19,695 (59%) of
them are flagged as goodware by VirusTotal, meaning one of
the anti-virus products hosted by VirusTotal have flagged them

as such. For the remaining 13,780 apps, VirusTotal has flagged
them as malicious, where 11,713 (85%) of them are flagged as
adware, while the remaining 2,067 apps are flagged as malware
(non-adware). In this work, we take the 19,695 goodware and
the 2,067 malware as false negatives, resulting in a recall of
35%, illustrating at the moment the results of VirusTotal are
far from good. In other words, there is still a huge space for
VirusTotal to improve, in order to perform a sound analysis.

Table 4: Investigation results of the 30 ad libraries we select. Besides,
we have listed the popularity of top used 10 libraries (out of the se-
lected 30 libraries).

Seq. Name Apps VirusTotal Recall
1 com.adsdk.sdk 9439 2589 27%
2 com.adfonic.android 6469 1658 26%
3 com.adwhirl 6052 1317 22%
4 com.jirbo.adcolony 4033 1332 33%
5 com.applovin.adview 5895 2103 36%
6 com.jumptap.adtag 3576 941 26%
7 com.purplebrain.adbuddiz 2685 882 33%
8 com.huntmads.admobadaptor 2488 515 21%
9 com.tapit.adview 2371 583 25%
10 com.adwo.adsdk 1949 1886 97%
Sum (1 → 10) 30,301 10,225 34%
Sum (11 → 30) 5,807 3,206 55%
Total (1 → 30) 33,475 11,713 35%

Table 4 shows more details of the investigation results, in
which we have shown the popularity of the top 10 used ad li-
braries (out of the 30 libraries we select previously). Respec-
tively, we also investigate the recall of VirusTotal for each ad
library. In most cases, the recall of VirusTotal is less than 40%,
which is in line with the overall results. However, for package
com.adwo.adsdk, 97% apps that contain it have been success-
fully flagged, showing that it is not impossible to aggressively
identify ad packages from Android apps.

The aforementioned evidence suggests that, although our
harvested ad libraries are currently the largest publicly accessi-
ble set, it is not yet complete enough to cover all ad packages.
Nevertheless, we believe that our harvested libraries still con-
stitute a significant set for other to boost analysis.

6.3. Popularity of common libraries
Fig. 8 lists the top 20 common libraries and indicates, for

each, the number of apps in which they are used. The top
used library is com.google.ads, which is used by 247,394 apps
(nearly 17%) of our data set. Moreover, the results suggest that
developers often use libraries which are proposed by popular
(well-known) companies such as Google or Facebook.

The most used common library in Android apps is
com.google.ads, an adverstisement library included in
nearly 17% of apps.

6.4. Proportion of Library code in app code
We then look into the percentage of Android apps code

which comes from libraries. To this end, we consider the li-
braries present in CL9,1 and a set of 10,000 apps randomly

12

twitter4j.util

twitter4j.api

twitter4j.conf

com.flurry.android

org.apache.cordova

com.facebook.internal

com.facebook.model

com.facebook.widget

com.google.gson

org.apache.http

com.actionbarsherlock.view

com.actionbarsherlock.app

com.actionbarsherlock.widget

org.apache.commons

com.actionbarsherlock.internal

com.android.vending

com.google.analytics

com.facebook.android

com.google.android

com.google.ads

31537

31589

31711

38051

41077

45552

45569

46208

50194

51870

52556

52972

52980

53415

53529

57369

73087

81266

222221

247394

Figure 8: Popularity of the top 20 common libraries in our investiga-
tion, and the number of apps in which they are used.

selected from our initial set of apps. For each app, we com-
pute the size of the CL9,1 libraries (sizelib, in bytes) presented
in the app and the size of the whole app (sizeapp). We finally
compute the portion p of the use of common libraries through
p = sizelib/sizeapp. The experimental results vary from 0 to
0.99, giving a median value of 0.41. Among the 10,000 apps,
4,293 (42.9%) of them have used more code in libraries than
in their real logic (p >= 0.5). These results show that Android
apps are indeed using common libraries pervasively.

42% of our sampled app packages contain more com-
mon library code than specific app code. On average,
41% of an Android app code is contributed by common
libraries.

6.5. Representation of Identified Libraries
Given that the time needed to analyse the apps, the band-

width required to collect them and the storage capacities to store
the data put limitations for the experiments, we could not run
LibRepresenter on all the apps available in Androzoo. Never-
theless, we run LibRepresenter on 200,000 Google Play apps
that are randomly selected from our original dataset. These
1,051 libraries are leveraged and are spread with 21,150 differ-
ent versions (i.e., variants). Fig. 9 plots the distribution of the
number of variants among the involved libraries. The median
and the average number of variants are 5 and 30, respectively.
Overall, 881 (or 84%) libraries have at least two variants spread
in the Android ecosystem.

Table 5 depicts the top 10 libraries ranked based on their
number of variants discovered using LibRepresenter. The first
column presents the library name while the following two columns
present the number of variants as well as the actual number of
usages, respectively. Generally, the more usages a library gets,
the more variants it may spread in the Android ecosystem. We
further perform a correlation study between the number of mu-
tants and the number of total usages by computing the Spear-
man’s rho (also known as Spearman’s rank correlation coeffi-
cient), which is a non-parametric measure aiming at assessing

5
10

15
20

25

#.
 o

f M
ut

an
ts

#.
 o

f V
ar

ia
nt

s

Figure 9: Distribution on the number of library variants.

statistical dependence between two variables using a monotonic
function. The experimental result (rho = 0.57) statistically con-
firms our observation: the number of variants is moderately cor-
related with the number of library usages.

Table 5: Top 10 libraries ranked based on their number of variants
appeared in the randomly selected 200,000 apps.

Library # Variants # Usages (Apps)
org.apache.http 4120 45175

com.badlogic.gdx 3288 6659
com.handmark.pulltorefresh 3180 7286

com.android.vending 1643 49676
com.google.common 804 10913

com.markupartist.android 539 1976
org.osmdroid.views 442 2487

com.androidquery.callback 420 8192
com.heyzap.sdk 409 2315

net.robotmedia.billing 348 936

Furthermore, we go one step deeper to manually check if
the listed 10 libraries are open sourced. Our hypothesis is that
a large number of variants appearing to those libraries could be
the reason that they are open sourced, which provide various
opportunities for app developers to leverage at any point in the
progress of the library. Through manual investigation, we con-
firm that our hypothesis is true where nine out of the top 10
libraries (except com.heyzap.sdk) is open source.

Around 84% of Android libraries have at least two dis-
tinct variants. Generally, the number of variants is cor-
related with its total usage (e.g., by how many apps) and
open sourced libraries trend to have more variants.

7. Empirical Investigations

We now empirically explore the five research questions pre-
sented in the general introduction section of this paper.

7.1. RQ1: Repackaging Detection

Recall that in Section 3, we have shown that repackaging
detection approaches are likely to yield false positives and false
negatives if code contributed by common libraries are not taken

13

into account. We provide more empirical evidence of such
threats.

For our experiments we rely on a set of pairs of apps that we
have collected in the similarity analysis of Step 2 and regrouped
into two categories: the first category, FNData, contains 761
pairs of apps where the similarity score for each pair is below
50% while the second category, FPData, includes 1,100 pairs
of apps where the similarity score of each pair of apps is over
80%. Given the previously justified threshold of 80% for de-
ciding on repackaging (cf. Section 3), we assume that all pairs
in FPData are repackaged pairs while those in FNData are not.
We now explore again the similarity scores of the pairs when
excluding from each app the common libraries (in CL91) they
may include.

False positives elimination. Among the 1,100 pairs of apps
in FPData, 1,029 (93.5%) remained similar above the 80%
threshold. 71 (6.5%) pairs of apps now have similarity scores
below 80%, and can no longer be supposed to be repackaged
pairs. We manually verified 10 of pairs and found that they are
indeed not repackaged.

False negatives re-classification. Among the 761 pairs of
apps in FNData, 110 (14%) have higher similarity scores, among
which 2 pairs are now beyond the threshold of 80% which would
allow to re-classify them as repackaged pairs. We have manu-
ally verified and confirmed that these two pairs of apps are pig-
gybacked pairs: one pair was previously used in our motivating
example section (Fig. 1b).

The appearance of common libraries infects the accu-
racy of repackaged app detection approaches. If com-
mon libraries are not taken into account, it is possible
that both false positive rate and false negative rate for
repackaged apps detection approaches can be reduced.

7.2. RQ2: Machine Learning for Malware Detection

We investigate the case of machine-learning based approaches
for Android and study the impact of ignoring or taking into
account common libraries on the accuracy of prediction. We
consider a case study based on MUDFLOW [7] and its dataset.
This dataset contains sensitive data leaks information for 15,096
malicious apps and 2,800 benign apps. MUDFLOW is a rele-
vant example as the authors have originally foreseen the prob-
lem with libraries and thus attempted to exclude a small set
of ad libraries in their experiments. With our large harvested
dataset of common libraries, we investigate the performance
gap that can be achieved by excluding more known libraries.

MUDFLOW performs machine learning to mine apps that
use sensitive data abnormally. More specifically, MUDFLOW
takes each distinct type of sensitive data leak (from pre-defined
source to sink) and performs a one-class classification to de-
tect abnormal apps. One-class classification is realistic in their
experimental settings with their imbalanced dataset (they have
much more malicious apps than benign apps).

Since our goal is not to replicate MUDFLOW (along with
its sophisticated library-unrelated parameters), but to evaluate

the impact of excluding common libraries for machine learning,
we propose to implement a slightly simplified approach for our
experiments. Unlike MUDFLOW, which constructs a training
set based on benign apps and then applies it to predict unknown
apps, we simply perform 10-fold cross-validation in our eval-
uation. It is, therefore, worth to emphasise that our approach
serves only to demonstrate the impact of excluding libraries on
the performance of machine learning-based malware detection
approaches. As we are working on the same imbalanced data,
we also choose one-class classification.

We have performed four types of experiments, which are
detailed below:

• E5: We evaluate on all the 15,096 malicious apps. The
feature set is made up of distinct sensitive data leaks. In-
stead of taking into account source and sink methods,
each data leak is represented through the source and sink
categories (e.g., methods like Log.i(), Log.e() are repre-
sented as category LOG).

• E6: This experiment has similar settings as in E5, except
that such sensitive data leaks that are contributed by the
12 ad libraries considered by MUDFLOW are excluded.

• E7: This experiment has similar settings as in E6. In this
case, however, the excluded set of libraries is the most
constrained set of 1,113 libraries harvested in our work.

• E8: This experiment has similar settings as in E7. In
this case, however, the excluded set of libraries is con-
stituted by libraries selected based on a more loose def-
inition of libraries. The excluding set contains 5,509 li-
braries, which may include a number of false positives.

The results of these four experiments are shown in Table 6.
Comparing E7 to E5, the accuracy is indeed increased, which
suggests that the presence of common libraries code could con-
fuse machine learning-based classifier. However, the accuracy
remained the same between E6 and E5, suggesting that the
MUDFLOW whitelist, which contains 12 libraries, is too small
to impact the final results. Interestingly, with our largest set
of libraries, the accuracy of E8 decreases slightly comparing
to that of E7. This suggests that the precision in common li-
brary identification is important: excluding non-library code
will eventually decrease the overall performance for machine
learning.

Table 6: Results of our machine learning based experiments performed
on the data set provided by MUDFLOW [7].

Seq. #. of Features Excluding Libs Accuracy
1 109 0 81.85%
2 109 12 (MUDFLOW [7]) 81.85%
3 109 1,113 (tp = 0.9,ta = 0.1) 83.10%
4 108 5,509 (tp = 0.6,ta = 0.4) 83.01%

14

The appearance of common libraries infects the accu-
racy of machine learning based Android malware clas-
sifiers. If common libraries are ignored, the accuracy of
the ML-based malware detection approach could be in-
creased. Correspondingly, if developer code (e.g., non-
library code) is excluded, the eventual precision would
be decreased.

7.3. RQ3: Static Analysis Performance Improving
Static analysis can be time-consuming, which could simply

result in timeout or out of memory for its analysis. As an ex-
ample demonstrated by Avdiienko et al. [7], with a server run-
ning 730 GB of RAM and 64 Intel Xeon CPU cores, their static
approach sometimes could not even analyze a single app in a
day. Therefore, under a practical assumption where the analyz-
ing time and resources are limited, static approaches generally
need to compromise on their analyses in order to strike a good
balance on their results. One possible compromise to fast static
analysis is to avoid the analysis of unnecessary code, e.g., by
focusing only on the main app code while ignoring common
library code. To achieve this purpose, we believe that our col-
lected common libraries could be leveraged as a whitelist to
restrict the analysis of library code.

Towards verifying this assumption, we perform an exper-
imental investigation that empirically compares the results of
two experiments, where one launches a static analyzer on a set
of selected Android apps while the other launches the same
static analyzer on sliced versions of the selected apps where
common libraries are excluded using LibExcluder. To this end,
we select a state-of-the-art tool called FlowDroid [8], a context-
, flow-, field-, object-sensitive and lifecycle-aware static taint
analyzer for detecting privacy leaks in Android apps, to be the
static analyzer and 50 Android apps that are randomly selected
from a set of top-ranked apps including Whatsapp, Booking,
Facebook, etc. Fig. 10 plots the distribution of the size of the se-
lected 50 apps, where the median and mean size are 6.2 MB and
11.2 MB, far exceeding the overall average size of available An-
droid apps. The maximum size, given by app com.popcap.pvz2cthdhwct,
even reaches 186 MB, demonstrating that the selected apps are
not toy apps for out experiments.

0
5

10
15

20

M
eg
ab
yt
e

Figure 10: Distribution on the Size of Selected Apps.

We launch FlowDroid on all the 50 original Android apps
(hereinafter referring as Experiment 1) and on their sliced ver-
sions (hereinafter referring as Experiment 2) where common

libraries are excluded using LibExcluder. In order to ensure a
fair comparison between these two experiments, we have per-
formed our experiments under the same settings: (1) The path
algorithm is set to be context-sensitive, which allows the anal-
ysis to keep tracking the calling context when a target function
call is analyzed [54]; (2) The analysis is conducted without code
elimination so as to avoid potential bias, as static analyzers may
also intelligently exclude irrelevant common library code; (3)
The static analysis is constraint to a single thread, which is im-
portant to ensure a fair comparison on the final consumed time
of each experiment; (4) The maximum heap-size (i.e., memory)
a single run can reach is 20 GB; (5) The maximum time a sin-
gle run can sustain is set to be 20 minutes, which is lower than
some state-of-the-art work (e.g., 24 hours are used by Avdi-
ienko et al. [7]) but we believe is fair enough to fulfill our ex-
periments. Indeed, our main purpose is to investigate the perfor-
mance improvement when common libraries are not considered
and consequently to verify a possible approach (i.e., excluding
library code) that would allow existing static analyzers to finish
within limited resources (e.g., time limits). In order to miti-
gate the impact of random errors, each experiment has actually
been launched for three times and the average consumed time
is considered.

Fig. 11 illustrates the number of successfully analyzed apps
between the aforementioned two experiments. FlowDroid is
able to finish for 16 unmodified apps whereas the number of
successfully analyzed apps increases to 31 when the libraries
are excluded. The success rate has increased for almost 100%
cases when library code is not considered.

16

31

0

5

10

15

20

25

30

35

Experiment 1 Experiment 2

#. of
apps

Figure 11: The Number of Successfully Analyzed Apps between Ex-
periment 1 (Original App) and Experiment 2 (i.e., Library Code is
Excluded).

Table 7 enumerates the experimental results (e.g., the time
required to finish the analysis and the number of leaks identi-
fied) of selected apps that have been successfully analyzed in
both Experiments 1 and 2. Columns 2-5 show whether the An-
droid apps have accessed native code, dynamic loaded code,
crypto code, and reflective code, where most of the apps have
somehow accessed at least one of the aforementioned type code,
suggesting again that the selected apps are complicated ones
(i.e., our experiment is not based on toy apps but on real-world
Android apps). Column 6 presents the number of classes that

15

are excluded by LibExcluder. Columns 7-11 illustrate the con-
sumed time and detected leaks respectively for Experiments 1
and 2.

As shown in columns 7-9, Experiment 2 generally spends
less time than Experiment 1, which is also illustrated by the
time improvements sub-column (i.e., column 9), showing that
excluding common libraries is promising to improve the time
performance of static analyzers. In columns 10-11, the exper-
imental results further show that unfortunately excluding com-
mon libraries may slightly impact the detection of privacy leaks,
although time performance is improved. Nevertheless, under fi-
nite time and resources constraints, excluding common libraries
allows more apps to be successfully analyzed by static analyz-
ers. Although only partial results might be yielded, it is cer-
tainly better than the situation where no results are yielded (but
simply timeout exceptions).

Observant readers may have noticed that there are several
corner cases that have negative time improvements after exclud-
ing common libraries and have more leaks uncovered although
less code is actually analyzed due to library code exclusion. For
app Plants VS. Zombies (package: com.popcap.pvz2cthdhwct),
the negative improvement could be explained by some random
error, as there is in fact no library code excluded and the to-
tal time consumed is relatively small. However, this explana-
tion cannot be simply applied to app com.snda.wifilocating, for
which a significant number of classes are excluded while more
time is spent. We, therefore, contact the authors of our applied
static analyzer FlowDroid for potential hints. We also resort to
the authors of FlowDroid for explaining the experimental re-
sults of app com.huawei.phoneservice, where less code is ana-
lyzed while more privacy leaks are uncovered. The possible ex-
planation answered by the authors of FlowDroid indicates that
FlowDroid’s over-approximation strategy may cause the afore-
mentioned corner cases. Because the library code is missing,
FlowDroid has to safely assume that all the tainted data flowing
into library code would remain tainted, which may cause more
paths explored and consequently more time spent or more pri-
vacy leaks identified. Nevertheless, the small number of corner
cases are specifically related to static taint analysis. Other gen-
eral static analysis approaches would not be impacted and thus
our finding, where excluding common libraries could improve
the performance of static analysis, is still held.

As indicated in Fig. 11, 15 apps cannot be analyzed by
FlowDroid in Experiment 1. Towards understanding whether
these failures are due to finite time constraint, we resort to repli-
cate Experiment 1 by increasing the timeout from 20 to 60 min-
utes (hereinafter referring as Experiment 1’). Table 8 present
the replicated results for Experiments 1’, where four additional
apps are successfully analyzed by FlowDroid, demonstrating
that excluding common libraries could be a promising alterna-
tive instead of increasing the analyzing time for improving the
performance of static code analysis approaches.

It is a possible alternative to exclude common libraries
for improving time performance of static code analysis.
Together with the aforementioned two experiments, all
of these case studies suggest that library code can in-
deed mislead Android analysis, and our harvested set
of common libraries is promising to be used to improve
the performance of state-of-the-art approaches.

7.4. RQ4: Benign vs. Antivirus-flagged Apps
With this research question, we are interested in investigat-

ing the differences in library usage between benign and antivirus-
flagged apps. To this end, we randomly select 20,000 apps,
10,000 benign and 10,000 flagged by at least one anti-virus
product hosted by VirusTotal13.

Among the 20,000 apps, 5,424 benign ones and 8,580 flagged
ones use at least one common library. In total, 892 out of the
1,113 CL9,1 common libraries are used. Figure 12 shows the
boxplot with the number of common libraries used by each
app in both categories. The median value for benign apps is
1 whereas the median value is 3 for antivirus-flagged apps.
We confirm that this difference is significant by performing a
Mann-Whitney-Wilcoxon (MWW) test. Benign apps thus use
fewer libraries than anti-virus flagged ones.

Benign Antivirus−flagged

0
2

4
6

8
1

0
1

2

#
.

o
f

L
ib

ra
ri

e
s

p
e

r
A

p
p

Figure 12: Library Usage between benign and antivirus-flagged apps.

We further study whether this is related to advertisement li-
braries. Among the 240 libraries in AD240, 98 of them are used
by 1,332 benign apps and 3,209 antivirus-flagged apps. Fig-
ure 13 shows the boxplot which suggests that antivirus-flagged
apps contain more ad libraries than benign apps.

In addition to the quantitative comparison, we investigate
whether the appearance of the collected common libraries can
be used to discriminate antivirus-flagged apps14 from benign
apps through machine learning-based malware classification.
To this end, we leverage RandomForest algorithm [55] to per-
form 10-fold cross-validation on the 20,000 apps considered
above. Each app is represented by a feature vector where the

13https://www.virustotal.com
14In this work, we consider those antivirus-flagged apps as potentially mali-

cious.

16

Table 7: Experimental Results of Successfully Analyzed Apps in Experiments 1 and 2.

App Native Dynamic Crypto Reflection Removed Time (in seconds) Leaks
Package Name Code Code Code Code Classes Experiment 1 Experiment 2 Improvement Experiment 1 Experiment 2

com.inmobi.oem.core.services 0 1 1 1 126 28 27 3% 5 5
com.secdroid.secretcodetester 0 0 0 1 810 4 3 33% 0 0

com.happyelements.AndroidAnimal 0 0 0 1 9 3 3 0% 0 0
com.google.android.apps.maps 1 0 1 1 45 23 23 0% 3 3

com.sdu.didi.psnger 1 1 1 1 1712 21 13 61% 5 4
com.huawei.openalliance.giftpackage 0 0 0 1 168 4 3 33% 0 0

com.facebook.katana 1 0 1 1 17 33 33 0% 0 0
ru.mail.mailapp 0 0 1 1 789 56 43 30% 36 22

com.huawei.phoneservice 1 1 1 1 644 249 245 1% 416 463
ru.sberbankmobile 1 1 1 1 1822 152 24 533% 74 41

com.huawei.svn.hiwork 1 0 1 1 573 9 7 28% 2 0
net.zedge.android 1 1 1 1 1414 152 90 68% 39 18

com.popcap.pvz2cthdhwct 0 0 0 1 0 4 5 -20% 1 1
com.vmall.client 1 1 1 1 1021 437 420 4% 315 294

com.snda.wifilocating 1 1 1 1 535 850 1045 -18% 168 161
com.sohu.tv 1 0 0 1 219 34 13 161% 21 6

Table 8: Experimental Results by giving 60 minutes as timeout for
Experiments 1.

App Package Name Experiment 1 Experiment 2
com.tripadvisor.tripadvisor 2476 (s) 70 (s)

com.contextlogic.wish 1622 (s) 26 (s)
com.dianping.v1 1312 (s) 32 (s)
com.tuniu.app.ui 2716 (s) 73 (s)

Benign Antivirus−flagged

0
.0

0
.5

1
.0

1
.5

2
.0

#
.

o
f

A
d

 L
ib

ra
ri

e
s

p
e

r
A

p
p

Figure 13: Ad Library Usage between benign and antivirus-flagged
apps.

package name of each common library is taken as a feature.
Recall that we have collected 892 libraries from those 20,000
apps. Therefore, our machine learning-based experiments con-
tain 892 features. Table 9 illustrates the results of our machine-
learning-based malware detection in 4 different settings, which
are

• E1: Machine-learning experiments using the entire set
of 20,000 apps.

• E2: Some apps do not contain any of our harvested li-
braries, leading to empty feature vector which can lead
to mis-classifications. Thus, we conduct an experiment
taking into account only apps which include at least one
of our collected common libraries.

• E3: We replay the experiment E2 where we ensure that

there is no class imbalance: we randomly select 5,424
apps from the 8,580 antivirus-flagged apps.

• E4: Similarly to experiment E3, we repeat E2 with a bal-
anced dataset by oversampling the Benign set, using the
Synthetic Minority Oversampling TEchnique (SMOTE) [56].

The results of all experiments showed in Table 9, indicate
a good discriminative power of library features for machine-
learning based detection of anti-virus (AV) flagged apps.

Table 9: Results of our machine-learning-based detection of AV-
flagged apps.

Exp. Benign set AV-flagged set Precision Recall F-Measure
E1 10,000 10,000 0.841 0.835 0.835
E2 5,424 8,580 0.861 0.861 0.861
E3 5,424 5,424 0.862 0.860 0.860
E4 8,580 8,580 0.875 0.873 0.873

Benign apps use significantly less common libraries
than AV-flagged apps. The combinations of libraries
in apps can be discriminated between benign and AV-
flagged apps and hence can be leveraged by anti-virus
products to predict new suspicious apps.

7.5. RQ5: Library Obfuscation

This research question considers the second type and at-
tempts to investigate if our collected library representations are
capable of identifying those libraries’ obfuscated counterparts.
In particular, among the 200,000 selected apps, we find that
58,388 of them are obfuscated (they contains packages having
a segment with only one character). Since we also want to iden-
tify obfuscated library versions, which clearly will not match
any of our collected library representations, we represent all
the available packages. As a result, every obfuscated package is
represented by a unique string abstraction that is quickly com-
parable to other abstractions and is searchable among a large
set of abstractions.

17

Table 10: Top 10 obfuscated libraries ranked based on their number of variants.

Library # Variants # Usages Obfuscation
com.android.vending 51 2,145 a.a.a,b.wsaft,com.a.a,com.a.b,com.android.a,com.android.b,com.android.c

com.b.a,com.b.b,com.c.a,com.havos.g,com.m,com.r,i.e,k.k,k.k.mixjam,l.l,l.l.l ,u.best
com.google.gdata 24 454 a.b.a,com.a.a,com.a.b,com.b.a,com.b.b,com.b.c,com.c.a,com.d.a,com.google.a,

com.google.b,com.google.c
com.android.gallery 20 34 cn.x6game.a,com.A.A,com.a,com.a.a,com.android.a,com.b,com.c,com.d,com.d.b,com.e

com.pacsplus.a,com.seasgarden.a,com.slacker.f,myobfuscated.r,myobfuscated.w
net.simonvt.a,pl.wp.b,rcs.akbd.f,vn.foodmob.j,x.pandafishing

com.nineoldandroids.util 19 896 a.a.b,a.b,com.a.b,com.b.b,com.c.b,com.d.b,com.e.b,com.f.b,com.g.b,com.nineoldandroids.a
com.nineoldandroids.b,whyareyoureadingthis.A,whyareyoureadingthis.F
whyareyoureadingthis.G,whyareyoureadingthis.y

com.kakao.sdk 19 41 b.a.a,com.a.a,com.a.b,com.aquafadas.a,com.aquafadas.c,com.aquafadas.f,com.aquafadas.g,
com.babywhere.a,com.divmob.c,com.easy3d.a,com.easy3d.b,com.ipc.f,com.lewisj.a,com.netgate.r,
com.spindle.c,com.ubermedia.e,com.viettel.a,com.viettel.c,myobfuscated.s,sg.radioactive.x

oauth.signpost.commonshttp 15 39 c.a,com.a,com.c.ctv,com.cleanmaster.h,com.cleanmaster.j,com.cleanmaster.k,com.e.sjs,
com.glassdoor.a,com.ijinshan.a,com.smschatheads.l,com.softek.a,com.spindle.f,com.spindle.h,
com.spindle.k,com.tecace.a,com.xiaomi.a,me.kiip.j

oauth.signpost.signature 14 56 a.a.a,a.a.d,a.a.e,b.a.d,b.a.e,c.a.d,c.a.e,com.prosegur.a,com.ubermedia.d,d.a.d,myobfuscated.r
org.apache.http 11 110 a.a.a,a.a.b,b.a.a,org.a.a,org.apache.b,org.b.a

com.squareup.otto 11 159 com.a.a,com.b.a,com.b.b,com.c.a,com.d.a,com.e.a,com.e.b,com.f.a,com.f.b,com.g.b,com.h.a,
com.squareup.a,com.squareup.b

com.google.common 11 59 com.a.a,com.a.b,com.b.a,com.d.a,com.google.a,com.google.b,com.google.c

Among the 58,388 obfuscated apps, we eventually collect
1,624,835 package abstractions, from which we identify that
5,045 abstractions share the same representation of our col-
lected library representations. Those 5,045 abstractions are ac-
count for 4,165 distinct apps and for 84 unique libraries. Ta-
ble 10 highlights the top 10 obfuscated libraries among the
84 identified ones. This ranked list is quite different from the
one presented in Table 5, where the rank is computed based
on the number of library variants without considering obfusca-
tion. Nevertheless, out of 10 libraries shown in Table 5, the fact
that only three of them have been presented in Table 10 demon-
strates that there is probably no correlation between the popu-
larity of common libraries and the obfuscation-rate of library-
featured apps.

Overall, this result demonstrates that our pre-collected li-
brary representations could be leveraged as a benchmark to iden-
tify obfuscated library versions. Furthermore, it also suggests
that 5,045 usages of libraries would have been missed if obfus-
cation is not taken into account by a library-related study.

Our approach (i.e., LibRepresenter and our pre-
collected library representations) is promising to iden-
tify obfuscated library counterparts.

8. Discussion

8.1. Precision of Identified Libraries
We recall that, in this work, common libraries are collected

based on their appearances in Android apps while accounting
for the similarities among the apps that use them. For instance,
libraries identified in the CL9,1 set have been used by x apps
(with x >= 10). Given a library l ∈ CL9,1, although the simi-
larities of the x apps are less than 10% (i.e., they are unlikely
to be different versions of the same app), the code structures

of l are very similar among the x apps who have used l (i.e.,
at least 90%). Nevertheless, it is still not immediately possible
to estimate the accuracy of the collected set of libraries. We
thus resort to a supplementary dataset of around 4 million apps
to cross-assess the usage recurrence of the libraries identified
in the CL9,1 set. Our experiments reveal that over half of the
libraries in CL9,1 are leveraged in at least 100 apps, with a me-
dian recurrence number of 110. This result demonstrates that
the libraries collected in this work are likely to be true libraries.

Furthermore, we go one step deeper to manually verify the
CL9,1 set so as to understand how precise is our approach to-
wards identifying common libraries. To this end, we send the
packages that have a recurrence number less than 10015 in the
CL9,1 set to several code repositories such as Github, Google-
Code, and Maven and check its usage. Since it is still diffi-
cult for a human to decide if a given package is an actual li-
brary, we resort to the following approach to confirm common
libraries: Given a candidate package, if it appears to be asso-
ciated with an open-source project, since every app developers
could access into the project, we consider it as a common li-
brary. Otherwise, if it is not associated with any open-source
project, we check if it appears to be imported (via the import
Java keyword) in at least three different projects and is differ-
ent from the main package name (i.e., usually starting with the
domain name, in reverse order, of the company who have devel-
oped the project), we consider it as a common library as well.
Among the 1,113 packages presented in the CL9,1 set, our man-
ual verification confirms that at least 984 of them16 are indeed
libraries, giving a precision of 88%. This result further sug-
gests that our methodology, based on library appearances and
similarities, is quite reliable towards automatically identifying
common libraries.

15They are less likely to be common libraries compared to such ones that
have a recurrence number over 100.

16We have also made this library set publicly available online.

18

8.2. Additional Findings
Our investigation into libraries have additionally revealed

several interesting findings on the use of libraries:
Malware writers often name their malicious components af-

ter famous and pervasively used libraries from reputed firms:
e.g., the DroidKungFu malware family spreads malicious pay-
load within a package called com.google.update. Our similarity
analysis allowed to detect such fraud by further investigating
outliers.

Well-used libraries are often used as the compromising point
for malicious apps. Indeed, among 500 hundred repackaged
malicious apps, which are built via 1) unpack benign apps, 2)
injecting malicious payloads and 3) repack the modified code
back to a new app, our investigation reveals that 65 out of the
500 (i.e., 13%) apps have been compromised where their lever-
aged unity3d is modified [57]. Table 11 enumerates the com-
promised details of those modifications related to unity3d li-
brary.

Table 11: Compromised Cases Related to Library com.unity3d.player.

Modification App (#.)
com.unity3d.player/com.gamegod 12

com.unity3d.player/com.google.ads 7
com.unity3d.player/com.basyatw.bcpawsen 5

com.unity3d.player/org.fmod 4
com.unity3d.player/com.pbera.cuo 4

com.unity3d.player/com.tpzfw.yopwsn 3
com.unity3d.player/com.geseng 3

com.unity3d.player/org.apache.http 2
com.unity3d.player/com.ranway 2

com.unity3d.player/com.pmpm.pm 2
com.unity3d.player/com.nknk.nk 2

com.unity3d.player/com.naiiwt.toolon 2
com.unity3d.plugin/com.muzhiwan.embed 1

com.unity3d.player/ctl4ever.pu.com 1
com.unity3d.player/com.wohse.zuwreo 1

com.unity3d.player/com.usoety.toein 1
com.unity3d.player/com.tooswon.usoan 1

com.unity3d.player/com.tn.dq 1
com.unity3d.player/com.nnduBWhN.p 1

com.unity3d.player/com.niu 1
com.unity3d.player/com.mediocres.libary 1

com.unity3d.player/com.kuguo.pushads 1
com.unity3d.player/com.gamelosd 1

com.unity3d.player/com.elm 1
com.unity3d.player/com.db.pe 1
com.unity3d.player/com.db.cw 1

com.unity3d.player/com.bodys.sh 1
com.unity3d.player/com.asdpaw.foivnaw 1

com.unity3d.player/com.apkmania 1
Total 65

App developers may modify common libraries for achiev-
ing their specific purposes. For example, as demonstrated in
Listing 2, the library code of com.googlecode.android, which
provides a range of date picker widgets based on the principle

of sliding bars17 has somehow accessed into the main app code
(i.e., com.cozi.androidfree.*). Actually, through a lightweight
static analysis approach18, we have found that app developers
have modified the code of 57 libraries. It is worth to men-
tion that those 57 candidate libraries could also possibly be
false positive results, because normally library code is self-
containing and hence should not call into main app code. How-
ever, if we simply flag those 57 candidate libraries as non-
library code, we could also introduce false negative results.
Nevertheless, to understand why developers want to modify li-
brary code and thereby to mitigate potential false positive and
false negative results are out of the scope of this work. We thus
keep it as our future work.

8.3. Threats to Validity

Because there is no convention for specifying that a code
package represents a library, identifying Android common li-
braries is challenging. We were able to perform our study by
mining about 1,5 million apps collected over several months.
Our study however presents a few threats to validity:

Threats to internal validity. Currently, our approach is
not fully aware of obfuscation, which may lead to incomplete
results. However, our findings are based on a large datasets
of apps to reduce the influence of obfuscated apps. Besides,
our findings could be leveraged in settings where for example
ad-libraries are represented by features which are resilient to
obfuscation (e.g., called SDK API methods). More specifically,
Wang et al. [48] have proposed a promising approach to identify
possible obfuscators for Android. The identification of obfus-
cated libraries is however outside the scope of this work. Our
common library set could be expanded by the research commu-
nity with obfuscated versions.

The current implementation of LibExcluder aims to exclude
libraries for static code analysis, where the remaining code might
not be compilable (the drawback shared from the code instru-
mentation strategy borrowed from other approaches such as Ic-
cTA [3] and DroidRA [52]). There is no guarantee that the
newly generated app version will be executable. Nevertheless,
the goal of LibExcluder is not to generate executable Android
app (or even compilable code), but to generate an app version
that is capable of improving the performance of static analysis
approaches.

Threats to external validity. The primary threats to exter-
nal validity are related to our selection of Android apps. The ex-
periments mainly rely on the AndroZoo repository, which may
not be representative of all Android apps available in the mobile
ecosystem. Nonetheless, this threat is mitigated by the fact that
AndroZoo is the largest repository available for the research
community.

17https://code.google.com/archive/p/android-dateslider/
18Given a candidate package p and an app app containing p, we first leverage

Soot to build a call graph (cg) of app. Then, for any method m belonging to p,
we recursively check its invoked methods. If m reaches a method belonging to
the main app code, which can be recognized based on the unique app package
name, we consider candidate p has been modified by app developers.

19

1 //The package name of this app is com.cozi.androidfree

2 public class com.googlecode.android.widgets.DateSlider.ScrollLayout extends

android.widget.LinearLayout{

3 private void setTime(long , int , int , int , boolean){

4 $i6 = $r0.<com.googlecode.android.widgets.DateSlider.ScrollLayout: int minuteInterval >;

5 $r10 = virtualinvoke $r10.<java.lang.StringBuilder: java.lang.StringBuilder append(int) >($i6);

6 $r11 = virtualinvoke $r10.<java.lang.StringBuilder: java.lang.String toString () >();

7 staticinvoke <com.cozi.androidfree.util.LogUtils: void

v(java.lang.String ,java.lang.String) >("ScrollLayout", $r11);

8 }}

Listing 2: Example of Library Code Calls into App Code.

It is known that app information related to release date (usu-
ally taken from the last modified date of the Android app) is not
reliable. For example, the release time can be manipulated by
attackers. Nevertheless, our previous work (namely Moonlight-
Box, a tool to uncover release-time inconsistencies of Android
apps [58]) has shown that such inconsistency only affects 7%
of Android apps.

Threats to construction validity. So far, LibRepresenter
represents common libraries based on their structural informa-
tion. For highlighting obfuscated library versions, our approach
only works for such cases where the structural information of
libraries is not changed. Fortunately, most obfuscated Android
apps are transformed by Proguard19, the official obfuscation
tool, which is designed for renaming only. In other words, the
structure information would not be changed and thereby our ap-
proach should work for majority obfuscated Android apps. As
discussed in Section 6.5, we could not run LibRepresenter on
all the apps available in AndroZoo so that we have excluded
obfuscated apps during our library identification process. Nev-
ertheless, our results should not be significantly impacted as on
one hand, the number of obfuscated apps is quite small (around
10% of candidates are excluded only), while on the other hand,
a given library is likely to be presented in our big dataset in its
obfuscated and non-obfuscated form. Even if the obfuscated
version is overlooked, the non-obfuscated form should still be
identified.

Although we have conducted several steps, including man-
ual verification, to refine the identification of common libraries,
the final results are not fully validated. The manual verification
process is also subject to errors, which usually happen in man-
ual inspection. In the future work, we plan to work out a robust
framework so as to exhaustively evaluate our findings.

In this work, we have set a threshold at 10 for selecting
common libraries. The bigger the threshold is, the smaller the
size of potential libraries. Through experiments on randomly
selected 20,000 apps, we observe that the decreasing of the
number of potential libraries is much faster than that of ac-
tual libraries (by comparing the results with the library set ob-
tained in this work), while increasing the threshold. By increas-
ing the threshold from 10 to 20, the number of potential li-
braries drop 42%, while the number of actual libraries only drop
24%. Nonetheless, although our experiments reveal promising

19https://www.guardsquare.com/en/proguard

results, it may introduce false negative results, as conceptually
a “package” shared by two different Android apps could be a
library.

Moreover, in this work, we have also set a threshold at 80%
for flagging repackaged Android apps, which may not be ad-
equate as well, resulting in false positive results. Therefore,
more investigations are certainly needed to pinpoint a foolproof
threshold regarding real-world Android apps. Ideally, more ex-
periments in altering the threshold could be conducted to inves-
tigate the stability (or sensibility) of our approach. We plan to
investigate this direction in our future work.

Since Android evolves very fast, the set of libraries, includ-
ing both common libraries as well as ad libraries, may become
outdated in the future. Nonetheless, our methodology and the
scripts, prototype tools, should be reusable to re-characterise
such lists of libraries. Hence, as our first attempt, we present
to the community a simple online service20 aiming to maintain
the state-of-the-art library set. So far, because of resource limi-
tation (with limited memory size), only a small number of apps
are integrated. As our future work, we commit to expand this
service to all the AndroZoo apps and continuously increase the
set along with the increase of AndroZoo apps.

9. Conclusion

We have presented our process for collecting a set of 1,113
common libraries and 240 ad libraries from a dataset of about
1.5 million Android apps. We empirically illustrate how these
two library sets can be used as whitelists by Android analysis
approaches to improve their performances. More specifically,
we have shown that two approaches, namely repackaging detec-
tion and machine learning-based malware detection, can indeed
benefit from our harvested libraries. Moreover, with the help
of LibRepresenter, we have additionally collected the abstract
representations of those libraries and empirically demonstrated
that our collected library representations could be leveraged as
a benchmark to flag the appearance of common libraries in-
cluding obfuscated ones, which normally cannot be identified
by whitelist-based matches.

20http://115.146.85.168/Libraries/

20

http://115.146.85.168/Libraries/

Acknowledgments

The authors would like to thank the anonymous review-
ers who have provided insightful and constructive comments
that have led to important improvements in several parts of the
manuscript. This work was supported by the Monash-Warwick
Alliance Catalyst Fund (2018/2019), by the European Union,
under the SPARTA project, by the Fonds National de la Recherche
(FNR), Luxembourg, under projects CHARACTERIZE C17/IS/11693861
and Recommend C15/IS/10449467, by the University of Lux-
embourg, under the VulFix project, by the National Key Re-
search and Development Program of China (grant No.2017YFB0801903),
and by the National Natural Science Foundation of China (grants
No.61702045, No.61772042 and No.61873069).

References

[1] The Verge. 99.6 percent of new smartphones run android or
ios 101. https://www.theverge.com/2017/2/16/14634656/

android-ios-market-share-blackberry-2016, 2017. Accessed:
2017-08-10.

[2] Symantec. istr 20 - internet security threat report, Apr. 2015.
http://know.symantec.com/LP=1123.

[3] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau,
and Patrick Mcdaniel. IccTA: Detecting Inter-Component Privacy Leaks
in Android Apps. In ICSE, 2015.

[4] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A
precise and general inter-component data flow analysis framework for se-
curity vetting of android apps. In CCS, 2014.

[5] William Enck, Peter Gilbert, Byung gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol Sheth. Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smartphones. In
OSDI, pages 393–407, 2010.

[6] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. Wukong: a
scalable and accurate two-phase approach to android app clone detection.
In Proceedings of the 2015 International Symposium on Software Testing
and Analysis (ISSTA), pages 71–82. ACM, 2015.

[7] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas
Zeller, Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Mining apps
for abnormal usage of sensitive data. In ICSE, 2015.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In PLDI, 2014.

[9] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi.
Unsafe exposure analysis of mobile in-app advertisements. In Proceed-
ings of the fifth ACM conference on Security and Privacy in Wireless and
Mobile Networks, pages 101–112. ACM, 2012.

[10] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner.
Addroid: Privilege separation for applications and advertisers in android.
In Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security, pages 71–72. ACM, 2012.

[11] Theodore Book and Dan S Wallach. A case of collusion: A study of
the interface between ad libraries and their apps. In Proceedings of the
Third ACM workshop on Security and privacy in smartphones & mobile
devices, pages 79–86. ACM, 2013.

[12] Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and
Heesook Choi. Adrob: Examining the landscape and impact of android
application plagiarism. In Proceeding of the 11th annual international
conference on Mobile systems, applications, and services, pages 431–
444. ACM, 2013.

[13] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An
investigation into the use of common libraries in android apps. In The
23rd IEEE International Conference on Software Analysis, Evolution,
and Reengineering (SANER 2016), 2016.

[14] Wenhui Hu, Damien Octeau, Patrick Drew McDaniel, and Peng Liu.
Duet: library integrity verification for android applications. In Proceed-
ings of the 2014 ACM conference on Security and privacy in wireless &
mobile networks, pages 141–152. ACM, 2014.

[15] Li Li, Daoyuan Li, Tegawendé F Bissyandé, David Lo, Jacques Klein, and
Yves Le Traon. Ungrafting Malicious Code from Piggybacked Android
Apps. In Technique Report, 2016.

[16] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characteriza-
tion and evolution. In Security and Privacy (SP), 2012 IEEE Symposium
on, pages 95–109. IEEE, 2012.

[17] Li Li, Alexandre Bartel, Jacques Klein, and Yves Le Traon. Automat-
ically exploiting potential component leaks in android applications. In
TrustCom, 2014.

[18] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library
detection in android and its security applications. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 356–367. ACM, 2016.

[19] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao
Chen. Investigating user privacy in android ad libraries. In Workshop
on Mobile Security Technologies (MoST). Citeseer, 2012.

[20] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes.
Keep me updated: An empirical study of third-party library updatability
on android. 2017.

[21] Jiaping Gui, Stuart Mcilroy, Meiyappan Nagappan, and William GJ Hal-
fond. Truth in advertising: The hidden cost of mobile ads for software
developers. In Proceedings of the 36th International Conference on Soft-
ware Engineering (ICSE), 2015.

[22] Israel J Mojica Ruiz, Meiyappan Nagappan, Bram Adams, Theodore
Berger, Steffen Dienst, and Ahmed E Hassan. Impact of ad libraries on
ratings of android mobile apps. Software, IEEE, 31(6):86–92, 2014.

[23] Israel J Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E
Hassan. Understanding reuse in the android market. In Program Com-
prehension (ICPC), 2012 IEEE 20th International Conference on, pages
113–122. IEEE, 2012.

[24] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas,
Rocco Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. Mining
energy-greedy api usage patterns in android apps: an empirical study. In
Proceedings of the 11th Working Conference on Mining Software Repos-
itories, pages 2–11. ACM, 2014.

[25] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Mas-
similiano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. Api change
and fault proneness: a threat to the success of android apps. In Proceed-
ings of the 2013 9th joint meeting on foundations of software engineering,
pages 477–487. ACM, 2013.

[26] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Denys Poshyvanyk. How do api changes trigger stack over-
flow discussions? a study on the android sdk. In proceedings of the
22nd International Conference on Program Comprehension, pages 83–
94. ACM, 2014.

[27] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-
Cardenas, Massimiliano Di Penta, Rocco Oliveto, and Denys Poshy-
vanyk. The impact of api change-and fault-proneness on the user rat-
ings of android apps. Software Engineering, IEEE Transactions on,
41(4):384–407, 2015.

[28] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Pa-
rameter Values of Android APIs: A Preliminary Study on 100,000 Apps.
In Proceedings of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER 2016), 2016.

[29] Julius Davies, Daniel M German, Michael W Godfrey, and Abram Hin-
dle. Software bertillonage: Determining the provenance of software de-
velopment artifacts. Empirical Software Engineering, 18(6):1195–1237,
2013.

[30] Kai Chen, Peng Liu, and Yingjun Zhang. Achieving accuracy and scala-
bility simultaneously in detecting application clones on android markets.
In Proceedings of the 36th International Conference on Software Engi-
neering (ICSE), pages 175–186. ACM, 2014.

[31] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the clones:
Detecting cloned applications on android markets. In Computer Security–
ESORICS 2012, pages 37–54. Springer, 2012.

[32] Jonathan Crussell, Clint Gibler, and Hao Chen. Scalable semantics-based
detection of similar android applications. In Proceedings of the 18th Eu-
ropean Symposium on Research in Computer Security (ESORICS), 2013.

21

https://www.theverge.com/2017/2/16/14634656/android-ios-market-share-blackberry-2016

[33] Mario Linares-Vásquez, Andrew Holtzhauer, Carlos Bernal-Cárdenas,
and Denys Poshyvanyk. Revisiting android reuse studies in the context
of code obfuscation and library usages. In Proceedings of the 11th Work-
ing Conference on Mining Software Repositories, pages 242–251. ACM,
2014.

[34] Li Li, Kevin Allix, Daoyuan Li, Alexandre Bartel, Tegawendé F Bis-
syandé, and Jacques Klein. Potential Component Leaks in Android Apps:
An Investigation into a new Feature Set for Malware Detection. In The
2015 IEEE International Conference on Software Quality, Reliability &
Security (QRS), 2015.

[35] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar: Fast
and accurate detection of third-party libraries in android apps. In Pro-
ceedings of the 38th International Conference on Software Engineering
Companion, pages 653–656. ACM, 2016.

[36] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu,
Rui Xue, and Wei Huo. Libd: Scalable and precise third-party library
detection in android markets. In Proceedings of the 39th International
Conference on Software Engineering, pages 335–346. IEEE Press, 2017.

[37] Charlie Soh, Hee Beng Kuan Tan, Yauhen Leanidavich Arnatovich, An-
namalai Narayanan, and Lipo Wang. Libsift: Automated detection of
third-party libraries in android applications. In Software Engineering
Conference (APSEC), 2016 23rd Asia-Pacific, pages 41–48. IEEE, 2016.

[38] Arun Narayanan, Lihui Chen, and Chee Keong Chan. Addetect: Auto-
mated detection of android ad libraries using semantic analysis. In In-
telligent Sensors, Sensor Networks and Information Processing (ISSNIP),
2014 IEEE Ninth International Conference on, pages 1–6. IEEE, 2014.

[39] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting repack-
aged smartphone applications in third-party android marketplaces. In Pro-
ceedings of the second ACM conference on Data and Application Security
and Privacy, pages 317–326. ACM, 2012.

[40] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou.
Fast, scalable detection of piggybacked mobile applications. In Proceed-
ings of the third ACM conference on Data and application security and
privacy, pages 185–196. ACM, 2013.

[41] Kevin Allix, Quentin Jérome, Tegawende F Bissyandé, Jacques Klein,
Radu State, and Yves Le Traon. A forensic analysis of android malware–
how is malware written and how it could be detected? In COMPSAC,
2014.

[42] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, David Lo, and Lorenzo Cavallaro. Understanding android
app piggybacking: A systematic study of malicious code grafting. IEEE
Transactions on Information Forensics & Security (TIFS), 2017.

[43] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Simidroid: Identify-
ing and explaining similarities in android apps. In The 16th IEEE Inter-
national Conference On Trust, Security And Privacy In Computing And
Communications (TrustCom 2017), 2017.

[44] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and
Dawn Song. Juxtapp: A scalable system for detecting code reuse among
android applications. In Detection of Intrusions and Malware, and Vul-
nerability Assessment, pages 62–81. Springer, 2013.

[45] Anthony Desnos. Android: Static analysis using similarity distance. In
System Science (HICSS), 2012 45th Hawaii International Conference on,
pages 5394–5403. IEEE, 2012.

[46] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout:
analyzing the android permission specification. In Proceedings of the
2012 ACM conference on Computer and communications security, CCS
’12, pages 217–228, New York, NY, USA, 2012. ACM.

[47] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Haipeng Cai,
David Lo, and Yves Le Traon. On locating malicious code in piggybacked
android apps. Journal of Computer Science and Technology, 32(6):1108–
1124, 2017.

[48] Yan Wang and Atanas Rountev. Who changed you?: obfuscator identifi-
cation for android. In Proceedings of the 4th International Conference on
Mobile Software Engineering and Systems, pages 154–164. IEEE Press,
2017.

[49] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The soot
framework for java program analysis: a retrospective. In Cetus Users and
Compiler Infastructure Workshop (CETUS 2011), 2011.

[50] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. The soot-based
toolchain for analyzing android apps. In Proceedings of the 4th Inter-
national Conference on Mobile Software Engineering and Systems, pages
13–24. IEEE Press, 2017.

[51] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon.
Dexpler: Converting android dalvik bytecode to jimple for static analysis
with soot. In ACM Sigplan International Workshop on the State Of The
Art in Java Program Analysis, 2012.

[52] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein.
Droidra: Taming reflection to support whole-program analysis of android
apps. In The 2016 International Symposium on Software Testing and
Analysis (ISSTA 2016), 2016.

[53] Kevin Allix, Tegawendé F Bissyandé, Quentin Jérome, Jacques Klein,
Radu State, and Yves Le Traon. Empirical assessment of machine
learning-based malware detectors for android. Empirical Software En-
gineering, 2014.

[54] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon.
Static analysis of android apps: A systematic literature review. Informa-
tion and Software Technology, 2017.

[55] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[56] Nitesh V. Chawla et. al. Synthetic minority over-sampling technique.

Journal of Artificial Intelligence Research, 16:321–357, 2002.
[57] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Haipeng Cai,

David Lo, and Yves Le Traon. Automatically locating malicious packages
in piggybacked android apps. In The 4th IEEE/ACM International Con-
ference on Mobile Software Engineering and Systems (MobileSoft 2017),
2017.

[58] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Moonlightbox: Min-
ing android api histories for uncovering release-time inconsistencies. In
The 29th IEEE International Symposium on Software Reliability Engi-
neering (ISSRE 2018), 2018.

22

