Noname manuscript No.
(will be inserted by the editor)

CDA: Characterising Deprecated Android APIs

Li Li - Jun Gao - Tegawendé F. Bissyandé -
Lei Ma - Xin Xia - Jacques Klein

the date of receipt and acceptance should be inserted later

Abstract Because of functionality evolution, or security and performance-related
changes, some APIs eventually become unnecessary in a software system and thus
need to be cleaned to ensure proper maintainability. Those APIs are typically
marked first as deprecated APIs and, as recommended, follow through a deprecated-
replace-remove cycle, giving an opportunity to client application developers to
smoothly adapt their code in next updates. Such a mechanism is adopted in the
Android framework development where thousands of reusable APIs are made avail-
able to Android app developers.

In this work, we present a research-based prototype tool called CDA and apply
it to different revisions (i.e., releases or tags) of the Android framework code
for characterising deprecated APIs. Based on the data mined by CDA, we then
perform an empirical study on API deprecation in the Android ecosystem and the
associated challenges for maintaining quality apps. In particular, we investigate
the prevalence of deprecated APIs, their annotations and documentation, their
removal and consequences, their replacement messages, developer reactions to API
deprecation, as well as the evolution of the usage of deprecated APIs. Experimental
results reveal several findings that further provide promising insights related to
deprecated Android APIs. Notably, by mining the source code of the Android
framework base, we have identified three bugs related to deprecated APIs. These
bugs have been quickly assigned and positively appreciated by the framework
maintainers, who claim that these issues will be updated in future releases.

Keywords Android - Deprecated APIs - CDA

Li Li and Xin Xia
Faculty of Information Technology, Monash University, Australia
E-mail: 1i.li, xin.xia@monash.edu

Jun Gao, Tegawendé F. Bissyandé and Jacques Klein
Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg
E-mail: jun.gao, tegawende.bissyande, jacques.klein@uni.lu

Lei Ma
School of Computer Science and Technology, Harbin Institute of Technology, China
E-mail: malei@hit.edu.cn

2 Li Li et al.

1 Introduction

Android is currently dominating the smartphone market, attracting 85% of global
sales to end users worldwide. Among the many potential incentives which drive
Android’s competitiveness in comparison to other mobile operating systems, we
note the rapid and constant evolution of the Android framework: (McDonnell
et al., 2013) have reported that developers should expect a new release every
three months. This is an indication of the pace at which Android maintainers
deal with vulnerability fixes and performance improvements on the one hand, and
the introduction of new features on the other hand. While these framework code
changes empower app developers to continuously provide high-quality apps, they
also bring about compatibility issues. For example, during framework evolution, a
class can be renamed or a method’s signature may be modified (e.g., addition of an
extra parameter), eventually impacting the Application Programming Interfaces
(APIs), and eventually breaking the execution of developer apps (Bagherzadeh
et al., 2017).

To enable a graceful adaptation of developers to framework changes, API dep-
recations are implemented following the so-called deprecate-replace-remove cycle.
In this scheme, APIs that will no longer be maintained in the framework are first
flagged as deprecated, through a proper @deprecated Java annotation, or by in-
serting @deprecated in the relevant Javadoc message. Subsequently, the code of
deprecated APIs are updated with replacement messages which are meant to help
developers refactor their apps in order to migrate from deprecated APIs to their
replacements (Brito et al., 2018b) or support automated refactorings (Dig et al.,
2007) (Perkins, 2005). Finally, after some reasonable time (e.g., several releases of
the framework), deprecated APIs are eventually removed from the framework so
as to clean the framework and thereby reducing the maintenance burden on the
framework code base.

Unfortunately, as unveiled by several studies in the research literature (Robbes
et al., 2012) (Hora et al., 2015), the deprecated-replace-remove cycle is not always re-
spected, leading to challenges for both framework maintainers and app developers.
A number of research works have then investigated to tackle the challenges associ-
ated to API deprecation. For example, some researchers have explored the quality
of documentation for deprecated APIs (Brito et al., 2016) (Ko et al., 2014). Others
have studied developer reactions to deprecated APIs(Espinha et al., 2014)(Sawant
et al., 2016). There have been also various works on automatically migrating client
code in response to broken APIs(Chow and Notkin, 1996) (Nita and Notkin,
2010)(Henkel and Diwan, 2005)(Xing and Stroulia, 2007). Nevertheless, despite
the significant attention given to API deprecation in general, it is noteworthy
that the problem has not yet been extensively explored in the Android ecosystem
specifically.

Our work aims at understanding and characterising how Android APIs are
deprecated in practice and how developers react to the phenomenon. The overall
goal of this research is to draw insights that (1) framework maintainers can build
on to improve strategies for deprecating APIs, and that (2) can be used to as-
sist app developers in dealing with compatibility issues that can arise after API
deprecation.

Towards achieving the goal of this work, we present an empirical study on
the deprecation of Android APIs. This study builds on a systematic source code

CDA: Characterising Deprecated Android APIs 3

mining of the Android framework, which is constituted of over 3 million lines of
Java code in over 7,000 Java files. The study also involved analysing 10,000 real-
world Android apps to explore questions related to the management, in practice,
of deprecated APIs by developers.

In this work, we first design and implement a prototype tool called CDA,
standing for Characterising Deprecated APIs. Then, we apply CDA to different
revisions (i.e., releases or tags) of the Android framework code and compare the
obtained results to understand the evolution of deprecated Android APIs. Finally,
we explore a set of real-world Android apps attempting to understand the reaction
of app developers to deprecated Android APIs. Our experimental investigation
eventually finds that (1) Deprecated Android APIs are not always consistently
annotated and documented; (2) Deprecated Android APIs are regularly cleaned-
up from the framework code base and half of the cleaned APIs are performed
in a short period of time, requiring developers to quickly react on deprecated
APIs; (3) Around 78% of deprecated Android APIs have been commented with
replacement messages, which however are rarely updated during the evolution of
Android framework code base; (4) Most deprecated APIs are accessed by app
code via popular libraries. (5) During the evolution of Android apps, deprecated
APIs are likely retained rather than removed from the app code. (6) For the
cases app developers do remove deprecated APIs from the app, they are unlikely
replacing the deprecated APIs with their alternatives recommended by the official
documentation, at least not directly at the same place (e.g., under the same caller
method).

To summarise, we make the following contributions:

— We design and implement a prototype tool called CDA that automatically
characterises deprecated APIs by mining the source code of Android framework
releases.

— We have identified three bugs related to deprecated APIs by parsing the latest
revision of the Android framework code. These bugs have been further submit-
ted to the issue tracker system' of the Android Open Source Project (AOSP)
and have been quickly assigned and positively appreciated by the framework
maintainers, who claim that these issues will be updated in future releases.?

— We present a quantitative study on deprecated Android APIs along the evolu-
tion of the Android framework base.

— We harvest a comprehensive list of deprecated Android APIs and provide also
their latest replacement messages that can be leveraged to guide the practical
replacements of deprecated APIs.

We make available online our implementation, along with the scripts to repli-
cate our experiments at

https://github.com/lilicoding/CDA

It is worth to mention that although CDA targets the Android framework code
base, it is implemented generically and could be easily migrated for the analysis
of common Java repositories. Concretely, the Java file parser and the API to
replacement mapping should work directly to Java projects.

L https://issuetracker.google.com
2 The issue IDs of the submitted bugs are 69105065, 69104762 and 69098890.

4 Li Li et al.

This paper is an extended and improved version of a conference paper (Li et al.,
2018b) presented at the 2018 International Conference on Mining Software Repos-
itories (MSR). In this extension, we have improved our prototype tool to take into
account all the available Java classes in the Android framework base. Compared
to the conference version, where only a selected set of core Java classes are con-
sidered, we consider much more classes including third-party classes such as the
Apache ones (e.g., org.apache.http.*), sensor-related code such as the ones used to
support opengl or nfc, internal classes such as com.android.internal. *, assistant code
such as legacy-oriented test cases (e.g., com.android.multidezlegacytestapp), etc. Ad-
ditionally, since the conference version of this paper only focuses on deprecated
APIs at the method level, a number of deprecated APIs that are deprecated at the
class level are actually missed. Specifically, if a class is deprecated, all its meth-
ods should be considered as deprecated even if they are not explicitly flagged as
such (e.g., via the @Deprecated annotation or the @deprecated Javadoc tag). In this
extension, we have improved our research tool to also take into account such dep-
recated APIs that are only flagged at the class level. Because of the improvement
of our prototype tool, the experimental results (i.e., some statistics) presented in
the conference paper are slightly changed (the empirical observations are almost
kept the same). Therefore, we re-conduct all the experiments presented in the
conference paper and subsequently update this paper with the newly obtained
results, accordingly. When re-conducting the experiments, we have additionally
considered two major releases (API levels 27-28) of the Android framework, keep
our empirical results update to date.

In addition to the improvement of our prototype tool and the massive refac-
toring of our experimental results, we also introduce two new research questions
aiming to (1) understand the evolution of deprecated APIs in terms of their usage
in Android apps as well as (2) harvest practical fixes (conducted by developers of
real-world apps) that attempt to replace deprecated APIs with their alternatives.
Finally, based on the harvested fixes, we provide to the community an online web
service® that takes as input a deprecated API and outputs a list of diffs showing
how the searched API is removed in practice.

The remainder of this paper is organised as follows. Section 2 presents the
necessary background information to allow readers to better understand this work.
Section 3 presents the experimental setup of this work, including the dataset and
the research questions as well as the implementation of our prototype tool CDA.
Section 4 details our quantitative studies towards answering the aforementioned
research questions. After that, Section 5 discusses the potential implications and
the possible threats to the validity of this work. The closely related works are
detailed in Section 6, followed by our conclusion to this work in Section 7.

2 Background

In this section, we provide the necessary background information on the concept of
Android APIs and deprecated APIs to help readers better understand our process.

3 The online web service can be accessed via http://35.224.210.36/DAU/

CDA: Characterising Deprecated Android APIs 5

2.1 Android APIs

Android APIs, like any other APIs that are defined as publicly accessible methods
in the code base, are provided to support developers for building shipping quality
apps. Those APIs are usually shipped with Software Development Kits (SDKs)
that are frequently updated as the Android system evolves: since the launch of
Android in 2008, Android SDKs have been released in over 10 versions providing
progressively 28 API levels. The latest Android system version is 9.0 and its API
level is 28. This SDK comes with an online portal* that tracks all documenta-
tion written by Android maintainers to help developers correctly use the provided
APIs. Fig. 1 presents the screenshot of an example documentation for API save-
Layer(RectF, Paint,int), from which app developers can learn the main functionality
of this API as well as the necessary knowledge to correctly invoke it.

Savel_ayer API level 1
int savelLayer (RectF bounds,
Paint paint,
int saveFlags)
This method was deprecated in API level 26.
Use savelayer(RectF, Paint) instead.

This behaves the same as save(), but in addition it allocates and redirects drawing
to an offscreen bitmap.

Note: this method is very expensive, incurring more than double rendering cost
for contained content. Avoid using this method, especially if the bounds provided
are large, or if the CLIP_TO_LAYER_SAVE_FLAG is omitted from the saveFlags
parameter. It is recommended to use a hardware layer on a View to apply an
xfermode, color filter, or alpha, as it will perform much better than this method.

All drawing calls are directed to a newly allocated offscreen bitmap. Only when the
balancing call to restore() is made, is that offscreen buffer drawn back to the
current target of the Canvas (either the screen, it's target Bitmap, or the previous
layer).

Fig. 1: The documentation and deprecation message of saveLayer(RectF,Paint,int).

2.2 Deprecated APIs

With the evolution of APIs, some of them may no longer fit with the new re-
quirements of the SDK, e.g., because of security or performance reasons (Li et al.,
2016b). SDK maintainers thus need to remove such APIs so as to prevent their us-
age in client apps. Nevertheless, because of potential compatibility requirements,
deprecated APIs cannot be directly removed as it may otherwise lead to applica-
tion runtime crashes. In this context, SDK maintainers adopt a simple convention:
any to-be-removed API must first be marked as deprecated API via a Java annota-
tion @Deprecated. On the one hand, this annotation indicates that the marked API
can be removed in any future release of the SDK and is thus not recommended
to be used in a newly developed app. On the other hand, the annotation does not
prevent its use in legacy apps, allowing such apps to continue to perform to some
extent (e.g., depending on the device and the framework version they are running
against).

4 https://developer.android.com/index.html

6 Li Li et al.

Listing 1 illustrates two real examples of deprecated Android APIs, namely is-
NetworkType Valid() and removeStickyBroadcast(), which were implemented in classes
ConnectivityManager and Context of the Android framework base, respectively. The
description (cf. lines 3 and 14) explains that these two APIs are deprecated be-
cause of function changes (i.e., there is no need to validate the network type) and
security concerns (i.e., sticky broadcast provides no security protection).

1|//class java.android.net.ConnectivityManager

2| /*x*

3| * @deprecated All APIs accepting a network type are deprecated. There
should be no need to validate a network type.

4| */

5|@Deprecated

6| public static boolean isNetworkTypeValid(int networkType)

711

8| return MIN_NETWORK_TYPE <= networkType &&

9 networkType <= MAX_NETWORK_TYPE;

10|}

11

12| //class android.content.Context

13| /#**

14| * @deprecated Sticky broadcasts should not be used. They provide no
security (anyone can access them), no protection (anyone can modify
them), and many other problems.

15| =/

16| @Deprecated

17| @RequiresPermission (android.Manifest.permission.BROADCAST_STICKY)

18| public abstract void removeStickyBroadcast (@RequiresPermission Intent
intent) ;

Listing 1: Examples of deprecated Android APIs.

3 Experimental Setup

Our objective in this work is to mine the Android framework code base for charac-
terising the deprecated Android APIs. We expect this study to provide actionable
guidelines for both app developers and market maintainers to better deal with
apps accessing deprecated Android APIs. To this end, we present a research tool
called CDA to support our analyses on Characterising Deprecated APIs. Before
detailing the design and implementation of CDA in Section 3.2, we first present the
dataset used in this study (cf. Section 3.1). We conclude the section by presenting
some statistical highlights on the Android framework code base (cf. Section 3.3).

3.1 Dataset

Our dataset targets two artefacts, the Android system code base, and client code.
Thus, it includes:

— GitHub repository data of the Android framework base.®

— A set of 10,000 apps that are randomly selected from AndroZoo (Allix et al.,
2016; Li et al., 2017a). We sample 5,000 apps from the official Google Play
market (GPlay) apps and 5,000 apps from third-party markets (NGPlay).

5 https://github.com/android/platform_frameworks_base

CDA: Characterising Deprecated Android APIs 7

The Android platform code, hosted in Github since October 2008,° is actu-
ally a mirror of the Google source code repository” maintained by Google. As of
Oct. 2018, it has been forked over 5 000 times, and has seen the contributions of
over 700 developers, while being watched for changes by almost 900 developers.
The 167 git development branches have integrated changes from 377,474 commits.
Each commit representing a revision state of the code base, the successive changes
provide a good historical view on how do the APIs evolve. Previous studies have
already investigated this evolution in other contexts (Li et al., 2016¢) (Coelho
et al., 2015) (Palomba et al., 2018).

Over 600 revisions in the framework development are tagged as releases. Con-
secutive releases can be made available without the API level being changed. We
therefore assume that such releases (i.e., within the same API level) will be similar
in terms of API structure. In this study, for the sake of simplicity, we pick one
release (generally the latest) that is associated to each API level, to build the evo-
lution dataset to be investigated. Note that APT levels 11, 12 and 20 are irrelevant
to our study as they do not actually correspond to new releases of the code base.®
Eventually, as illustrated in Table 1, we are able to consider 22 releases (associated
to 22 API levels) for our study.

Table 1: Selected Android SDK (or API) Revisions. Because there is no release for API levels
1-3, 11 and 12 and level 20 is reserved for other purposes, in this work, we do not take into
account these three API levels.

API Level Code Name Selected Release Date
28 Pie android-9.0.0_r9 2018-08-30
27 Oreo android-8.1.0_r48 2018-08-30
26 Oreo android-8.0.0_r36 2017-08-17
25 Nougat android-7.1.0_r7 2017-03-30
24 Nougat android-7.0.0_r7 2016-08-23
23 Marshmallow android-6.0.1_r9 2015-12-15
22 Lollipop android-5.1.1_r9 2015-06-10
21 Lollipop android-5.0.2_r3 2014-12-17
19 KitKat android-4.4w_rl 2014-05-07
18 Jelly Bean android-4.3_r3.1 2013-09-05
17 Jelly Bean android-4.2_r1 2012-11-09
16 Jelly Bean android-4.1.2_r2.1 2012-09-26
15 Ice Cream Sandwich android-4.0.4.r2.1 2012-03-20
14 Ice Cream Sandwich android-4.0.2_r1 2011-12-07
13 Honeycomb android-3.2.4_r1 2011-09-09
10 Gingerbread android-2.3.7_rl 2011-09-12
9 Gingerbread android-2.3.2_rl 2010-12-07
8 Froyo android-2.2.3.r2.1 2010-11-04
7 Eclair android-2.1_r2.1s 2010-02-10
6 Eclair android-2.0.1_rl 2009-11-18
5 Eclair android-2.0_rl 2009-10-15
4 Donut android-1.6_r2 2009-11-03

6 commit: 54b6cfa9a9e5b86129930af873580d6dc20f773c

7 https://android.googlesource.com/platform/frameworks/base.git
8 There are no releases (or tags) for API levels 1-3, 11 and 12 while the API level 20 is
reserved for wearable devices.

8 Li Li et al.

In addition to the Android platform framework base, we also collect Android
apps to investigate how deprecated APIs are addressed by app developers. To this
end, we inspect 10,000 apps: 5,000 from the official Google Play store (hereinafter
referred as GPlay) and 5,000 from third-party markets® (hereinafter referred as
NGPlay) such as AppChina.'® These apps are randomly'! selected from the An-
droZoo app repository, which contains over 7 million Android apps and is known
to be so far the largest app set publicly available to our community. Apps from
this dataset have been previously leveraged for a variety of research studies (Hecht
et al., 2015) (Li et al., 2015) (Li et al., 2017b) (Yang et al., 2017). Since GPlay
and NGPlay apps may come with different quality and maintenance requirements,
they may have different usages of deprecated APIs and may receive different re-
actions from app developers (Wang et al., 2018). By considering apps from these
two sets, we might be able to observe such difference w.r.t. deprecated Android
APIs.

1800

1600

1400

1200 m

1000 |

800 u | B

600 | | B o B
400 m B B B B B
o= uil BE R0 B0 ONE RE
<=2010 2011 2012 2013 2014 2015 >=2016

B Gplay ENGPlay

Fig. 2: Distribution of randomly selected apps based on their assembled date (i.e., dex date).

Figure 2 further summarises the distribution of randomly selected apps based
on their assembly date, i.e., the time when the core code classes.dex was created
(i-e., the last modified time). For both GPlay and NGPlay apps, the assembly
time ranges from 2010 to 2016, indicated diversity in the apps. Figure 3 further
confirms this diversity via the size of selected apps, where both small (less than 1
MB) and big apps (more than 20 MB) are considered. The median and mean size
of considered apps are 4.7 MB and 9.1 MB, respectively.

9 We hypothesise that these apps may be handled differently w.r.t. deprecated APIs com-
pared to GPlay ones.

10 The full list of involved third-party markets includes AppChina, Anzhi, MI.com, 1Mobile,
Angeeks, Slideme, F-Droid, Praguard, Torrents, Freewarelovers, Proandroid, Hiapk, Genome,
APK_Bang.

11 By using gshuf — head -5000 command.

CDA: Characterising Deprecated Android APIs 9

I |

Megabyte
T T

I I
0 5 10 15 20 25

Fig. 3: Distribution of randomly selected apps based on their size (in MB).

3.2 CDA

The design of CDA is straightforward: the main process is summarised in Algo-
rithm 1.

Algorithm 1 Characterising deprecated Android APIs.

1: procedure CHARACTERISE(tags)

2 results < {}

3 for each t € tags do

4 inconsistent APIs < ()

5 method2replacements < {}

6: class2comments, method2comments < construct(t)
7

8

9

for each cls € class2comments.keySet() do
clsAnno < isAnnotated AsDeprecated(cls)
clsDocu + isDocumentedAsDeprecated(class2comments.get(cls))

10: for each method € cls.getMethods() do

11: flag < isAnnotated AsDeprecated(method)||cls Anno
12: comment <+ method2comments.get(method)

13: if isDocumentedAsDeprecated(comment)||cDocu then
14: > msg here can be null or empty

15: msg < getReplacementMessage(comment)

16: method2replacements.put(method, msg)

17: if - flag then

18: inconsistent APIs.add(method)

19: end if

20: else

21: if flag then

22: inconsistent APIs.add(method)

23: end if

24: end if

25: end for

26: end for

27: results.put(t, {inconsistent APIs, method2replacements})
28: end for

29: return results

30: end procedure

CDA first parses all Java files in a given release of the Android framework
code repository and builds a mapping between Java classes, methods and their
documentation (cf. line 6). Then, for each class, CDA checks if it is annotated as
deprecated via the Deprecated Java annotation. Since documentation and source

10 Li Li et al.

code annotation must be consistent, CDA further parses the comments to match
the keyword @deprecated. If a given class is annotated by Deprecated or docu-
mented via @Qdeprecated, we consider all its methods are flagged as such. After
that, CDA goes one step further to perform similar checks to all its methods. If a
given method is annotated by Deprecated or documented via @deprecated, either
at the class level or at the method level, we consider it as deprecated.

Based on the aforementioned observations, in a first phase, CDA can pinpoint
inconsistency cases where a deprecated API is documented but not annotated (line
18) or is annotated but not documented (line 22). In a second phase, when the
API is consistently deprecated, CDA goes one step further to infer the potential
replacements of deprecated APIs, attempting to build another mapping between
deprecated APIs and their potential replacements which we can later leverage to
recommend changes to client app code. Such a mapping can even be leveraged for
automated refactoring of Android apps to mitigate the usage of deprecated APIs.

Unlike the original approach presented in the conference version, for which a
conservative way is adopted (i.e., matching simply the “Use @link Method” pat-
tern), we have improved the strategy with more strict rules to locate replacement
messages. More specifically, CDA obeys the following rules to locate replacement
messages: (1) the replacement method must be presented after @deprecated. (2)
the replacement method must come before @hide if exists. Our manual observa-
tion reveals that @hide is usually presented after @Qdeprecated and it can contain
method links (i.e., “@Qlink Method”), which could have been considered as replace-
ment methods in our previous approach. (3) the replacement method must be
given via the following patterns: use/see/call “@link Method” instead. (4) Finally, if
no replacement message can be obtained based on the aforementioned rules, and
@see is presented after @deprecated, we consider the message given by @see as the
possible replacements as well, which usually provide useful hints for developers to
refer to in order to replace the deprecated APIs. Because of these improvements,
it is expected that fewer replacement messages will be disclosed compared with
the original approach.

Once this process is completed for the first release, CDA loops on all subsequent
releases and records the results for our empirical investigation on the evolution.

3.3 Statistics

Table 2 presents statistics on the quantity of code elements that are parsed and
analysed by CDA for the different releases of the Android framework. We note that
successive releases are constantly increasing in all the different metrics (i.e., the
number of files, classes, lines of code, and API methods). Eventually, between level
4 and level 28 (the two extreme API levels in our study), the framework code has
substantially grown: the number of classes has tripled, while the number of code
lines has almost quintupled; the phenomenon is even more acute in methods which
have grown 7-fold. These figures suggest that as time goes by, the framework code
base is growing and is potentially becoming more and more complex to analyse
and maintain.

Metrics in Table 2 reveal the number of deprecated APIs sharply increases
in the framework code base, although the ratio of deprecated APIs vs. the total
number of methods remains low (cf. Fig 4). Between level 19 and 21, the ratio has

CDA: Characterising Deprecated Android APIs 11

Table 2: Statistic overview of selected releases. Deprecated APIs are considered as long as they
are annotated or documented.

API # Java # Total # Public # Static # Deprecated
Level Classes LoC Methods Methods Methods Methods
28 9078 3644369 311259 261593 15299 4309
27 8032 3303839 293223 249299 13579 3341
26 7816 3244981 290872 247442 14015 3383
25 6805 2927464 275264 237666 12456 2884
24 6680 2864293 272554 235991 12092 2865
23 5685 2538626 255411 224930 10207 1916
22 5311 2376430 247793 219729 9493 1645
21 5206 2333200 245446 218233 9324 1477
19 4120 1381169 68365 46625 7292 928
18 3814 1271452 63217 43111 6765 945
17 3835 1248085 62191 42182 6383 910
16 3837 1265976 63232 42779 6396 879
15 3418 1151084 56678 38094 5972 588
14 3387 1137869 55978 37711 5938 596
13 3109 1028975 50806 34324 5498 574
10 2745 872561 43581 29588 4908 431
9 2647 849373 42616 29234 4480 432
8 2913 896503 44947 31460 4678 498
7 2805 841184 42475 29882 4310 462
6 2803 831461 42245 29700 4280 463
5 2807 837932 42368 29776 4288 463
4 2659 774426 39621 27861 3929 354

drastically dropped. Indeed, as shown in Table 2, the total number of methods in
level 21 has almost quadrupled comparing to that of level 19 while the number of
deprecated methods are only slightly increased.

°
A
Q3
o«
) =
-
(D‘fo
N
- o ¥ -
=)
) - °

L8 19 L10 L13 L14 115 Ll6 L17 L18 L19 121 122 123 124 125 L26 L27 L28

1.60%

49%
1.36%
1.38%

1.40%

11%
1.16%
14%

1.10%

X
)
Qe

1.09%

1.20%

1.00% 3
0.80%
0.60%
0.40%
0.20%
0.00%
L7

4 L5 L6

01%

0.89%
1
0.99%

0.66%

I 0.75%

0.60%

I 1.05%
I 1 05%

Fig. 4: Distribution of deprecated API rate. For each API level, all its deprecated APIs,
including the ones that are deprecated in previous levels, are considered.

12 Li Li et al.

4 Empirical Investigation

Our investigations explore the data mined by CDA to answer the following research
questions:

— RQ1: Are deprecated APIs properly annotated and documented in the Android
framework code base?

— RQ2: To what extent are deprecated APIs stable in the Android framework
code base?

— RQ3: How often do maintainers swap deprecated API code with replacement
messages? Can such messages evolve over time?

— RQ4: Do app developers quickly react to the deprecation of APIs in the Android
framework code base?

— RQ5: For the cases where developers do react to deprecated APIs, how long
does it take for them to make the update?

— RQ6: When dealing with deprecated APIs, how often do app developers replace
them with their alternatives recommended by the Android maintainers?

All the experiments discussed in this section are performed on a Core i7 CPU
running a Java VM with 16GB of heap size.

4.1 Code Annotation and Documentation

Table 3: Inconsistency between annotation and documentation for deprecated Android APIs.
We have submitted two issues (one for each inconsistent type) to the Android open source
project and have received positive acknowledgements on confirming these two issues.

Inconsistent Type L4 L5 L6 L7 L8 L9 L10 L13 L14 L15 L16
Annotated-Not-Documented 17 13 13 12 12 4 2 16 16 16 49
Documented-Not-Annotated 109 102 102 102 132 105 105 72 75 64 230
Inconsistent Type L17 L18 L19 L21 L22 L23 L24 L25 L26 L27 L28

Annotated-Not-Documented 48 42 19 41 42 85 118 118 122 114 125
Documented-Not-Annotated 232 236 233 311 308 343 348 349 280 280 341

Code annotation and documentation are both necessary to properly indicate
that an API is deprecated. If an API is deprecated without an explicit mention
in the documentation (i.e., Annotated-Not-Documented), users will not be clearly
informed by this deprecation, nor will they know the alternative, and thus may
still use deprecated APIs. Similarly, if an API is deprecated without an explicit
annotation in the source code (i.e., Documented-Not-Annotated), although its
deprecation can still be highlighted on the documentation site (cf. Figure 1), such
API will be compiled and integrated into the released SDKs and thus popular
IDEs such as Android Studio and Eclipse cannot perform checks and warnings
to developers about this deprecation. As indicated in Figure 1, API saveLayer is
actually deprecated. However, since this method is not properly annotated, when
accessing this method via Android Studio, as presented in Figure 5, the method will
not be marked as deprecated (e.g., with a cross-line). In contrast, API clipRegion(),
which is annotated by an explicit deprecation annotation, is correctly flagged by
Android Studio as deprecated.

CDA: Characterising Deprecated Android APIs 13

We would like to remind the readers that modern IDEs might be able to also
cross out such APIs that are only marked as deprecated in the Javadoc comment.
However, we argue that the consistency between the @Qdeprecated tag in Javadoc
and the @Deprecated annotation in Java code is very important. First of all, the
@deprecated Javadoc tag is not part of the Java standard. Hence, there is no
guarantee that all compilers will always issue warnings based on the @Qdeprecated
tag. Second, the @Qdeprecated Javadoc tag cannot be read by Java code at run-
time (e.g., via reflection), making it inconsistent with the actual behaviour it was
intended to be.

Canvas ¢ = new Canvas(null);

//deprecated without annotation
c.savelLayer(null, null, Canvas.ALL_SAVE FLAG);
//deprecated with annotation

c.€kipRegion(null);

Fig. 5: Android Studio does not provide indication to such deprecated methods (e.g., saveLayer
as indicated in Figure 1) that are not properly annotated.

In this study, we are interested in checking whether deprecated APIs provide
consistent documentation and annotation. Surprisingly, CDA unveils a significant
number of cases where the documentation is not consistent with deprecation an-
notation presence/absence. This inconsistency has been confirmed by the Android
team as an actual problem of the Android framework code base. Table 3 sum-
marises statistics of cases found in the various framework releases. We note that
deprecated APIs are generally well documented. Nevertheless, there do exist a
number of cases where inconsistency appears. Generally, the number of Annotated-
Not-Documented cases of inconsistencies are smaller than that of Documented-Not-
Annotated. This finding suggests that Android framework developers are not yet
aware of the inconsistency problem of deprecated APIs. This observation is fur-
ther confirmed by the fact that inconsistent deprecations appear to be rarely fixed
during the evolution of the Android framework code base. For the rare cases where
inconsistent deprecations disappear during the evolution, our further analysis re-
veals that all of them are due to the removal of deprecated APIs themselves.

Previously, we have written issue reports describing the inconsistency cases
(2 Annotated-Not-Documented and 34 Documented-Not-Annotated deprecated
APIs) that CDA has identified for the selected set of Java classes from the An-
droid framework base (i.e., version 26, tag android-8.0.0_r9). These issue reports
were submitted to the Android issue tracker system under developer.android.com
and source.android.com components, respectively. The submitted issues were as-
signed and confirmed by Android maintainers in a day: the engineering team has
acknowledged the issues and promised to fix them for next releases.'? In addition
to the aforementioned issue reports, we have also reported the newly harvested
results to Google and are now waiting for the response.

12" As footnoted before, the issue IDs of the submitted bugs are 69105065, 69104762 and
69098890, where the status of these issues so far are Fized, Assigned and Assigned, respectively.

14 Li Li et al.

RQ-1 Finding

Deprecated Android APIs can be inconsistently annotated and documented.
With CDA, we have systematised the identification of such inconsistency is-
sues. Eventually, Android project maintainers recognise that these inconsis-
tency cases are indeed issues that must be addressed.

4.2 Clean-up and Survival of Deprecated APIs

We now investigate whether the code base is eventually cleaned-up from depre-
cated APIs, and what is otherwise the survival time of an APT once it is marked as
deprecated. To this end, we perform pairwise comparisons between every consec-
utive APT level releases of the framework. As illustrated in Fig. 6, compared with
the total number of deprecated APIs available in a given API level, the majority
of deprecated APIs are actually retained in the framework until the latest API
level of this study (i.e., level 28). During the evolution of the framework, only 808
out of 5,118 deprecated APIs (around 16%) are removed.

Table 4 summarises the added and removed APIs for each update (i.e., the code
changes between a consecutive pair of releases considered in our study). Almost all
of the updates (except for L5 — L6) have performed some clean-up for deprecated
APIs. This finding suggests that it is important that app developers take steps
to address deprecated APIs used in their client code, or they may otherwise face
runtime crashes (hence bad user experience, and poor ratings) on latest devices (Li
et al., 2018a).

Table 4: The number of added and removed deprecated APIs for each update.

Update Addition Removal || Update Addition Removal
L4 — L5 112 3 L16 — L17 115 84
L5 — L6 0 0 L17 — L18 53 18
L6 — L7 2 3 L18 — L19 34 51
L7 — L8 67 31 L19 — L21 568 19
L8 — L9 19 85 L21 — L22 173 5
L9 — L10 1 2 L22 — L23 402 131
L10 — L13 207 64 L23 — L24 1016 67
L13 — L14 32 10 L24 — L25 19 0
L14 — L15 6 14 L25 — L26 529 30
L15 — L16 320 29 L26 — L27 56 98
L16 — L17 115 84

We further go one step deeper to check how deprecated Android APIs are re-
moved from the framework code base. Our investigation reveals that, apart from
the physically removed deprecated APIs, around 15% of the remaining APIs are
tagged as hidden (i.e., marked via @hide in the comment of the method). Those
APIs are not “actually” physically removed from the framework but will be ex-
cluded from the public Android SDK (i.e., app developers cannot access them)
and they are known to be subject to removal during the evolution of framework
code (Li et al., 2016c).

CDA: Characterising Deprecated Android APIs 15

5000
4500
4000
3500
3000
2500
2000
1500
1000

P
L4 L5 L6 L7 L8 L9 L10 L13 L14 L15 L16 L17 L18 L19 L21 L22 L23 L24 L25 L26 L27 L28

—s—Total =#=Retained

Fig. 6: The number of deprecated APIs (in accumulation) retained in the framework.

Age
|

T T T I
5 10 15 20
Fig. 7: Violin distribution of the life expectancy of deprecated Android APIs. Age corresponds

to the number of generations (i.e., X-axis) before a deprecated API is removed from the Android
framework since it is deprecated.

As shown in Table 4 (i.e., the second column), in addition to removal, there
are new Android APIs recurrently flagged as deprecated as well. We therefore
investigate the life expectancy of such Android APIs once they are marked as
deprecated by maintainers. We model life expectancy as the number of releases
where a deprecated API survives in the code base before being removed. We also
consider a release as a code “generation'3”. Figure 7 presents the violin plot on
the life expectancy distribution of deprecated Android APIs. The median number
of generations a deprecated API is removed in the code base is 3 (mean = 4.171).
Given the fact that the Android framework code base evolves at a fast pace (a
generation occurs every 3 months(McDonnell et al., 2013)), app developers need to
react quickly on replacing deprecated APIs in their client code before they become
inaccessible in updated devices.

It can be observed from the results shown in Figure 8, 188 deprecated APIs
(around 4% of total deprecated APIs) are removed after one update. Although
this rate is low, we are still surprised that this situation does happen during the

13 The actual time can be computed based on the released time of selected tags (e.g., android-
7.0.0r7 is released on 2016-08-23 while android-6.0.1_r9 is released on 2015-12-15).

16 Li Li et al.

evolution of the Android framework code base. Because of the limited time window,
app developers may not yet be informed (i.e., the deprecation cycle is ignored) and
hence may still leverage those deprecated APIs, resulting in immediate crashes on
devices running next framework versions.

188

o0
~

Ll
~
N ~
© <
(2]
o o ™~
o
IOI
o
o ~
<
o ™ — o =@ o o o N o o
I-_-_ —

Gl G2 G3 G4 G5 G6 G7 G8 GY9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22

Fig. 8: Life expectancy of deprecated Android APIs. Age corresponds to the number of gen-
erations (e.g., G1 means one generation, or one release) before a deprecated API is removed
from the Android framework.

201
c
@ 101
(o))

0

Removed Retained
datasets

Fig. 9: Violin distribution of the number of generations Android APIs get deprecated (between
removed and retained deprecated APIs).

Finally, we look into the number of generations Android APIs get deprecated
after their introduction to the framework, i.e., from their birth to their deprecation.
Fig. 9 illustrates the violin distribution of the generations between removed and
retained deprecated APIs. The fact that these two distributions are significantly
different suggests that the newer APIs get deprecated, the more likely they will
be removed. This result is actually expected as the longer an Android API stay
in the framework, the more dangerous to remove it from the framework even if it
becomes deprecated. Indeed, the APIs existed longer in the SDK will have a higher
chance to be used by client apps. Removing those APIs might break the execution
of the client apps, resulting in app crashes and thereby poor user experience, for
which framework maintainers would not want to confront.

CDA: Characterising Deprecated Android APIs 17

RQ-2 Finding

Deprecated Android APIs are regularly cleaned-up from the framework code
base, often by completely dropping the code, or by making it hidden. Half of
these removals are performed in a short period of time (e.g., within 3 API level
generations), requiring developers to quickly react on deprecated APIs.

4.3 Replacements for Deprecated APIs

In order to facilitate the usage updates of deprecated APIs in Android apps, and
consequently to preserve backward compatibility, APIs should always be depre-
cated with clear replacement messages (i.e., how can this method be replaced
by other ones?) (Monperrus et al., 2012). However, in practice, there is evidence
that API elements are usually deprecated without such messages (Robbes et al.,
2012) (Brito et al., 2016) (Hora et al., 2015): developers thus may not be provided
with suggestions of how to avoid the use of deprecated APIs. We explore in this
study the availability of replacement messages for Android deprecated APIs.

Since version 1.2, Java documentation recommends that developers should in-
clude “Use {@link Method}” to indicate the replacement API when deprecating
a given API. CDA searches this pattern'? in the Javadoc and builds a mapping
between deprecated APIs and their replacements. Table 5 presents some examples
from the built mapping. Replacement messages often refer to other API methods,
but may also refer to some object fields (e.g., #onReceive).

Table 5: Examples in the constructed mapping.
Deprecated APl Replacement Message
android.database.sglite.SQLiteClosable: void onAllReferencesReleasedFromContainer() — #releaseReferenceFromContainer()
android.webkit. WebSettings: void setDefaultZoom(ZoomDensity) — ZoomDensity#MEDIUM
android.app.admin.DeviceAdminReceiver: void onReadyForUserlnitialization(Context,Intent) #onReceive
)
)

android.content.Context: void removeStickyBroadcast(Intent #sendStickyBroadcast
android.database.Cursor: void deactivate(#requery

Figure 10 illustrates the distribution of deprecated APIs with/without re-
placement messages for the considered API level releases. A median percentage
of 64.29% deprecated APIs have been explicitly documented with replacement
messages. The latest release (i.e., level 28) has replacement messages for 78.6%
(i-e., 3386) of total deprecated methods. This replacement rate has slightly in-
creased compared to the one we have computed based on non-class-level depre-
cated methods. This growth may be contributed by the fact that, when considering
the class-level deprecated methods, one replacement at the class level will directly
apply to all its methods, which consequently will increase the likelihood of having
replacement message for a given deprecated APIs.

Despite that the majority of deprecated APIs have been provided with replace-
ment messages, it is still surprising to see that around 20% to 35% of deprecated
APIs are deprecated without giving replacement messages. Towards understand-
ing the rationale behind this, we resort to a manual process to go through the
comments of deprecated APIs and have observed the following reasons:

14 Following the rules illustrated in Section 3.2.

18 Li Li et al.

100%
90%
80%
70%

60%
50%
40%
30%
20%
10%

0%

14 L5 L6 L7 L8 L9 L10 L13 L14 L15 L16 L17 L18 L19 L21 L22 123 L24 L25 L26 L27 L28

°

| With Replacement Without Replacement

Fig. 10: Distribution of deprecated APIs per release with/without replacement messages.

— Hidden or internal APIs may be deprecated without giving alternatives. As
shown in Fig. 11, around 35% of deprecated APIs without replacement mes-
sages are hidden or internal ones. Since those APIs are not meant to be used
by app developers, framework maintainers may treat it differently compared
with other APIs.

— Interestingly, there are some APIs that are not hidden/internal but have been
only used by hidden/internal APIs. For example, method request WifiBugRe-
port()'? of class com.android.server.am. ActivityManagerService has only been ac-
cessed by internal components. When deprecating these APIs, it is also possible
that no replacement messages will be given.

— The methods in the testing code (e.g., unit test cases) are less likely deprecated
with replacement messages. Indeed, testing code (because it will not be shipped
to the final product) may not be maintained in the same way as that of the core
Java classes. In this extension, we have considered much more Java modules,
which may have received different attention to their deprecation-then-updating
qualities. Nonetheless, we argue that even the least important module should
be maintained in the same way, so as to help to keep the coding style consistent
and reduce the likelihood of making mistakes when maintaining the code.

— Some deprecated APIs are simply flagged as “Do not use” without mention-
ing any alternatives. These APIs may reflect the functions that are no longer
needed in the framework.

We now investigate whether the replacement messages provided for deprecated
APIs are reliable. Concretely, we check that the provided replacement messages
are stable (i.e., whether they evolve as well). To this end, we conduct a study on
two aspects:'© (1) Will deprecated APIs that have no replacement messages be
complemented later with replacement messages? (2) Will the replacement messages
of deprecated APIs be updated by new replacements?

15 Comment Message: This method is only used by a few internal components and it will
soon be replaced by a proper bug report API (which will be restricted to a few, pre-defined
apps).

16 In this experiment, only the APIs that are explicitly deprecated at the method level are
considered. When deprecating APIs at the class level, i.e., deprecating classes, it will unlikely
to provide replacement messages to their methods.

CDA: Characterising Deprecated Android APIs 19

1000
900
800
700
600
500
400
3
2

o o
o O

L9 L10 L13 L14 L15 L16 L17 L18 L19 L21 L22 123 124 L25 L26 L27 L28

m All m Hidden/Internal

Fig. 11: Distribution of hidden/internal deprecated APIs that are deprecated without providing
replacement messages.

We find that: (1) It is unlikely that replacement messages will be added to
such deprecated APIs that initially have no replacement message. We only find
22 APIs (cf. Table 6 with five examples); and (2) seldom, an existing replacement
message will be updated: we identified only 72 API cases (cf. Table 7 with five
examples) where the original replacement messages are updated with new ones.
This finding suggests that framework maintainers need to be extremely careful
about the documentation, especially w.r.t the replacement messages since this
documentation will remain available for a long time and will likely have an effect
on app developers code.

Table 6: Five samples of Newly Added Replacement Messages.
API Added Replacement Message
<android.os.FileUtils: boolean copyFile(File,File)> #copy(File, File)
<android.os.FileUtils: boolean copyToFile(InputStream,File)> #copy(InputStream,OutputStream)
<android.media.AudioManager: boolean isWiredHeadsetOn()> AudioManager#getDevices(int)
<android.graphics.Canvas: Matrix getMatrix()> #isHardwareAccelerated()
<android.telephony.NeighboringCellInfo: void setRssi(int)> #NeighboringCelllnfo(int,String,int)

Table 7: Five samples of updated replacement messages.

Replacement Message (original) Replacement Message (new)
#SslCertificate(String,String,Date,Date) #SslCertificate(X509Certificate)
#setTextZoom(int) #setTextZoom
#getTextZoom() #getTextZoom
#BitmapDrawable(Resources) #BitmapDrawable(android.content.res.Resources,android.graphics.Bitmap)
#onlnflate(Activity,AttributeSet,Bundle) #onlInflate(Context,AttributeSet,Bundle)

RQ-3 Finding

About 78% of deprecated Android APIs have been commented with replace-
ment messages, which however, either exist or not, will unlikely to be updated
during the evolution of the Android framework code base.

20 Li Li et al.

4.4 Developer Reactions

We study the reactions of app developers to the deprecation of Android APIs.
More specifically, we would like to know if deprecated APIs are still used by app
developers. Since app assembly time (the compilation of the DEX file in the APK)
is not reliable (e.g., it is easily manipulable) (Wang et al., 2015), we resort to API
level generations as the measure of time. For each app, we extract its API level
based on the targetSDK attribute declared in app manifest files. The target SDK
version informs the system that the app has been tested against the target version,
which hence should not cause any compatibility issues. After the extraction of
targeted SDK version, CDA goes through all the method calls of the analysed
app to check if some used APIs have been deprecated in releases prior to the
declared targeted SDK version. Specifically, given a compiled Android app, CDA
leverages Soot, a well-known bytecode manipulation and optimization framework,
to transform its bytecode to Jimple code, a 3-address intermediate representation
designed to simplify analysis and transformation of Java/Android bytecode. All the
method calls are then compared at the Jimple level. If a method call is matched
with the signature!” of an Android API, we consider an Android API usage is
identified.

Among our randomly sampled set of 10,000 apps, CDA highlights that 61.97%
apps are making use of deprecated APIs. Among the flagged 6,197 apps, the GPlay
subset contributes 3,941 apps while NGPlay contributes 2,256 apps. This finding is
very interesting as we would have expected that there should be less apps in Google
Play accessing deprecated APIs than that of other markets as normally Google
Play provides high-quality apps comparing to other alternative markets. Moreover,
as shown in Fig. 12, Google Play apps also utilise more deprecated APIs than that
of alternative markets. We ensure that this difference is significant by conducting
a Mann-Whitney-Wilcoxon (MWW) test,'® where the resulting p-value confirms
that there is a significant difference between Google Play and alternative markets
apps at a significance level'® of 0.001. Cohen’s d, which is of practical interest
to estimate the magnitude of the difference, further suggests that the effect size
between these two sets of deprecated API usages is median (equals to 0.67).

Towards understanding the reason why Google Play apps access deprecated
APIs, we further record all the callers of deprecated APIs. Our investigation reveals
that actually most of the deprecated APIs are accessed by third-party libraries.2°
Indeed, the number of deprecated APIs accessed by libraries (i.e., 256,325) is al-
most doubled by that of app code (i.e., 141,359). Table 8 further highlights the
top 10 caller packages that have invoked deprecated APIs in Google Play and
Third-party market apps, respectively. Library android.support remains to be the
top leveraged one in both Google Play and third-party apps. This is expected as
the main reason why the android.support library is introduced is to safely access

17 Declared class name, method name, and arguments.

18 We have appended zero to third-party markets (i.e., NGPlay) to balance the number of
elements.

19 Given a significance level o = 0.001, if p-value < «, there is one chance in a thousand that
the difference between the datasets is due to a coincidence.

20 Tn this work, we consider the common libraries revealed by (Li et al., 2016a) as the white-
list to flag whether a caller belongs to libraries. This white-list contains over 1,000 common
libraries mined from over 1.5 million Android apps.

CDA: Characterising Deprecated Android APIs 21

100 15(

1

50

| |
GPlay NGPlay

Fig. 12: Distribution of the number of deprecated APIs utilised per app.

Table 8: The top 10 packages calling into deprecated Android APIs (the total times appearing
in the considered apps), which account for over 90% and 80% of total deprecation usages in
Google Play and Third-party Markets, respectively.

GPlay Apps NGPlay Apps
android.support 105,182 || android.support 22,739
com.google 43,040 com.tencent 12,582
com.facebook 5,301 com.umeng 5,432
org.apache 4,381 com.baidu 5,127
com.unity3d 3,452 com.alipay 3,194
com.biznessapps 2,621 com.google 3,080
com.adobe 2,495 com.unity3d 2,851
com.good 1,143 com.sina 1,265
com.flurry 1,084 com.adobe 1,002
com.paypal 1,072 cn.jpush 993

historical APIs that are deprecated from the latest framework version. Indeed, the
Android framework regularly deprecates APIs, which could be eventually removed
from the system, app developers are recommended to include this library for solv-
ing possible backwards-compatibility issues. Apart from that, the usage of other
libraries is quite different between Google Play and third-party apps. For example,
library com.google is the second top leveraged library in the Google Play set while
is only the sixth in the third-party set. Nevertheless, the fact that the number of
deprecated APIs are significant in both app sets suggests that common libraries,
especially such ones that are provided by well-known parties such as Google, are
not frequently updated in developer app code.

In addition to the frequency enumerated in Table 8, we have also investigated
the number of deprecated APIs accessed by each library. Fig. 13 further illustrates
the distribution of the number of deprecated APIs leveraged by each library, where
only such libraries that have accessed into at least one deprecated API are con-
sidered. The median and mean numbers of accessed APIs are 6 and 13.01, respec-
tively. This result further backups our previous finding: many deprecated APIs are
actually accessed by Android app code via popular libraries. The fact that app
developers are not recurrently updating the libraries used in their apps could be
explained by the empirical findings disclosed by (Derr et al., 2017): app developers

22 Li Li et al.

I I I I I
0 5 10 15 20 25

Fig. 13: Distribution of the number of deprecated APIs leveraged by common libraries.

are hesitated to update libraries in order to avoid ostensible re-integration efforts
and version incompatibility problems, based on a survey of 203 app developers
from Google Play on their usage of libraries and requirements for more effective
library updates.

We explore the gap between the targeted SDK level and the API deprecation
level, indicative of time delay, i.e., delay = targetSDK — deprecationLevel. This
delay represents the number of generations where app developers are still able
to call deprecated APIs. In this work, the targeted SDK version is chosen to
compute the delay. Ideally, the supported SDK ranges (from minimal SDK version
to the latest version) should be considered. However, it is hard to represent the
results over a range of SDK versions, while the minimal SDK versions provided by
app developers are usually small and hence may not be representative to recently
deprecated APIs. Indeed, as shown in Fig. 14, the distribution of minimal SDK
versions and targeted SDK versions are significantly different (as confirmed by
a WMM test). The median minimal version is only at 9, which was released in
2010. Cohen’s d (equals to 1.88) suggests also a large effective size between these
two sets. Instead of choosing the minimal SDK version, we leverage the targeted
SDK version to compute the delay. We believe this version is more suitable for
our experiments. Since our idea in this work is to check how app developers react
to deprecated APIs at the development time, the targeted SDK version actually
reflects the desired version that the app is developed for.

The delay computed based on thousands of deprecated APIs ranges from 1 to
21. Fig. 15 further presents the distribution of API level delays between Google
Play and third-party market apps. The callers of deprecated APIs are also sepa-
rated into two folds: app code and common library code. Interestingly, although
most deprecated APIs are leveraged by library code, their accessing delay is how-
ever shorter than that of app code for Google Play apps. This difference is also
further confirmed by a MWW test.

Besides a small number of deprecated APIs, most APIs accessed by Android
apps should be normal APIs, i.e., they are not deprecated at the API level that
the apps target. Since the Android framework evolves fast, those normal APIs
might become deprecated in future as well. Towards verifying this assumption, we
explore again the gap between the targeted SDK level and the API level when
the API is deprecated despite it is not deprecated at the targeted SDK level, i.e.,

CDA: Characterising Deprecated Android APIs 23

Target
|

Minimal
|
-

I I I I I
5 10 15 20 25

Fig. 14: Distribution of the minimal and targeted SDK versions of the selected Android apps.

20-
15
g
T 101
©
5-
O-

GPlay APP GPlay LIB NGPlay APP NGPlay LIB
datasets

Fig. 15: Distribution of delays between the usage of deprecated APIs in Google Play and third-
party market apps. The red line indicates the mean value of each violin plot. Suffixes _APP
and _LIB indicate that the caller of deprecated APIs are from the app code and third-party
library code, respectively.

generationGap = deprecationLevel — targetSDK. This gap represents the number
of generations that app developers need to be aware of so as to be able to react
on the deprecations on time. Fig. 16 illustrates the distribution of the generation
gaps of the APIs to-be deprecated. Normally, half of the selected APIs (or even-
tually deprecated APIs) will be deprecated in less than six generations (between
one year to two years). This evidence suggests that app developers should con-
tinuously update their apps. Otherwise, even if a given app is well developed at
the moment (i.e., it does not access into any deprecated API), it could still be-
come less-maintained. As time goes by, the number of deprecated APIs accessed
by Android apps (if without any change) will likely increase, resulting in a bigger
probability of being incompatible with the latest devices.

Fig. 17 further illustrates the distribution of the number of APIs that will
become deprecated per app. The fact that over half of the apps have accessed into
around 95 APIs that will be deprecated eventually emphasises that Android apps
need to be continuously updated.

24 Li Li et al.

I I I
5 10 15

Fig. 16: Distribution of the generationGaps among the selected apps.

R |

I I I I I I I I
0 50 100 200 300

Fig. 17: Distribution of the number of APIs that will become deprecated per app.

RQ-4 Finding

Most deprecated APIs are accessed by app code via popular libraries. Develop-
ers should thus pay attention in the library releases used in their app packages.

4.5 Evolution of the Usage of Deprecated APIs

Based on the targeted API level declared in Android apps, our experimental results
towards answering the previous research question reveal that app developers may
still use such APIs that are already deprecated at the time of implementing. In
this research question, we go one step further to investigate how long will it take
for app developers to make the update when dealing with deprecated APIs. In
other words, we would like to keep track of the code changes during the evolution
of Android apps. To do so, we need to collect a set of Android app lineages, where
each lineage is formed with the different versions of the same Android app. To this
end, we resort to AndroZoo again to harvest such datasets.

We randomly select 500 app lineages from the the dataset provided by (Gao
et al., 2018), in which the authors have re-constructed the app lineages by consid-

CDA: Characterising Deprecated Android APIs 25

ering all the AndroZoo apps. The 500 app lineages contain in total 8,989 Android
apps. Each lineage contains at least 10 apps that (1) share the same package name;
(2) are signed by the same certificate; and (3) are released to the same app mar-
ket (e.g., Google Play). The apps inside a lineage are also ordered based on their
declared versions. In this work, we consider the different versions as generations.
For example, given an app lineage com.facebook.katana {g1, g2, ..., 932}, we call the
first app version as the first generation of the app and the last version as the 32nd
generation of the app. The targeted SDK versions of lineage apps can be updated
when the app itself is updated. Among the 500 lineage apps, around 18% of them
have involved with cases where the targeted SDK versions are updated. Often, the
updates in terms of the SDK versions are in a small range. This phenomenon is
expected as the targeted SDK version changes can lead to significant refactorings
of the app code. App developers may not be interested in doing that as it not only
introduces more works to them but also increases the possibility of introducing
bugs to the app code. Moreover, the larger changes of the SDK version, the more
refactorings might need to be applied to the app code, resulting in even more
works for developers to deal with. Finally, since there is no enforcement from the
Android system to restrict the usage of deprecated APIs, app developers are not
motivated to update the SDK versions. Even without changing the SDK version,
most apps should still be able to run on modern devices since the majority of
deprecated APIs are not really removed from the framework.

Fig. 18 presents the distribution of the number of generations among the 500
app lineages we have randomly selected for this experiment. The number of app
generations ranges from 10 to 108, with a median and mean generations at 14
and 17.9, respectively. This distribution illustrates the diversity of our randomly
selected app lineages as well.

I I I I I
10 15 20 25 30

Fig. 18: Distribution of the number of generations in each app lineage.

Based on the selected app lineages, we first look at the problem whether app
developers remove deprecated APIs during the evolution of their Android apps.
Fig. 19 illustrates the distribution of the number of deprecated APIs that are (1)
stayed in the app until the last generation and (2) removed eventually from the
app. The median and mean numbers of deprecated APIs are 75.5 and 78.5 for
retained ones and 19.5, 34.45 for removed ones, respectively. Cohen’s d (equals

26 Li Li et al.

to 0.92) suggests a large effective size between these two distributions. Clearly,
most deprecated APIs are retained in the app rather than removed, demonstrating
that deprecated APIs have not received enough attention from app developers.
Similar findings have also been observed by researchers on other platforms such
as the JDK (Sawant et al., 2018¢c) and the Smalltalk ecosystem (Robbes et al.,
2012). Furthermore, among the removal cases of deprecated APIs, around 15%
of the attempts remove APIs immediately in a subsequent app version and have
happened in over half of the selected lineages. Unfortunately, all the involved
deprecated APIs, which are removed immediately in some lineages, have appeared
to be the cases that the APIs are removed after at least two generations (or app
versions). This empirical finding suggests that, at least based on the 500 randomly
selected app lineages, we cannot observe any pattern indicating a sense of urgent
fixes to deprecated Android APIs.

0 5
N

D B 8

_ ; g

8 :)

- : E

o _| |
LD T
O | 1

[[

Retain Removal

Fig. 19: Distribution of the number of deprecated APIs that are (1) stayed in the app until
the last generation and (2) removed eventually from the app.

Table 9: The top 10 retained deprecated APIs.

API Frequency

<android.view.View: void setBackgroundDrawable(android.graphics.drawable.Drawable) > 409
<android.content.res.Resources: android.graphics.drawable.Drawable getDrawable(int)> 397
<android.app.Notification: void setLatestEventInfo(Context,CharSequence,CharSequence,PendingIntent) > 389
<android.net.NetworkInfo: int getType()> 385

<android.view.Display: int getWidth()

<android.view.Display: int getHeight()

<android.content.res.Resources: int getColor(int)

<org.apache.http.params.HttpConnectionParams: void setConnectionTimeout(org.apache.http.params.HttpParams,int)
)
)

377
373
347
353
350

>
>
>
>
>
> 347

<org.apache.http.params.HttpConnectionParams: void setSoTimeout(org.apache.http.params.HttpParams,int
<android.content.res.Resources: int getColor(int

Table 9 and Table 10 further respectively list the top 10 retained and removed
deprecated APIs, among the evolution of the 500 selected app lineages. The fact
that the two lists of APIs are totally different from each other shows that app
developers may have special focuses when dealing with the replacement of dep-
recated APIs. There are various reasons that may attract the attention of app
developers for those deprecated APIs that are actively updated. For example, it
could be the case that those APIs have clear alternative APIs mentioned in the
Android documentation, or those APIs are later removed from the framework so

CDA: Characterising Deprecated Android APIs 27

Table 10: The top 10 removed deprecated APIs.

APl Frequency
<android.app.Notification: void <init>(int,java.lang.CharSequence,long)> 160
<android.widget.PopupWindow: void setWindowLayoutMode(int,int)> 111
<android.app.Activity: void setProgress(int)
<org.apache.http.params.HttpConnectionParams: void setSocketBufferSize(org.apache.http.params.HttpParams,int)
<org.apache.http.conn.ssl.SSLSocketFactory: org.apache.http.conn.ssl.SSLSocketFactory getSocketFactory()
<android.content.ContentProviderClient: boolean release()
)
)
)
)

107
106
106
100
99
99
99
96

<org.apache.http.params.HttpParams: org.apache.http.params.HttpParams setParameter(java.lang.String,java.lang.Object
<android.accessibilityservice. AccessibilityServiceInfo: java.lang.String getDescription(

<android.accessibilityservice. AccessibilityServiceInfo: boolean getCanRetrieveWindowContent(

<android.text.Html: java.lang.String toHtml(android.text.Spanned

that developers have to remove them in order to make their app compatible to the
latest devices.

Towards verifying these hypotheses, we conduct two more experiments at-
tempting to understand the rationale behind. Our observation reveals that, al-
though the top 10 retained and removed lists are different, the majority of APIs
(over 90%) are actually shared by these two sets, i.e., it is likely that a given
deprecated API is retained by some developers while removed by others. Apart
from the majority APIs that are both retained and removed by app developers,
the numbers of retained and removed APIs that have been documented with re-
placements are more or less the same (also around 80%), indicating that having
clear alternatives is not the main reason for app developers to address deprecated
APIs.

In terms of actual removal of deprecated APIs, in our experiments, there are
only 20 APIs that are accessed by the apps of the selected lineages that have been
removed from the framework. Interestingly, all the 20 APIs have been involved with
removal in the selected app lineages. This evidence suggests that app developers
are more likely to deal with such deprecated APIs that are eventually removed
from the framework. Surprisingly, 17 out of the 20 APIs have been also retained
by some app lineages. We speculate that this might be correlated to the quality of
app lineages. Indeed, as argued by (Gao et al., 2019), some app developers tend
to write poor quality apps. Even with critical features such as crypto-API usages,
developers are frequently making mistakes.

Fig. 20 further illustrates the distribution of generations that app developers
take to remove deprecated APIs. All the 10 APIs share more or less a similar
trend: for at least half of the cases, app developers take around five generations
to remove a deprecated API, suggesting that app developers do not frequently
update deprecated APIs. Furthermore, the average generation (indicated by the
red dots) that the API is removed is always bigger than the median generation.
Except for the top 10 APIs, this trend is also generally true for all the deprecated
APIs, as illustrated in Fig. 21.

RQ-5 Finding

During the evolution of Android apps, deprecated APIs are likely to stay in
the app. For the cases where deprecated APIs are frequently removed from the
apps, they are generally different from the ones that are constantly retained.

28 Li Li et al.

100

75

44 $£$$$$$

api

generation

Fig. 20: Distribution of generations app developers take to remove deprecated APIs (only the
top 10 deprecated APIs shown in Table 10 are illustrated). The APIs illustrated in this figure
(i.e., A01-A10) follow the same sequence as that enumerated in the table (e.g., A01 stands for
method <init>() of class Notification while A10 stands for method getTypeName() of class
NetworklInfo.

generation

api

Fig. 21: Distribution of generations app developers take to remove deprecated APIs (all the
involved APIs are considered).

4.6 Updating Deprecated APIs

Although we found in our study that over half of the deprecated APIs come with
replacement messages indicating alternatives, we have no confirmation that the
proposed alternatives are indeed suitable for app developers and the scenarios in
which they used the deprecated APIs. Building on a large dataset of apps with
several release versions per app (i.e., app lineages), we can investigate how do
app developers deal with deprecated APIs, e.g., the deprecated APIs are simply
removed from the app or will developers actually replace them with their alterna-
tives recommended by the document?

Towards answering the aforementioned research question, we conduct another
exploratory study of the previously selected lineage apps. In this term, we conduct
pairwise comparisons between two subsequent app versions in a lineage, aiming to
extract code changes (i.e., diff's) that have involved with the removal of deprecated
APIs. Given a pair of two subsequent apps (e.g., gz — gz—+1), if a deprecated API

CDA: Characterising Deprecated Android APIs 29

is removed from the body of a method m in g, and the method m is still presented
in ggz+1, we consider that the developer has been aware of the deprecated nature
of the API and has performed a dedicated treatment. Consequently, we extract
the changed code and represent it into a diff snippet.

Listing 2 illustrates an example of an extracted diff snippet, which are extracted
from app lineage air.com.playsino.bingo.thanksgiving. Because API getWidth() of
class android.view. Display is deprecated, developers remove it from the app (cf.
Line 9). As demonstrated in the diff code, the similar functionality is achieved by
accessing into another API called getSize() of the same class (cf. Line 13 and then
line 10). It is worth mentioning that the replacement API, namely getSize(), is
actually recommended and explicitly highlighted in the Android documentation.

1| - $i3 = virtualinvoke $r6.<android.view.Display: int getHeight () >();
20+ $r7 = new android.graphics.Point;
3|+ specialinvoke $r7.<android.graphics.Point: void <init>()>();
4|+ $z0 = $r0.<com.adobe.air.AIRWindowSurfaceView: boolean
mIsFullScreen>;
5|+ if $z0 == 0 goto labelO4;
6|+ labelO1:
7|+ $i3 = $r7.<android.graphics.Point: int y>;
8 $r0.<com.adobe.air.AIRWindowSurfaceView: int mBoundHeight> = $i3;
9| - $i3 = virtualinvoke $r6.<android.view.Display: int getWidth()>();
10+ $i3 = $r7.<android.graphics.Point: int x>;
11 $r0.<com.adobe.air.AIRWindowSurfaceView: int mBoundWidth> = $i3;
12|+ labelO4:
13|+ virtualinvoke $r6.<android.view.Display: void
getSize (android.graphics.Point)>($r7);
14|+ goto labelO1l;

Listing 2: An example of code diff mined from lineage air.com.playsino.bingo.thanksgiving
(versions AC1752 and 24C7BA).

Overall, among the 500 app lineages, we are able to extract 6,043 code diffs that
have involved in removing 360 deprecated APIs. Among the 360 APIs, 232 of them
further target the removal of such APIs that have possible replacement messages
mentioned in the Android documentation, suggesting that app developers are more
likely to deal with such deprecated APIs that have recommended alternatives.

However, among the 232 APIs, because of class-level deprecation, we are only
able to locate recommended replacement methods for 105 of them. If an API is
deprecated at the class level, its replacement message is likely given at the class
level as well and the recommended replacement is likely classes that do not provide
explicit replacement messages for specific methods.

Among the 6,043 code diffs involved in removing deprecated APIs, 2,890 of
them are relevant to the 105 APIs that have recommended alternatives high-
lighted in the Android documentation. We then go one step deeper to check to
what extent app developers use the recommended alternative methods to replace
the deprecated ones in order to remove them. Unfortunately, only 31 out of the
2,890 cases (less than 1%) have actually replaced the deprecated APIs with the
recommended ones. This evidence suggests that app developers are not really (or
at least are unlikely) following the recommendation of the official documentation
to deal with deprecated APIs.

Furthermore, we compare the 31 cases (contributed by 13 distinct APIs), for
which the deprecated APIs have been replaced with their recommended alterna-
tives (under the same caller methods), with the top 10 removed deprecated APIs
shown in Table 10. Surprisingly, none of the top 10 APIs has appeared in the

30

Li Li et al.

31 code diffs. This result once again confirms our previous observation that app
developers are not likely replacing the deprecated APIs with their alternatives (at
least not in the same caller methods) following the official documentation.

Towards understanding why deprecated APIs are removed while their recom-

mended alternatives are not leveraged, we manually look into some samples. Our
preliminary investigation finds that the aforementioned issue might be caused by
the following reasons.

18| -

19
20

R1: Replaced by library or wrapper code. Instead of directly using the rec-
ommended alternatives to replace the deprecated counterparts, to simplify the
updates, app developers might directly leverage library methods or wrap the
changes into independent methods. In this case, since the recommended alter-
natives are not explicitly presented in the code diff, our naive approach will not
be able to spot that. Listing 3 presents such an example, where deprecated API
getOrientation() is actually replaced by a method from an amazon ad library.
R2: Alternative implementation. In addition to the recommended alternatives,
there will be other means that app developers can achieve the same function
(remove the deprecated APIs) while not using the recommended APIs. For
example, as shown in Listing 3, deprecated API getOrientation() is not replaced
by its recommended alternative method (which is getRotation()) but by a direct
access to a field.

R3: Function no longer supported. In many cases, the deprecated features are
simply removed. For example, as also demonstrated in Listing 3, getDescrip-
tion() is a deprecated API that is removed during an app update. However,
without giving any alternative implementation about the deprecated feature
(i.e., getDescription()), the update even changes the return value to always be
null, indicating that app developers are no longer interested in this method.

//R1: Replaced by library or wrapper code.

//From pair FD2A08-D307D8

- $i0 = virtualinvoke $r5.<android.view.Display: int getOrientation()>();

+ $i0 = staticinvoke <com.amazon.device.ads.AndroidTargetUtils: int
getOrientation(android.view.Display)>($r5);

//R2: Alternative implementation

//From pair DD669C-E486E2

- $i0 = virtualinvoke $r2.<android.view.Display: int getOrientation()>();

+ $i0 = $r2.<android.content.res.Configuration: int orientation>;

//R3: Function no longer support

//FACD24 -1F4480

- public static java.lang.String
getDescription(android.accessibilityservice.AccessibilityServicelInfo)

+ public java.lang.String
getDescription(android.accessibilityservice.AccessibilityServiceInfo)

{

- $r1 = virtualinvoke
$r0.<android.accessibilityservice.AccessibilityServiceInfo:
java.lang.String getDescription()>();

return $ri;

+ return null;

}

Listing 3: Sample code snippets demonstrating how are deprecated APIs removed without
leveraging the recommended alternatives.

CDA: Characterising Deprecated Android APIs 31

We would like to remind the readers that the approach we leveraged to check if
a given deprecated API is replaced by its recommended alternative is quite naive,
i.e., only the caller method of the removed deprecated APT is checked. It is highly
likely that the replacement may be put in other methods that are overlooked by
our approach (cf. R1 in Listing 3 would be one of such examples). Indeed, among
2000 updates (i.e., app pairs) randomly sampled from the 500 app lineages, we
found that around 70% of them have included the replacement in the updates
with different locations (via a global analysis), which is much larger than that
of same locations where deprecated APIs are accessed into. These replacement
methods additionally included in the updated app version may not be the cases of
replacing deprecated APIs but due to the introduction of new features, which is
unfortunately non-trivial to confirm. Nonetheless, we believe this rate presents at
least an upper bound of possible replacements to deprecated APIs. We encourage
our fellow researchers to invent advanced techniques to improve the precision of
identifying actual patches applied to update deprecated Android APIs.

Moreover, our straightforward approach only checks the syntactic similarity of
the deprecated APIs and their recommended counterparts, semantic changes will,
unfortunately, be missed. Let us take getOrientation() API in Listing 3 again as an
example, except for the two samples (cf. R1 and R2), our preliminary investigation
has also found actual fixes for this API, i.e., it is replaced by API getRotation(),
as recommended by the Android documentation (cf. Listing 4). The fact that
getOrientation() is fixed in different means (either follow the recommendation or
not) suggests that the replacement of deprecated APIs is unlikely achieved through
a systematic approach.

1|//From pair 855C79-FDF66C
2|$r4 = interfaceinvoke $r3.<android.view.WindowManager:
android.view.Display getDefaultDisplay()>();

3|- $i0 = virtualinvoke $r4.<android.view.Display: int getOrientation()>();
4|+ $i0 = virtualinvoke $r4.<android.view.Display: int getRotation()>();
5|return $i0;

6|}

Listing 4: Sample code snippets demonstrating how is deprecated API getOrientation()
replaced by its recommended alternative (i.e., getRotation()).

Online Web Service. Based on these 6,043 code diffs, which have involved
in removing 360 deprecated APIs, we further present to the community an on-
line web service aiming at helping developers understand how other developers
deal with deprecated APIs. As demonstrated in Fig. 22, the online web service
takes as input a deprecated API and outputs a list of code diffs (13 diffs for API
android.net.wifi. WifiManager.startScan as shown in the screenshot), for which app
developers can leverage to understand quickly how the searched API is removed
by other developers in practice. As of future work, we commit to harvesting more
code diffs from a large set of app lineages.

RQ-6 Finding

When dealing with deprecated APIs during the evolution of Android apps, app
developers are unlikely replacing the deprecated APIs (at the same place) with
their alternatives recommended by the official Android documentation.

32 Li Li et al.

DAU - Deprecated API Updates 30/10/18, 17:53

android.net.wifiWifiManager.startScan
Search

Search updates for API android.net.wifi.WifiManager.startScan, 13 results found

DIFF #1
Source App: 458F7E094F306378487D159B3C755255BD4ADFB89ADA2AEOA 1F978E453217445 apk
Target App: 77CCOBDE6A8B73E3985425C38BBSDBDED4E09111580E25E7DF6FAOD2DC2F719C apk

1 ee -1,18 +1,32 ee

2 - private void 1()

3 + public void 1()

4: {

5: com.actionsmicro.iezvu.IEzVuMainActivity $r0;

6: = java.util.ArrayList $rl;

71 - android.net.wifi.WifiManager $r2;

8: o+ com.actionsmicro.iezvu.b.j $rl;

9: + java.lang.String $r2, $r3;

10: + boolean $z0;

11:

12: $r0 := @this: com.actionsmicro.iezvu.IEzVuMainActivity;

13:

14: - $r2 = $r0.<com.actionsmicro.iezvu.IEzVuMainActivity: android.net.wifi.WifiManager B>;
15: + $rl = new com.actionsmicro.iezvu.b.3;

16:

17: - virtualinvoke $r2.<android.net.wifi.WifiManager: boolean startScan()>();

18: + $r2 = virtualinvoke $r0.<com.actionsmicro.iezvu.IEzVuMainActivity: java.lang.String u(
19:

20: - $rl = specialinvoke $r0.<com.actionsmicro.iezvu.IEzVuMainActivity: java.util.ArrayList
21: + $r3 = virtualinvoke $r0.<com.actionsmicro.iezvu.IEzVuMainActivity: java.lang.String v(
22:

23: - $r0.<com.actionsmicro.iezvu.IEzVuMainActivity: java.util.ArrayList C> = $rl;

http://35.224.210. Cwifl Wit tartScan Page 10f 65

Fig. 22: A Sample Usage of the Online Web Service.

5 Discussion

This section discusses implications of this study and promising research directions
that could be built on the characterization of Android APIs (cf. Section 5.1). We
also enumerate some potential threats to validity in our findings (cf. Section 5.2).

5.1 Implications

The findings of this study raise a number of issues and opportunities for the
research and practice communities.

—> Tool support for deprecating APIs.

As unveiled by our investigations and reported in Section 4.1, deprecated APIs
suffer from inconsistency issues in documentation and annotation. Most probably,
API deprecation remains a manual process undertaken by framework developers.
Given the consequences of inconsistency issues in practice for app developers,
it is necessary that Android maintainers adopt specific tools to deal with API
deprecation. Generally, it is important for not only the maintainers of Android
framework base but also for the maintainers of any other repositories that need
to deal with API deprecation to request tool support. It is non-trivial to devise
a single tool that can fully solve the problem of API deprecating (Henkel and
Diwan, 2005). Our community might need to split the problem into small tasks
and implement dedicated tools to resolve them separately. Our research prototype,

CDA: Characterising Deprecated Android APIs 33

namely CDA, is actually our first step towards providing such a tool set for helping
repository maintainers better deal with API deprecation.

— A deprecate-replace-hide-remove model.

So far, the practice in dropping legacy APIs from the code base consists in applying
the so-called deprecate-replace-remove model, where the legacy APIs are eventually
removed after a certain period of time. This model appears to be suitable for
most cases, but would still lead to crashes for some legacy client apps which still
call into removed APIs. In order to avoid such unnecessary crashes, the Android
framework base has introduced another means to deal with deprecated APIs. That
is, instead of directly removing deprecated APIs, it first flags them as hidden APIs
that can still live for a while in the framework side (i.e., available in the runtime
virtual machine) but are no longer available in the client SDK. Thus, legacy apps,
which still call into hidden APIs (removed from the SDK), can successfully run on
updated devices. Meanwhile, new apps that are developed based on latest SDK
would not face the problem of accessing “removed” APIs because those APIs are
indeed removed from the developer’s point of view. This scheme has already been
shown to be effective for other APIs in the Android framework code base. Thus,
we recommend that the community adopts a new process model for deprecating
APIs, namely deprecate-replace-hide-remove model. We remind the readers that
hidden APIs could be promoted to public APIs eventually (Hora et al., 2016),
which however should not contradict the proposed deprecate-replace-hide-remove
model as those hidden APIs will unlikely be originated from deprecated ones.

It is worth mentioning that app developers may be interested in using hid-
den APIs, e.g., a dedicated library has been provided to the community for app
developers to access hidden APIs,?! simply removing hidden APIs may result in
problems to the apps developed by such developers. Nevertheless, as argued by (Li
et al., 2016¢), hidden APIs should be avoided in the first place. Therefore, while
applying the deprecate-replace-hide-remove model, the usage of hidden APIs should
also be regulated. Actually, starting in Android 9 (API level 28), the Android
platform restricts the usage of certain hidden APIs?2. If a given app attempts to
access a hidden API that is restricted for the app’s target API level, the Android
system will throw an error. enforcing developers to avoid the usage of hidden APIs
when developing new apps. However, to allow the execution of historical apps, the
same hidden API might be still accessible if the app targets a lower API level.

= Advanced fix mining for dealing with deprecated APIs.

In this work, we attempt to automatically mine fixes of deprecated APIs from
app lineages that contain the practical changes made by app developers. So far,
our approach only look at the evolution of the caller method that has accessed
into deprecated APIs. Given two subsequent app versions (az,az,) in a lineage,
deprecated APIs could indeed be removed from a, by developers but their fixes
may not necessarily be placed in the same place (i.e., the same caller method). As
a result, our current fix mining approach may have overlooked a lot of true fixes.
Therefore, we argue that there is a need to design advanced fix mining approaches
towards learning the practical fixes from app developers.

21 https://github.com/anggrayudi/android-hidden-api
22 https://developer.android.com/about/versions/pie/restrictions-non-sdk-interfaces

34 Li Li et al.

—> Recommendation System for fixing deprecated APIs..

Ideally, if we apply our fixing mining approach to a large set of app lineages, we
would be able to collect a large set of code diffs demonstrating how are deprecated
APIs fixed by developers in practice. The large set of code diffs can further be
leveraged to implement a recommendation system for automatically recommending
appropriate fix templates for helping developers fix deprecated APIs. Towards
building a reliable recommendation system, one research challenge that is still
needed to be addressed is to invent a new algorithm to rank the results, i.e., the
most relevant code diff should be recommended first.

—> Automatic fix of deprecated APIs usage in apps.

Our study in this work constructs a mapping between deprecated APIs and their
replacement alternatives. An opportune research direction could be to invent an
automated approach for fixing the usage of deprecated APIs across apps in the
wild. This direction involves challenges beyond simple refactoring of APT call sites:
indeed, alternatives can be other API methods with different parameters (how to
initialize arguments based on context variables?), suggested classes (how to infer
object initialization and specific internal method calls?), or fields of existing objects
(how to identify the right object, and use the appropriate field in replacement
code?). Nevertheless, we believe that leveraging the mapping produced in this work
and a large dataset of apps (with millions of code samples) can help systematically
learn patterns for fixing the usage of deprecated APIs.

5.2 Threats to Validity

First, our investigation is conducted based on a subset of selected releases of the
Android framework base, where the selected subset of releases may not be repre-
sentative for the whole evolution of deprecated APIs and hence introduce threats
into the external validity. Nevertheless, to alleviate this threat, we have considered
all the possible API level releases.

Second, the representability of our approach could potentially be also impacted
by the selection of app sets and lineages. For example, there is a chance that dor-
mant apps may be selected to our dataset. Because dormant apps may come with
low-quality and are not under active development, their developers may not re-
act to the usage of deprecated APIs or care about the affection of deprecation,
resulting in bias in our experimental results. Nonetheless, this threat is mitigated
by performing random sampling from so far the largest and most up-to-date re-
search dataset (a.k.a. AndroZoo) in our community. It is worth to mention that
even with reputed apps, as disclosed by (Gao et al., 2019), their lineages may not
be always good for supporting evolutionary studies such as mining usage patterns
of cryptographic APIs. We hence encourage our fellow researchers in the com-
munity to working on this problem and inventing reliable means for supporting
representative evolutionary studies in Android.

Third, our library-based investigation is based on a whitelist provided by (Li
et al., 2016¢), where certain libraries could be still missing, making our correspond-
ing findings biased to some extent. Nevertheless, the whitelist we have leveraged
contains over 1,000 libraries including at least the popular ones (e.g., all the pop-
ular libraries presented in Table 8 are included).

CDA: Characterising Deprecated Android APIs 35

Fourth, the replacement messages of deprecated APIs are inferred via a heuristic-
based approach, where the heuristics are summarised based on manual observation.
Despite that, we have added more conservative rules to the heuristics, our approach
is still subject to mistakes that may further introduce to both false positive and
false negative results. The underline challenge prevents from properly inferring
replacement messages is that Android developers do not follow a single means to
provide replacement messages. Even for some parts of the APIs, where developers
do follow similar patterns to introduce replacement messages, they also frequently
make mistakes, making it also difficult to automatically infer replacement mes-
sages. In this work, we aim to ensure the correctness of the inferred replacement
messages via manual verification, which however is non-trivial to achieve in prac-
tice. As of our future work, we plan to explore new possibilities to automatically
and correctly infer replacement messages for deprecated Android APIs.

Fifth, the developer reactions study is conducted based on the targetedSDK
version, which has been used by app developers to test against the functionality
of the apps, resulting in a limited view of the use of deprecated APIs as ideally
the full range of supported SDK versions should be considered. Nevertheless, our
empirical findings should not be significantly impacted as the targetedSDK version
generally represents the framework version the corresponding app is developed
upon.

Sixth, the deprecated API update study is based on a naive assumption that
app developers will replace deprecated APIs with their recommended alternatives
at the same place where the deprecated APIs are accessed into (i.e., under the
same caller method). Unfortunately, there is no guarantee that this assumption
will be true in practice. Also, it is non-trivial to locate the code that updates the
deprecated APIs outside of their caller methods, where comprehensive control-flow
and data-flow analyses are expected. We hence left it for our future work.

Finally, our empirical investigations are performed purely on software arte-
facts (e.g., the source code and documentation of the Android framework base,
or the bytecode of Android apps), the corresponding findings may only reflect the
output of those artefacts and hence may not reflect the opinions of framework
maintainers and app developers. To alleviate this, in our future work, we plan to
contact both framework maintainers and app developers for a more comprehensive
understanding on how are deprecated APIs treated in practice.

6 Related Work

Recent studies have explored the problem of deprecating APIs from various as-
pects. In this section, we discuss some of the most representative ones.

6.1 API Deprecation

As a common knowledge, deprecated APIs should follow the deprecate-replace-
remove cycle where an API is first marked as deprecated and then replaced by
a new API and eventually removed from the source code base (Zhou and Walker,
2016) (Dig and Johnson, 2005) (Kapur et al., 2010). However, many deprecated

36 Li Li et al.

APIs are not removed despite having remained as deprecated for years. For exam-
ple, (Zhou and Walker, 2016) present a retrospective analysis of deprecated APIs
and find that the traditional deprecate-replace-remove cycle is often not respected
in open source Java frameworks and libraries. They also argue that, because of
API deprecation, coding examples on the web can easily become outdated. Conse-
quently, they present a prototype tool named Deprecation Watcher to automatically
flag coding examples of deprecated APIs so that developers can be informed of
such usages before spending time and energy into interpreting them. (Kapur et al.,
2010) further reveal that deprecated entities do not always get removed eventually
while removed entities are not always deprecated beforehand.

By analysing the Javadoc messages, source code, issue tracker and commit
histories, Sawant et al. have observed 12 reasons that may trigger API producers
to deprecate a feature (Sawant et al., 2018b). Furthermore, towards understanding
developers’ needs on API deprecation, the authors have conducted semi-structured
interviews and surveys with Java producers and developers. Their experimental
results disclose that the current deprecation mechanism in Java is not sufficient
to address all the needs of Java developers (Sawant et al., 2018a). As one of the
largest Java projects, the experience we obtained through mining the Android
framework code base can be also useful to complement their work towards better
understanding the developers’ needs of deprecated API features.

For some Java systems on Maven Central Repository, deprecated APIs are
even never removed, as discovered by (Raemaekers et al., 2014). Unfortunately, in
their study, only @Deprecated annotation is considered, i.e., @deprecated Javadoc
tag is ignored, which could have missed some deprecated APIs. As demonstrated
in this work, it is quite common that these inconsistencies appear in Java source
code repository such as the Android framework code base.

(Brito et al., 2016) argue that APIs should always be deprecated with clear re-
placement messages so that client systems can correspondingly update. However,
based on their investigation, this philosophy is not always respected. Similarly, (Ko
et al., 2014) investigate the relationship between API documentation quality and
the resolved deprecated APIs. Their empirical investigation reveals that depre-
cated APIs with documented replacement messages are more likely to be updated
comparing to such deprecated APIs that have no documentation indicating their
alternatives.

(Espinha et al., 2014) provide a systematic and extensible study on the dep-
recation of web APIs. Their experimental results show that many web developers
are not able to keep their app up-to-date even with a long deprecation time given.
Taking Google Maps API version 2 as an example, Google gives three years for its
developers to upgrade but turns out that three years are not enough. The authors
then argue that three years are rather short but too long that leaves developers
too relaxed to migrate their code. This interesting finding could also happen in
Java-based systems including the Android framework code base. However, to ex-
plore this direction is out of the scope of this work, we therefore consider it as our
future work.

Similar to the study of (Espinha et al., 2014), other researchers have also
worked in this direction attempting to understand developer reactions to depre-
cated APIs (Hou and Yao, 2011) (Robbes et al., 2012) (Hora et al., 2015). For
example, (Sawant et al., 2016) investigated more than 25,000 clients of five popu-
lar Java APIs on Github. They empirically found that client project maintainers

CDA: Characterising Deprecated Android APIs 37

did not update their API versions as long as the execution is not broken. This
finding is actually in line with ours where app developers are not motivated to up-
date the target SDK version of their apps as long as the apps work fine in modern
mobile devices.

6.2 API Evolution

(McDonnell et al., 2013) investigate the stability and adoption of Android APIs
and find that Android APIs evolve fast and app developers do not follow the evo-
lution momentum. For example, they disclose that around 28% of APIs used by
Android apps are outdated where the median lagging time is 16 months. (Linares-
Véasquez et al., 2014) further explore the relationship between fault- and change-
prone APIs and the success of Android apps and empirically demonstrates that
there is a negative impact between these two parts (Bavota et al., 2015). Further-
more, they also empirically show that change-prone Android APIs are more likely
discussed on social media such as Stack Overflow (Linares-Vasquez et al., 2014).

(Li et al., 2016¢) explore the evolution of inaccessible Android APIs, where both
internal and hidden APIs are considered. Like our approach, they also investigate
the inaccessible APIs based on the historical changes of the Android framework
code base. They have taken into account 17 prominent releases and reveal that
inaccessible APIs are commonly implemented in the Android framework. In this
work, we find another reason, which is yet not disclosed by their approach, that
certain deprecated APIs are eventually marked as hidden. This modification is
quite intelligent as from app developer’s point of view those deprecated APIs
have been removed from the SDK while from the framework’s point of view those
deprecated APIs are still retained to avoid potential compatibility issues.

In addition to Android framework code base, several approaches are also pro-
posed to investigate the evolution of general framework code (Dagenais and Ro-
billard, 2011) (Wu et al., 2010) (Meng et al., 2012) (Hou and Yao, 2011) (Dig and
Johnson, 2006) or library code (Cossette and Walker, 2012). For example, (Hou
and Yao, 2011) are interested in exploring the Intent behind API evolution, so as
to counter the negative impacts of API evolution. (Dagenais and Robillard, 2011)
present a client-server tool called SemDiff that automatically recommends adapta-
tions such as replacing no longer existed methods to client programs by mining the
evolution of framework changes. Similarly, (Wu et al., 2010) introduce AURA, a
hybrid approach that integrates call dependency analysis with text similarity com-
parison together, to automatically identify change rules to further benefit client
programs to keep their code up-to-date. (Meng et al., 2012) present a novel ap-
proach named HiMa, which performs pairwise comparisons for each consecutive
revisions recorded in the evolutionary history and aggregates revision-level rules
to construct framework-evolution rules. Although HiMa takes more computing
powers than AURA, it achieves higher precision and recall in most circumstances.

Finally, our fellow researchers are also interested in automatically migrating
client code to cope with evolving APIs (Dig et al., 2008) (Strobl and Tronicek,
2013) (Bogart et al., 2016) (Brito et al., 2018a). For example, (Chow and Notkin,
1996) propose a semi-automated approach for updating client projects in response
to library changes. Their approach presents a toolset that relies on changed func-
tions annotated by library maintainers to automatically update client projects.

38 Li Li et al.

The authors further introduce the so-called twinning technique for allowing pro-
grammers to specify a class of program changes (i.e., a mapping) without modify-
ing the target program directly (Nita and Notkin, 2010). This mapping can then
be leveraged to transition a program from using one API to using an alternative
API. Instead of manually annotating the changes of given libraries, (Henkel and
Diwan, 2005) presents a prototype tool called Catchup!, which aims at capturing
and replaying refactoring actions within an integrated development environment.
(Xing and Stroulia, 2007) attempt to automatically recognise the API changes and
proposes plausible replacements to the “obsolete” API based on working examples
of the framework code base. All of these approaches have proposed promising tech-
niques to handle deprecation in the evolution of software frameworks. Specifically,
we believe these approaches can be also applied to resolve the deprecation problem
of Android APIs, i.e., to automatically update deprecated APIs in Android apps.

7 Conclusion

In this work, we have conducted an exploratory study of deprecated Android APIs.
In particular, we have built a prototype research tool called CDA and applied it
to different revisions (i.e., releases or tags) of the Android framework code base to
investigate all the deprecated APIs (how are they annotated and documented? or
how are they cleaned up or survived during the evolution of the framework base?)
and infer the mapping with their potential replacement alternatives. Finally, we
explore a set of real-world Android apps attempting to understand the reaction of
app developers to deprecated Android APIs.

Our experimental investigation eventually finds that (1) Deprecated Android
APIs are not always consistently annotated and documented, which can have
severe consequences in app development and user experience; (2) The Android
framework code base is regularly cleaned-up from deprecated APIs, often in a
short period of time; (3) In general, over half of the deprecated APIs in the An-
droid framework are commented to provide alternatives, although they will be
rarely updated. (4) In practice, most usage sites of deprecated APIs in app code
are located in popular libraries, although, library developers are more likely to
update deprecated APIs than app developers. (5) During the evolution of Android
apps, deprecated APIs are likely retained rather than removed from the app code.
(6) For the cases app developers do remove deprecated APIs from the app, they
are unlikely replacing the deprecated APIs with their alternatives recommended
by the official documentation, at least not directly at the same place (e.g., under
the same caller method).

Acknowledgements

The authors would like to thank the anonymous reviewers who have provided
insightful and constructive comments to the conference version of this extension.

CDA: Characterising Deprecated Android APIs 39

References

Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Andro-
z0o: Collecting millions of android apps for the research community. In Mining
Software Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on, pages
468-471. IEEE, 2016.

Mojtaba Bagherzadeh, Nafiseh Kahani, Cor-Paul Bezemer, Ahmed E Hassan,
Juergen Dingel, and James R Cordy. Analyzing a decade of linux system calls.
Empirical Software Engineering, pages 1-33, 2017.

Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Mas-
similiano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. The impact of api
change-and fault-proneness on the user ratings of android apps. IEEE Transac-
tions on Software Engineering, 41(4):384-407, 2015.

Christopher Bogart, Christian Késtner, James Herbsleb, and Ferdian Thung. How
to break an api: cost negotiation and community values in three software ecosys-
tems. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 109-120. ACM, 2016.

Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. Why and how
java developers break apis. arXiv preprint arXiv:1801.05198, 2018a.

Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. Do devel-
opers deprecate apis with replacement messages? a large-scale analysis on java
systems. In Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE
23rd International Conference on, volume 1, pages 360-369. IEEE, 2016.

Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. On the
use of replacement messages in api deprecation: An empirical study. Journal of
Systems and Software, 137:306—-321, 2018b.

Kingsum Chow and David Notkin. Semi-automatic update of applications in re-
sponse to library changes. In icsm, volume 96, page 359, 1996.

Roberta Coelho, Lucas Almeida, Georgios Gousios, and Arie van Deursen. Unveil-
ing exception handling bug hazards in android based on github and google code
issues. In Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working
Conference on, pages 134-145. IEEE, 2015.

Bradley E Cossette and Robert J Walker. Seeking the ground truth: a retroactive
study on the evolution and migration of software libraries. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, page 55. ACM, 2012.

Barthélémy Dagenais and Martin P Robillard. Recommending adaptive changes
for framework evolution. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 20(4):19, 2011.

Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. Keep
me updated: An empirical study of third-party library updatability on android.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2187-2200. ACM, 2017.

Danny Dig and Ralph Johnson. The role of refactorings in api evolution. In
Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International
Conference on, pages 389-398. IEEE, 2005.

Danny Dig and Ralph Johnson. How do apis evolve? a story of refactoring. Journal
of software maintenance and evolution: Research and Practice, 18(2):83-107, 2006.

40 Li Li et al.

Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N Nguyen. Refactoring-
aware configuration management for object-oriented programs. In Proceedings
of the 29th international conference on Software Engineering, pages 427-436. IEEE
Computer Society, 2007.

Danny Dig, Stas Negara, Ralph Johnson, and Vibhu Mohindra. Reba: refac-
toringaware binary adaptation of evolving libraries. In In ICSE08: Proceedings
of the 30th International Conference on Software Engineering. Citeseer, 2008.

Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Web api growing pains:
Stories from client developers and their code. In Software Maintenance, Reengi-
neering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-
IEEE Conference on, pages 84-93. IEEE, 2014.

Jun Gao, Li Li, Pingfan Kong, Tegawendé F Bissyandé, and Jacques Klein. On
vulnerability evolution in android apps. In The 40th International Conference on
Software Engineering, Poster Track (ICSE 2018), 2018.

Jun Gao, Pingfan Kong, Li Li, Tegawendé F Bissyandé, and Jacques Klein. Neg-
ative results on mining crypto-api usage rules in android apps. In The 16th
International Conference on Mining Software Repositories (MSR 2019), 2019.

Geoffrey Hecht, Omar Benomar, Romain Rouvoy, Naouel Moha, and Laurence
Duchien. Tracking the software quality of android applications along their evo-
lution (t). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM In-
ternational Conference on, pages 236-247. IEEE, 2015.

Johannes Henkel and Amer Diwan. Catchup! capturing and replaying refactorings
to support api evolution. In Software Engineering, 2005. ICSE 2005. Proceedings.
27th International Conference on, pages 274—283. IEEE, 2005.

André Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stéphane Ducasse,
and Marco Tulio Valente. How do developers react to api evolution? the pharo
ecosystem case. In Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on, pages 251-260. IEEE, 2015.

Andre Hora, Marco Tulio Valente, Romain Robbes, and Nicolas Anquetil. When
should internal interfaces be promoted to public? In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 278-289. ACM, 2016.

Daqing Hou and Xiaojia Yao. Exploring the intent behind api evolution: A case
study. In Reverse Engineering (WCRE), 2011 18th Working Conference on, pages
131-140. IEEE, 2011.

Puneet Kapur, Brad Cossette, and Robert J Walker. Refactoring references for
library migration, volume 45. ACM, 2010.

Deokyoon Ko, Kyeongwook Ma, Sooyong Park, Suntae Kim, Dongsun Kim, and
Yves Le Traon. Api document quality for resolving deprecated apis. In Software
Engineering Conference (APSEC), 2014 21st Asia-Pacific, volume 2, pages 27-30.
IEEE, 2014.

Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick
Mcdaniel. IccTA: Detecting Inter-Component Privacy Leaks in Android Apps.
In Proceedings of the 37th International Conference on Software Engineering (ICSE
2015), 2015.

Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An investiga-
tion into the use of common libraries in android apps. In The 23rd IEEE Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER

CDA: Characterising Deprecated Android APIs 41

2016), 2016a.

Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Parameter
Values of Android APIs: A Preliminary Study on 100,000 Apps. In Proceedings
of the 28rd IEEFE International Conference on Software Analysis, Evolution, and
Reengineering (SANER 2016), 2016b.

Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein. Accessing inac-
cessible android apis: An empirical study. In The 32nd International Conference
on Software Maintenance and Evolution (ICSME 2016), 2016c¢.

Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F Bissyandé, Alexandre
Bartel, Jacques Klein, and Yves Le Traon. Androzoo++: Collecting millions of
android apps and their metadata for the research community. arXiv preprint
arXiv:1709.05281, 2017a.

Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David
Lo, and Lorenzo Cavallaro. Understanding android app piggybacking: A system-
atic study of malicious code grafting. IEEFE Transactions on Information Forensics
& Security (TIFS), 2017Db.

Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. Cid: Automat-
ing the detection of api-related compatibility issues in android apps. In The
ACM SIGSOFT International Symposium on Software Testing and Analysis (IS-
STA 2018), 2018a.

Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein.
Characterising deprecated android apis. In The 15th International Conference on
Mining Software Repositories (MSR 2018), 2018b.

Mario Linares-Vasquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Denys Poshyvanyk. How do api changes trigger stack overflow discussions?
a study on the android sdk. In proceedings of the 22nd International Conference
on Program Comprehension, pages 83-94. ACM, 2014.

Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study of api sta-
bility and adoption in the android ecosystem. In Software Maintenance (ICSM),
2013 29th IEEE International Conference on, pages 70-79. IEEE, 2013.

Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. A history-based match-
ing approach to identification of framework evolution. In Software Engineering
(ICSE), 2012 84th International Conference on, pages 353-363. IEEE, 2012.

Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini. What should
developers be aware of 7 an empirical study on the directives of api documenta-
tion. Empirical Software Engineering, 17(6):703-737, 2012.

Marius Nita and David Notkin. Using twinning to adapt programs to alternative
apis. In Software Engineering, 2010 ACM/IEEE 32nd International Conference on,
volume 1, pages 205-214. IEEE, 2010.

Fabio Palomba, Mario Linares-Vasquez, Gabriele Bavota, Rocco Oliveto, Massi-
miliano Di Penta, Denys Poshyvanyk, and Andrea De Lucia. Crowdsourcing
user reviews to support the evolution of mobile apps. Journal of Systems and
Software, 137:143-162, 2018.

Jeff H Perkins. Automatically generating refactorings to support api evolution.
In ACM SIGSOFT Software Engineering Notes, volume 31, pages 111-114. ACM,
2005.

Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic versioning
versus breaking changes: A study of the maven repository. In Proceedings of the
2014 IEEFE 1jth International Working Conference on Source Code Analysis and

42 Li Li et al.

Manipulation, pages 215-224. IEEE Computer Society, 2014.

Romain Robbes, Mircea Lungu, and David Rothlisberger. How do developers
react to api deprecation?: the case of a smalltalk ecosystem. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, page 56. ACM, 2012.

Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. On the reaction to
deprecation of 25,357 clients of 441 popular java apis. In Software Maintenance
and Evolution (ICSME), 2016 IEEE International Conference on, pages 400-410.
IEEE, 2016.

Anand Ashok Sawant, Mauricio Aniche, Arie van Deursen, and Alberto Bacchelli.
Understanding developers’ needs on deprecation as a language feature. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE), pages
561-571. IEEE, 2018a.

Anand Ashok Sawant, Guangzhe Huang, Gabriel Vilen, Stefan Stojkovski, and
Alberto Bacchelli. Why are features deprecated? an investigation into the mo-
tivation behind deprecation. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 13—24. IEEE, 2018b.

Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. On the reaction to
deprecation of clients of 44 1 popular java apis and the jdk. Empirical Software
Engineering, 23(4):2158-2197, 2018c.

Roman Strobl and Zdenék Tronicek. Migration from deprecated api in java. In
Proceedings of the 2018 companion publication for conference on Systems, program-
ming, & applications: software for humanity, pages 85-86. ACM, 2013.

Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. Wukong: A scalable and
accurate two-phase approach to android app clone detection. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis, pages 71-82.
ACM, 2015.

Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li Li,
Juan Tapiador, Jingcun Cao, and Guoai Xu. Beyond google play: A large-
scale comparative study of chinese android app markets. In The 2018 Internet
Measurement Conference (IMC 2018), 2018.

Wei Wu, Yann-Gaél Guéhéneuc, Giuliano Antoniol, and Miryung Kim. Aura: a
hybrid approach to identify framework evolution. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1, pages
325-334. ACM, 2010.

Zhenchang Xing and Eleni Stroulia. Api-evolution support with diff-catchup. IEEE
Transactions on Software Engineering, 33(12):818-836, 2007.

Xinli Yang, David Lo, Li Li, Xin Xia, Tegawendé F Bissyandé, and Jacques Klein.
Characterizing malicious android apps by mining topic-specific data flow signa-
tures. Information and Software Technology, 2017.

Jing Zhou and Robert J Walker. Api deprecation: a retrospective analysis and
detection method for code examples on the web. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 266-277. ACM, 2016.

