
Understanding Language Selection in
Multi-Language Software Projects on GitHub

Wen Li
Washington State University, USA

li.wen@wsu.edu

Na Meng
Virginia Tech, USA

nm8247@vt.edu

Li Li
Monash University, Australia

li.li@monash.edu

Haipeng Cai
Washington State University, USA

haipeng.cai@wsu.edu

Abstract—There are hundreds of programming languages
available for software development today. As a result, modern
software is increasingly developed in multiple languages. In this
context, there is an urgent need for automated tools for multi-
language software quality assurance. To that end, it is useful to
first understand how languages are chosen by developers in multi-
language software projects. One intuitive perspective towards the
understanding would be to explore the potential functionality
relevance of those choices. With a plethora of publicly hosted
multi-language software projects available on GitHub, we were
able to obtain thousands of popular, relevant repositories across
10 years from 2010 to 2019 to enable the exploration. We start
by estimating the functionality domain of each project through
topic modeling, followed by studying the statistical correlation
between these domains and language selection over all the
sample projects through association mining. We proceed with
an evolutionary characterization of these projects to provide a
longitudinal view of how the association has changed over the
years. Our findings offer useful insights into the rationale behind
developers’ choices of language combinations in multi-language
software construction.

Index Terms—Multi-language software, language selection,
functionality relevance, evolution

I. INTRODUCTION

Nowadays, technologies such as components and frame-

works, which could provide high reliability and usability, are

being utilized increasingly often in order to speed up the

development and integration of software products. As software

development continues to expand into a plethora of domains,

including cloud services and IoT systems, different functional

features or components are preferably developed with different

languages to take advantage of combining the best of each.

As a result, it has been clear that most of the current real-

world software applications have used more than one language

during construction [1]–[5].

The problem of locating defects across multi-component

systems, with an effective program analysis technique, has

created a new field of research that continues to grow. As a

critical step prior to developing such techniques, it is useful to

understand how languages are selected during multi-language

software construction and the rationale behind it. For instance,

an IoT software system might utilize Java (due to its merits in

platform independence) for plug-in development and then use

C (due to its efficiency advantages) for use cases involving

system programming. These subsystems must then interact

with each other as a whole for the entire system to function

as required. The combination of C and Java seems to have

become the most popular choices for IoT systems indeed. Yet

a full picture in this regard remains to be seen.

Prior research has been concerned about programming lan-

guage selection, but focused on languages used in a specific

field (e.g., bioinformatics) or on the relationship between the

use of individual languages and a specific property of software

(e.g., bug-proneness). Other studies have looked at the poten-

tial correlation between bug resolution schemes and language

use. These prior studies have not considered an evolutionary

view or the rationale underneath language selection.

Towards filling these gaps, we are conducting a systematic
study on language use and selection in open-source multi-
language projects on GitHub. We collected 10,000 projects

across ten years and characterized them as one single dataset

for understanding the functionality relevance of language

selection. Furthermore, treating the ten yearly sets of projects

each as an individual dataset while applying the same associ-

ation analysis led us to an evolutionary look at the relevance.

We found that language selection was weakly or moderately

associated with some functionality domains. Over time, the top

language selections for those domains changed considerably,

whereas the primary languages appeared relatively stable. We

are currently working on an in-depth analysis of various

implications of language selection in multi-language software

to discover the rationales behind such selections.

II. METHODOLOGY

Our study took open-source projects on GitHub as its pri-

mary input. From this data source, we mined different kinds of

repository data for a single-period characterization (SPC) and

an evolutionary characterization (EVC). We randomly picked

projects with 1,000 or more stars (i.e., top-popularity projects).

To be useful for our study, projects without a meaningful topic

or description information were skipped, and those that use

no more than one language were dismissed. We thus obtained

1,000 projects from each of the past ten years (2010 through

2019). Then, the SPC used the entire dataset as a whole, while

the EVC treated each yearly sample set separately.

More specifically, in the SPC we extracted the topic meta-

data of each project, from which each project’s functionality

domain (i.e., category) was identified through topic modeling

using Latent Dirichlet Allocation(LDA) [6]. With the function-

ality category (domain) assigned to each project, we computed

256

2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

978-1-6654-1219-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE-Companion52605.2021.00119

20
21

 IE
EE

/A
C

M
 4

3r
d

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 C
om

pa
ni

on
 P

ro
ce

ed
in

gs
 (I

C
SE

-C
om

pa
ni

on
) |

 9
78

-1
-6

65
4-

12
19

-3
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SE
-C

om
pa

ni
on

52
60

5.
20

21
.0

01
19

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:24:13 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Overall association between software functionality

domains and top language selections in SPC

Software Domain Top Language Selection Support Confidence Lift

OS c c++ shell 1.13% 47.3% 1.62

Communication html java javascript shell 2.19% 23.3% 1.71

Word processors html java javascript 3.74% 31.5% 1.14

Video software c css html javascript java 1.39% 43.3% 2.42

Programming tools c c++ cmake 3.97% 38.2% 1.93

Mobile Application java javascript 2.64% 25.2% 2.05

Programming tools c++ cmake shell 2.38% 22.9% 1.22

Word processors html javascript python 2.95% 24.8% 1.45

Games c++ java shell 2.32% 26.1% 3.85

Communication c++ java shell 2.29% 24.4% 1.41

Music software javascript python 1.59% 31.2% 2.92

the association between such categories and language selec-

tions in a given project set via association rule mining. In

particular, we identified frequent if-then associations which

consist of an antecedent (if, software domain here) and a

consequent (then, language selection here), using the Apriori

algorithm [7] implemented in the Mlxtend library [8].

Then, in the EVC, where projects from each different

year during 2010–2019 were considered one separate dataset,

we looked across per-year (SPC) characterization results to

analyze all the projects’ evolutionary dynamics of functionality

relevance of language selection during the ten-year span.

III. RESULTS

Table I lists the results of our association analysis on the

overall functionality relevance of language selection using the

SPC dataset. Our results revealed that there was a noticeable

relationship between language selection and certain functional-

ity domains, although the association was relatively weak (e.g.,

between c c++ shell and OS, and between html java
javascript and word processors) and at most mod-

erate (e.g., between c++ java shell and games). Also,

one language selection may not be consistently associated with

one particular domain—for instance, c++ java shell was

the top selection for both games and communication
software. Also, one domain can be associated with more than

one language selection—for instance, both c c++ cmake
and c++ cmake shell for programming tools.

Figure 1 shows the association evolution for the four

common domains across the years. The legend shows the set

of languages most frequently included in the top language

selections in the EVC dataset. These languages were mapped

to fixed colors and cell positions for each domain and year to

facilitate observing the evolution patterns. As shown, language

selection constantly changed from year to year in any of

the four domains. No selection was always associated with

a domain, although some associations were relatively stabler

than others. For instance, the association of objective-c
ruby with mobile application stayed the same for

three years: 2013, 2015, and 2016, while for programming
tools the associated selection was never the same across the

years. Meanwhile, there appeared to be some stable members

in the top language selections associated with each domain.

Fig. 1: Evolution of the association between top language se-

lections and the four functionality domains that were common

among the ten yearly datasets.

IV. CONCLUSION

Every programming language has its strengths and weak-

nesses. Some are better for low-level and high-performance

programming (e.g., C), while others might be more preferred

for UI (user interface) (e.g., Java). Also, some are more

relevant to specific software domains than others. While

such questions have been explored at the basis of individual

languages, the answers remain unclear for holistic language

combinations in multi-language software construction. In this

study, we aim to find semantic relationships between language

use and software domains, and the top language combinations

correlated with each popular software topic, if any. The

answer provides one way to understand why developers would

choose to use certain combinations of languages in their

projects. We revealed that there exists a verifiable correlation

between software domains and sets of mainstream languages,

which were stronger for some language combinations and

functionality domains than for others. The results offer an

empirical reference for developers when choosing a desirable

programming language combination for a partial domain, as

well as potential insights for program analysis researchers on

what language combinations to focus on and prioritize.

REFERENCES

[1] D. P. Delorey, C. D. Knutson, and C. Giraud-Carrier, “Programming
language trends in open source development: An evaluation using data
from all production phase sourceforge projects,” in Second International
Workshop on Public Data about Software Development, 2007.

[2] C. Jones, Software engineering best practices. McGraw-Hill, Inc., 2009.
[3] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of

programming languages and code quality in github,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 155–165.

[4] P. Mayer and A. Bauer, “An empirical analysis of the utilization of
multiple programming languages in open source projects,” in Proceedings
of the 19th International Conference on Evaluation and Assessment in
Software Engineering, 2015, pp. 1–10.

[5] F. Tomassetti and M. Torchiano, “An empirical assessment of polyglot-
ism in github,” in Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering, 2014, pp. 1–4.

[6] D. M. Blei, “Probabilistic topic models,” Communications of the ACM,
vol. 55, no. 4, pp. 77–84, 2012.

[7] R. Perego, S. Orlando, and P. Palmerini, “Enhancing the apriori algo-
rithm for frequent set counting,” in International Conference on Data
Warehousing and Knowledge Discovery. Springer, 2001, pp. 71–82.

[8] “Mlxtend: a python library of useful tools for the day-to-day data science
tasks.” http://rasbt.github.io/mlxtend, 2020.

257

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:24:13 UTC from IEEE Xplore. Restrictions apply.

