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ABSTRACT

Software construction using multiple languages has long been a

norm, yet it is still unclear if multilingual code construction has sig-

nificant security implications and real security consequences. This

paper aims to address this question with a large-scale study of popu-

lar multi-language projects on GitHub and their evolution histories,

enabled by our novel techniques for multilingual code characteri-

zation. We found statistically significant associations between the

proneness of multilingual code to vulnerabilities (in general and

of specific categories) and its language selection. We also found

this association is correlated with that of the language interfacing

mechanism, not that of individual languages. We validated our sta-

tistical findings with in-depth case studies on actual vulnerabilities,

explained via the mechanism and language selection. Our results

call for immediate actions to assess and defend against multilingual

vulnerabilities, for which we provide practical recommendations.
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1 INTRODUCTION

Studies have shown that software written in multiple languages

(i.e., multi-language software) is dominant [21, 41, 49, 53, 76, 86].

Intuitively, this prevalence has to do with the benefits of combining

the best functional capabilities of different languages [3, 16, 55].

Yet the decisions on language selection may not fully depend on

functionality considerations: As earlier works initially suggested [4,

40, 46], the decisions may come with security [35, 91] consequences.

Cyber threats rooted in code vulnerabilities [34, 62], as intro-

duced during the construction of software, have been on the rise [30].
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Despite the dominance of multilingual construction in modern soft-

ware practice for years, it is still not clear whether multilingual
construction has significant security implications and real security
consequences in terms of vulnerabilities in the code. In particular,

we do not know whether certain language combinations are more
associated with code proneness to vulnerabilities than others and, if so,
what contributes to the greater or weaker associations. It also remains

unknown whether the association, if exists, indicates actual vulnera-
bilities. Answers to these questions are essential for understanding

and defending the holistic security of multi-language software.

Among a number of relevant-looking works [13, 16, 43, 55, 76,

89, 93], the majority addressed individual languages. Of the few
works on multi-language software, most were focused on preva-

lence [54, 86] and good/bad practices of developers [3], or only

limited to JNI (Java-C) programs [40, 46, 91]. Grichi et al. [35] re-

ported likely greater security risks of multilingual code than single-

language ones, but still for JNI code only and based on only 10

projects. Individual languages were found to have little association

with bug proneness [10, 76]. Yet it is unclear if the same holds be-

tween vulnerability proneness and selections of multiple languages.

Relevant works [13, 21, 45, 53] looked at high-level companionship

among languages, but not code-level interfacing between languages,

nor were they concerned with security vulnerabilities.

In this paper, we conduct a security-focused characterization study
of multi-language software, targeting those in the open source world
while with a focus on vulnerability proneness through the lens of

language selection and language interfacing mechanism. Motivated

by the foregoing questions, our study has three specific aims:

• Elucidate the security relevance of language selection in terms

of the quantitative association between such selections and the

resulting code’s vulnerability proneness;

• Explain/justify the relevance via such proneness of individual

languages and language interfacing mechanisms;

• Validate/concretize statistical findings about the vulnerability

proneness by connecting it to actual vulnerabilities.

To that end, we (1) developed a new taxonomy and two novel tools

for multilingual code analysis, hence (2) conducted extensive statis-

tical analyses of 4,001 popular multi-language projects on GitHub

and 20.37 million commits in their 3-year evolution history, and (3)

manually inspected 50 projects and 500 commits for each, both ran-

domly sampled. With these facilities, we answered three questions

(justified by the specific aims) with key findings as follows:

• RQ1: How is language selection related to the vulnerabil-

ity proneness ofmultilingual code that uses the languages?

We found that language selection was overall strongly associated

with the proneness and the association was even stronger for

specific categories of vulnerabilities. Some language selections

(e.g., c++ python) were much more prone to vulnerabilities overall
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than others (e.g., c c++ python), and the same selection (e.g., c shell)

can be much more prone to one vulnerability category (e.g., risky
resource management) than to others (e.g., insecure interaction).
The most prone selections were c c++ shell and c python.

• RQ2 What are the underlying factors contributing to the

stronger or weaker vulnerability proneness of a language

selection than others? We identified and examined two intu-

itive contributors: the individual languages selected, and the

mechanisms of interfacing across languages. We found that the

interfacing mechanisms, especially those via code-level function

calls (either explicitly or implicitly), were overall strongly associ-

ated with the multilingual code’s proneness to both vulnerabili-

ties in general and to particular vulnerability categories. Some

mechanisms (e.g., foreign function invocation) were clearly more

prone than others (e.g., embodiment), and the most prone mech-

anism was implicit invocation. We found overall even stronger

association of individual languages among the studied selections

with such proneness. The most prone were java and c. However,

the proneness of language selections was correlated with that of

the mechanism of interfacing across the selected languages, not
with the proneness of the individual languages in the selections.

• RQ3Does the vulnerability proneness ofmultilingual code

indicate actual vulnerabilities in the code? The statistical

proneness was validated and concretized in sizable random man-

ual sampling to strongly indicate actual vulnerabilities. Exten-

sive in-depth case studies further demonstrated the presence of

various kinds of real-world vulnerabilities in the sampled multi-

lingual code. All of the vulnerabilities were explainable by the

underlying language selection and interfacing mechanism.

Importantly, we define/quantify the proneness of multilingual code
as #likely vulnerability-fixing commits in the code’s version history.

Then, we define the proneness of an individual language, a language
selection, or an interfacing mechanism as their statistical association

with the proneness of the underlying code—and quantify these

proneness metrics via the association significance/coefficients. This

paper only addresses such associations, not causality—we never
intend to claim multilingual code vulnerabilities are "caused by or

due to" the individual languages, the holistic language selections,

or the language interfacing mechanisms used in the code.

Contributions and significance.Our novel empirical results pro-

vide not only the overall strong statistical grounds for the vulnerabil-

ity proneness of multilingual code, but also offer extensive evidence

on connections between the proneness and actual vulnerabilities.

Based on these findings, we provided practical recommendations

to researchers, developers, and tool builders, which facilitate un-

derstanding, analyzing, and defending against vulnerabilities in

multilingual code. We also contribute an automated vulnerability

classifier of commits more accurate than state-of-the-art peer tools,

the first automated language interfacing mechanism detector based

on the first taxonomy of such mechanisms, and a real-world vulner-

ability dataset of a greater size, accuracy, and diversity (covering

more projects) than peer datasets. These new tools and dataset

immediately support the practical adoption of our suggestions.

Open science. Source code and datasets are all available in our

artifact and have been made publicly accessible.
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Figure 1: Overview of our study process.

2 METHODOLOGY

2.1 Study Overview

Figure 1 illustrates the overall process flow of our study. As its

primary input, the process takes the repositories of open-source

projects on GitHub [1]. From this source, we mined repository meta-

data hence selected multilingual projects that met a few criteria,

and then retrieved commit information for each project.

Based on this dataset, we performed three main analyses: vul-

nerability categorization (VC), language interfacing classification

(LIC), and in-depth case studies (ICS). VC identifies and categorizes

security vulnerabilities based on commits; further, with the VC

results, a negative binomial regression (NBR) analysis [7] examines

the relationships between vulnerability proneness and language

selection to answer RQ1. Then, LIC analyzes each project’s code to

recognize and classify its language interfacing mechanism. We also

applied NBR over the same set of projects as for RQ1 to discover

the association of those mechanisms and individual languages with

the project vulnerability proneness to answer RQ2. Finally, we

randomly sampled a subset of the projects to examine their vulnera-

bility specifics through extensive manual inspections, concretizing

the statistical findings obtained from RQ1 and RQ2, to answer RQ3.

2.2 Repository Mining

We mined repositories using the GitHub API [2] while applying

four filters (selection criteria) as summarized and justified below:

• The repository has 1,000 or more stars—a popularity indicator

and threshold used in peer prior studies [15, 22, 67, 76, 79]; these

projects gained more attention, thus the (multi-language) soft-

ware practice embodied in them potentially has greater influence.

• The repository has been updated in the latest 6 months—a reason-

able indicator of activeness; more active projects is more likely

to be representative of ongoing practices.
• The repository has been in maintenance for at least three years

until 2020 or later—a reasonably long version history for identi-

fying vulnerability proneness based on commits.

• The language selection did not change during the studied evolu-

tion period (i.e., three years)—essential for validly analyzing the

effects of language selection on vulnerability proneness.

With these filters, our data sampling worked in two steps. First, we

sampled projects that satisfy the first two criteria until we obtained

10,000 satisfying projects—this number represents a reasonably

large scale. Second, we filtered these 10,000 projects using the other

two criteria while dismissing single-language projects.

Specifically, for the second step, we ensured to only include

unique projects—no project is a fork of another in the dataset. We

also ignored those that are not actual software development projects

https://figshare.com/s/f56fd5f5319bbfa5250a
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(e.g., course projects, teaching/tutorial code)—many on GitHub

are not [42]. For each project, we retrieved the language URL for

its repository, with which the GitHub API enables us to query

the detailed language information, including the set of languages

selected (referred to as language combination or language selection),
of the project. Languages with <1% of total code size were removed

from each project’s language selection, and then projects using <2

languages left were dismissed.

The above two steps resulted in 4,001 multi-language projects
which were eventually used in our study; these projects cover a

variety of language selections unevenly distributed (e.g., css, html,

javascript:10.4%, c, c++, shell: 4.8%, c, python:2.3%). We then retrieved

all the commits of each chosen project in its 3-year version history,

resulting in 20.37 million commits in total.

2.3 Vulnerability Categorization (VC)

To examine the security relevance of language selection (as a way

to justify such selections), we needed to know, for each project,

the overall vulnerability proneness and the proneness with respect

to particular vulnerability categories. To that end, we developed

a new tool that identifies and categorizes vulnerabilities based on

commits, and applied it to each project in our sample set.

In a well-known list compiled by MITRE and the SANS Insti-

tute, the top 25 most dangerous CWEs [56] are categorized into

three high-level categories [52]: Porous defenses (11 CWEs), Risky
resource management (8 CWEs), and Insecure interaction (6 CWEs).

For each category, we applied common text pre-processing [38]

(e.g., tokenize, lemmatize, remove stop words) to the description of

each CWE in the category to extract security-related keywords or

phrases. For instance, we extracted the phrase “integer overflow"

for CWE-190 in Risky resource management. Table 1 lists such key-

words/phrases per category. We then applied the same process to

changed code in each commit as a natural language token sequence.

Next, we used the FuzzyWuzzy technique [17] to match the

keywords/phrases that characterize each of the three vulnerability

categories against the tokens in a commit including its log (i.e., com-

mit message) and code. Compared to other popular approaches (e.g.,

direct keyword searching, regex matching), FuzzyWuzzy does not

require exact string matching but reports the similarity between the

patterns and input strings; hence it strikes a better balance between

precision and recall. For instance, in our preliminary experiments,

direct keyword searching caused too many false negatives, due

to exact string matching with respect to diverse/irregular word-

ing/styles of commit messages (between vulnerability-relevant and

irrelevant ones); Regex matching was relatively more effective, but

not using any wildcards degenerated it to direct keyword searching,

while extensively using wildcards caused too many false positives.

As shown in Algorithm 1, we first retrieve these categories (line

2) and apply the same text pre-processing to the given commit (line

3), followed by computing a match score between each category

and the commit (lines 5–21). For each category, we retrieve (line

7) and traverse its keywords/phrases (lines 8–20). Next, for each

phrase/keyword of length 𝑛, the pre-processed commit text is split

into 𝑛-grams (lines 9–17), which are matched against the phrase

with FuzzyWuzzy (line 18). For better precision, we use a minimal

score of 90 as threshold (lines 6) and take the highest score overall

all phrases of a category (lines 19–20) as the score against that

Algorithm 1: Identifying and Clasifying a vulnerability-fixing commit

Input:𝐶𝑚𝑚𝑡 : a commit including its log and code snippet

Output: 𝑣𝐶𝑎𝑡 : the vulnerability category of𝐶𝑚𝑚𝑡

1 Function classifyCommit (𝐶𝑚𝑚𝑡 )
2 𝑉𝐶← initVulCategory () /* Categories with keywords/phrases */

3 𝐶𝑚𝑚𝑡 ← preprocessText (𝐶𝑚𝑚𝑡 ) /* Tokenize, stemmatize, etc. */

4 𝐶𝑎𝑡𝑆𝑐𝑜𝑟𝑒← 𝜙

5 foreach𝐶𝑎𝑡 in𝑉𝐶 do

6 𝑆𝑐𝑜𝑟𝑒← 90 /* The minimum match score as the threshold */

7 𝑃ℎ𝑟𝑎𝑠𝑒𝐿𝑖𝑠𝑡 ←𝐶𝑎𝑡 .phrases /* Keywords/phrases of category 𝐶𝑎𝑡 */

8 foreach 𝑃ℎ𝑟𝑎𝑠𝑒 in 𝑃ℎ𝑟𝑎𝑠𝑒𝐿𝑖𝑠𝑡 do
9 𝑁𝑝 ← getWordNum (𝑃ℎ𝑟𝑎𝑠𝑒) /* 1 if 𝑃ℎ𝑟𝑎𝑠𝑒 is a keyword */

10 𝑁𝑐 ← getWordNum (𝐶𝑚𝑚𝑡 ) /* Number of tokens */

11 𝑥𝐺𝑟𝑎𝑚𝑆𝑒𝑡 ← 𝜙 /* The set of n-grams in 𝐶𝑚𝑚𝑡; 𝑛=𝑁𝑝 */

12 𝐼𝑛𝑑𝑒𝑥 ← 0

13 while 𝐼𝑛𝑑𝑒𝑥 < 𝑁𝑐 do

14 𝐸𝑛𝑑 ← 𝐼𝑛𝑑𝑒𝑥 + 𝑁𝑝 /* Split 𝐶𝑚𝑚 into n-grams */

15 𝑥𝐺𝑟𝑎𝑚𝑆𝑡𝑟 ←𝐶𝑚𝑚𝑡 [𝐼𝑛𝑑𝑒𝑥 :𝐸𝑛𝑑]

16 𝑥𝐺𝑟𝑎𝑚𝑆𝑒𝑡 .append (𝑥𝐺𝑟𝑎𝑚𝑆𝑡𝑟 )

17 𝐼𝑛𝑑𝑒𝑥 + +
/* Match 𝑃ℎ𝑟𝑎𝑠𝑒 against 𝐶𝑚𝑚’s n-grams with FuzzyWuzzy */

18 𝑅𝑒𝑠𝑢𝑙𝑡 = FuzzyWuzzy.extractOne (𝑃ℎ𝑟𝑎𝑠𝑒 , 𝑥𝐺𝑟𝑎𝑚𝑆𝑒𝑡 )

19 if 𝑅𝑒𝑠𝑢𝑙𝑡 .𝑠𝑐𝑜𝑟𝑒 > 𝑆𝑐𝑜𝑟𝑒 then

20 𝑆𝑐𝑜𝑟𝑒← 𝑅𝑒𝑠𝑢𝑙𝑡 .𝑠𝑐𝑜𝑟𝑒

21 𝐶𝑎𝑡𝑆𝑐𝑜𝑟𝑒[𝐶𝑎𝑡 ] = 𝑆𝑐𝑜𝑟𝑒 /* Keep the best match score with 𝐶𝑎𝑡 */

22 𝑣𝐶𝑎𝑡 ← maxScoreCat (𝐶𝑎𝑡𝑆𝑐𝑜𝑟𝑒) /* Take the best-matched category */

23 return 𝑣𝐶𝑎𝑡

category (line 21). The best matched category is finally returned as

the vulnerability category of the commit (lines 22–23).

Any commit was identified as a vulnerability-fixing commit if

it was categorized into one of the three categories with score>90.

The key assumption here is that if a commit includes phrases/key-

words relevant to a category, in its log or code, then the commit

represents an attempt to fix the corresponding type of vulnera-

bilities. Given that accurate vulnerability detection/categorization

remains an open challenge, we used this approximate, yet effi-

cient and language-agnostic approach under this assumption, in

the same spirit as prior work [76] identifying bug-fixing commits

based on single keyword search but in commit logs only. Eventu-

ally out of the total of 20.37 million commits, we detected 141.38K

as vulnerability-fixing, of which 36%, 48%, 16% fall in the three

categories, respectively, as shown in Table 1.

To evaluate our approach, we randomly sampled 50 projects

and 500 commits for each, and measured the precision and recall

based on manual ground truth. The results are listed in the last

two columns of Table 1. In producing the ground truth, the au-

thors independently labeled the sampled commits, by (1) reading

the commit log, (2) checking the associated code snippet, and (3)

checking the issue comments whenever available. Then, they cross-

validated and accepted the label for each commit when all agreed.

For cases with initial disagreement, dedicated discussions were held

to reach final decisions. It is worth noting that each ground-truth

vulnerability-fixing commit corresponds to an actual/confirmed
vulnerability rather than just keyword/phrase matches. While not

complicated, our technique achieved a quite competitive level of

accuracy compared to the state-of-the-art peer tools—e.g., D2A [94]

which only reported 53% accuracy (based on a small manual study

of only 57 commits in total) and VCCFinder [70] which was even

less accurate. We cannot make strong claims here though since we

did not compare these tools on the same dataset—it is not immedi-

ately feasible to compare them against our tool on multi-language

projects as they both target C/C++ projects. Meanwhile, our tool

Lice is language-independent hence more widely applicable.
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Table 1: Characteristics and our vulnerability categorization precision (Prec) and recall (Rec) of the 20.37million commits (Cts)
Category Security Vulnerability Description Search Keywords/Phrases %Cts Prec Rec

Porous

defenses

these are the vulnerabilities that are related to de-

fensive techniques that are often misused, abused,

or just plain ignored.

missing authentication, missing authorization, hard coded credential, missing

encryption, unnecessary privilege, user-controlled key, authorization bypass,

broken cryptographic, excessive authentication, privilege escalation, etc.

36% 79% 81%

Risky resource

management

the creation, usage, transfer, or destruction of im-

portant system resources is not properly managed.

deadlock, data race, data leak, buffer overflow, stack overflow, memory leak,

exposed danger, integer overflow, memory corruption, untrusted control, etc.

48% 83% 86%

Insecure

interaction

data is sent and received between separate com-

ponents, modules, programs, processes, threads, or

systems in insecure ways.

sql injection, command injection, request forgery, reflected xss, unrestricted up-

load, CSRF, unintended proxy, unintended intermediary, incomplete blacklist,

origin validation error, etc.

16% 81% 88%

2.4 Language Interfacing Classification (LIC)

To gain an in-depth understanding of the security relevance of

language selection, we had to determine the language interfacing

mechanism of each project. We thus developed a taxonomy of such

mechanisms through extensive manual search via code and relevant

documentation reviews. As per this taxonomy, we then developed

a new tool for automated interfacing classification.

2.4.1 Taxonomy. In our taxonomy, we define four mechanisms:

Foreign function invocation (FFI) A primary way of interfac-

ing between mainstream programming language is FFI [46, 85],

with which the host language provides a foreign function interface

to match its semantics and calling conventions with those of the

guest language. For instance, Java (the host) provides Java Native

Interface (JNI) to support interaction with native code written

in C (the guest). Two prominent features of FFI are that (1) the

language interfacing follows standard definitions as documented

(e.g., JNI [65], Python extension [73]) and (2) the interactions are

implemented with explicit function invocations.

Implicit invocation (IMI) We define IMI as a mechanism with

which different language components interact implicitly via inter-

process communication (IPC)—for instance, socket-based message

passing. This is often seen in multi-language distributed systems.

Embodiment (EBD) The involved languages do not interact by

explicit/implicit invocations but via one embodying the other—the

actual interaction often occurs within the underlying runtime sys-

tem (e.g., a web browser engine) that executes the multi-language

program. Typically, these languages are interdependent on each

other and even co-exist. For instance, interfacing in the language

selection {css, html, javascript} is via EBD as seen in Web apps.

Hidden interaction (HIT) In a selection with this mechanism,

there are no any code-level evidence of connection, even implicit

ones, between the languages. The interaction is often realized

through external data sharing. For instance, a Python component

downloads Web data as inputs of an analyzer written in C.

2.4.2 Classification Technique. For our study, we developed a lan-

guage interfacing classification engine (Lice), as described below.

As shown in Figure 2, Lice takes a project repository as its input

and it outputs the mechanism labels for the project. It works as a

chain of classifier sets, where each set focuses on one of the four

mechanisms and each classifier focuses on a unique pair of lan-

guages. Underlying each classifierC is a custom finite state machine

(cFSM), as illustrated for C-Python in the figure and defined below:

C = (𝑠0, F, 𝛿, S, R,Φ), 𝑠0 ∈ S, F ⊂ S, 𝛿 : S × R→ S, 𝛿∗ : S × R∗ → S

where 𝑠0 is the initial state; F is the final state set; S is the state set; R

is the input set: a set of patterns each represented by a regex; 𝛿 is the

state-transition function and Φ is a regex engine. Given a sequence

FFI classifier set

IMI classifier set

EBD classifier set

HIT classifier set

C_Python
classifier classifier

Ruby_Java
classifier

S0

S1

Fin

S2

Import.*ctypes

#include <Python.h>

ctypes.CDLL

Py_Initialize.*

Mechanism 
labels

Project 
repository

LICE

initial 
state

Figure 2: The proposed interfacing classification technique.

of inputs I = {𝐼0, 𝐼1, ..., 𝐼𝑛}, Lice applies the engine to obtain a set

of matched patterns R = Φ(I). Iff 𝛿∗ (𝑠0,R) ∈ F, I is accepted by

C and the resulting label is that of the mechanism focused on by

the classifier set that includes C; otherwise, Lice moves to the next

classifier set—the last (HIT) set must accept I.
First, we manually built each classifier in Lice. We started with

the top 12 languages in the top language selections found in our

study (results for RQ1). Then, for each of the𝐶2

12
=66 language pairs,

we summarized the code (e.g., relevant function call) patterns of in-

terfacing between the two languages each as a regex by extensively

inspecting related real-world programs and official documentation

(e.g., that on JNI). Next, we crafted the cFSM from the resulting

regexs and their relationships—given the diversity of specific use

cases of interfacing between the two languages, usually multiple

patterns need to be observed in particular sequences to accurately

recognize a mechanism, which justifies our use of automaton for

classification. In the end, we found 20 of the 66 pairs used FFI hence

created 20 classifiers for the FFI set.

Similarly, for the IMI classifier set, we created 7 classifiers by

inspecting relevant artifacts (e.g., D-bus [69], gRPC [36]). From our

top language selections, we only found one javascript, css, html

using EBD; thus we created one classifier for the EBD set. Finally,

the HIT set also includes one classifier which trivially accepts any

input and labels it as “HIT". Following our procedure, Lice can be

easily extended to include additional classifiers. Further details on

the current 29 classifiers can be found in our artifact package.

When applying it to a project, Lice produces the mechanism

label(s) by analyzing the source files as I, according to Algorithm 2.

After compiling regexs in all the available classifiers (lines 2–4),

Lice finds matched patterns R = Φ(I) (line 6) in each file (line

5) and picks relevant classifiers (line 7). If a classifier accepts all

the matched patterns (regexs), the corresponding mechanism is

recognized (line 8–10). To determine the acceptance, Lice runs the

nFSM as a non-deterministic finite automaton against those regexs

(lines 15–27). Importantly, it maintains a matching context (via the

state queue 𝑆𝑄 ) to obtain all possibly accepted regex sequences.

https://figshare.com/s/7e4def20b1028ebc5733
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Algorithm 2: Classifying a project by language interfacing mechanisms

Input: 𝑃 : a multi-language project repository

Output: 𝐿𝑃 : the set of interfacing mechanism labels for 𝑃
1 Function classifyProject (𝑃 )
2 𝐴𝐶← getClassifiers () /* Convene all the classifiers in LICE */
3 𝑅← compileRegex (𝐴𝐶) /* Compile all regexs in 𝐴𝐶 */
4 𝑅𝐶 ← createMap (𝐴𝐶) /* Create a map from regexs to classifiers */
5 foreach 𝑓 𝑖𝑙𝑒 in 𝑃 do

6 𝑅𝑀 ← scanRegex (𝑅, 𝑓 𝑖𝑙𝑒) /* Obtain matched regexs */
7 𝑃𝐶 ← pickClassifier (𝑅𝐶 , 𝑅𝑀 ) /* Fetch relevant classifiers */
8 foreach𝐶 in 𝑃𝐶 do

9 if classifyMatch (𝐶 , 𝑅𝑀 ) then
10 𝐿𝑃 .insert (𝐶.𝑙𝑎𝑏𝑒𝑙 ) /* One mechanism recognized */

11 if 𝐿𝑃 ==∅ then
12 𝐿𝑃 .insert ("HIT") /* Not FFI, IMI, or EBD, so defaulted to HIT */

13 return 𝐿𝑃

14 Function classifyMatch (𝐶 , 𝑅𝑀 )
15 𝑆𝑄 ← initStateQueue (𝐶) /* Initialize with the initial state of 𝐶 */

16 foreach 𝑟𝑚 in 𝑅𝑀 do

17 𝑞𝑙𝑒𝑛← 𝑆𝑄 .length

18 for 𝑘 ← 0 to 𝑞𝑙𝑒𝑛 − 1 do
19 𝑆 ← 𝑆𝑄 [𝑘]

20 𝑁𝑆 ← nextState (𝑆 , 𝑟𝑚 ) /* State transition on input 𝑟𝑚 */
21 if 𝑁𝑆 == 𝑁𝑈𝐿𝐿 then

22 continue

23 if isFinalState (𝐶 , 𝑁𝑆 ) then
24 return TRUE /* Reached a final state */

25 else

26 𝑆𝑄 .push (𝑁𝑆 ) /* Save context for a matched pattern */

27 return FALSE

Table 2: Evaluation results for Lice

Category %Projects Precision Recall

FFI 35.67% 85% 89%

IMI 78.91% 78% 82%

EBD 32.18% 96% 90%

HIT 5.36% 81% 84%

Average 85% 82%

As shown, Lice may return a hybrid mechanism. For instance,

given a repository with language selection {java, c, python}, Lice will

classify it as {FFI,IMI}: Java interfaces with C through JNI while C

interacts with Python through D-bus. Following a similar procedure

to that for evaluating our vulnerability categorization technique,

we evaluated Lice against 150 randomly sampled projects with

manual ground truth. The results are summarized in Table 2.

2.5 Statistical Methods

We use NBR to model the number of vulnerability-fixing commits

(as a response) against a set of factors (as predictors) related to

multi-language software projects to study the relationship between

vulnerability proneness and several indicator factors (e.g, language

selection), as inspired by peer work [76]. We chose NBR as it can

process data with over-dispersion [7, 76], a property of our datasets.

In this regression analysis for RQ1, each (language selection,
project) pair is considered a sample from the population of multi-

language software. Any of the project predictors is likely to influ-

ence the response. We consider the following predictors each as an

independent (control) variable of themodel: project age (#days since

creation), language selection size (#languages selected), and the

language selection itself. We mainly focus on language selections

as the indicator variables in our analysis to answer RQ1.

As the factors in our study are unbalanced (the number of projects

of different language selections varies in our datasets), we employed

weighted effects coding [75]. With this method, each regression

coefficient indicates the relative effect of the use of a particular

language selection on the response as compared to the weighted

mean of the dependent variable across all samples. Like in [76],

Table 3: Distribution of the studied (4,001) projects over the

top-20 language selections by %selecting projects

Language Selection % Selecting Projects

css html javascript 10.4%

c c++ shell 4.8%

python shell 3.6%

html python 2.7%

html ruby 2.4%

css html javascript python 2.3%

javascript python 2.2%

css html javascript shell 1.9%

javascript shell 1.9%

c shell 1.9%

java javascript 1.8%

html java 1.8%

c python 1.6%

c++ python 1.6%

objective-c ruby 1.5%

go shell 1.5%

c c++ python 1.5%

javascript php 1.4%

c c++ python shell 1.4%

java shell 1.4%

Table 4: NBR coefficients on the vulnerability proneness of

language selections. AIC=42150, BIC=42383.08, Log Likelihood=-21038,

Deviance=8313.3; marks: ***p<0.001, **p<0.01, *p<0.05
Independent factors Coeff. Std. Error

(Intercept) 1.4672 0.051 ***

project age 0.0001 0.001 ***

language selection size 0.0483 0.004 ***

css html javascript -0.0841 0.073

python shell 0.2818 0.069 ***

go shell 0.3234 0.077 ***

c c++ python shell -0.1922 0.201

javascript python -0.0925 0.113

css html javascript shell 0.1522 0.092 *

c c++ python -0.0300 0.162

objective-c ruby -0.2838 0.120 *

html python -0.4557 0.109 *

css html javascript python -0.0666 0.101

c++ python 0.4613 0.144 **

html ruby -0.1324 0.121

c python 0.6253 0.222 ***

c c++ shell 0.7641 0.098 ***

java shell 0.2766 0.096 **

javascript shell -0.2041 0.084

javascript php 0.1061 0.088 **

html java -0.1493 0.064

java javascript 0.2197 0.093 *

c shell 0.3019 0.125 *

we used a Chi-Square [18] test to check the dependence between

two factor variables; in a case of dependence, we used an r × c

equivalent of the phi coefficient to compute the effect size [19].

We did the same analysis for RQ2, but changing the indicator

variables to interfacing mechanisms and individual languages.

3 RESULTS

In this section, we present and discuss main results and findings.

3.1 RQ1: Language Selection’s Security Relevance

We studied two aspects of the security relevance of language selec-

tion: (1) differential vulnerability proneness of language selections—
whether some language selections are more vulnerability-prone

than others, and (2) topic traits of security relevance—the traits of
security topics in the underlying commit data that contribute to

(and thus help interpret) the effects of language selections on multi-

language software security. For brevity, we elaborate the results for

the top (most frequent) 20 language selections in our dataset, as

listed in Table 3. As we found in preliminary experiments, examin-
ing more or even all selections did not change our conclusions.
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3.1.1 Differential Vulnerability Proneness of Language Selections.
To quantify the overall relationship between language selection and

the proneness, we used a NBR model in which language selections

are encoded with weighted effects as predictors and the number of

vulnerability-fixing commits as a response (i.e., dependent variable).

Details of this model are summarized in Table 4.

The first two independent factors (project size, language selection
size) are control variables. Our study is not focused on the impact

of these factors, albeit all the impact is significant as expected. All

of the other independent factors—the language selection variables

(e.g., html ruby)—are indicator variables.

The coefficients here compare each language selection (per project)

to the grand weighted mean of language selections in all projects.

Each coefficient falls in one of three categories: (1) statistically

insignificant according to the 𝑝 values (>0.05), (2) significant and

positive, and (3) significant and negative. A positive coefficient indi-

cates the corresponding language selection (e.g., c c++ shell, css html

javascript shell) is associated with more commits intended for fix-

ing security vulnerabilities, hence is more vulnerability prone, than

an average language selection. Likewise, a negative coefficient indi-

cates a language selection (e.g., html python, objective-c ruby) is less

vulnerability prone than the average case—in other words, these

selections are less likely to result in vulnerability-fixing commits.

Table 5:NBR coefficients on the proneness of language selec-

tions to each of the three high-level vulnerability categories.

marks: ***p<0.001, **p<0.01, *p<0.05

Independent factors
Porous defense Risky resource mgmt. Insecure interaction

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

(Intercept) -2.167 0.157 *** 0.4746 0.070 *** -2.7066 0.149 ***

project age 0.0001 0.001 * 0.0002 0.009 ** 0.0087 0.013

language selection size 0.0811 0.010 *** 0.0624 0.005 *** 0.0767 0.010 ***

css html javascript -0.3234 0.218 -0.1741 0.105 * 0.3042 0.195 *

python shell 0.5527 0.212 ** 0.3627 0.093 *** 0.3159 0.189

go shell 0.4895 0.221 * 1.0764 0.099 *** -0.5575 0.264 *

c c++ python shell -0.7087 0.641 -0.6020 0.249 * -2.1799 0.180

javascript python 0.7464 0.339 * -0.8805 0.161 *** 1.8017 0.333 ***

css html javascript shell 0.8216 0.281 ** 0.1136 0.132 1.2334 0.301 ***

c c++ python -0.2442 0.509 0.0927 0.202 1.8819 0.295

objective-c ruby -0.2630 0.424 0.0855 0.170 -1.4854 0.626 *

html python 0.0735 0.315 -1.0742 0.163 *** 0.5449 0.287

css html javascript python 0.9098 0.306 * 0.2371 0.144 -1.6434 0.308 *

c++ python -0.1056 0.468 1.4384 0.181 *** -0.8860 0.583

html ruby -0.4525 0.357 * -0.6938 0.188 *** 1.6767 0.289 ***

c python -0.9907 0.714 1.2994 0.279 *** -1.7480 0.253

c c++ shell -0.3065 0.315 1.5537 0.123 *** -1.8835 0.443 ***

java shell -0.3145 0.316 0.7744 0.124 *** -1.0087 0.367 **

javascript shell -0.4194 0.264 -0.2721 0.120 * -1.5733 0.294 ***

javascript php 0.7695 0.226 *** -0.7815 0.125 *** 1.9509 0.200 ***

html java -0.1406 0.190 -0.2671 0.091 ** 0.4598 0.181 *

java javascript 0.6595 0.254 ** 0.1913 0.125 0.6386 0.237 **

c shell -0.4142 0.405 1.3067 0.156 *** -0.2594 0.371

AIC 25342 26358 13278
BIC 25575.03 26591.08 13511.08
Log Likelihood -12634 -13142 -6602
Deviance 7962.3 7679.5 4327.3

In essence, the coefficient of the language selection variable can

be understood as the expected change in the logorithm of depen-

dent variable (i.e., #vulnerability-fixing commits) with the other

independent variables considered constant. If we define a base fac-

tor (the average of expected changes across all language selections
here) as 𝜅, for a given coefficient of one language selection 𝛾 , then
we can predict the response as: N = 𝜅 × 𝑒𝛽 . For example, if a project

with an average language selection had five vulnerability-fixing

commits, among some total number of (any kind of) commits, then

the number of vulnerability-fixing commits would be expected as

5 × 𝑒0.7641 = 10.74 in the case of using c c++ shell, much greater

than the average of five. Similarly, selecting html pythonwould mean

fewer (5 × 𝑒−0.4557 = 3.17) vulnerability-fixing commits.

Vulnerability proneness of the studied projects were strongly associ-
ated with language selections overall. Some selections were clearly
more prone than others; c c++ shell and c python were most prone.

3.1.2 Topic Traits of Security Relevance. To gain a deeper under-

stand of this relevance, we examined how language selection is

associated with specific categories of vulnerabilities in terms of the

topic traits of the underlying commit data (logs and changed code).

To that end, we built a separate NBR model for each of the three

categories (Table 1). Each model is the same as the one for the over-

all relationship except that the response (dependent variable) is the

number of vulnerability-fixing commits belonging to the particular

category. Table 5 lists the details of the three models.

The deviance for each per-category NBR model is smaller than

the deviance for overall vulnerability proneness in Table 4, indicat-

ing that language selection had a greater impact on the proneness

to specific vulnerability categories than its overall impact on the

proneness to any kind of vulnerabilities. For example, the coefficient

of css html javascript was not significant per Table 4. In contrast, it

was significant in two per-category models here.

Porous defenses. Vulnerabilities of this category are due to the

misuse or lack of use of necessary security defense techniques (e.g.,

missing authentication for critical function, use of hard-coded cre-
dentials, missing encryption of sensitive data). Our results suggest a
strong association between language selection and these vulnerabil-

ities, similar to the overall association (Table 4). Certain selections

were particularly strongly associated with porous defense vulner-

abilities. The most noticeable is css html javascript python for its

greatest positive coefficient 0.9098 (and highest level of significance

strength too). Note that css html javascript has little (and insignifi-

cant) impact on these vulnerabilities, though. This contrast points

to the clear security influence of pythonwhen interacting with those

three Web languages. In particular, using just javascript and python

had a similar proneness (coefficient 0.7464); thus, these two may be

most responsible for the (greatest) vulnerability proneness of css

html javascript python. On the other hand, some selections (e.g., html

ruby) had strong but negative impacts (e.g., coefficient -0.4525), sug-

gesting they are relatively secure against this vulnerability category.

Similar observations can be made for other language selections.

Risky resource management (mgmt.) 48% of our vulnerability-

fixing commits fall in this category of vulnerabilities, which are due

to improper creation, usage, transfer, or destruction of important

system resources [52] (e.g., integer overflow/wraparound, uncon-
trolled format string). The results show that the impact of language

selection on these vulnerabilities was generally more significant

than that on the porous defenses category. One exception is java

javascript, which had a significant impact on the latter but almost

no impact on resource management vulnerabilities. Most of the

language selections having a greater-than-average association with

these vulnerabilities include c or c++: both are with unmanaged

memory type (hence prone to memory errors [47, 76]) and well-

known for being prone to memory vulnerabilities [61].

Insecure interaction. These vulnerabilities, to which 16% of our

vulnerability-fixing commits belong, are a result of insecure ways
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in which data is sent and received between separate components,

modules, programs, processes, threads, or systems [52] (e.g., cross-
site request forgery, cross-site scripting, SQL injection). While this

category was the weakest among the three (with respect to the

residual deviance of the model), the deviance explained by language

selection was still strong. The selections with significant, positive

coefficients were mostly combinations of languages commonly used

inWeb applications (e.g., javascript php, java javascript). This can be

explained by the fact that vulnerabilities induced by the interaction

among these Web development languages are indeed prevalent in

Web applications—in particular, interfaces between these languages

are well known to be vulnerable to code injections (e.g., cross-site
scripting commonly exploited by injecting javascript code [80]).

Language selection was more strongly associated with the proneness
to specific categories of vulnerabilities than to vulnerabilities overall.
The top selections were more prone to resource management risks
and insecure interactions than to porous defense risks.

3.2 RQ2: Factors Contributing to the Relevance

Earlier studies revealed cross-language links as possible points of

high risks in multi-language systems in general [54] and inter-

language dependencies as contributors to the vulnerabilities of

JNI programs in particular [35]. We thus examine the effects of

language interfacing on the vulnerability proneness of multilingual

code that uses corresponding interfacing mechanisms, as a way to

justify/explain the security relevance of language selection.We start

with an overview of how various mechanisms are used, followed

by the same two aspects of security relevance as examined for RQ1.

Another potential contributing factor lies intuitively in the indi-

vidual languages selected. Thus, we also examine their effects.

3.2.1 Overall Use of Interfacing Mechanisms. For each project, Lice
mined the interfacing mechanisms as completely as possible, re-

sulting in some language selections having hybrid mechanisms.

In total, it found 8 combinations of mechanisms, over which our

4,001 language selections were non-overlappingly distributed as:

pure FFI 8.68%, FFI EBD 1.19%, FFI IMI 24.55%, FFI IMI EBD
1.26%, pure IMI 29.23%, IMI EBD 23.87%, pure EBD 5.87%, pure HIT
5.36%. Implicit interfacing was dominant: 86% of them used IMI,
EBD, or both. One reason was that only a small portion (20/66) of

the language pairs whose interfacing patterns underlaid the con-

struction of Lice (cf. §2.4.2) supported FFI—not many languages

support foreign functions. Another justification lies in the ben-

efits of implicit interfacing—it helps reduce the coupling among

different (language) components and the complexity/difficulty (al-

though increasing the flexibility) of implementing the software,

especially with the availability of mature supporting frameworks

(e.g., gRPC [36] for interfacing among c, python, java, ruby). We

also found a substantial use of EBD, mainly due to projects using

the selection {javascript css html}. This echoes prior findings on the

common use of general-purpose programming languages interfaced

with domain-specific languages [54].

Implicit interfacing was dominantly used over explicit mechanisms
like FFI (e.g., JNI), justifiable by the practical benefits of the former.

3.2.2 Differential Vulnerability Proneness of Language Interfacing.
The 8 combinations of interfacing mechanisms were considered

Table 6: NBR coefficients on the vulnerability proneness of

language interfacing mechanisms. AIC=42186, BIC=42267.89, Log

Likelihood=-21080, Deviance=8545.8; marks: ***p<0.001, **p<0.01, *p<0.05
Independent factors Coeff. Std. Error

FFI 0.2817 0.092 **

FFI IMI 0.1676 0.095 *

FFI EBD -0.1454 0.415 *

FFI IMI EBD 0.7576 0.380

IMI 0.6441 0.164 ***

IMI EBD -0.3059 0.092 *

EBD -0.0811 0.089

HIT 0.4998 0.498

the independent variables (and predictors) in our NBR model here,

where the number of vulnerability-fixing commits is again encoded

as a response. Table 6 shows the details of this model which quan-

tifies the overall security effects of language interfacing.

The NBR numbers revealed strong effects of language interfacing,

explicit (i.e., FFI) or implicit (e.g., IMI, alone or with FFI), on the

vulnerability proneness of multilingual code. It is known that using

multiple languages make a system more vulnerable than when

using a single language [35]. Our results complement by offering

clear evidence of language interfacing mechanism as a major factor

of the overall security relevance of usingmultiple languages. Indeed,

contrasting the result here (e.g., Table 6) with that for RQ1 (e.g.,

Table 4) confirms that the more (less) vulnerable mechanisms were
those used in the more (less) vulnerable language selections.

Table 7:NBR coefficients on the proneness of language inter-

facing mechanisms to each of the three high-level vulnera-

bility categories. marks: ***p<0.001, **p<0.01, *p<0.05

Independent factors
Porous defense Risky resource mgmt. Insecure interaction

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

(Intercept) -1.2328 0.152 *** -1.5902 0.059 *** -2.0517 0.096 ***

FFI 0.5434 0.315 ** 0.4733 0.109 *** -1.3708 0.180 *

FFI IMI 0.3562 0.321 * 0.4758 0.114 *** -1.1683 0.239 *

FFI EBD 1.8357 0.266 * 0.7160 0.525 1.0950 0.634 *

FFI IMI EBD 0.3540 0.471 0.8610 0.487 * -2.0167 1.186

IMI 1.1156 1.368 ** 0.7457 0.531 0.6490 0.643 *

IMI EBD -0.4470 0.320 -0.3917 0.113 ** -0.3215 0.241

EBD -1.6342 0.312 * -0.3942 0.108 *** 0.3044 0.233 **

HIT -0.0088 0.270 1.2619 0.126 *** -0.1634 0.642

AIC 25082 26224 13330
BIC 25163.89 26305.89 13411.89
Log Likelihood -12528 -13099 -6652
Deviance 7521.4 7374.5 3897.1

Three mechanisms (FFI, FFI IMI, IMI) were significantly

more vulnerability-prone, which accounted for the majority (62.5%)

of the language selections in our dataset. Meanwhile, other mecha-

nisms were less prone (e.g., FFI EBD) or not significantly associated
with the proneness (e.g., EBD, HIT). Based on our extensive case

studies by code inspection, a key reason for these differential effects

is that FFI and IMI allow for immediate data interoperations at

language boundaries, via code-level (explicit/implicit) data/control

flows induced by direct function calls. Such high data interoper-

ability promises for programming ease but welcomes additional

surfaces for stealthy attacks. In contrast, these are not readily possi-

ble with EBD or HIT. Interestingly, EBD seemed to be not only more

secure than average by itself, it also appeared to help mitigate the

insecurity of more vulnerable mechanisms (e.g., FFI versus FFI
EBD, IMI versus IMI EBD). This is likely because its use helped re-

duce the amount of vulnerable cross-language data exchanges that

would otherwise be fully handled by the vulnerable mechanisms.
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Both explicit and implicit language interfacing mechanisms were
strongly associated with code vulnerability proneness overall; FFI
and IMI were the most vulnerability-prone mechanisms.

3.2.3 Topic Traits of Interfacing Effects. To understand the effects

on specific vulnerability categories, we built a separate NBR model

for each category, using the same predictors as in §3.2.2 but the
number of vulnerability-fixing commits only belonging to that

category as a response. Table 7 lists the details of the three models.

The results show that the three overall most vulnerable mecha-

nisms were strongly associated with each of the two dominating

vulnerability categories (cf. Table 1), which largely explained the

overall association strength. Meanwhile, among these three, both

FFI and FFI IMI actually had less-than-average proneness to Inse-
cure interaction vulnerabilities. The reason is because these vulner-

abilities were typically associated with Web languages (cf. §3.1.2),
which do not interact through FFI. This explanation was consoli-

dated by the positive association between this vulnerability cate-

gory and EBD, the dominant mechanism of interfacing across Web

languages (e.g., javascript php). The same can also explain the strong

effect of FFI EBD on this category. To verify, we manually sampled

and examined 10 projects that use {FFI EBD} and found that 7 of

them used the language selection {c c++ css html javascript}—the

domination of Web languages caused insecure interactions.

Proneness to insecure interaction vulnerabilities was most strongly
associated with using EBD but the strength was counteracted by
using IMI; The most overall-vulnerability-prone mechanisms (FFI,
IMI) were most prone to porous defense vulnerabilities.

3.2.4 Effects of Individual Languages. We performed the same NBR

analysis as in §3.2.2, with (1) the model predictors changed to

individual languages among the studied selections (1st column of

Table 4), and (2) every data point changed to 𝑘 points each for one

of the 𝑘 languages selected in the project but with the same project

vulnerability proneness value. Table 8 shows the model details.

Overall, the associations of individual languages were strong, even

stronger than those of language selections, with the proneness to

both vulnerabilities in general and the three specific vulnerability

categories. The most prone languages were java, c, go, and c++.

However, put together with Tables 4 and 5, the results show

that the proneness of these individual languages had generally no
consistent correlation with that of language selections. In some

cases, the language selections (e.g., c python) and some of the selected

individual languages (e.g., c) were consistently prone or not. Yet

in more cases, language selections (e.g., c c++ python) that include

one or more strongly prone languages (e.g., c and c++) were not

significantly prone at all (or even negatively prone). Also, there are

language selections (c python, c++ python, c c++ shell) that have much

stronger proneness than any of the individual languages selected.

On the other hand, contrasting Tables 6, 7, and 8 revealed mostly

consistent correlation in the proneness between language selections

and the corresponding interfacing mechanisms. For instance, the

proneness of c c++ shell and that of the interfacing mechanism

most commonly used in this selection IMI were consistently strong.
For another example, the proneness of html ruby and html java was

Table 8: NBR coefficients on the proneness of individual lan-

guages. marks: ***p<0.001, **p<0.01, *p<0.05

Independent factors
Overall Porous defense Risky resource mgmt. Insecure interaction

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

(Intercept) 1.2455 0.074 *** -2.2314 0.121 *** -0.4693 0.102 *** -3.5789 0.224 **

html -0.0747 0.044 * 0.2049 0.067 -0.1473 0.063 * 0.7461 0.133 *

javascript 0.0451 0.057 *** 0.1206 0.077 -0.1983 0.077 * 0.5609 0.158 ***

shell 0.1329 0.037 0.0596 0.061 0.1935 0.052 * 0.1132 0.114

ruby 0.2004 0.069 ** 0.7881 0.104 * -0.4241 0.104 1.3293 0.186 ***

go 0.4894 0.086 ** 0.9371 0.127 * 0.9696 0.113 *** 0.2514 0.293

java 0.6584 0.065 *** 1.0520 0.090 *** 0.6849 0.087 *** 0.6879 0.190 ***

css 0.0074 0.048 -0.0615 0.075 -0.1004 0.071 0.1032 0.141

python 0.0531 0.045 * 0.3908 0.073 -0.2044 0.061 * 0.7386 0.134 **

c 0.5444 0.061 *** -0.1515 0.093 1.1080 0.078 *** 0.1369 0.193

c++ 0.4271 0.059 *** -0.0018 0.090 0.7112 0.075 *** -0.7995 0.195 *

php 0.2480 0.074 *** 0.9188 0.100 *** -0.4876 0.109 * 2.1335 0.191 ***

objective-c 0.3827 0.131 * -0.6488 0.295 * 0.5943 0.189 ** -1.8621 0.644 *

AIC 31056 5202.8 17879.4 5200.4
BIC 31040.29 5187.09 17863.69 5184.69
Log Likelihood -15516 -2589.4 -8927.7 -2588.2
Deviance 5615.3 1808.3 5672.7 2141.0

Table 9: Sampled projects and numbers of confirmed vulner-

abilities (#Vul) in each, by language selection (LangSel, left

table) and interfacing mechanism (InterMech, right table)

LangSel Projects #Vul

c c++ shell

Pencil [68] 6

15

Ncmpcpp [59] 5

Proxysql [84] 3

Fontforge [32] 1

Lnav [82] 0

c python

Lily [29] 6

9

RediSearch [77] 2

Pillow [71] 1

Osmc [66] 0

Phoenix [23] 0

java shell

Ehcache3 [24] 5

6

Elassandra [25] 1

Quasar [87] 0

Smali [37] 0

Siddhi [81] 0

InterMech Projects #Vul

FFI

Angr [8] 6

13

RestKit [78] 5

Moderngl [57] 1

Printrun2 [44] 1

SDMongoDB [20] 0

FFI_IMI

Mysql5.6 [26] 5

8

Brackets-shell [6] 2

Openbr [64] 1

UPX [88] 0

VisPy [90] 0

IMI_EBD

UI-Grid [9] 2

4

Flask-Admin [31] 1

Wormhole [51] 1

Securedrop [33] 0

Statamic3 [83] 0

negative, which is consistent with the negative proneness of EMD,
the most commonly used interfacing mechanism in those selections.

The proneness of language selections was generally consistently
correlated with that of the underlying interfacing mechanisms, but
not consistently with that of the individual languages selected.

3.3 RQ3: Real-World Multilingual Vulnerability

Our results for RQ1 and RQ2 revealed (1) strong statistical relevance
of language selection to vulnerability proneness of multilingual

code and (2) strong statistical contribution of language interfacing

mechanism to that relevance. Now questions remain: (a) do those

general, statistical findings hold in concrete multilingual code? and

(b) does the statistically strong proneness indicate actual vulner-
abilities? and if so (c) what do they look like and how are they

induced by the language selections and interfacing mechanisms?.

To answer these, we conducted two large-scale manual studies:

one to (1) concretize/validate statistical findings from RQ1 and RQ2,

while the other to (2) demonstrate/explain actual vulnerabilities in
multilingual code indicated by the statistical proneness.

3.3.1 Concretize/Validate Statistical Findings. We randomly chose

3 top language selections and randomly sampled 5 projects for each,

as listed in Table 9 (left). Then, we randomly sampled 100 commits

for each project and looked into each commit to confirm if it was

indeed for fixing an actual vulnerability. The last two columns of

the table show the number of confirmed vulnerabilities (#Vul) per

project and the total for the language selection. The per-project

#Vuls are sorted to ease comparisons across language selections.
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As per our statistical numbers (Table 4), the selection c c++
shell was noticeably more vulnerability-prone than the selection

c python (coefficient 0.7641 vs. 0.6253, with the same level of

significance strength—𝑝<0.001). Now per the numbers of actual

vulnerabilities found, the c c++ shell projects were indeed notice-
ably more vulnerable than the c python projects in our random

samples. Similarly, the statistical finding that java shell was the

least prone to vulnerabilities (coefficient 0.2766 with 𝑝<0.01) among

the three chosen selections is also consistent with our case study

results here (the java shell projects sampled had the least #Vuls).

With a similar procedure but starting with 3 randomly chosen

interfacing mechanisms, we manually studied another random set

of 5 projects per mechanism, as listed in Table 9 (right). Per Table 6,

FFI (coefficient 0.2817 with 𝑝<0.01) was more vulnerability-prone

than FFI_IMI (coefficient 0.1676 with 𝑝<0.5). This is consistent with

the actual vulnerabilities found in our samples—the projects using

FFI had generally more vulnerabilities than those using FFI_IMI.
The least statistical proneness of IMI_EBD (coefficient -0.3059 with

𝑝<0.5) was also confirmed by the fewest vulnerabilities overall in

our sampled projects using this interfacing mechanism.

Our statistical findings on the differential vulnerability proneness
of both language selection (RQ1) and interfacing mechanism (RQ2)
were validated by (consistent with) the magnitude of actual vulner-
abilities in concrete multilingual code in our extensive case studies.

3.3.2 Demonstrate/Explain Actual Vulnerabilities. Weobservedwide

presences of cross-language vulnerabilities in our dataset. For space

limits, we demonstrate that in 4 cases that cover different language

selections and interfacing mechanisms. In the per-case figures,

arrow-dashed lines show the vulnerable information flows, of which

cross-language ones are in red; the associated (vulnerability-fixing)

commits are indicated by the code diffs with deleted lines grayed.

Case 1 (Figure 3). Revealed via commit [72], the TIFF image is

the user input, taken (line 1) and loaded (line 5) in python and

then decoded (line 11) eventually, via FFI (offered with python’s c
extension [74]), by _decodeStrip in c (line 20). Within this c func-
tion, the incorrect boundary check (line 27) led to a buffer over-read
vulnerability at line 32. The check should ensure the real row size

of the TIFF image (row_byte_size) is less than the expected (cal-

culated) size (unpacker_row_byte_size), as fixed by the commit

(line 28). This vulnerability is explained by the selection of c, which
is memory-unsafe, and the use of interfacing mechanism FFI, which

propagates the python data to the unsafe memory operation in c.
Case 2 (Figure 4). Found via commit [60], an insecure string

copy vulnerability was induced by FFI (offered with native abstrac-

tions for Nodej̇s [5]) also but in a different language selection c++
javascript. In javascript, testPortwas taken as the user input
(line 1). At line 3, a SerialPort object was initialized; then the c++
function open (defined at line 20) was called (line 4). Eventually, the
vulnerability occurred at line 15, where the string format specifier

(%s) was missing in the c++ function sprintf, causing the insecure
string copy vulnerability across the two languages here.

Case 3 (Figure 5). The commit [14] led us to a cross site request
forgery (CSRF) across 3 languages: twig interfacedwith javascript
via the EBDmechanism, while javascript and php exchanged data
(a token) over the network (i.e., via the IMI mechanism). The vul-

nerability was fixed by retrieving and validating the token (line 3)

Figure 3: Case 1–buffer over-read across c python.

Figure 4: Case 2–insecure string copy across c++ javascript.

Figure 5: Case 3–CSRF across twig javascript php.

for a file operation (renaming). The token was integrated into the

javascript function renamefile, which was embedded in twig
(html) at line 3. Then, the definition of renamefile was modified

accordingly in javascript (line 7), including adding parameters

and obtaining the token. In php, the token was extracted from the

request (line 20) and verified (line 21). If the token is invalid, the

server would refuse the request and abort (line 22).

Case 4 (Figure 6). The commit [28] fixed a NULL pointer deref-
erence vulnerability explained by using the lily language and c
that interfaced via the HIT mechanism. A code snippet in lily
was passed to an interpreter t at lines 5-9, where the variable
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Figure 6: Case 4–NULL pointer dereference across lily c.

b2 was initialized as None. When b2 reached line 8, the inter-

preter implemented in c tried to decode its class id at line 19

(right->value.container->class_id). However, the container
pointer was NULL when b2 was None, causing the NULL pointer

dereference vulnerability. To fix this issue, the interpreter added a

validation check at line 17 before dereferencing the pointer.

Cross-language vulnerabilities were widely present in the studied
multilingual code and were all explainable through the language
selection and interfacing mechanisms among the selected languages.

4 RELATEDWORK

Study of quality effects of languages.Recent studies have looked

at the fault proneness of design smells in multi-language soft-

ware [4] and how inter-language dependencies affect code qual-

ity [35]. Yet they were both limited to one particular language

selection (Java-C) and a small set (only 10 or less) sample projects.

The study by Abidi et al. [3] revealed that understandability is

the most impacted quality attribute in a multi-language system

based on the perceptions of 93 developers. Another study provided

empirical evidence that most developers had encountered at least

one bug related to cross-language linking and that the use of mul-

tiple languages increased the difficulty of bug fixing [54]. A few

other relevant studies [76, 93] are on individual languages rather

than language combinations. Our work differs in addressing the

security impact of language selection in real-world multi-language

projects. On the other hand, it would be interesting future work to

study the vulnerability proneness of single-language projects—prior
works [10, 45] examined single-language code’s proneness to de-

fects in general (including security defects) but did not particularly

investigate the proneness to security vulnerabilities. These kinds

of results can be compared with and complement ours.

Analysis of language interactions. Bissyandé et al.measured the

closeness between different languages that informs about language

interoperability [13]. Similar results were also obtained through an

assessment of polyglotism, which indicated strong relationships

between languages and revealed the sets of languages that tend

to be used together in practice [53, 86]. Our study also concerns

the interactions between languages but indirectly yet more deeply,

as we looked at languages in selections. Our work also differs by

looking beyond the companionship of languages, into the security

rationales underlying the language interactions (via interfacing).

Commit-based vulnerability identification. Like our VC tech-

nique, prior works also explored identifying vulnerabilities in code

repositories through analysis of commits. D2A [94] uses static ana-

lyzers and learning-based classifiers to detect vulnerability-fixing

commits. Another relevant tool is VCCFinder [70], which uses code

metrics and GitHub metadata as features to train a SVM classifier to

label a commit as vulnerability-contributing or not. The tool in [96]

uses features based on commit messages and bug reports to classify

a commit or report as vulnerability-related or not. Our approach is

different and tended to be more accurate (83% accuracy versus: 53%

by D2A, 36% by VCCFinder, 50% by [96] for commit classification).

Real-world vulnerability datasets. We contribute a dataset on

vulnerability-fixing commits, which is similar to D2A [94] in nature

but much larger in size (ours 141,380 versus their 18,653 such com-

mits) with much (30%) greater accuracy. Meanwhile, our dataset

complements to CVE-based datasets such as BigVul [27] and CVE-

fixes [11], which are much smaller and for C/C++ code only.

5 DISCUSSION

5.1 Tools and Dataset

Despite the overwhelming and growing dominance of multilingual

systems [49, 54, 86] in real-world software domains, tool support

for understanding and analyzing these systems is lacking. Beyond

our empirical findings, we contribute two novel tools: VC (§2.3) for
automatically identifying/classifying vulnerability-fixing commits,

and Lice (§2.4) for automatically identifying/classifying language

interfacing mechanisms [48]. Both tools offer promising accuracy;

they not only enabled our study but also will empower future

characterization studies and tool development for multi-language

software. In particular, VC outperformed the state-of-the-art peer

tools (as discussed in §4), while Lice is the first of its kind based on
our novel/first taxonomy of language interfacing mechanisms.

Importantly, using VC,we contribute an important, much-needed,

sizable dataset: a set of 141.38K vulnerability-fixing commits, along

with the repository information, associated issue ids, and bug tag-

ging whenever available. Beyond supporting relevant empirical

studies, this dataset can boost the performance of machine learn-

ing (ML), especially deep learning (DL) [63], based vulnerability

analysis (e.g., detection [95], repair [39]) tools. Extant such tools

suffer poor performance on real-world datasets [95] mainly because

the ML/DL models were only trained on largely artificial datasets

which do not well represent realistic vulnerabilities and codebases—

existing realistic datasets (e.g., [11, 27]) are small while existing

sizeable datasets are only artificial. Our commit dataset corresponds

to 141.38K pairs of real-world vulnerable samples and their fixed

versions, which can serve as a large-scale, realistic dataset to train

DL/MLmodels hence improve their performance against real-world

software. As discussed in §4, ours is much larger and of higher qual-

ity (due to VC’s higher accuracy) than the most recent peer dataset.

Lice can also be used beyond our studies. For instance, with the

interfacing mechanism it reports, it can guide the development of

cross-language vulnerability detection [50] techniques. Interfacing-

mechanism-specific detection rules/algorithms can be then devised,

which would be more accurate than a universal/generic technique

handling multilingual code of arbitrary interfacing mechanisms.
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5.2 Implications

5.2.1 Attention to Cross-Language Vulnerabilities. We found strong

vulnerability-proneness of multilingual code (§3.1,§3.2). Our exten-
sive case studies further confirmed that the proneness did indicate

actual vulnerabilities (§3.3). Yet, existing works on these vulnerabil-

ities are rare. For example, after checking 1,000+ papers on program

analysis randomly chosen from those published in the past 5 years

in the ACM digital library, we found only 0.8% of these are generally
related to cross-language analysis, and these 0.8% almost [58] exclu-

sively targeted a particular language selection c java [4, 40, 46, 91].
However, c java was not even in our top-20 language selections.

We suggest that our community starts to attend to this severe gap

and urgent issue by investing in tools and studies on cross-language

defects while going beyond Java-C (JNI) software.

5.2.2 Practical Recommendations for Researchers. While both based

on GitHub, earlier studies [10, 76] found little effect of individual
languages on software proneness to defects, whereas ours revealed

strong effects of language selection on the vulnerability proneness

of multilingual code (§3.1). We further found (§3.2) that these ef-
fects were generally correlated with those of language interfacing

mechanisms, rather than with those of individual languages. Thus,

we suggest researchers examine and utilize language interfaces

when addressing multilingual code security.

We found FFI and IMI as the most vulnerability-prone mecha-

nisms for language interfacing. Both of them allow for direct data

interoperations via code-level invocations (explicit or implicit). We

suggest to prioritize on multilingual code using these mechanisms,

addressing not only explicit cross-language interactions (e.g., via

foreign/native functions) but also implicit ones (e.g., via RPC).

5.2.3 Practical Recommendations for Tool Builders. In particular for
those to build tools for multilingual security, we suggest they lever-

age ML/DL models in addition to program analysis approaches.

ML/DL models can be built using attributes of language selec-

tions (e.g., size, properties like types of each selected language)

and those of interfacing (e.g., mechanism category, interface pa-

rameters) as learning features, while leveraging our large, realistic

vulnerability dataset for training and validation. Meanwhile, given

the diversity of language selection and interfacing, we suggest code-

analysis-based approaches focus on language-independent analyses
(e.g., [12])—developing a language-selection-specific analysis like

the ones for Java-C is not sufficient [92]. One specific approach is

to compute cross-language information flow to identify multilingual

vulnerabilities, as we demonstrated in our case studies (§3.3).

5.2.4 Practical Recommendations for Developers. Our results clearly
indicate that some language selections (e.g, c python) were sig-
nificantly more prone to vulnerabilities than others (§3.1) and the

proneness did indicate real vulnerabilities (§3.3), so were some in-

terfacing mechanisms (e.g., FFI, IMI) than others (§3.2). We suggest

developers choose less prone selections andmechanisms, if possible,

to make the multilingual code potentially more secure. Moreover,

we found that it was not uncommon that different kinds of interfac-

ing mechanisms were used for the same language selection. Thus, if

a language selection must be chosen, we suggest to still choose less

vulnerability-prone mechanisms for interfacing among the chosen

languages if possible. Finally, based on Tables 5 and 7, we suggest to

make choices of the selections and mechanisms that are less prone

to the categories of vulnerabilities that are most concerning.

5.3 Threats to Validity

The validity of our results was affected by the inaccuracy of our

Lice tool used for language interfacing classification. Moreover, the

tool was built on our manual summaries of interfacing patterns

among the top 12 mainstream languages, and it was applied in our

study around the manually derived taxonomy. And the technique

was evaluated only against a small sample. Biases and errors during

such manual processes may have caused greater inaccuracy in our

study results than what we reported. A similar threat applies to our

tool for commit-based vulnerability categorization and the manual

process of evaluating its accuracy. In addition, the correctness of

both tools is limited by the accuracy of the underlying tools used

(NLTK, Regex, and FuzzyWuzzy). To mitigate these threats, we

followed a cross-validation procedure by which the results were

approved by the three authors involved. We also chose to sample

randomly in the manual evaluation to reduce the associated threat.

Relative to the population ofmulti-language software, our datasets

only represent small samples. Thus, our findings and conclusions

are best interpreted for the sampled projects, and we cannot claim

that our results generalize to any other projects. To reduce this

threat, we used a reasonably large dataset and applied multiple

project filters along with random sampling to reduce data noises.

Meanwhile, we cannot rely on CVEs due to the small dataset size.

In addition, we did not differentiate languages of different classes

(data modeling versus programming languages) and treated all lan-

guages equally in calculating code sizes in bytes. We actually in-

tended not to limit our study to a particular language class—note

that non-programming languages can play critical roles in code

vulnerabilities too (e.g., the twig templating language contributed

to the vulnerability in Figure 5); We also did not rule out any partic-

ular kind of language, because we do not have a-priori knowledge

regarding which kinds must not be relevant to vulnerabilities. Yet

this treatment may have caused biases in our results interpretations.

The validity of most of our results is also affected by the inaccuracy

of GitHub linguist [2] we used for retrieving language selections.

6 CONCLUSION

We presented a large-scale study on the vulnerability proneness

of multilingual code, enabled by a novel taxonomy of language in-

terfacing mechanisms, two novel/dedicated tools, and new/sizable

datasets. From 4,001 GitHub projects and 20.37 million commits in

their repositories, we revealed strong statistical relevance of lan-

guage selection and interfacing mechanism to the proneness, and

even stronger ones with respect to specific categories of vulnerabili-

ties. We further conducted extensivemanual inspection studies of 50

sample projects with 500 commits for each, both randomly sampled,

hence validated our statistical findings and demonstrated actual

multilingual vulnerabilities indicated by the proneness. Based on

our results, we provided insights and actionable suggestions on

addressing multilingual vulnerabilities for various stakeholders.
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