
Embedding App-Library Graph for Neural Third Party Library
Recommendation

Bo Li

Swinburne University of Technology

Melbourne, Australia

boli@swin.edu.au

Qiang He

Swinburne University of Technology

Melbourne, Australia

qhe@swin.edu.au

Feifei Chen

Deakin University

Melbourne, Australia

feifei.chen@deakin.edu.au

Xin Xia

Monash University

Melbourne, Australia

xin.xia@acm.org

Li Li

Monash University

Melbourne, Australia

Li.Li@monash.edu

John Grundy

Monash University

Melbourne, Australia

john.grundy@monash.edu

Yun Yang

Swinburne University of Technology

Melbourne, Australia

yyang@swin.edu.au

ABSTRACT
The mobile app marketplace has fierce competition for mobile app

developers, who need to develop and update their apps as soon as

possible to gain first mover advantage. Third-party libraries (TPLs)

offer developers an easier way to enhance their apps with new

features. However, how to find suitable candidates among the high

number and fast-changing TPLs is a challenging problem. TPL rec-

ommendation is a promising solution, but unfortunately existing

approaches suffer from low accuracy in recommendation results.

To tackle this challenge, we propose GRec, a graph neural network

(GNN) based approach, for recommending potentially useful TPLs

for app development. GRec models mobile apps, TPLs, and their

interactions into an app-library graph. It then distills app-library

interaction information from the app-library graph to make more

accurate TPL recommendations. To evaluate GRec’s performance,

we conduct comprehensive experiments based on a large-scale real-

world Android app dataset containing 31,432 Android apps, 752

distinct TPLs, and 537,011 app-library usage records. Our experi-

mental results illustrate that GRec can significantly increase the

prediction accuracy and diversify the prediction results compared

with state-of-the-art methods. A user study performed with app

developers also confirms GRec’s usefulness for real-world mobile

app development.

CCS CONCEPTS
• Software and its engineering→ Application specific devel-
opment environments.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00

https://doi.org/10.1145/3468264.3468552

KEYWORDS
third-party library, recommendation, mobile app development, app-

library graph, graph neural network

ACM Reference Format:
Bo Li, Qiang He, Feifei Chen, Xin Xia, Li Li, John Grundy, and Yun Yang.

2021. Embedding App-Library Graph for Neural Third Party Library Recom-

mendation. In Proceedings of the 29th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3468264.3468552

1 INTRODUCTION
Mobile app development has been growing tremendously fast. For

example, there are over 2.56 million mobile apps available on the

Google Play in the first quarter of 2020
1
. This leads to a very fierce

market competition between app vendors/developers. To gain a

first mover advantage in such a competitive market, mobile app

developers need to release their new apps online as soon as possible.

They then need to keep updating their apps to accommodate users’

rapidly evolving needs and quickly respond to user reviews. To

reduce developers’ implementation efforts, a large number of third-

party libraries (TPLs) have been published and made available that

offer a variety of features [26, 29]. Leveraging TPLs is an effective

way to accelerate mobile apps’ development and update cycles.

TPLs are playing a more and more significant role in the mobile

app ecosystem [1, 18, 45]. Instead of developing everything from

scratch, using TPLs can help developers accelerate development,

deliver new features, and enhance the overall software quality [26].

For example, compared with newly developed code, many bugs and

deficiencies may have already been discovered and fixed in TPLs

offering similar or the same functionalities [23]. Recent studies have

found that developers regularly attempt to find and use TPLs for

their mobile apps [7]. This is also evidenced by a large-scale study

revealing that Android apps on Google Play are using 11.81 TPLs

on average [9] and on average 60% of the source code of a mobile

1
https://www.statista.com/statistics/289418/

466

https://doi.org/10.1145/3468264.3468552
https://doi.org/10.1145/3468264.3468552


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Bo Li, Qiang He, Feifei Chen, Xin Xia, Li Li, John Grundy, and Yun Yang

app comes from TPLs in use [22]. The popularity and advantages

of TPLs have led to the development and publication of a large

number of TPLs for mobile apps. For example, a total of 6,200 TPLs

is hosted on Android Arsenal
2
, a popular Android developer portal.

However, this trend means that mobile app developers are now

facing significant challenges when seeking useful TPLs for their

mobile apps [17, 30, 39, 43]. First, given the severe time-to-market

constraints and tremendous available TPLs, it is infeasible for them

to manually inspect a great many TPLs to evaluate their useful-

ness from different perspectives, e.g., functionality, performance,

interface, etc. [15]. Second, TPLs are often used by mobile apps

in combinations to collectively perform specific functions [26, 28].

Finding appropriate TPL combinations is another time-consuming

process for developers [23, 39]. Besides, the rapid evolution of TPLs

also contributes to the sophistication in mobile app developers’

search for useful TPLs [7]. Thus, developers are in urgent need of

help with finding useful TPLs effectively and efficiently.

Collaborative filtering (CF) has been widely and successfully

applied in a variety of domains for its ability to mine latent pat-

terns without contextual information [12]. It has been employed to

recommend libraries for developers [9, 23, 33]. LibRec combines CF

and association rule mining to recommend TPLs for Java projects

[33]. It is one of the earliest attempts at CF-based library recom-

mendations. Nguyen et al. proposed CrossRec to recommend TPLs

for open-source software projects [23]. Similar to LibRec, Cross-

Rec exploits project similarity when making recommendations. To

improve recommendation performance, it adjusts the weight of

each TPL based on term frequency–inverse document frequency

(TF-IDF). Very recently, LibSeek was proposed for recommending

TPLs specifically for mobile apps [9]. It makes recommendations

based on matrix factorization and employs an adaptive weighting

mechanism to diversify recommendation results.

However, solely based on a two-dimensional app-library matrix,

CF-based TPL recommendation approaches exploit only a small

portion of low-order app-library interaction information, i.e., app-

library usage information, to make recommendations. For example,

given a target mobile app 𝐴, LibRec [33], and CrossRec [23] find

𝐴’s top 𝑘 most similar apps and/or similar TPLs and recommend

TPLs that have been used by those apps but not by𝐴. These similar

apps and TPLs are identified based on their similarity to 𝐴 in the

use of TPLs. In addition, some useful high-order app-library inter-

action information that can further improve TPL recommendation

accuracy is overlooked. For example, assume that app 𝐵 is similar

to 𝐴 and app 𝐶 is similar to 𝐵, the app-library interaction informa-

tion contained in 𝐶 can also contribute to TPL recommendations

for 𝐴. However, existing CF-based approaches do not exploit such

information and thus suffer from low recommendation accuracy.

This is an inherent limitation of existing CF-based approaches.

We tackle the TPL recommendation problem from a new per-

spective. We model mobile apps, TPLs, and app-library interactions

as an app-library graph, where mobile apps and TPLs are modelled

as nodes
3
and app-library interactions as edges. Apps’ low-order

app-library interaction information is represented by the links to

their 1-hop neighbor library nodes in the graph. At the same time,

2
https://android-arsenal.com/

3
In this paper, we speak of apps, TPLs, and the corresponding nodes interchangeably.

high-order app-library interaction information can also be extracted

from the graph for TPL recommendations. Take apps 𝐴, 𝐵, and 𝐶

above for example. Over the graph, there will be one or many paths

between 𝐶 and 𝐴 through 𝐵. Along such paths, more similar apps

and TPLs can be identified and high-order app-library interaction

information can be extracted from nodes multiple hops away from

𝐴, such as 𝐶 , over the graph to make TPL recommendations for 𝐴.

To leverage both low-order and high-order app-library inter-

action information, we employ a graph neural network (GNN) to

make recommendations based on the app-library graph. This is

motivated by the fact that GNN is well known for its ability to

mine both low-order and high-order information from graphs. It

can capture information for a target node from its neighbor nodes

within multiple hops [41]. Compared with a baseline and three

state-of-the-art approaches, our approach GRec makes more accu-

rate and diversified TPL recommendations. Key contributions of

this research includes:

• We make the first attempt to model app-library interactions

as a graph. This allows more information among apps and

TPLs to be captured.

• Using this app-library graph, we propose a graph neural

network based approach, namely GRec, to recommend po-

tentially useful TPLs for mobile apps.

• We train GRec on a large-scale public dataset
4
that contains

61,722 Android apps, 827 distinct TPLs, and 725,502 app-

library usage records.

• We conduct extensive experiments and a user study to eval-

uate the performance of GRec for recommendation accuracy

and diversity. The prototype of GRec is published for the

validation and reproduction of our experimental results
5
.

The remainder of this paper is organized as follows. Section 2

motivates our study. Section 3 introduces the methodology of GRec.

Section 4 reports the results of experiments conducted on GRec.

Section 5 reviews related work. Finally, Section 6 concludes this

paper and points out future work.

2 MOTIVATING EXAMPLE
Fig. 1 demonstrates an example app-library graph (denoted as 𝐺)

generated based on the interactions among five mobile apps, de-

noted as 𝐴1, ..., 𝐴5, and seven TPLs, denoted as 𝐿1, ..., 𝐿7. An edge

between an app and a TPL corresponds to the use of the TPL in

the app. For example, the edge between 𝐴1 and 𝐿1 indicates that

𝐴1 uses 𝐿1.

Using this app-library graph𝐺 , given a target node in𝐺 , its low-

order app-library interaction information can be obtained from all

the nodes that connect to it via one hop in𝐺 . Take mobile app𝐴1 in

Fig. 2 as an example.𝐴1 uses three TPLs, i.e., 𝐿1, 𝐿2, and 𝐿3, because

they are directly connected to 𝐴1 in 𝐺 .

Besides low-order app-library interaction information, high-

order app-library interaction information can also be obtained from

graph𝐺 . For example, in Fig. 2 nodes 𝐴2, 𝐴3, and 𝐴4 are connected

to 𝐴1 via 2 hops measured by the number of edges between them.

These nodes also contain rich information that might be leveraged

for TPL recommendation. For example, path 𝐴2-𝐿1-𝐴1 indicates

4
https://github.com/malibdata/MALib-Dataset, proposed in [9]

5
The source code of GRec is available at https://github.com/fio1982/GRec.

467



Embedding App-Library Graph for Neural Third Party Library Recommendation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

A1

A2

A4

A3

L1

L2

L3

L4

L5

L6

L7A5

Figure 1: Example app-library graph 𝐺

A1

A2

A4

A3

L1

L2

L3

L4

L5

L6

L7
A5

Figure 2: Information useful for 𝐴1

possessed in 𝐺

A1

A2

A4

A3

L1

L2

L3

L4

L5

L6

L7
A5

Figure 3: Information useful for 𝐿1
possessed in 𝐺

that 𝐴2 has behaviors similar to 𝐴1 as both of them connected to 𝐿1
in𝐺 . State-of-the-art CF-based library recommendation approaches

like LibRec [33] and CrossRec [23] find similar mobile apps for 𝐴1

based on such behaviors. Usually, they select a small number of

such similar apps for making recommendations for a target app.

This means they inevitably fail to leverage the information provided

by all the apps connected to the target app via 2 hops in 𝐺 and

some useful information may be overlooked.

When we take a look at apps further away from the target apps

in 𝐺 , more information can be obtained. Nodes 𝐿4, 𝐿5, and 𝐿6 are

connected to 𝐴1 via 3 hops. The information provided by 𝐿4, 𝐿5,

and 𝐿6 may also be useful for making TPL recommendations for𝐴1.

For example, from path 𝐿4-𝐴2-𝐿1-𝐴1, we can find that 𝐿1 and 𝐿4
are both used by 𝐴2. There might be a specific correlation between

them. For example, 𝐴2 as well as other apps may use them together

to perform a specific function, like the use of Facebook library

and Picasso library in combination by a lot of apps reported in

[9]. Thus, an app, such as 𝐴1, that solely uses 𝐿1 might find 𝐿4
useful. When we look further away from 𝐴1, we can see that 𝐴5

is not similar to 𝐴1 in terms of TPL usage. However, 𝐴3 and 𝐴5

are both connected to 𝐿4 and 𝐿5 because they both use 𝐿4 and 𝐿5.

This indicates that 𝐴3 and 𝐴5 share common interests in 𝐿4 and 𝐿5.

For example, they may provide similar or the same functionalities

or features through the use of 𝐿4 and 𝐿5. Similarly, 𝐴1 and 𝐴3

share common interests in 𝐿2. Although 𝐴1 and 𝐴5 do not use

any common TPLs, 𝐴5 may still share common interests with 𝐴1

as they both share common interests with 𝐴3. Thus, 𝐴5 can also

contribute useful information to making TPL recommendations for

𝐴1, then 𝐿7 may be recommended for𝐴1. However, such high-order

information is overlooked by CF-based approaches.

Different nodes with the same distance from a target node may

have different impacts on TPL recommendations for the target

node. For example, in Fig. 2 three node 𝐴2, 𝐴3, and 𝐴4 have the

same distance from 𝐴1 (marked with the same color in Fig. 2) -

they are all connected to 𝐴1 via 2 hops in 𝐺 . However, they do

not contribute equally to the TPL recommendations for 𝐴1. For

example,𝐴2 and𝐴3 are both connected to𝐴1 via one path each, i.e.,

𝐴2-𝐿1-𝐴1 and 𝐴3-𝐿2-𝐿1, respectively. However, 𝐴4 is connected to

𝐴1 via two paths, i.e., 𝐴4-𝐿2-𝐴1 and 𝐴4-𝐿3-𝐴1. This indicates that

𝐴4 shares two common TPLs with 𝐴1 while 𝐴2 and 𝐴3 share only

one TPL with 𝐴1 each. Thus, 𝐴4 is more similar to 𝐴1 than 𝐴2 and

𝐴3 in their use of TPLs and can contribute more information to TPL

recommendations for 𝐴1 than 𝐴2 and 𝐴3.

The above also applies to finding similar TPLs for making TPL

recommendations. Take library node 𝐿2 (used by 𝐴1) in Fig. 3 as

an example. We can see that 𝐿2 and 𝐿3 are connected to both 𝐴1

and 𝐴4, i.e., they are used by both 𝐴1 and 𝐴4. Thus, 𝐿3 is similar to

𝐿2 in terms of TPL usage. Similarly, 𝐿5 is similar to 𝐿2 as they are

both connected to 𝐴3 and 𝐴4. Such low-order information can be

exploited by CF-based recommendation approaches. When we look

further away from 𝐿2, we can see that 𝐿4 and 𝐿5 are both connected

to 𝐴3 and 𝐴5. Thus, 𝐿4 is similar to 𝐿5. Although 𝐿4 is not similar

to 𝐿2 in terms of TPL usage, 𝐿4 is similar to 𝐿2 as they are both

similar to 𝐿5. Thus, 𝐿4 can contribute high-order information to

TPL recommendations for 𝐴1.

Whenmining the two-dimensional app-librarymatrix,CF-based
approaches can only leverage low-order app-library interac-
tion information, i.e., the direct interactions between apps
and TPLs, to make TPL recommendations. A new approach

that can also leverage the high-order app-library interaction infor-

mation possessed in the app-library graph is needed to improve

recommendation accuracy and save developers’ time in finding

useful TPLs.

3 GREC APPROACH
Inspired by the great success of neural network based recommenda-

tion approaches in various domains [11, 44], GRec is our innovative

GNN-based approach for TPL recommendation. GRec employs a

graph neural network to make TPL recommendations through

distilling both low-order and high-order app-library interaction

information from the app-library graph.

3.1 Process Overview
To recommend potentially useful TPLs for a target mobile app, as-

sume 𝐴1, the general process of GRec consists of four phases, as

shown in Fig. 4. Its input is the app-library graph 𝐺 built automat-

ically by GRec based on 𝐴1’s library usage records and existing

app-library usage records in the training set. Those app-library

usage records can either be gathered from developers’ input
6
or be

extracted with existing tools like LibPecker [45], LibScout [1], LibD

[18], and LibRadar [22], similar to [9]. In Phase 1 (Representa-
tion), GRec creates an individual latent factor vector for each node

in 𝐺 , including the app nodes and the library nodes. The represen-

tations of those nodes are used as the input to Phase 2. In Phase
2 (Information Distillation), GRec employs the GNN to distill

both low-order and high-order app-library interaction information

for each node in𝐺 . This GNN has multiple layers. The first layer is

6
For example, a developer can provide a list of TPLs used (or to be used) by their

mobile apps as the input to GRec.

468



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Bo Li, Qiang He, Feifei Chen, Xin Xia, Li Li, John Grundy, and Yun Yang

L4

...

...

A1

...

...

Layer 1 Layer 2 Layer n

Representation Information Distillation Aggregation

Input

R�(A1,L4)

..
.

..
.

Prediction

Ranked

Libraries

1 2 3 4

A1

C
o

n
ca

te
n

a
tio

n
C

o
n

ca
te

n
a

tio
n

E
le

m
e

n
t-w

ise
 P

ro
d

u
ctio

n

Step 1 Step 2

A1

A2

A4

A3

L1
L2

L4

L5

L6

L7A5

A1

A2

A4

A3

L1
L2

L3

L4

L5

L6

L7A5

A1

A2

A4

A3

L1
L2

L3

L4

L5

L6

L7
A5

A1

A2

A4

A3

L1
L2

L3

L4

L5

L6

L7A5

A1

A2

A4

A3

L1
L2

L3

L4

L5

L6

L7A5

A1

A2

A4

A3

L1
L2

L3

L4

L5

L6

L7A5

A1

A2

A4

A3

L1
L2

L3

L4

L5

L6

L7A5

Figure 4: General process of GRec

used to distill low-order app-library interaction information. The

other layers are used to distill high-order app-library interaction

information. Each layer distills information from neighbor nodes

with the same hops. For example, the second layer and third layer

distill information for each node from its 2-hop and 3-hop neighbor

nodes, respectively. Then, the captured information is aggregated

in Phase 3 (Aggregation). At the end of Phase 3, a new vector

is generated for each node to accommodate the information cap-

tured. Finally in Phase 4 (Prediction), GRec recommends the top

𝑛𝑟 most useful TPLs that are not used by 𝐴1.

Usage Example: Bob wants to explore new TPLs for enhancing
his app. Without GRec, he has to manually find and inspect a large
number of TPLs on Maven, take a long time to read their documents
and test their functionalities. With GRec, Bobs can specify a list of
TPLs currently used in his app as input. GRec will recommend a
number of TPLs potentially useful for his app, say 10. Bob can inspect
these TPLs with priority and see if they are useful. In summary, GRec
makes recommendations rather than decisions for developers.

Please note that GRec can make recommendations for mobile

apps both published or still under development. A mobile developer

can also just provide a few TPLs that they prefer to use in their

mobile app as the input for GRec to make TPL recommendations.

During the development of a mobile app, GRec can be used to

iteratively explore potentially useful TPLs. When the app-library

graph used by GRec is updated, GRec can be easily and efficiently

retrained to improve its recommendation accuracy. This also allows

GRec to include emerging TPLs in its recommendations.

3.2 Phase 1: Representation
Similar to recommendation approaches based on matrix factoriza-

tion [4] and neural networks [11, 36], GRec embeds both mobile

apps and TPLs in a 𝑑-dimensional latent factor space, where each

mobile app 𝐴𝑖 is represented by a latent factor vector

−→
𝐴𝑖 ∈ R𝑑 , and

each TPL 𝐿𝑗 by a latent factor vector

−→
𝐿𝑗 ∈ R𝑑 , both with random

initial values. APPs (and TPLs) are mapped to this space where sim-

ilar apps (and TPLs) in terms of their features, such as functionality,

interface, performance, compatibility, reliability, popularity, depen-

dency, security, are close to each other. The usefulness of a TPL for

an app can be evaluated by their distance in this space measured

based on their latent features. Accordingly, vector

−→
𝐿𝑗 indicates the

degree of TPL 𝐿𝑗 ’s possession of each of these latent features. Vec-

tor

−→
𝐴𝑖 models the degrees of mobile app 𝐴𝑖 ’s preferences for these

latent features. GRec is able to approximate the potential usefulness

of a TPL 𝐿𝑗 for a mobile app 𝐴𝑖 in terms of those latent features by

performing the element-wise product operation over their vectors

as follows:

𝑅𝑖, 𝑗 =
−→
𝐴𝑖 ·

−→
𝐿𝑗 (1)

where symbol (·) denotes the inner product of two vectors that

measures the distance between 𝐴𝑖 and 𝐿𝑗 in the latent factor space.

3.3 Phase 2: Information Distillation
In this phase, GRec distills information for each node in𝐺 from the

latent factor vectors of its neighbor nodes. It goes through two main

steps: 1) distilling low-order app-library interaction information, 2)

distilling high-order app-library interaction information.

Let

−→
𝐴𝑖 (0) denote the latent factor vector for mobile app 𝐴𝑖 after

it is initialized in Phase 1 (Representation). It becomes

−→
𝐴𝑖 (1) after

it is updated by the first layer of the GNN and

−→
𝐴𝑖 (𝑙) after the 𝑙-th

layer. Similarly,

−→
𝐿𝑗 (0) denotes the latent factor vector for library

node 𝐿𝑗 initialized in Phase 1 (Representation), and

−→
𝐿𝑗 (𝑙) after the

𝑙-th layer in the GNN. In𝐺 , each app node 𝐴𝑖 is directly connected

to a number of library nodes, denoted as 𝑁 (𝐴𝑖 ). Similarly, the set

of app nodes directly connected to a library node 𝐿𝑗 is denoted as

𝑁 (𝐿𝑗 ).

3.3.1 Step 1: Low-order app-library interaction information distilla-
tion. In this step, GRec employs the first layer of GNN to distill the

low-order app-library interaction information for each node from

its 1-hop neighbors over 𝐺 , i.e., 𝑁 (𝐴𝑖 ) for app node 𝐴𝑖 and 𝑁 (𝐿𝑗 )
for library node 𝐿𝑗 . Take app 𝐴1 and library 𝐿4 in Fig. 4 as example.

For mobile app 𝐴1, GRec distills the low-order app-library interac-

tion information from nodes 𝐿1, 𝐿2, and 𝐿3. For TPL 𝐿4, GRec distills

the low-order app-library interaction information from nodes 𝐴2,

𝐴3 and 𝐴5. Given an app 𝐴𝑖 and a library 𝐿𝑗 ∈ 𝑁 (𝐴𝑖 ), 𝑆 (1) (𝐿𝑗 , 𝐴𝑖 )

469



Embedding App-Library Graph for Neural Third Party Library Recommendation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

denotes the low-order app-library interaction information distilled

from 𝐿𝑗 for 𝐴𝑖 , calculated as follows:

𝑆 (1) (𝐿𝑗 , 𝐴𝑖 ) =𝑊
(1)
1

−→
𝐿𝑗 (0) +𝑊

(1)
2

(−→𝐴𝑖 (0) ⊙
−→
𝐿𝑗 (0) ) (2)

where𝑊
(1)
1

,𝑊
(1)
2

∈ R𝑑∗𝑑 are twoweightmatrices obtained through

the GNN training process. They collectively determine how much

information will be extracted from neighbor node 𝐿𝑗 . The super-

script (1) indicates that𝑊
(1)
1

,𝑊
(1)
2

belong to the first layer of the

GNN. The symbol ⊙ denotes the element-wise product operation.

The

−→
𝐴𝑖 (0) ⊙

−→
𝐿𝑗 (0) part in (2) includes extra information distilled

from libraries that possess latent features preferred by 𝐴𝑖 . For ex-

ample,

−→
𝐴1 (0)=<0.8,0.2,0.9> means that app 𝐴𝑖 prefers the first and

the third latent features more than the second one. Let us assume

that library 𝐿1’s latent factor vector for the first layer of the GNN is

−→
𝐿1 (0)=<0.7,0.9,0.2>. This indicates that 𝐿1 possesses the first and sec-
ond latent features more than the third one. With the ⊙ operation,

there is

−→
𝐴1 (0) ⊙

−→
𝐿1 (0)=<0.56,0.18,0.18>. It will include additional

information in the calculation of 𝑆 (1) (𝐿1, 𝐴1).
The low-order app-library interaction information distilled from

all the libraries in 𝑁 (𝐴𝑖 ) with Eq. (2) is combined to calculate the

overall information for 𝐴𝑖 , denoted as 𝑆 (1) (𝐴𝑖 ):

𝑆 (1) (𝐴𝑖 ) =
∑

𝐿𝑗 ∈𝑁 (𝐴𝑖 )

1√
|𝑁 (𝐴𝑖 ) | |𝑁 (𝐿𝑗 ) |

𝑆 (1) (𝐿𝑗 , 𝐴𝑖 )
(3)

where
1√

|𝑁 (𝐴𝑖 ) | |𝑁 (𝐿𝑗 ) |
is the graph Laplacian norm [16, 27] that

automatically adjusts the weight of each individual app-library

interaction. For example, if mobile app 𝐴𝑖 uses a large number of

TPLs, it is connected to many library nodes in𝐺 and |𝑁 (𝐴𝑖 ) | will be
large. Its corresponding graph Laplacian norm will be low and each

TPL in 𝑁 (𝐴𝑖 ) will make a relatively low contribution to 𝑆 (1) (𝐴𝑖 ).
The same applies to each TPL in 𝑁 (𝐴𝑖 ). If library 𝐿𝑗 is used by

many apps, then |𝑁 (𝐿𝑗 ) | will be large and the corresponding graph
Laplacian norm will be low, thus its weight in Eq.(3) will decrease.

Next, vector

−→
𝐴𝑖 (1) is obtained which contains the low-order app-

library interaction information distilled by the first layer of GNN.

It is defined as follows:

−→
𝐴𝑖 (1) = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
𝑊

(1)
1

−→
𝐴𝑖 (0) + 𝑆 (1) (𝐴𝑖 )

)
(4)

where function LeakyReLU [35] is an activation function widely

used in neural networks to control the amount of information

transmitted between different layers of a neural network.

Example. Fig. 5 provides an example process that distills low-
order app-library interaction information from TPLs 𝐿1, 𝐿2, and 𝐿3
for mobile app𝐴1 in Fig. 2. First, GRec employs Eq. (2) to distill individ-
ual app-library interaction information from the three corresponding
library nodes, i.e., 𝑆 (1) (𝐿1, 𝐴1), 𝑆 (1) (𝐿2, 𝐴1), and 𝑆 (1) (𝐿3, 𝐴1), respec-
tively. Then, it combines the three pieces of information to produce
𝑆 (1) (𝐴1) with Eq. (3). Finally, it outputs the latent factor vector

−→
𝐴1 (1)

with Eq. (4) as the input to Step 2 in Phase 2 and Phase 3.

Meanwhile, GRec distills low-order app-library interaction in-

formation for each library node in 𝐺 in a similar manner.

Eq. (2)Eq. (2)

L2 L3A1 L1

1

2

Output

A1( 0) L1( 0) L2( 0) L3( 0)

S(1)(L1,A1) S(1)(L2,A1) S(1)(L3,A1)

S(1)(A1)

A1( 1)3

Eq. (2)

Eq. (3)

Eq. (4)

Figure 5: Low-order app-library interaction information dis-
tillation for 𝐴1

3.3.2 Step 2: High-order app-library interaction information distil-
lation. In this step, GRec distills high-order app-library interaction

information for each node in 𝐺 . It iterates the process introduced

above in Step 1 using the output latent factor vectors produced by

the last iteration as input to the next iteration. In this way, infor-

mation can be distilled from nodes within multiple hops over𝐺 for

each node in 𝐺 .

For example, the output vectors of Step 1, i.e., the output vectors

of the first layer of the GNN, possess the low-order app-library

interaction information distilled from 1-hop neighbor nodes over

𝐺 . Taking those updated vectors as input, the same process in Step

1 is performed on the second layer of the GNN. Then, the output

vectors possess their individual high-order app-library interaction

information obtained from their 2-hop neighbor nodes over 𝐺 . To

generalize, the 𝑙-th layer of the GNN can distill the high-order app-

library interaction information for a node from its 𝑙-hop neighbor

nodes. Assuming that the GNN has a total of 𝑛 layers, GRec can

distill high-order app-library interaction information for each node

from its neighbors within 𝑛 hops.

In the 𝑙-th layer of the GNN, high-order app-library interaction

information distilled for app node 𝐴𝑖 , denoted as 𝑆 (𝑙) (𝐴𝑖 ), can be

recursively defined as:

𝑆 (𝑙) (𝐴𝑖 ) =
∑

𝐿𝑗 ∈𝑁 (𝐴𝑖 )

1√
|𝑁 (𝐴𝑖 ) | |𝑁 (𝐿𝑗 ) |

𝑆 (𝑙) (𝐿𝑗 , 𝐴𝑖 ) (5)

where 𝑆 (𝑙) (𝐿𝑗 , 𝐴𝑖 ) is defined as follows:

𝑆 (𝑙) (𝐿𝑗 , 𝐴𝑖 ) =𝑊
(𝑙)
1

−→
𝐿𝑗 (𝑙−1) +𝑊

(𝑙)
2

(−→𝐴𝑖 (𝑙−1) ⊙
−→
𝐿𝑗 (𝑙−1) ) (6)

where𝑊
(𝑙)
1

,𝑊
(𝑙)
2

∈ R𝑑∗𝑑 are weight matrices.

−→
𝐴𝑖 (𝑙−1) and

−→
𝐿𝑗 (𝑙−1)

are vectors output by the (𝑙 − 1)-th layer of the GNN.

Similar to Step 1, vector

−→
𝐴𝑖 (𝑙) can be obtained based on 𝑆 (𝑙) (𝐴𝑖 ):

−→
𝐴𝑖 (𝑙) = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
𝑊

(𝑙)
1

−→
𝐴𝑖 (𝑙−1) + 𝑆 (𝑙) (𝐴𝑖 )

)
(7)

Example. Fig. 6 demonstrates the way GRec distills high-order
app-library interaction information from TPL 𝐿5, i.e., node 𝐿5 in Fig.
2, for mobile app 𝐴1, i.e., node 𝐴1 in Fig. 2 along the path 𝐿5-𝐴3-𝐿2-
𝐴1 over the app-library graph 𝐺 when ℎ𝑜𝑝 = 3. The latent factor
vector for node 𝐿5 initialized in Phase 1 is denoted as

−→
𝐿5 (0) . GRec

distills the app-library interaction information from
−→
𝐿5 (0) and merges

it into vector
−→
𝐴3 (1) , i.e., the vector for node 𝐴3 updated by the first

layer of the GNN. Next, GRec merges the information distilled from

470



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Bo Li, Qiang He, Feifei Chen, Xin Xia, Li Li, John Grundy, and Yun Yang

A1(3)

L2(0) A1(1)

L1(2)

L2(2)

L3(2)

A3(1)

A4(1)

L4(0)

L5(0)
..

.
..

.

..
.

..
.

Original Layer 1 Layer 2 Layer 3

Figure 6: High-order app-Library interaction information
distillation for 𝐴1

vector
−→
𝐴3 (1) into vector

−→
𝐿2 (2) , i.e., the vector for node 𝐿2 updated by

the second layer of the GNN. Finally, GRec merges the information
distilled from vector

−→
𝐿2 (2) into vector

−→
𝐴1 (3) . This vector is updated

by the third layer of the GNN. In this way, the high-order app-library
interaction information possessed by node 𝐿5 is transmitted to 𝐴1.

GRec distills high-order app-library interaction information for

each library node 𝐿𝑗 via a similar process. We denote the high-order

app-library interaction information distilled from 𝑙-hop neighbor

nodes as 𝑆 (𝑙) (𝐿𝑗 ), and denote the corresponding vector of 𝐿𝑗 as
−→
𝐿𝑗 (𝑙) . Then, there is:

𝑆 (𝑙) (𝐿𝑗 ) =
∑

𝐴𝑖 ∈𝑁 (𝐿𝑗 )

1√
|𝑁 (𝐴𝑖 ) | |𝑁 (𝐿𝑗 ) |

𝑆 (𝑙) (𝐴𝑖 , 𝐿𝑗 ) (8)

where 𝑆 (𝑙) (𝐴𝑖 , 𝐿𝑗 ) is the high-order app-library interaction infor-

mation produced from 𝑁 (𝐿𝑗 ) for 𝐿𝑗 , defined as follows:

𝑆 (𝑙) (𝐴𝑖 , 𝐿𝑗 ) =𝑊
(𝑙)
1

−→
𝐴𝑖 (𝑙−1) +𝑊

(𝑙)
2

(−→𝐿𝑗 (𝑙−1) ⊙
−→
𝐴𝑖 (𝑙−1) ) (9)

Then, we obtain vector

−→
𝐿𝑗 (𝑙) as follows:

−→
𝐿𝑗 (𝑙) = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
𝑊

(𝑙)
1

−→
𝐿𝑗 (𝑙−1) + 𝑆 (𝑙) (𝐿𝑗 )

)
(10)

3.4 Phase 3: Aggregation
In Phase 2 (Information Distillation), each layer of the GNN outputs

an individual vector for each node in𝐺 . Those vectors possess low-

order and high-order app-library interaction information distilled

from neighbor nodes within different number of hops. In Phase

3 (Aggregation), GRec concatenates all the vectors that belong to

the same node to constitute a final vector for each mobile app and

TPL. Assuming a total of 𝑛 layers in the GNN, the constituted latent

factor vector for node 𝐴𝑖 is formulated as follows:

−→
𝐴∗
𝑖 =

−→
𝐴𝑖 (0) ∥

−→
𝐴𝑖 (1) ∥

−→
𝐴𝑖 (2) ∥ · · · ∥

−→
𝐴𝑖 (𝑛) (11)

where ∥ is the concatenation operation.

Similarly, the aggregated latent factor vector for node 𝐿𝑗 is de-

fined as follows:

−→
𝐿∗𝑗 =

−→
𝐿𝑗 (0) ∥

−→
𝐿𝑗 (1) ∥

−→
𝐿𝑗 (2) ∥ · · · ∥

−→
𝐿𝑗 (𝑛) (12)

By adjusting parameter 𝑛, GRec can control the scope of distilla-

tion for making recommendations. For example, 𝑛 = 1 means only

the low-order app-library interaction information will be distilled,

and 𝑛 = 5 means both the low-order and high-order app-library

interaction information within 5 hops over 𝐺 will be distilled. The

optimal 𝑛 can be experimentally obtained.

3.5 Phase 4: Prediction
As introduced in Section 3.2, vector

−→
𝐿∗
𝑗
models the degree of each

latent feature possessed by TPL 𝐿𝑗 . Vector
−→
𝐴∗
𝑖
models the degrees

of mobile app 𝐴𝑖 ’s preferences for those latent features. Thus, the

potential usefulness of 𝐿𝑗 for 𝐴𝑖 , denoted by 𝑅 (𝑖, 𝑗), can be approx-

imated as follows:

𝑅𝑖, 𝑗 =
−→
𝐴∗
𝑖 ·

−→
𝐿∗𝑗 (13)

For example, the inner product of

−→
𝐴∗
1
and

−→
𝐿∗
4
is the potential

usefulness of 𝐿4 for app𝐴1. When recommending potentially useful

TPLs for a mobile app, say 𝐴1, GRec performs the element-wise

product on

−→
𝐴∗
1
with each library’s latent factor. Then it obtains the

potential usefulness of each library for 𝐴1. Next, it recommends

the top 𝑛𝑟 TPLs with the largest potential usefulness that are not

used by 𝐴1 for 𝐴1. The recommended TPLs can be prioritized in

developers’ search for and evaluation of useful TPLs for 𝐴1.

4 EXPERIMENTAL EVALUATION
We first introduce our experiment settings, then evaluate GRec’s

performance motivated by four research questions. Finally, we

discuss the threats to the validity of the evaluation.

4.1 Experimental Setup
Our experiments are motivated by the following research questions:

RQ1 How does GRec perform compared with existing TPL rec-
ommendation approaches?

RQ2 Is high-order app-library interaction information useful for
improving GRec’s performance?

RQ3 Does the dimensionality of the latent space (𝑑) have any
impact on GRec’s performance?

RQ4 Are GRec’s TPL recommendations considered useful by real-
world practitioners?

We implemented GRec using NGCF [36], the state-of-the-art

GNN-based recommendation framework. The computer used in the

experiments is equipped with Intel i5-7400T CPU, 16 GB RAM, and

an NVIDIA Tesla P100 12GB GPU accelerator, running Windows

10 x64 Enterprise, PyTorch 1.3.1, NumPy 1.18.1, SciPy 1.3.2, and

Scikit-learn 0.21.3. Our experiments are conducted on the MALib

dataset [9], a public real-world dataset that contains 61,722 Android

apps, 827 distinct TPLs, and 725,502 app-library usage records. The

mobile apps in this dataset were collected from Google Play and

the TPL usage records were manually validated. On average, each

of the mobile apps in the dataset uses 11.81 TPLs. GRec is designed

to recommend potentially useful TPLs for developers who would

like to leverage TPLs to improve their mobile apps. Following the

same evaluation methodology of [9] and [33], we select mobile apps

that use 10 or more TPLs as testing apps for the experiments. The

rationale behind this is the same as [9] and [33] - the developers of

these mobile apps tend to use TPLs in their mobile apps. In total,

31,432 mobile apps are included in the experiments, using a total

of 752 TPLs extracted from 537,011 app-library usage records.

471



Embedding App-Library Graph for Neural Third Party Library Recommendation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Similar to [9, 23, 33], we mimic real-world scenarios that de-

velopers have used a number of TPLs in their mobile apps and

are seeking new TPLs to improve their mobile apps further. In the

experiments, we employ the cross-validation technique to evalu-

ate GRec and use parameters 𝑟𝑚 and 𝑛𝑟 to simulate various TPL

recommendation scenarios. Parameter 𝑟𝑚 determines how many

TPLs are removed from each testing app while 𝑛𝑟 determines how

many TPLs are recommended for each testing app, i.e, the length

of each recommendation list (referred to as list hereafter). We set

𝑟𝑚 ∈ {1, 3, 5} and 𝑛𝑟 ∈ {5, 10} in different scenarios. In each exper-

iment run, we randomly remove 𝑟𝑚 TPLs from each of the 31,432

testing app. Next, we run GRec to recommend a list with 𝑛𝑟 TPLs

for each testing app. Then, we evaluate GRec’s performance by

inspecting whether those removed TPLs are recommended for cor-

responding apps. In each experiment run, 31,432 recommendation

lists are generated, one for each of the testing apps. Every time

a setting parameter varies, we perform 50 experiment runs and

report the average results.

We employ the following five metrics for evaluating GRec’s

recommendation performance. For all the metrics, a higher value

indicates higher performance.

• Mean Precision (MP) [23, 24, 26]. Given a list, the precision
is the ratio of the correctly recommended TPLs over 𝑛𝑟 , i.e.,

the total number of TPLs in the list. Then, MP is the average

precision across all the lists in an experiment run.

• MeanRecall (MR) [23, 25, 26, 28, 33]. Given a list, the recall
is the ratio of the correctly recommended TPLs in the list over

all the TPLs removed from the corresponding testing app.

MR is the average recall across all the lists in an experiment

run.

• Mean F1 Score (MF) [9, 37]. F1 Score conveys a balance

between the precision and recall of one list. MF is the average

F1 score across all the lists in one experiment run.

• Mean Average Precision (MAP) [2, 9, 21]. Given a list

with 𝑛𝑟 TPLs, the average precision (AP) measures GRec’s

ability to put removed TPLs at high positions in the list. It is

calculated as follows:

𝐴𝑃 =
1∑𝑛𝑟

𝑖=1 𝑐𝑜𝑟 (𝑖)

𝑛𝑟∑
𝑖=1

∑𝑖
𝑗=1 𝑐𝑜𝑟 (𝑖)

𝑖
× 𝑐𝑜𝑟 (𝑖) (14)

where 𝑖 increases from 1 to 𝑛𝑟 in steps of 1 and 𝑐𝑜𝑟 (𝑖) in-
dicates whether a library at position 𝑖 is a removed one. It

returns 1 if yes and 0 otherwise. MAP is the mean AP across

all the lists in one experiment run.

• Coverage (COV) [9, 23]. COV measures the diversity of

GRec’s recommendation results. It is the ratio of distinct

TPLs on all the lists in one experiment run over all the distinct

TPLs in the MALib dataset. It is an important performance

metric for evaluating recommendation approaches in recent

years [8], which allows us to inspect whether GRec sacrifices

diversity for accuracy.

4.2 RQ1: Performance Comparison
We compare GRec to four other approaches, including one base-

line approach and three state-of-the-art TPL recommendation ap-

proaches.

• POP – this always recommends the most popular TPLs not

used by the testing app. It is a common baseline for evaluat-

ing recommendation approaches [6, 19, 31].

• LibRec [33] – this combines association rule mining and

collaborative filtering (CF) to make recommendations for

conventional Java projects. LibRec has been widely used as

a competing approach in recent studies [23, 26, 28].

• CrossRec [23] – this approach was proposed very recently

and employs the CF-based technique to recommend TPLs

for target open-source projects.

• LibSeek [9] – this is the state-of-the-art approach that was

specifically designed for recommending TPLs for Android

apps. It employs a matrix factorization technique to find

potentially useful TPLs for mobile apps.

To conduct a fair comparison, the parameter settings of each

competing approach are exactly the same as that in [33], [23], and

[9], respectively. In GRec, the number of layers in the GNN is 3, i.e.,

𝑛 = 3, and the layer size is 128. The size of each latent factor vector

is also set to 128, i.e., 𝑑 = 128.

Table 1 compares the average performance of all the compet-

ing approaches under different parameter settings. We can see

that GRec achieves the highest performance under all the
parameter settings, indicated by its highest MP, MR, MF, MAP,

and COV values. It outperforms POP, LibRec, CrossRec, and LibSeek

by 423.79%, 56.66%, 1989.45%, and 29.65%, respectively, on average

across all the cases. When 𝑟𝑚 = 1 and 𝑛𝑟 = 5, GRec outperforms

POP, LibRec, Crossrec, and LibSeek by 505.12%, 46.75%, 5194.32%,

and 33.19%, respectively. When 𝑟𝑚 = 5 and 𝑛𝑟 = 10, it outperforms

POP, LibRec, CrossRec, and LibSeek by 358.70%, 62.70%, 747.29%,

and 27.12%, respectively.

Compared with POP, LibRec, CrossRec, and LibSeek, the average

improvement of GRec is 81.28%, 37.40%, 1908.70%, and 10.33% in

MP; 82.74%, 38.56%, 1920.91%, and 11.21% in MR; 81.71%, 37.75%,

1912.35%, and 10.60% in MF; 55.55%, 22.31%, 3564.09%, and 11.65%

in MAP, respectively. This demonstrates GRec’s superior perfor-

mance. Surprisingly, GRec can highly diversify its recommen-
dation results while achieving a high recommendation accu-
racy, indicated by its significant advantage in COV over competing

approaches, i.e., 1817.66%, 147.28%, 641.20%, and 104.44% against

POP, LibRec, CrossRec, and LibSeek, respectively. We find that the

COV of POP is particularly low across all the cases. The reason

is that POP always recommends a few of the most popular TPLs

that have not been used by the testing app. Thus, the other less

popular TPLs are seldom recommended. This is a critical limitation

as recommending only popular TPLs is not beneficial to develop-

ers [9, 14]. In contrast, GRec diversifies the recommendations by

recommending both popular and less popular TPLs, indicated by

its highest COV values in all cases.

Unlike LibRec, CrossRec, and LibSeek that use only a small por-

tion of low-order app-library interaction information when making

recommendations, GRec makes full use of the low-order app-library

interaction information and employs also high-order app-library

interaction information distilled from the app-library graph in the

recommendations. This boosts GRec’s performance, indicated by

its highest performance in terms of both recommendation accuracy

and recommendation diversity.

472



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Bo Li, Qiang He, Feifei Chen, Xin Xia, Li Li, John Grundy, and Yun Yang

Table 1: Performance Comparison

Dataset Approaches

𝑛𝑟=5 𝑛𝑟=10

MP MR MF MAP COV MP MR MF MAP COV

𝑟𝑚=1

POP 0.0753 0.3765 0.1255 0.2840 0.0316 0.0457 0.4565 0.0831 0.2949 0.0465

LibRec 0.1267 0.6335 0.2112 0.4622 0.2921 0.0668 0.6682 0.1215 0.4669 0.2990

CrossRec 0.0031 0.0155 0.0052 0.0061 0.0472 0.0069 0.0687 0.0125 0.0130 0.0783

LibSeek 0.1348 0.6741 0.2247 0.5236 0.3346 0.0755 0.7553 0.1373 0.5346 0.3960

GRec 0.1521 0.7607 0.2536 0.6269 0.6948 0.0828 0.8283 0.1506 0.6360 0.7918

𝑟𝑚=3

POP 0.2147 0.3579 0.2684 0.5931 0.0322 0.1341 0.4468 0.2063 0.5682 0.0455

LibRec 0.2789 0.4648 0.3486 0.6883 0.2916 0.1542 0.5142 0.2373 0.6864 0.2936

CrossRec 0.0187 0.0312 0.0234 0.0299 0.0896 0.0220 0.0734 0.0339 0.0439 0.1508

LibSeek 0.3710 0.6183 0.4637 0.7280 0.3245 0.2158 0.7193 0.3320 0.6971 0.3907

GRec 0.4099 0.6915 0.5142 0.7977 0.6849 0.2337 0.7879 0.3602 0.7605 0.7824

𝑟𝑚=5

POP 0.3383 0.3383 0.3383 0.7413 0.0316 0.2180 0.4360 0.2907 0.6813 0.0449

LibRec 0.4400 0.4400 0.4400 0.6922 0.2885 0.2434 0.4868 0.3245 0.6890 0.2992

CrossRec 0.0342 0.0342 0.0342 0.0596 0.1701 0.0371 0.0743 0.0495 0.0780 0.2560

LibSeek 0.5291 0.5291 0.5291 0.7896 0.3141 0.3293 0.6587 0.4391 0.7396 0.3796

GRec 0.5868 0.5945 0.5902 0.8397 0.6571 0.3613 0.7312 0.4834 0.7856 0.7536

4.3 RQ2: Impact of High-Order App-Library
Interaction Information

To investigate the usefulness of the high-order app-library inter-

action information in the recommendations, we vary the number

of the layers in the GNN (𝑛) from 1 to 5 in steps of 1 and measure

GRec’s corresponding performance. When 𝑛 = 1, GRec employs

only low-order app-library interaction information to make recom-

mendations. When 𝑛 ≥ 2, it employs both low-order and high-order

app-library interaction information to make recommendations. Fig.

7 illustrates the impact of the high-order app-library interaction in-

formation, where three TPLs are removed from each testing app, i.e.,

𝑟𝑚 = 3, and the number of TPLs in each list is 5 and 10, respectively,

i.e., 𝑛𝑟 ∈ {5, 10}.
We find that when 𝑛 increases from 1 to 2, GRec’s perfor-

mance significantly increases in all the five metrics. This ob-
servation demonstrates the effectiveness of employing high-order

app-library interaction information for making TPL recommenda-

tions. For example, when 𝑛𝑟 = 5 and 𝑛 = 1, GRec achieves 0.3940,

0.6646, 0.4942, 0.7692, and 0.6209 in MP, MR, MF, MAP, and COV, re-

spectively. When 𝑛 increases to 2, it achieves 0.4086, 0.6892, 0.5125,

0.7953, and 0.6615 in MP, MR, MF, MAP, and COV, respectively, i.e.,

3.70%, 3.71%, 3.70%, 3.40%, and 6.54% higher than when 𝑛 = 1. When

𝑛 increases to 3, GRec’s performance continues to increase, reach-

ing 0.4095, 0.6908, 0.5137, 0.7970, and 0.6811 in MP, MR, MF, MAP,

and COV, respectively. When 𝑛 continues to increase from 3,
GRec’s performance decreases slightly in MP, MR, MF, and
MAP. The reason is that an overly large 𝑛 will include high-order

information distilled from many app and library nodes far away

from the testing app in𝐺 in the recommendations. These apps and

TPLs may not be similar to the target app and its TPLs. The noise

generated by these nodes lowers GRec’s recommendation accuracy.

However, GRec’s COV value continues to increase, which indicates

the effectiveness of leveraging high-order information to increase

the diversity.

4.4 RQ3: Impact of Dimensionality of Latent
Space

As introduced in Section 3.2, GRec embeds mobile apps and TPLs

as 𝑑-dimension latent factors to represent their specific features,

such as functionality, performance, and compatibility. To study the

impact of different values of 𝑑 on GRec’s performance, we vary

𝑑 from 32 to 512. Fig. 8 shows the experimental results. When

𝑑 increases, GRec’s performance in all the metrics increases. For

example, when 𝑛𝑟 = 5, 𝑟𝑚 = 3, and 𝑑 = 32, GRec achieves 0.3646,

0.6153, 0.4573, 0.7439, and 0.5484 in MP, MR, MF, MAP, and COV,

respectively. When 𝑑 increases to 256, GRec achieves 0.4095, 0.6908,

0.5137, 0.7970, and 0.6811 in MP, MR, MF, MAP, and COV, i.e.,

12.33%, 12.28%, 12.32%, 7.15%, and 24.22% higher than when 𝑑 =

32. The reason is that a higher dimensionality of the latent space

allows GRec to model more potential latent features that reflect

the relationships between apps and TPLs. In general, more latent

features allow GRec to model the potential usefulness of each TPL

for each mobile app more precisely. Thus, GRec can recommend
TPLs more effectively with a higher 𝑑 .

Another interesting observation is that, when 𝑑 increases from

32 to 64 then to 128, GRec’s performance increases rapidly, indicated

by the increment in all the metrics. However, when 𝑑 continues to

increases from 128 to 256 and then to 512, GRec’s performance in-

crease slows down. In practice, a proper value of 𝑑 can be identified

through experiments.

4.5 RQ4: User Study
Our experiments are conducted on testing mobile apps to simulate

real-world mobile apps’ need for new TPLs. The TPLs removed

from testing apps are assumed to be useful for the corresponding

testing apps. This is the common assumption made in almost all the

research on recommendations in the field of software engineering

as well as many other fields. However, the TPLs removed from the

testing apps are not necessarily always the best ones. In fact, it is

473



Embedding App-Library Graph for Neural Third Party Library Recommendation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

1 2 3 4 5

Number of layers (n)

(1a)

0.402

0.404

0.406

0.408

0.41

M
P

, 
n
r
 =

5

rm=3

1 2 3 4 5

Number of layers (n)

(1b)

0.675

0.68

0.685

0.69

0.695

M
R

, 
n
r
 =

5

rm=3

1 2 3 4 5

Number of layers (n)

(1c)

0.5

0.505

0.51

0.515

M
F

, 
n
r
 =

5

rm=3

1 2 3 4 5

Number of layers (n)

(1d)

0.785

0.79

0.795

0.8

M
A

P
, 

n
r
 =

5

rm=3

1 2 3 4 5

Number of layers (n)

(1e)

0.6

0.65

0.7

0.75

C
O

V
, 

n
r
 =

5

rm=3

1 2 3 4 5

Number of layers (n)

(2a)

0.23

0.231

0.232

0.233

0.234

M
P

, 
n
r
 =

1
0

rm=3

1 2 3 4 5

Number of layers (n)

(2b)

0.775

0.78

0.785

0.79
M

R
, 

n
r
 =

1
0

rm=3

1 2 3 4 5

Number of layers (n)

(2c)

0.354

0.356

0.358

0.36

0.362

M
F

, 
n
r
 =

1
0

rm=3

1 2 3 4 5

Number of layers (n)

(2d)

0.745

0.75

0.755

0.76

M
A

P
, 

n
r
 =

1
0

rm=3

1 2 3 4 5

Number of layers (n)

(2e)

0.7

0.75

0.8

0.85

C
O

V
, 

n
r
 =

1
0

rm=3

Figure 7: Impact of high-order app-library interaction information

32 64 128 256 512

Vector Size (d)

(1a)

0.36

0.38

0.4

0.42

M
P

, 
n
r
 =

5

rm=3

32 64 128 256 512

Vector Size (d)

(2e)

0.65

0.7

0.75

0.8

C
O

V
, 

n
r
 =

1
0

rm=3

32 64 128 256 512

Vector Size (d)

(1b)

0.6

0.65

0.7

0.75

M
R

, 
n
r
 =

5

rm=3

32 64 128 256 512

Vector Size (d)

(1c)

0.45

0.5

0.55
M

F
, 
n
r
 =

5

rm=3

32 64 128 256 512

Vector Size (d)

(1d)

0.7

0.75

0.8

0.85

M
A

P
, 

n
r
 =

5

rm=3

32 64 128 256 512

Vector Size (d)

(1e)

0.5

0.6

0.7

0.8

C
O

V
, 

n
r
 =

5

rm=3

32 64 128 256 512

Vector Size (d)

(2a)

0.21

0.22

0.23

0.24

M
P

, 
n
r
 =

1
0

rm=3

32 64 128 256 512

Vector Size (d)

(2b)

0.7

0.75

0.8

0.85

M
R

, 
n
r
 =

1
0

rm=3

32 64 128 256 512

Vector Size (d)

(2c)

0.32

0.34

0.36

0.38

M
F

, 
n
r
 =

1
0

rm=3

32 64 128 256 512

Vector Dimension (d)

(2d)

0.7

0.75

0.8

M
A

P
, 

n
r
 =

1
0

rm=3

Figure 8: Impact of dimensionality of latent space

impossible to identify the theoretically best TPLs for the testing

apps as the ground-truth for the evaluation of GRec. To minimize

this threat, we conduct a user study with real-world Android app

developers to answer RQ4, i.e., whether GRec’s recommendations

are indeed useful for real-world mobile apps.

We randomly select 900 Android apps from the F-Droid repos-

itory
7
, a famous open-source Android app repository. Then, we

download the source files of their latest versions as of 22/12/2019,

and collect their developer information, i.e., developers’ names and

emails. Next, we manually inspect the build.gradle files of those
apps in their source files and obtain all the TPLs used in each mobile

app. Then, we run GRec, LibSeek and POP individually based on

the MALib dataset to generate three lists of 10 recommended TPLs

for each of the 900 apps. Then, we email the lists for each app to

the corresponding developers and ask them to rate 1-5 for each TPL

in the three lists individually to indicate how much they believe it

is useful, e.g., offering useful new features and/or enhancing their

apps. Developers rate 1 if they think a TPL is not useful at all and

5 if a TPL is highly useful. To help investigate GRec’s impact on

different developers, we also inquire about their work experiences.

We state that their personal information will be protected.

We sent out 900 emails in total and 74 developers responded.

However, 6 of them failed to rate all the recommended TPLs, and

7
https://f-droid.org/en/

thus were excluded from our analysis. Finally, we received 2,040

ratings in total made by 68 developers, i.e., 680 ratings for each

of the three approaches. Fig. 9 illustrates the distribution of those

ratings. Overall, GRec receives the highest ratings, indicated
by 263 5s, 329 4s, 72 3s, 13 2s, and 3 1s. 87.06% of the TPLs rec-

ommended by GRec are rated 4 or higher. This demonstrates
that most developers highly acknowledge the usefulness of
GRec’s recommendations. In contrast, LibSeek received 207 5s,

283 4s, 151 3s, 32 2s, and 7 1s. 72.06% of the TPLs recommended

by LibSeek are rated 4 or higher. POP received the lowest ratings

overall, i.e., 51 5s, 154 4s, 233 3s, 197 2s, and 45 1s. Almost 70.00%

of the TPLs recommended by POP are rated 3 or lower. This obser-

vation confirms that recommending only the most popular TPLs

is not useful for most developers. The high ratings received by

GRec indicate that GRec’s recommendations are indeed useful for

real-world mobile apps.

Table 2 summarizes developers’ ratings for GRec’s recommenda-

tions according to their work experience. A higher rating indicates

higher satisfaction with a recommended TPL. There are in total 11,

28, 17, and 12 developers in the four groups. Through Table 2, we

can find that GRec receives higher ratings from developers with

less development experience in general. For example, 95.46% of the

developers with 2-years work experience or less mark the recom-

mended TPLs 4 or 5, while only 77.50% of the developers with more

474



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Bo Li, Qiang He, Feifei Chen, Xin Xia, Li Li, John Grundy, and Yun Yang

5 4 3 2 1

Ratings

0

100

200

300

400
N

u
m

b
e

r 
o

f 
R

a
ti
n

g
s

GRec

LibSeek

POP

Figure 9: Distribution of developers’ feedback

Table 2: Impact of Development Experience on Ratings

Experience ≤2 years ≤4 years ≤6 years >6 years

# of Developers 11 28 17 12

Rating 5 91 112 33 27

Rating 4 14 147 102 66

Rating 3 5 18 28 21

Rating 2 0 2 7 4

Rating 1 0 1 0 2

Average 4.78 4.32 3.95 3.91

than 6 years work experiences give the same ratings. We can find

that experienced developers tend to provide lower ratings overall

for all the competing approaches. This observation demonstrates

that TPL recommendation is more useful for novice developers.

4.6 Threats to Validity
Internal validity - The main threat is our conclusion on the rela-

tionship between GRec’s high performance and its utilization of

both low-order and high-order app-library interaction information

distilled from the app-library graph. To minimize this threat, we

varied the number of layers (𝑛) in the experiments. It allows us to

observe GRec’s performance when it makes recommendations with

and without high-order app-library interaction information. The

optimal 𝑛 can be experimentally obtained for GRec to achieve the

best performance.

External validity - The main threat comes from the scale of

the user study. Only 74 mobile app developers participated in our

user study. However, the results of the user study are consistent

with our experimental results. In the future, to mitigate the threat,

we plan to perform a large-scale user study. The second main threat

comes from the reuse of the MALib dataset. Although it has been

carefully inspected [9], it may still contain errors. In the future, we

plan to perform experiments on a larger dataset to further evaluate

GRec’s performance.

Construct validity - The main threat comes from the four com-

peting approaches used in our experiments. These approaches lever-

age only limited low-order app-library interaction information

mined from the MALib dataset to make TPL recommendations.

Thus, their performance tend to be lower than GRec. To mini-

mize this threat, we varied 𝑟𝑚, 𝑛𝑟 , ℎ𝑜𝑝 , and 𝑑 to evaluate GRec’s

performance comprehensively. Thus, this threat is valid but not

significant.

5 RELATEDWORK
Recommendation techniques have been widely used to facilitate

software development [3, 10, 40, 42, 46]. A number of approaches

has been proposed for recommending program clips or APIs of

particular TPLs to improve development efficiency. To name a few,

Zheng et al. [47] propose an approach that recommends new APIs

for API replacement during software development. Thung et al. take

the textual description of a feature request as input, and recommend

potentially useful methods (APIs) to help developers implement

the feature [34]. Besides, they consider also the similarity between

two features based on the number of similar API methods used for

implementing the two features. Huang et al. employ word embed-

ding technique to bridge the gap between demand descriptions and

structured API descriptions when recommending APIs for software

development [13]. Liu et al. propose RecRank to improve the top-1

API recommendation accuracy based on the API usage paths in the

corresponding call graph [20]. Xie et al. distill hierarchical context

information from project-specific code by analyzing its call graph,

then recommend new APIs for development [38]. Nguyen et al.

employ app-library interaction filtering (CF) to recommend APIs

for open-source projects [24]. A major difference between GRec

and the above approaches is that GRec recommends as a whole

library rather than specific program clips or APIs. Besides, GRec

requires app-library usage records to make the recommendations

without the need for extra contextual information.

In recent years, several approaches are proposed to help devel-

opers find potential useful TPLs through mining app-library usage

patterns [5, 26, 28, 29, 32]. Saied et al. propose COUPminer that

employs both client-based mining and library-based usage mining

to cooperatively mine app-library usage patterns [29]. Ouni et al.

propose a search-based approach, namely LibFinder, to detect rele-

vant TPLs for software maintenance and evolution [26]. Specifically,

they employ the semantic similarity between source codes and TPL

co-usage relationship to mine app-library usage patterns. Recently,

another tool named LibCUP is proposed by Saied et al. for mining

app-library usage patterns [28]. LibCUP computes the similarity

between different TPLs based on their usage history. Then, it ap-

plies a multi-layer clustering approach to categorize different TPLs.

Chouchen et al. employed non-dominated sorting genetic algorithm

to recommend TPLs by considering TPL co-usage information, TPL

functional diversity, and app ratings [5].

Inspired by the great success of CF in a variety of recommenda-

tion domains, researchers have started to employ CF to recommend

TPLs for software development in recent years. The advantage

of CF-based approaches is that they can model app-library usage

patterns in a latent way. They make recommendations based on

only similar app-library usage in software projects without having

to explicitly model TPLs’ functionality, reliability, compatibility,

and dependency. LibRec is the first approach that employs CF to

recommend TPLs for Java projects [33]. It combines association

rule mining and collaborative filtering to mine app-library usage

patterns and then recommends potentially useful TPLs for target

projects. Similarly, CrossRec recommends TPLs for open-source

software projects based on collaborative filtering [23]. LibSeek is

the first tool specifically designed for recommending TPLs for An-

droid app development [9]. It employs the matrix factorization

475



Embedding App-Library Graph for Neural Third Party Library Recommendation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

technique to find potentially useful TPLs and adaptively adjusts

the weights of different TPLs to diversify recommendation results.

However, these existing tools exploit only limited low-order infor-

mation extracted from app-library usage records, which prevents

them from providing highly accurate recommendations. In this

paper, we propose GRec, which takes a giant step to advance TPL

recommendation for mobile apps significantly and innovatively

with a graph neural network (GNN). GRec models app-library in-

teractions with an app-library graph, then distills both low-order

and high-order app-library interaction information with the GNN

for making TPL recommendations. Its performance is compared

against a baseline popularity-based recommendation approach and

three state-of-the-art approaches including LibRec, CrossRec, and

LibSeek, via experiments and a user study. As described in Section

4.2, GRec significantly outperforms all the competiting approaches

in terms of both accuracy and diversity.

6 CONCLUSION AND FUTUREWORK
We have proposed GRec, a novel Graph Neural Network (GNN)-

based approach for recommending potentially useful third-party

libraries (TPLs) for mobile app development. GRec can help relieve

developers’ burden in searching for and evaluating useful TPLs for

improving their mobile apps. Unlike existing tools that use only

limited low-order app-library interaction information, GRec models

the relationships between mobile apps and TPLs into an app-library

graph. Then, it distills both low-order and high-order app-library

interaction information with a GNN tomake TPL recommendations.

The experimental results on 31,432 Android apps and the user study

demonstrate the high performance of GRec.

In future, we will study how to make recommendations for spe-

cific versions of TPLs. We also plan to perform experiments on a

larger dataset, and conduct a user study with more participants.

ACKNOWLEDGEMENT
This work is partly funded by Australian Research Council Discov-

ery Projects DP180100212, DP200102491, and DP200100020. John

Grundy is funded by ARC Laureate Fellowship FL190100035. Li

Li is funded by ARC Discovery Early Career Researcher Award

DE200100016. Qiang He is the corresponding author of this paper.

REFERENCES
[1] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable third-party library

detection in Android and its security applications. In 2016 ACM SIGSAC Con-
ference on Computer and Communications Security. ACM, 356–367. https:

//doi.org/10.1145/2976749.2978333

[2] Lingfeng Bao, Xin Xia, David Lo, and Gail C Murphy. 2019. A large scale study

of long-time contributor prediction for GitHub projects. IEEE Transactions on
Software Engineering (2019). https://doi.org/10.1109/TSE.2019.2918536

[3] Eiji Adachi Barbosa and Alessandro Garcia. 2017. Global-aware recommendations

for repairing violations in exception handling. IEEE Transactions on Software
Engineering 44, 9 (2017), 855–873. https://doi.org/10.1145/3180155.3182539

[4] R. Bell, Y. Koren, and C. Volinsky. 2009. Matrix factorization techniques for

recommender systems. Computer 42 (08 2009), 30–37. https://doi.org/10.1109/

MC.2009.263

[5] Moataz Chouchen, Ali Ouni, and Mohamed Wiem Mkaouer. 2020. AndroLib:

Third-party software library recommendation for Android applications. In

International Conference on Software and Software Reuse. Springer, 208–225.
https://doi.org/10.1007/978-3-030-64694-3_13

[6] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.

Google news personalization: Scalable online collaborative filtering. In 16th
International Conference on World Wide Web. ACM, 271–280. https://doi.org/10.

1145/1242572.1242610

[7] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.

Keep me updated: An empirical study of third-party library updatability on

android. In 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2187–2200. https://doi.org/10.1145/3133956.3134059

[8] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. 2010. Beyond

accuracy: Evaluating recommender systems by coverage and serendipity. In 4th
ACM Conference on Recommender Systems. ACM, 257–260. https://doi.org/10.

1145/1864708.1864761

[9] Qiang He, Bo Li, Feifei Chen, John Grundy, Xin Xia, and Yun Yang. 2020. Diversi-

fied third-party library prediction for mobile app development. IEEE Transactions
on Software Engineering (2020). https://doi.org/10.1109/TSE.2020.2982154

[10] Qiang He, Rui Zhou, Xuyun Zhang, Yanchun Wang, Dayong Ye, Feifei Chen,

John C. Grundy, and Yun Yang. 2017. Keyword search for building service-

based systems. IEEE Transactions on Software Engineering 43, 7 (2017), 658–674.

https://doi.org/10.1109/TSE.2016.2624293

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference onWorldWideWeb. 173–182. https://doi.org/10.1145/3038912.3052569

[12] Thomas Hofmann. 2004. Latent Semantic Models for Collaborative Filtering.

ACM Transactions on Information Systems 22, 1 (Jan. 2004), 89–115. https://doi.

org/10.1145/963770.963774

[13] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API

method recommendation without worrying about the task-API knowledge gap.

In 33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE). IEEE, 293–304. https://doi.org/10.1145/3238147.3238191

[14] Marius Kaminskas and Derek Bridge. 2017. Diversity, serendipity, novelty, and

coverage: A survey and empirical analysis of beyond-accuracy objectives in

recommender systems. ACM Transactions on Interactive Intelligent Systems 7, 1
(2017), 2. https://doi.org/10.1145/2926720

[15] Taeyeon Ki, ChangMin Park, Karthik Dantu, Steven YKo, and Lukasz Ziarek. 2019.

Mimic: UI compatibility testing system for Android apps. In 41st International
Conference on Software Engineering (ICSE). IEEE, 246–256. https://doi.org/10.

1109/ICSE.2019.00040

[16] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[17] Maxime Lamothe and Weiyi Shang. 2020. When APIs are intentionally bypassed:

An exploratory study of API workarounds. In 42nd International Conference on
Software Engineering (ICSE), Vol. 2020.

[18] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo. 2017. LibD:

Scalable and precise third-party library detection in Android markets. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). 335–346.
https://doi.org/10.1109/ICSE.2017.38

[19] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com recommendations:

Item-to-item collaborative filtering. IEEE Internet Computing 1 (2003), 76–80.

https://doi.org/10.1109/MIC.2003.1167344

[20] Xiaoyu Liu, LiGuo Huang, and Vincent Ng. 2018. Effective API recommen-

dation without historical software repositories. In 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering (ASE). 282–292. https:

//doi.org/10.1145/3238147.3238216

[21] Zhongxin Liu, Xin Xia, David Lo, and John Grundy. 2019. Automatic, highly

accurate app permission recommendation. Automated Software Engineering 26, 2

(2019), 241–274. https://doi.org/10.1007/s10515-019-00254-6

[22] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: Fast and

accurate detection of third-party libraries in Android apps. In 38th International
Conference on Software Engineering Companion (ICSE). ACM, 653–656. https:

//doi.org/10.1145/2889160.2889178

[23] Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.

2020. CrossRec: Supporting software developers by recommending third-party

libraries. Journal of Systems and Software 161 (2020), 110460. https://doi.org/10.

1016/j.jss.2019.110460

[24] Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas

Degueule, and Massimiliano Di Penta. 2019. Focus: A recommender system

for mining API function calls and usage patterns. In 41st International Conference
on Software Engineering (ICSE). IEEE, 1050–1060. https://doi.org/10.1109/ICSE.

2019.00109

[25] Chao Ni, Xin Xia, David Lo, Xiang Chen, and Qing Gu. 2020. Revisiting supervised

and unsupervised methods for effort-aware cross-project defect prediction. IEEE
Transactions on Software Engineering (2020). https://doi.org/10.1109/TSE.2020.

3001739

[26] Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, Takashi Ishio, Daniel M

German, and Katsuro Inoue. 2017. Search-based software library recommendation

usingmulti-objective optimization. Information and Software Technology 83 (2017),
55–75. https://doi.org/10.1016/j.infsof.2016.11.007

[27] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang.

2018. Deepinf: Social influence prediction with deep learning. In 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2110–
2119. https://doi.org/10.1145/3219819.3220077

476

https://doi.org/10.1145/2976749.2978333
https://doi.org/10.1145/2976749.2978333
https://doi.org/10.1109/TSE.2019.2918536
https://doi.org/10.1145/3180155.3182539
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1007/978-3-030-64694-3_13
https://doi.org/10.1145/1242572.1242610
https://doi.org/10.1145/1242572.1242610
https://doi.org/10.1145/3133956.3134059
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1109/TSE.2020.2982154
https://doi.org/10.1109/TSE.2016.2624293
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/963770.963774
https://doi.org/10.1145/963770.963774
https://doi.org/10.1145/3238147.3238191
https://doi.org/10.1145/2926720
https://doi.org/10.1109/ICSE.2019.00040
https://doi.org/10.1109/ICSE.2019.00040
https://doi.org/10.1109/ICSE.2017.38
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1145/3238147.3238216
https://doi.org/10.1145/3238147.3238216
https://doi.org/10.1007/s10515-019-00254-6
https://doi.org/10.1145/2889160.2889178
https://doi.org/10.1145/2889160.2889178
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1109/ICSE.2019.00109
https://doi.org/10.1109/ICSE.2019.00109
https://doi.org/10.1109/TSE.2020.3001739
https://doi.org/10.1109/TSE.2020.3001739
https://doi.org/10.1016/j.infsof.2016.11.007
https://doi.org/10.1145/3219819.3220077


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Bo Li, Qiang He, Feifei Chen, Xin Xia, Li Li, John Grundy, and Yun Yang

[28] Mohamed Aymen Saied, Ali Ouni, Houari Sahraoui, Raula Gaikovina Kula, Kat-

suro Inoue, and David Lo. 2018. Improving reusability of software libraries

through usage pattern mining. Journal of Systems and Software 145 (2018), 164–
179. https://doi.org/10.1016/j.jss.2018.08.032

[29] Mohamed Aymen Saied and Houari Sahraoui. 2016. A cooperative approach

for combining client-based and library-based API usage pattern mining. In 2016
IEEE 24th International Conference on Program Comprehension (ICPC). IEEE, 1–10.
https://doi.org/10.1109/ICPC.2016.7503717

[30] Pasquale Salza, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Filom-

ena Ferrucci. 2020. Third-party libraries in mobile apps. Empirical Software
Engineering 25, 3 (2020), 2341–2377. https://doi.org/10.1007/s10664-019-09754-1

[31] Yue Shi, Martha Larson, and Alan Hanjalic. 2014. Collaborative filtering beyond

the user-item matrix: A survey of the state of the art and future challenges.

Comput. Surveys 47, 1 (May 2014), 3:1–3:45. https://doi.org/10.1145/2556270

[32] Cédric Teyton, Jean-Rémy Falleri, and Xavier Blanc. 2013. Automatic discovery

of function mappings between similar libraries. In 2013 20th Working Conference
on Reverse Engineering (WCRE). IEEE, 192–201. https://doi.org/10.1109/WCRE.

2013.6671294

[33] F. Thung, D. Lo, and J. Lawall. 2013. Automated library recommendation. In 20th
Working Conference on Reverse Engineering (WCRE). 182–191. https://doi.org/10.

1109/WCRE.2013.6671293

[34] Ferdian Thung, Shaowei Wang, David Lo, and Julia Lawall. 2013. Automatic

recommendation of API methods from feature requests. In 28th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). IEEE, 290–300.
https://doi.org/10.1109/ASE.2013.6693088

[35] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019.

KGAT: Knowledge graph attention network for recommendation. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 950–958. https://doi.org/10.1145/3292500.3330989

[36] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In Proceedings of the 42nd Lnternational ACM
SIGIR Conference on Research and Development in Information Retrieval. 165–174.
https://doi.org/10.1145/3331184.3331267

[37] YanchunWang, QiangHe, Dayong Ye, and Yun Yang. 2018. Formulating criticality-

based cost-effective fault tolerance strategies for multi-tenant service-based

systems. IEEE Transactions on Software Engineering 44, 3 (2018), 291–307. https:

//doi.org/10.1109/TSE.2017.2681667

[38] Rensong Xie, Xianglong Kong, Lulu Wang, Ying Zhou, and Bixin Li. 2019. HiRec:

API Recommendation using Hierarchical Context. In 30th International Sympo-
sium on Software Reliability Engineering. IEEE, 369–379. https://doi.org/10.1109/

ISSRE.2019.00044

[39] Bowen Xu, Le An, Ferdian Thung, Foutse Khomh, and David Lo. 2020. Why rein-

venting the wheels? An empirical study on library reuse and re-implementation.

Empirical Software Engineering 25, 1 (2020), 755–789. https://doi.org/10.1007/

s10664-019-09771-0

[40] Congying Xu, Bosen Min, Xiaobing Sun, Jiajun Hu, Bin Li, and Yucong Duan.

2019. MULAPI: A tool for API method and usage location recommendation. In

2019 IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings. IEEE, 119–122. https://doi.org/10.1109/ICSE-Companion.2019.00053

[41] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826.
[42] Luting Ye, Hailong Sun, Xu Wang, and Jiaruijue Wang. 2018. Personalized team-

mate recommendation for crowdsourced software developers. In 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE). 808–813.
https://doi.org/10.1145/3238147.3240472

[43] Xian Zhan, Lingling Fan, Tianming Liu, Sen Chen, Li Li, Haoyu Wang, Yifei

Xu, Xiapu Luo, and Yang Liu. 2020. Automated third-party library detection for

Android applications: Are we there yet?. In The 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2020).

[44] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based recom-

mender system: A survey and new perspectives. Comput. Surveys 52, 1 (2019),
1–38. https://doi.org/10.1145/3285029

[45] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and H. Chen. 2018.

Detecting third-party libraries in Android applications with high precision and

recall. In 25th IEEE International Conference on Software Analysis, Evolution and
Reengineering. 141–152. https://doi.org/10.1109/SANER.2018.8330204

[46] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and

William GJ Halfond. 2019. ReCDroid: Automatically reproducing android ap-

plication crashes from bug reports. In 41st International Conference on Software
Engineering (ICSE). IEEE, 128–139. https://doi.org/10.1109/ICSE.2019.00030

[47] Wujie Zheng, Qirun Zhang, and Michael Lyu. 2011. Cross-library API recom-

mendation using web search engines. In 19th ACM SIGSOFT Symposium and
13th European Conference on Foundations of Software Engineering. ACM, 480–483.

https://doi.org/10.1145/2025113.2025197

477

https://doi.org/10.1016/j.jss.2018.08.032
https://doi.org/10.1109/ICPC.2016.7503717
https://doi.org/10.1007/s10664-019-09754-1
https://doi.org/10.1145/2556270
https://doi.org/10.1109/WCRE.2013.6671294
https://doi.org/10.1109/WCRE.2013.6671294
https://doi.org/10.1109/WCRE.2013.6671293
https://doi.org/10.1109/WCRE.2013.6671293
https://doi.org/10.1109/ASE.2013.6693088
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1145/3331184.3331267
https://doi.org/10.1109/TSE.2017.2681667
https://doi.org/10.1109/TSE.2017.2681667
https://doi.org/10.1109/ISSRE.2019.00044
https://doi.org/10.1109/ISSRE.2019.00044
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1109/ICSE-Companion.2019.00053
https://doi.org/10.1145/3238147.3240472
https://doi.org/10.1145/3285029
https://doi.org/10.1109/SANER.2018.8330204
https://doi.org/10.1109/ICSE.2019.00030
https://doi.org/10.1145/2025113.2025197

	Abstract
	1 Introduction
	2 Motivating Example
	3 GRec Approach
	3.1 Process Overview
	3.2 Phase 1: Representation
	3.3 Phase 2: Information Distillation
	3.4 Phase 3: Aggregation
	3.5 Phase 4: Prediction

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Performance Comparison
	4.3 RQ2: Impact of High-Order App-Library Interaction Information
	4.4 RQ3: Impact of Dimensionality of Latent Space 
	4.5 RQ4: User Study
	4.6 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

