
A Closer Look at Real-World Patches
Kui Liu∗, Dongsun Kim∗, Anil Koyuncu∗, Li Li†, Tegawendé F. Bissyandé∗, Yves Le Traon∗

∗Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
{kui.liu, dongsun.kim, koyuncu.anil, tegawende.bissyande, yves.letraon}@uni.lu
†Monash Software Force (MSF), Monash University, Melbourne, Australia

li.li@monash.edu

Abstract—Bug fixing is a time-consuming and tedious task. To
reduce the manual efforts in bug fixing, researchers have pre-
sented automated approaches to software repair. Unfortunately,
recent studies have shown that the state-of-the-art techniques
in automated repair tend to generate patches only for a small
number of bugs even with quality issues (e.g., incorrect behavior
and nonsensical changes). To improve automated program repair
(APR) techniques, the community should deepen its knowledge
on repair actions from real-world patches since most of the
techniques rely on patches written by human developers. Previous
investigations on real-world patches are limited to statement level
that is not sufficiently fine-grained to build this knowledge. In this
work, we contribute to building this knowledge via a systematic
and fine-grained study of 16,450 bug fix commits from seven
Java open-source projects. We find that there are opportunities
for APR techniques to improve their effectiveness by looking
at code elements that have not yet been investigated. We also
discuss nine insights into tuning automated repair tools. For
example, a small number of statement and expression types are
recurrently impacted by real-world patches, and expression-level
granularity could reduce search space of finding fix ingredients,
where previous studies never explored.

Keywords-Program patch; fix pattern; abstract syntax tree.

I. INTRODUCTION

In recent years, to reduce the cost of software bugs [1],
the research community has invested substantial efforts into
automated program repair (APR) approaches [2]–[15]. The
first significant milestone in that direction is GenProg [16],
an APR technique that uses genetic programming to apply
a sequence of edits to a buggy source code until a test
suite is satisfied. After GenProg, several follow-up techniques
have been proposed: Nguyen et al. [17] relied on symbolic
execution. Xiong et al. [18] focused on mining contextual
information from documents and across projects. Kim et
al. [19] proposed to leverage fix templates manually mined
from human-written patches. Long and Rinard [20] built a
systematic approach to leveraging past patches.

Although existing APR studies have achieved promising
results, two issues mainly stand out: the applicability of APR
techniques for a diverse set of bugs, and the low quality
of patches generated by them [21], [22]. The existing APR
techniques tend to generate patches for a few specific types of
bugs [19] or to make nonsensical changes to programs [2].

In this study, our conjecture is that one potential issue
with the (in)effectiveness of APR techniques is the limitation
carried by the granularity at which APR techniques perform
repair actions. Since generate-and-validate [23] approaches

(such as GenProg) rely on fault localization techniques to
identify buggy code, they generate patches at the statement
level often based on stochastic mutations. Actually, as our
study shows, most bugs are localized on specific code entities
(e.g., the wrong infix-expression in Figure 1) within buggy
statements. Therefore, mutating every part of a buggy state-
ment is likely to lead, at best, to a very slow and resource-
intensive fixing process, and at worst, to the generation of
incorrect and nonsensical patches with high costs.

Real-world patches (i.e., written by human developers) can
provide useful information (e.g., on repair actions) for efficient
generation of correct patches. Previous work [11], [14], [19],
[20] has already shown that patches from software repositories
can be leveraged to improve software repair. Nevertheless,
the prerequisite for further advancing state-of-the-art APR
techniques is to acquire all-round and detailed understanding
about real-world patches.

Several studies in the literature have attempted to build such
knowledge, but all focused on characterizing changes at the
statement level. Pan et al. [24] manually summarized 27 fix
patterns from existing patches of Java projects. Their patterns
are, however, in a high-level form (e.g. “If-related: Addition
of Post-condition Check (IF-APTC)”). Martinez et al. [7]
analyzed bug fix transactions at the AST statement level of
code changes. Zhong et al. [21] also analyzed the repair actions
of patches at the AST statement level to understand the nature
of bugs and patches (see Section VII for more detailed com-
parison). Although these studies provide interesting insights
into bug fix patterns at the coarse-grained level of statements,
they can be misleading when implementing automated repair
actions. Indeed, buggy parts can be localized in a more fine-
grained way, leading to more accurate repair actions.

Consider the real-world code change illustrated in GNU Diff
format in Figure 1. This change is committed to a software
repository as a patch.
Most fault localization tools would identify Line 183 in
file MultivariateNormalDistribution.java as a suspicious (i.e.,

Commit cedf0d27f9e9341a9e9fa8a192735a0c2e11be40
src/main/java/org/apache/commons/math3/distribution/MultivariateNorm
alDistribution.java
@@ −183, 3 +183, 3 @@
- return FastMath.pow(2 * FastMath.PI, -dim / 2) *
+ return FastMath.pow(2 * FastMath.PI, -0.5 * dim) *

FastMath.pow(covarianceMatrixDeterminant, −0.5) *
getExponentTerm(vals);

Fig. 1: Patch of fixing bug MATH-929, a value-truncated bug.

The hierarchical repair actions of a patch parsed by GumTree:
UPD ReturnStatement@@“buggy code” to “fixed code ”.

UPD InfixExpression@@“buggy code” to “fixed code”.
UPD MethodInvocation@@“buggy code” to “fixed code”.

UPD InfixExpression@@“-dim / 2” to “-0.5 * dim”.
UPD PrefixExpression@@ “-dim” to “-0.5”.

DEL SimpleName@@ “dim” from “-dim” .
INS NumberLiteral@@“0.5” to “-dim”.

UPD Operator@@“/” to “*”.
DEL NumberLiteral@@ “2” from “2”.
INS SimpleName@@“dim” to “2”.

Fig. 2: A graphic representation of the hierarchical repair actions
of a patch parsed by GumTree. Buggy code entities are marked
with red and fixed code entities are marked with green. ‘UPD’
represents updating the buggy code with fixed code, ‘DEL’
represents deleting the buggy code, ‘INS’ represents inserting
the missed code, and ‘MOV’ represents moving the buggy code
to a correct position. Due to space limitation, the buggy and fixed
code (See Figure 1) are not presented in this figure.

ReturnStatement “return statement code”

InfixExpression “InfixExpression code”

“code” MethodInvocation “code”

InfixExpression “code”

Operator / NumberLiteral 2

SimpleName FastMath

AST node: Node type code

MethodInvocation

PrefixExpression -dim

SimpleName pow InfixExpression -dim / 2

Operator / SimpleName dim

MethodInvocation “code”Operator *Operator *

Fig. 3: Example of parsing buggy code in terms of AST. The
exact buggy code entities in its AST are highlighted with red.
For simplicity and readability of the AST of buggy code, the
sub-trees of bug-free code nodes are not shown in this tree.

might be buggy) location before commit cedf0d of project
commons-math. To generate a corresponding patch, APR
tools will apply generic fix patterns for ReturnStatement, thus
it may fail to properly fix the bug or take a long time even if
it succeeds.

Based on the hierarchical and fine-grained view (see Fig-
ure 2) of repair actions of the patch in Figure 1 provided by
GumTree (an AST based code changes differencing tool) [25],
it is easy to find that the exact repair action of this patch
occurs to “-dim / 2”, an InfixExpresion node in the AST, a
child of a MethodInvocation node (see Figure 3). This repair
action is more precise than replacing a ReturnStatement as a
whole with another statement. Our conjecture is that it is less
probable to find or identify exactly the same repair action with
statement replacement than expression replacement, from the
search space of human-written patches.

As shown in the motivating example above, previously
existing studies [7], [21], [24] did not take a close look at
existing patches using advanced tools such as GumTree and
APR research may have been missing important and accurate
insights for enhancing the state-of-the-art APR techniques.
In particular, by mining patches beyond statement-level in-
formation, we can investigate which fine-grained buggy code
entities are recurrent in repair changes, and which repair
actions are successfully applied to them. Insights from such
questions can allow tuning APR techniques towards faster
completions (e.g., focus changes on more likely buggy entities)
and more accurate generation of correct patches (e.g., make

accurate changes). To that end, we investigate 16,450 bug fix
commits collected in two distinct ways from seven Java open
source project repositories, in a fine-grained way by leveraging
GumTree.

Looking closely at real-world patches, we find that there
are opportunities for APR techniques to be targeted at code
elements that have not yet been investigated. We also find
expression-level granularity could reduce search space of
finding fix ingredients for similar bugs. We further discuss
nine insights into tuning APR techniques towards being fast
in their trials for patch generations, and also towards producing
patches that have more probability to be correct.

II. BACKGROUND

This section clarifies the notions of code entities related to
AST representations and AST diffs of code changes.

A. Code entities

Code entities are basic units (i.e., nodes) comprising ASTs.
Since our work investigates Java projects, this study collects
code entities defined in the Eclipse JDT APIs [26]. The APIs
describe code entities in the AST representation of Java source
code. There are 22 statement [27] (e.g., ReturnStatement),
declarations (e.g., TypeDeclaration, EnumDeclaration, Method-
Declaration and FieldDeclaration), and 35 expression [28] (e.g.,
InfixExpression) entity types. We collect these code entities
from Java source code. Note that we refer direct children nodes
of a statement or an expression in an AST as code elements
in this study.

B. AST diffs

Our study analyzes patches in the form of AST diffs. In
contrast with GNU diffs that represent code changes as a pure
text-based and line-by-line edit script, AST diffs provide a hi-
erarchical representation of the changes applied to the different
code entities at different levels (statements, expressions, and
elements). We leverage GumTree [25] to extract and describe
repair actions implemented in patches since the tool is open
source [29], allowing for replication, and is built on top of the
Eclipse Java model [30].

Overall, in this study:
• A Code entity represents a node in ASTs. It can be a

declaration, statement, expression, etc., or more specific
element of a statement, an expression, etc.

• A Change operator is one of the following in GumTree
specifications: UPDATE, DELETE, INSERT, and MOVE.

• A Repair action represents a combination of a change
operator and a code entity (e.g., UPD stmt or DEL expr).

III. RESEARCH QUESTIONS

The objective of this study is to investigate the repair
actions by closely looking at human-written patches, and to
build knowledge on which/how code entities are commonly
involved/impacted by them. Our study examines the finer-
grained AST diff representations of patches than the existing
studies in the literature [7], [21], [24], to implement a closer

look at code changes. In the study, we investigate the following
research questions:
RQ1: Do patches impact some specific statement types?

We revisit a common research question in the literature of
patch mining studies: common statements changed by patches.
In the majority of APR processes, the initial task is locating the
buggy line or statement. Specifically, in generate-and-validate
approaches, a spectrum fault localization technique (such as
Tarantula [31], Ochiai [32], Ochiai2 [33], Zoltar [34] and
DStar [35]) is used to identify suspicious lines or statements
that are then mutated by APR tools [2], [15], [16], [18]. It
is thus essential, based on real-world patches, to investigate
which types of statements are recurrently involved in bug fix
patches, and what kinds of repair actions are regularly applied
to them by human developers.
RQ2. Are there code elements in statements that are prone
to be faulty?

A statement node in an AST representation can be de-
composed into different children nodes whose types vary
following the statement type. Consider the variable declaration
statement “private int id = 1;”, it can be decomposed into the
modifier (“private”), the data type (“int”), the identifier (“id”)
and an initializer (the number literal “1”). Since common fault
localization techniques can only point to suspicious lines, APR
tools generally attempt to mutate the statements (often in a
stochastic way) which can lead to nonsensical alien code [19].
With in-depth knowledge on fault-prone code elements of
statements, APR tools can rapidly generate patch candidates
that are more likely to be successful (with regards to the test
cases), and which have more chances to be correct.
RQ3. Which expression types are most impacted by patches?

Statements in Java programs are generally built based on
expressions whose values eventually determine the execution
behavior, and are often associated with bugs. In a preliminary
study, we have found that in most patches, expressions were
the buggy elements where a patch actually modifies a program.
Our conjecture is that only a small number of expression types
could be responsible for the majority of bugs at the expression
level.
RQ4. Which parts of buggy expressions are prone to be buggy?

Expressions in Java program can be composite entities:
their AST nodes may have several children. For example,
an InfixExpression consists of a left-hand expression, an infix
operator, and a right-hand expression. We investigate the type
of buggy elements within buggy expressions to further refine
our understanding of recurring bug locations.

IV. STUDY DESIGN

We describe our dataset and the methodology for identifying
bug fix patches and the code entities impacted by patches. The
data and the implemented tool are available at https://github.
com/AutoProRepair/PatchParser.

A. Dataset

For this study, we focus on Java open source projects
commonly used by the research community [5], [7], [21], [24].

TABLE I: Subjects used in our study. The number of bug fix
commits actually used in the study is 16,450 as highlighted.

Projects LOC # Commits
All Identified Selected

commons-io 28,866 2,225 222 191
commons-lang 78,144 5,632 643 522
mahout 135,111 4,139 751 717
commons-math 178,84 7,228 1,021 909
derby 716,053 10,908 3,788 3,356
lucene-solr 943,117 51,927 11,408 10,755
Total 2,080,131 82,059 18,013 16,450

LOC: # lines of code. All: # of all available commits in a project. Identified: #
of identified bug fix commits. Selected: # of selected bug fix commits actually
used in this study.

Table I enumerates the subject projects1, of varying sizes,
collected from the Apache software foundation [36]. These
projects have been leveraged in previous studies on software
patches as they are reputed to provide commit messages that
are clear and consistent with the associated code change
diffs [21]. We further note that the Apache projects host an
issue tracking system that is actively used, with a large number
of commits keeping the link between reported bugs and the
associated bug fix commits.

B. Identification of patches

We consider the following criteria of identifying bug fix
commits in software repositories:

1) Keyword matching: we search commit messages for bug-
related keywords (namely bug, error, fault, fix, patch or
repair). This method was introduced by Mockus and
Votta [37], and used in several studies [11], [21], [24].

2) Bug linking: we identify the reported and fixed bug IDs
(e.g, MATH-929) in JIRA issue tracking system with
two criteria: (1) Issue Type is ‘bug’ and (2) Resolution
is ‘fixed’ [5]. We thus collect bug-fix commits by
identifying such reported and fixed bug IDs in commit
messages.

After applying the criteria above, we figure out that some
selected commits are not actually bug fix commits; instead,
they are commits regarding test cases, Javadoc and external
documentation (e.g. xml files). These commits are out of scope
and excluded from this study. Bug fix commits are collected
by following the three criteria: (1) bug fix commits contains
modified .java files, (2) these files do not have “test” in their
names, and (3) these files can be parsed by GumTree to
generate repair actions of buggy code fixing. Thus, 18,013
bug fix commits are collected from the seven projects.

To increase the confidence in our selected patches, we limit
our study on patches with small-sized change hunks. The
hunk size is defined as the number of lines of buggy code
(respectively of fixed code) in a code change diff from a patch,
where buggy hunk starts with ‘-’ and fixed hunk starts with
‘+’. Figure 4 shows the distributions of sizes of buggy code
hunks and fixed code hunks from all collected bug fix commits.
In this study, the patches, whose buggy hunk size is up to 8

1Lucene and Solr share the same source code repository, so we put the
results of the two projects in a single row.

Buggy_Hunk
Fixed_Hunk

0 2 4 6 8 10
Hunk Size

Fig. 4: Distributions of buggy and fixed hunk sizes of collected
patches. Fixed/Buggy Hunk refers to fixed/buggy lines in a code
change hunk of collected patches.

lines and fixed hunk size is up to 10, are selected as our dataset.
These threshold values are set based on the Upper Whisker
values from the hunk size distribution Tukey boxplots [38] in
Figure 42. To that end, 16,450 bug fix commits are selected
as the data of this study.

Previous studies have indeed shown that large code change
hunks usually address feature addition, refactoring, etc. [39],
[40], and do not often contain meaningful bug fix patterns [24].
Pan et al. [24] further reported that most bug fix hunks (91-
96%) are small ones and ignoring large hunks has minimal
impact on patch analysis.

C. Identification of buggy code entities in ASTs

To identify the buggy code entities and their repair actions,
all patches are parsed by feeding GumTree with the buggy and
fixed versions of a buggy Java file. The buggy code entities and
their repair actions are identified by retrieving GumTree output
in terms of its hierarchical construct. In this study, all elements
of deleted and moved statements are treated as buggy code
entities and all elements of inserted statements are treated as
fixed code entities. For updated buggy statements, we further
identify their exact buggy elements to find out the exact buggy
code entities. For a buggy expression, if it is deleted, moved,
or replaced by another expression, it is considered as a whole
buggy expression. Otherwise, the buggy expression is further
parsed to identify its buggy element(s).

V. ANALYSIS RESULTS

In this study, we investigate patches found in the seven
projects listed in Table I to identify the distributions of
buggy code entities and their corresponding repair actions. The
results would answer the RQs described in Section III. The
distributions of the statistic data split by projects are similar
to each other. Due to the space limitation, the statistic data of
the seven projects are merged together. Project-split statistic
data are available at aforementioned website.

A. RQ1: Buggy Statements and Associated Repair Actions

Root AST node types in patches: Declaration entities in
source code can also be buggy. Figure 5 provides a statistical
overview of the root AST node types impacted by repair
actions in patches. While statement entities occupy a large pro-
portion in buggy code, it is noteworthy that buggy declarations,
and associated repair actions are seldomly mentioned in bug
fix studies [7], [21], [24], and may thus be ignored by the APR
community. Our study, however, finds that repair actions on
declaration entities (i.e., class (TypeDeclaration), enum, method
and field declarations) account for 26.7% of repair actions of

2The upper whisker value are determined by 1.5 IQR (interquartile ranges)
where IQR = 3rd Quartile − 1st Quartile, as defined in [38].

MethodDeclaration 15.95%

FieldDeclaration 9.32%

EnumDeclaration 0.03%

TypeDeclaration 1.41%

Statement
73.29%

Fig. 5: Distributions of root AST node types changed in patches.
Commit 185e3033ef43527a729c9dda5d57ed0537921a27
src/main/java/org/apache/commons/math3/random/BitsStreamGenerat
or.java
@@ −29,2 +29,2 @@
public abstract class BitsStreamGenerator
- implements RandomGenerator {
+ implements RandomGenerator, Serializable {
Repair actions parsed by GumTree:
UPD TypeDeclaration@@"BitsStreamGenerator"

INS Type@@"Serializable" to "TypeDeclaration"

Fig. 6: Patch of fixing bug MATH-927, a TypeDeclaration-related bug,
by adding the interface Serializable.

patches, suggesting that the research community should take
more efforts to investigate bugs related to declarations, as they
may contribute to a significant portion of buggy code.

As shown in Figure 5, TypeDeclaration and EnumDeclaration
only occupy 1.44% of repair actions of patches, that might
be the reason why the state-of-the-art APR tools ignore the
bugs relating these declaration entities and focus on fix-
ing bugs at the statement level. However, buggy declaration
entities indeed bother developers. For example, Figure 6
shows a patch of fixing bug MATH-927, a TypeDeclaration-
related bug, which makes cloning broken and can cause
java.io.NotSerializableException [41], thus it is fixed by adding
the interface Serializable into its TypeDeclaration node. This bug
is one bug in benchmark Defects4J [42], however, it has not
been fixed by any state-of-the-art APR tools yet [43], since
those tools focus on the statement level to fix bugs.

Insight 1: Declaration entities in source code can also be
buggy, which constitutes a research opportunity for Automated
Program Repair beyond statement level. To fix bugs related to
declaration entities, such as the bug in Figure 6, mutation-
based tools (e.g., GenProg) could generate mutations for the
buggy TypeDeclaration by mutating common implementable in-
terface types, pattern-based tools (e.g., PAR) could summarize
NotSerializableException fix pattern from this kind of patches,
or search-based tools could specify constraints with fine-
granularity information (e.g., TypeDeclaration and NotSerializ-
ableException) to reduce search space and find fix ingredients
from existing patches.

Repair actions for statements: Statements (73.3% shown
in Figure 5) are the main buggy code entities, which motivates
researchers to fix bugs at the statement level. Therefore, to
build the knowledge on repair actions at the statement level,
we investigate the statement types impacted by patches as
well as repair actions (categorized in Update, Delete, Move
and Insert) that are applied to them. Figure 7 shows the
distribution of statement types impacted by patches as well as
the distributions of repair actions. Due to space limitation, the
figure only lists up the top-5 statement types and the remaining
are summed in an “Others” category.

0 10000 20000 30000 40000 50000 60000

Others
ReturnStatement
FieldDeclaration

IfStatement
VariableDeclarationStatement

ExpressionStatement

Update
Delete
Move
Insert

35.9%

17.6%
14.7%

11.3%
8.4%

12.2%

: 50.7%
: 15.6%
: 5.4%
: 28.3%

Fig. 7: Distributions of statement-level repair actions of patches.

1) Updating statements: As shown in Figure 7, a half of
repair actions are statement updates, in which the entity types
of buggy statements were not changed but their children
entities were changed. This motivates researchers to fix bugs
by mutating code at statement level (e.g., GenProg). However,
coarse granularity is an important weak point for existing tools
to fix bugs at the statement level.

Statements can be decomposed into several elements, which
means that it would take a long time to generate patches by
mutating each element even if it might succeed. For example,
in Figure 1, the exact buggy code entity is the InfixExpression
“-dim / 2”, but other code entities can interfere with the
mutating process of generating correct patches. Furthermore,
the statement type can limit or noise the search space of
finding fix ingredients. The buggy statement in Figure 1 is
a ReturnStatement, which means this patch can only be a fix
ingredient for buggy ReturnStatements at the statement level.
However, similar bugs can locate in other statement types
(such as the bug in Figure 8).

double d = FastMath.pow(2 * FastMath.PI, -dim / 2) *
FastMath.pow(covarianceMatrixDeterminant, -0.5) *
getExponentTerm(vals);

return d;

Fig. 8: A mutated bug of the bug in Figure 1.
Insight 2: The abundant real-world bugs fixed by updating

buggy statements can support to tune the state-of-the-art
APR tools by mining fine-grained characteristics with fine
granularity (expression level) of patches. For example, if APR
tools could extract fine-grained context information of fixing
the bug in Figure 1 (such as the exact buggy InfixExpression
“-dim / 2” and the detailed changes acted on the expression)
to infer fix patterns (See Section V-C) or to constraint search
space, they could fix more similar value-truncated bugs beyond
the ReturnStatement code entity.
2) Adoption of deletion and replacement: Simply deleting
buggy statement(s) is an effective way of fixing bugs, which
can also be combined with replacement. Recent experiments
with APR techniques and program test suites have shown that
some programs may pass tests when suspicious statements are
simply deleted [16]. Thus, dropping buggy code statements
could be attractive as a fast and effective way of fixing bugs.
Our study shows that only 15.6% cases of repair actions
consist of deleting buggy statements. Additionally, 45% of
them are the code entities of the dropped statements that are
inserted in other statements to replace the dropped statements.

For example, Figure 9 shows that buggy code line is deleted
but the buggy code expression is inserted in the new added
If statement. Such patches are associated in the literature to
the IF-related Addition of Post-condition Check (IF-APTC)

Commit e81ef196cd9dd3c7989b96f648f96ec138faa25b
src/java/org/apache/commons/math/optimization/general/AbstractLeast
SquaresOptimizer.java
@@ −187, 1 +188, 4 @@
- ++objectiveEvaluations;
+ if (++objectiveEvaluations > maxEvaluations) {
+ throw new FunctionEvaluationException(new
+ MaxEvaluationsExceededException(maxEvaluations), point);
+ }
Repair actions parsed by GumTree:
DEL ExpressionStatement@@"++objectiveEvaluations;"
INS IfStatement@@"if"

INS InfixExpression@@"code" to IfStatement
MOV PrefixExpression@@"++objectiveEvaluations"

to InfixExpression
INS

Fig. 9: An infinite-loop bug taken from project commons-math
is fixed by replacing buggy statement type.

Commit 9c5be23a3d00b4238ddb3794a1ffec463f2ceac9
solr/core/src/java/org/apache/solr/cloud/HashPartitioner.java
@@ −46, 5 +55, 5 @@

while (end < Integer.MAX VALUE) {
end = start + srange;

- start = end + 1L;
ranges.add(new Range(start, end));

+ start = end + 1L;
}

Repair actions parsed by GumTree:
MOV ExpressionStatement@@"start = end + 1L;"

from 1 to 2 in WhileStatement_BodyBlock

Fig. 10: A bug taken from project solr is fixed by moving the
buggy statement.

fix pattern defined by Pan et al. [24], which is, however, in a
high-level form and has not been used in APR tools.

Note that buggy code statement in Figure 9 is an Expres-
sionStatement. With further parsing of this bug, the exact
buggy code entity is the PrefixExpression “++objectiveEvalua-
tion”. There are only 1,362 cases related buggy PrefixExpres-
sions (See Table III) that is a much smaller search space of
fix ingredients for this bug compared against the statement
level (more than 40,000 buggy ExpressionStatement cases, see
the related value on the x-axis in Figure 7). If combining
ExpressionStatement with PrefixExpression, we find that the
search space can be further reduced to 28.

Insight 3: Expression-level granularity could improve the
state-of-the-art APR tools by reducing search space, which
could be further reduced if combining statement types with
expression types.
3) Moving statements: Moving a buggy statement(s) to
correct its position (without other changes) is another effective
way of fixing bugs. We observe that 5.4% of repair actions
involve moving statements across the program code. Figure 10
shows an example of fixing a bug by moving the buggy
statement to the correct position. It is difficult to obtain valu-
able information from its simple repair action, but its context
information, such as its parent statement (i.e. WhileStatement)
and the dependency of three variables (i.e., start, end, and
ranges), could be used to tune APR tools.

Insight 4: To generate fix patterns or create search space
with patches involving move actions, more context information
should be considered.
4) Recurrently impacted statements: A few statement types

are recurrently impacted by patches. From the distribution
of statement types in Figure 7, we note that 5 (out of 22)
statement types (namely ExpressionStatement, VariableDecla-
rationStatement, IfStatement, ReturnStatement and FieldDeclara-
tion) represent∼88% of statements impacted by patches. These
statistics support the motivation of many researchers to focus
on repairing a specific type of statements: ACS [18] is such an
APR technique example that targets IfStatement-related bugs.
Our study highlights other statement types which can benefit
from targeted approaches. In particular, ExpressionStatement is
impacted by a third (∼36%) of repair actions, suggesting that
statements of this type are more likely to contain bugs than
other types of statements.

B. RQ2: Fault-prone Parts in Statements

As discussed in Section V-A, if fine-granularity information
can be extracted from existing patches, it could improve APR
tools. Fortunately, statements can be decomposed into different
sub elements, which supports us to further investigate exact
buggy elements of statements. To the best of our knowledge,
we are the first to take a close look at real-world patches
in finer granularity than statement level in the literature. Our
study may yield further insights into the code entities which
are recurrently buggy and beyond the whole statements, thus
they should be the focus of APR techniques.

A statement node in an AST representation can be decom-
posed into several children elements. In this study, all elements
of statements are classified into four categories: Modifier,
Type, Identifier, and Expression where Modifier denotes the
modifiers of source code in its AST. Type refers to any type
nodes, Identifier can be a name of class, method, or variable,
and Expression includes the 35 kinds of expressions defined
in the Eclipse JDT APIs. The statistic distributions of these
elements impacted by patches are provided in Figure 11.

Type 8.7%
Identifier 5.5%

Modifier 3.3%
Expression
82.4%

Fig. 11: Distributions of inner-statement elements impacted by
patches.

Patches for “modifier” bugs: Modifier elements in state-
ments can be buggy, and repair actions associated with them
have simple instructions. Figure 11 presents that 3.3% cases
of repair actions fixing bugs involve Modifier elements (i.e.,
qualifiers such as public, final, static). The bugs in such cases
are often caused by missing a necessary modifier or assigning
an inappropriate one. At best, these bugs can create style
mismatch in the code, and at worst, can present semantic
implications for program behavior. We can enumerate three
ways repair actions that are applied:

1) Add a missing modifier, as in patch A of Figure 12,
where the missed modifier “volatile” is inserted to make
the variable “defaultStyle” thread-safe.

A: an example of adding a missed modifier:
Commit d55299a0554375f3f935a0ff85bd2002faa2ec55 (LANG−487)
src/java/org/apache/commons/lang/builder/ToStringBuilder.java
@@ −97, 1 +97, 1 @@
- private static ToStringStyle defaultStyle =
+ private static volatile ToStringStyle defaultStyle =

ToStringStyle.DEFAULT STYLE;
Repair actions parsed by GumTree:
UPD FieldDeclaration

INS Modifier@@"volatile" to FieldDeclaration

B: an example of deleting a redundant modifier:
Commit 60fe05eb7a32a4a178f4212da6a812c80cedce82 (LANG−334)
src/java/org/apache/commons/lang/enums/Enum.java
@@ −305, 1 +305, 1 @@
- private static final Map cEnumClasses = new WeakHashMap();
+ private static Map cEnumClasses = new WeakHashMap();
Repair actions parsed by GumTree:
UPD FieldDeclaration

DEL Modifier@@"final" from FieldDeclaration

C: an example of replacing the inappropriate modifier:
Commit 0e07b8e599e0d59c259dcc8501167a80d030179b
src/java/org/apache/commons/lang/builder/EqualsBuilder.java
@@ −111, 1 +111, 1 @@
- protected boolean isEquals;
+ private boolean isEquals;
Repair actions parsed by GumTree:
UPD FieldDeclaration

UPD Modifier@@"protected" to "private"

Fig. 12: Three bugs in project commons-lang are fixed by
changing their modifiers.

2) Delete an inappropriate modifier, as in patch B of
Figure 12, where the inappropriate modifier “final” is
dropped to avoid exposing a mutating map.

3) Replace an inappropriate modifier, as in patch C of
Figure 12, where modifier “protected” is changed into
“private” to prevent potential vulnerability.

The Java language supports 12 Modifier types [44] whose
inappropriate usage could lead to bugs and even vulnerabil-
ities. The FindBugs [45] static analyzer even enumerates 17
bug types related to modifiers. Actually, four projects in our
study integrate FindBugs in their development chain [46]–[49].
However, fixing those modifier-related bugs in these projects
are still addressed manually. Additionally, all modifier-related
bugs in benchmark Defects4J have not been fixed by any state-
of-the-art APR tools [50]. The reason might be that APR tools
cannot fix modifier-related bugs because of coarse granularity,
so that it is necessary to tune APR tools to fix modifier related
bugs with finer granularity.

Insight 5: The small number of modifier types allows
researchers to enumerate all possible mutations or change
patterns for buggy modifier(s) at modifier level, and to reduce
search space of fix ingredients for modifier-related bugs.
Additionally, existing patches of fixing modifier-related bugs
and the static analysis tools (e.g., FindBugs provides detailed
definitions for specific modifier-related bugs) can help re-
searchers tune APR tools to fix specific modifier-related bugs
automatically, like the thread-safe bug of patch A in Figure 12.

Fixing modifier-related bugs can, however, have unsus-
pected impacts beyond the code base, and thus may constitute
a new height that APR techniques can try to reach through

Commit 984a03d1ceb6e4b5d194e4d639d0b0fca46d92be
src/main/org/apache/tools/ant/types/Path.java
@@ −70, 2 +70, 2 @@
- public static Path systemClasspath =
+ public static final Path systemClasspath =

new Path(null,System.getProperty(“java.class.path”));

Code @Line 1484 in InternalAntRunner.java in Eclipse project:
org.apache.tools.ant.types.Path.systemClasspath = systemClasspath;

Fig. 13: A modifier-related patch breaks the backward compat-
ibility of project Apache ant.

Commit b032fb49f09c020174da1d5d865d878b8351d89d
lucene/codecs/src/java/org/apache/lucene/codecs/compressing/Compr
essingStoredFieldsIndex.java
@@ −366,1 +366,1 @@
- int startPointer = 0;
+ long startPointer = 0;
Repair actions parsed by GumTree:
UPD VariableDeclarationStatement

UPD Type@@"int" to "long"

Fig. 14: An integer-overflow bug taken from project lucene is
fixed by modifying the variable data type.

patch prioritization. For example, a fix may break the back-
ward compatibility of client applications. Figure 13 illustrates
an example of a modifier-related patch in the project Apache
ant [51], which however leads to a new problem that the value
of systemClasspath cannot be re-assigned in Eclipse, so that it
breaks the Eclipse integration [52]. Therefore, fixing modifier-
related bugs should consider the backward compatibility of
software.

Patches for “Type” nodes: Type code entities can also
be buggy, and their fix ingredients may be specific. In this
study, Type refers to the data type in the code, such as “int”
in Figure 14. Changes applied to Type nodes account for
8.7% cases of repair actions. The bug in Figure 14 is an
integer-overflow bug taken from project lucene and fixed
by replacing the data type “int” with “long”.

Insight 6: Theoretically, repair of such traditional
programming bugs can be performed readily by APR
tools when key context information is available. For example,
if the nature of the bug (e.g., “integer-overflow”) is known,
the APR tool could attempt, as one of its fix rules/templates,
to replace the type “int” with “long” that has a bigger memory
size. If GenProg or PAR could learn repair actions from this
kind of patches to mutate the type nodes of bugs but not the
whole statements, which could fix similar bugs like Math 30
and Math 57 in Defects4J that have not been fixed by these
tools. Nevertheless, the challenge arises for APR tools when
the buggy type is a specific data type, which requires more
precise context information.

Patches for “Identifier” nodes: Identifiers are also im-
pacted by patches, and naming an appropriate identifier is not
an easy task. Similarly, changes applied to identifiers involve
in 5.5% cases of repair actions. Changes on identifiers are
generally about assigning appropriate names to identifiers to
avoid confusion or inadequate usages which often complicate
maintenance tasks or even lead to bugs [53]–[55]. Thus, we
can enumerate two ways in which repair actions are applied:

1) Modifying identifiers to satisfy naming convention, as
in patch A of Figure 15, where the old identifier of

A: Example of incorrect naming convention identifier changes:
Commit ad2817beb235f8f24b7e73feac2ad717346bcd6f
core/src/main/java/org/apache/mahout/clustering/dirichlet/UncommonD
istributions.java
@@ −31, 1 +31, 1 @@
- private static final Random random = RandomUtils.getRandom();
+ private static final Random RANDOM = RandomUtils.getRandom();
Repair actions parsed by GumTree:
UPD FieldDeclaration

UPD SimpleName@@"random" to "RANDOM"

B: Example of inconsistent identifier changes:
Commit c3154b86dce55f8ca318c35f97751d3aeee415aa (MAHOUT−1151)
core/src/main/java/org/apache/mahout/cf/taste/hadoop/als/Recommend
erJob.java
@@ −121, 1 +124,1 @@
- private RecommendedItemsWritable result =
+ private RecommendedItemsWritable recommendations =

new RecommendedItemsWritable();
Repair actions parsed by GumTree:
UPD FieldDeclaration

UPD SimpleName@@"result" to "recommendations"

Fig. 15: Two identifier changes taken from project mahout.

field ‘random’ is changed to ‘RANDOM’ by re-writing
it with upper-case letters since constant names should
be in upper-case letters recommended by Java naming
conventions [56].

2) Modifying inconsistent identifiers, as in patch B of Fig-
ure 15, where the old variable name “result” is replaced
with a new name “recommendations” which seems to be
more consistent and easier to track during maintenance.

This kind of changes may be questioned as bug fixes,
but we find some of them are linked to bug reports (e.g.,
MAHOUT-1151 in Figure 15). Naming things is the hardest
task that programmers have to do [57], thus it is inevitable
to generate bugs because of inconsistent identifiers [53], [54].
FindBugs also enumerates 10 bug types related to identifiers.
So far, a number of research directions related to identi-
fiers in code have been explored in the literature: Høst and
Østvold [58] used name-specific implementation rules and
certain semantic profiles of method implementations to find
and fix method naming bugs, but limited to method names
starting with “contain” or “find”. Kim et al. [59] relied on
a custom code dictionary to detect inconsistent identifiers.
Allamanis et al. [60]–[62] leveraged deep learning techniques
to suggest identifiers for variables, methods, and classes with
sub-tokens extracted from code.

Although, current research contributions have shown
promising results about identifier-related studies, identifying
and fixing inconsistent identifiers remains an open challenge
because of their short-comings, such as inadequate context
information.

Insight 7: Identifiers are the basic knowledge of code
understanding, thus, more context information (e.g., method
implementation should be considered to name method
identifiers) should be considered to address fixing inconsistent
identifiers. Changing identifiers, however, is not a trivial
endeavor: it may break the backward compatibility of ap-
plications, and developers’ understanding of code might be
impacted by identifier changes [63]. This challenge may thus
be a relevant and worthy target for APR research.

Patches for “Expression” nodes: Expression is the main
fault-prone element of statements. We observe that Expres-
sions are concerned by 82% cases of repair actions. State-
ments in Java program are generally built based on various
expressions whose values eventually determine the execution
behavior. It is reasonable that most bugs are associated with
expressions. Therefore, it does not come as a surprise that the
majority of repair actions in patches are performed to mutate
expressions. As 35 different expression types are defined in
Eclipse JDT APIs, and many of them can be decomposed
in several elements, we will take a close look at their repair
actions in more details in following sections.

C. RQ3: Buggy Expressions and Associated Repair Actions

We further investigate which kinds of expressions are
recurrently impacted by repair actions on code statements
by retrieving the sub-trees of buggy statements to find the
exact buggy expressions. For example, in the AST sub-tree
(illustrated in Figure 3) of the buggy statement in Figure 1,
the InfixExpression “FastMath.pow(2 * FastMath.PI, -dim / 2) *
FastMath.pow(covarianceMatrixDeterminant, -0.5) * getExponent-
Term(vals)” is impacted by this patch. With further parsing,
the MethodInvocation “FastMath.pow(2 * FastMath.PI, -dim / 2)”
is the more exact expression impacted by this patch than its
parent infix-expression. Finally, we can find that the exact
buggy expression is the InfixExpression “-dim / 2”. All hierar-
chical expressions (i.e., InfixExpression → MethodInvocation →
InfixExpression), eventually leading to the exact buggy code “-
dim / 2”, are obtained by looking closely into the AST sub-tree
of the buggy statement.

The distributions of expression types impacted by patches
are presented in Figure 16. Due to space limitation, Fig-
ure 16 only lists up top-5 expression types. The remaining
are summed in an “Others” category.

0 10000 20000 30000 40000 50000 60000

Others
ClassInstanceCreation

Assignment
InfixExpression
SimpleName

MethodInvocation

Update
Delete
Move
Insert

26.3%

: 62.5%
: 16.4%
: 2.4%

27.6%

11.3%
8.5%

7.5%
18.9% : 18.6%

Fig. 16: Distributions of repair actions at the expression level.
Repair actions of recurrently impacted expressions: A

small number of expression types are recurrently impacted by
patches. It is noteworthy that the 5 out of 35 expression types
(namely MethodInvocation, SimlpeName, InfixExpression, Assign-
ment, and ClassInstanceCreation) account for ∼81% cases of
repair actions at the expression level. In particular, repair
actions on MethodInvocation and SimpleName account for more
than half of repair action cases. In this study, MethodInvo-
cation expressions are method references, and SimpleName
expressions denote variable names and method names. Their
presence indicates that incorrect references to methods and
variables are the main cause of many bugs.

Insight 8: A small number of expression types are
recurrently impacted by real-world patches, which can
motivate to generate mutations with mutation-based APR tools

(e.g., GenProg) and to mine fix patterns for a specific type
of expressions with pattern-based APR tools (e.g., PAR).
For example, in Figure 1, the exact buggy expression is an
InfixExpression: “-dim / 2”, and is fixed by replacing it with
another InfixExpression: “-0.5 * dim”. It is known that “1.0 /
2 = 0.5” can represent the relationship between the deleted
NumbeLiteral “2” and the inserted NumberLiteral “0.5”, further
inferred that “-1.0 / 2 * dim” is a function-identical mutation
of the patch code “-0.5 * dim”. With the following inferring
process, it is easy to extract a fix pattern for value-truncated
bugs at the expression level beyond the limitation of statement
types.

dim/2 → 0.5 ∗ dim → 1.0/2 ∗ dim

⇒ Pattern : a/b→ 1.0/b ∗ a, (a : dividend, b : divisor)

However, it is difficult to mine fix patterns only with the
buggy SimpleName expressions since they capture less useful
characteristics. For example, Figure 17 shows a bug is fixed by
modifying the buggy SimpleName is and SimpleName os that
are meaningless or could be any identifiers, so that it is difficult
to extract distinguishing characteristics from them. Therefore,
if mining fix patterns from patches involving SimpleName
expression changes, more context information (such as its
method reference “copyBytes”) should be considered.

Commit 37ecb1c20f0ed36e7c438d265b0c30a282e4fff5
lucene/core/src/java/org/apache/lucene/store/Directory.java
@@ −200, 1 +200, 1 @@
- is.copyBytes(os, is.length());
+ os.copyBytes(is, is.length());
Repair actions parsed by GumTree:
UPD ExpressionStatement@@"is.copyBytes(os,is.length());"

UPD MethodInvocation@@"is.copyBytes()"
UPD SimpleName@@"is" to "os"

UPD SimpleName@@"os" to "is"

Fig. 17: Bug LUCENE-4377 is fixed by modifying the wrong
SimpleName expressions “is” and “os”.

Rarely impacted expressions: There are expression entities
rarely changed by patches. It is also noteworthy that there are
very few cases (less than 0.05%, 100 cases) of repair actions
involving LambdaExpression, CharacterLiteral, TypeLiteral, Anno-
tation and SuperFieldAccess expressions. Our data also includes
no repair action case impacting MethodReference (i.e., Creation-
Reference, ExpressionMethodReference, SuperMethodReference,
and TypeMethodReference). In the case of LambdaExpression
(1,138 cases) and MethodReference (120 cases), we understand
that they have been introduced in Java 8 [64], thus they are
not yet involved in bugs from our dataset. It implies that APR
tools could ignore such expressions when fixing bugs.

Repair actions of literal expressions: Literal expressions
can also lead to bugs, and their repair actions could be specific.
Table II presents the distributions of repair actions on buggy
TABLE II: Distributions of repair actions on buggy literal
expressions.
Expressions Updated Deleted or replaced by other expressions
BooleanLiteral 12% 88%
CharacterLiteral 46% 54%
NumberLiteral 65% 35%
StringLiteral 62% 38%

TABLE III: Distribution of whole vs. sub-element changes in buggy expressions.
Expression Quantity % whole expression % each sub-element
ArrayAccess 1,127 47.7% ArrayExp(35.4%) ArrayIndex(20.6%)
ArrayCreation 740 27.3% ArrayType(14.2%) Initializer(60.9%)
Assignment 13,762 18.1% Left Hand Expression(13.3%) Operator(0.8%) Right Hand Expression(73.5%)
CastExpression 2,192 45.8% Type(11.9%) Expression(42.9%)
ClassInstanceCreation 12,385 15.5% Expression(10.2%) ClassType(19.7%) Arguments(63.0%)
ConditionalExpression 882 22.9% Condition Expression(24.1%) Then Expression(33.0%) Else Expression(49.5%)
FieldAccess 568 57.2% Expression(9.2%) Field(35.9%)
InfixExpression 15,896 27.3% Left Hand Expression (35.0%) Operator(5.6%) Right Hand Expression(68.7%)
InstanceofExpression 371 55.5% Expression(16.7%) Type(30.5%)
MethodInvocation 40,054 14.7% MethodName(22.1%) Arguments(79.8%)
PostfixExpression 512 85.2% Expression (14.6%) Operator(0.8%)
PrefixExpression 1,362 50.0% Operator (0.1%) Expression (49.9%)
QualifiedName 4,567 48.7% QualifiedName (10.0%) Identifier(48.9%)
VariableDeclarationExpression 676 67.3% Modifier (32.7%)
† “% whole expression” indicates the percentage in which the whole buggy expression is replaced by another expression or removed directly. “% sub-
elements” represents the percentage in which one or more sub-elements of an expression are changed instead of the whole expression. For each expression
type, the sum of percentages may not be 100% since sub-expressions in the third column can be overlapped among each other. For example, for the
ArrayAccess expression, the sum percentage of ArrayExp and ArrayIndex is 81.8% in linked patches that is over 74.7% (100%−35.6%), which indicates
that both ArrayExp and ArrayIndex of some buggy ArrayAccess expressions are changed simultaneously in same bug fixes. The same as other expressions.

Commit ae4734f4cfc17453f8d5889a08ae90bb6d3601b7
solr/core/src/java/org/apache/solr/util/SimplePostTool.java
@@ −778, 1 +778, 1 @@
- if (type.equals(”text/xml”)
+ if (type.equals(”application/xml”)

|| type.equals(”text/csv”) || type.equals(”application/json”)) {
Repair actions parsed by GumTree:
UPD IfStatement@@"If"

UPD InfixExpression@@"InfixExp_code"
UPD MethodInvocation@@"type.equals()"

UPD StringLiteral@@"text/xml" to
"application/xml"

Fig. 18: Patch of fixing bug SOLR-6959 (StringLiteral-related bug).

literal expressions. Recurrent repair actions on BooleanLiteral
expressions are mostly deleting them or replacing them with
other types of expressions. We note that in only a few cases,
the repair action switches “true” and “false” booleans. In the
case of buggy CharacterLiteral expressions, the related repair
actions are balanced on updating the literal values and deleting
them or replacing them with other types of expressions. Both
buggy NumberLiteral and StringLiteral expressions have similar
distributions of repair actions. Ratios of updating the buggy
values are slightly higher than other repair actions. StringLiteral
related bugs can be very specific, such as the bug in Figure 18,
thus, more specific context information or fix ingredients are
needed to fix literal expression related bugs, which arises a
new height challenge for APR tools.

D. RQ4: Fault-prone Parts in Expressions
In this section, we further investigate the distributions of

buggy sub-elements of expressions. Our investigation results
are provided in Table III. The first column of Table III enumer-
ates different expressions types. The second column represents
the percentage in which each expression is replaced or deleted
as a whole. An expression can be further decomposed into
several sub-elements. For example, an InfixExpression consists
of a left-hand expression, an infix operator, and a right-hand
expression. The third column shows the percentage in which
each sub-element is changed.

Faulty parts of expressions: Not all parts of the expres-
sions are completely faulty, but some specific sub-elements
are the exact buggy parts. As shown in Table III, there are

Commit 44854912194177d67cdfa1dc765ba684eb013a4c
src/main/java/org/apache/commons/lang3/time/FastDateParser.java
@@ −895, 1 +895, 1 @@
- final TimeZone tz = TimeZone.getTimeZone(value.toUpperCase());
+ final TimeZone tz = TimeZone.getTimeZone(value.toUpperCase(

Locale.ROOT));
Repair actions parsed by GumTree:
UPD VariableDeclarationStatement@@"code"

UPD VariableDeclarationFragment@@"tz"
UPD MethodInvocation@@"TimeZone.getTimeZone()"

UPD MethodInvocation@@"value.toUpperCase()"
INS QualifiedName@@"Locale.ROOT" to

MethodInvocation

Fig. 19: Patch of bug LANG-1357 fixed by adding the parameter
“Locale.ROOT” into the MethodInvocation: “toUpperCase()”.

different percentages of fault-prone parts for each expression
type, which provides an abundant resource of learning fix
behavior for various specific bugs. For example, the whole
buggy expressions could improve APR tools by reducing
search space to find fix ingredients by combining their parent
statement types, such as the bug fix shown in Figure 9 and
Insight 3.

Insight 9: The statistics can support to categorize bug fixes,
mine fix patterns mining, or reduce search space at expression
level with common distinguishing characteristics (such as
non-faulty parts of expressions) to tune APR tools.

For example, the exact buggy entity in Figure 19 is the
MethodInvocation “value.toUpperCase()”, which can cause i18n
issues [65] because of the missing parameter “Locale.ROOT”.
With the corresponding repair actions, an executable fix pattern
(as below) can be extracted. Method name “toUpperCase” can
also be the specific constraints to search fix ingredients for
i18n issues [65].
str.toUpperCase()→ str.toUpperCase(Locale.ROOT)

Non-recurrent faulty operators: Faulty operators are not
recurrent in real-world bugs. It is noteworthy that repair actions
on operators only account for 0.7% of all repair actions for
expressions. Specifically, fixing operators only account for
0.8% cases in buggy Assignment expressions, 5.6% cases in
InfixExpressions, 0.8% cases in PostfixExpressions, and 0.1%
cases in PrefixExpressions. It implies that when APR tools

generate mutations to fix bugs, they should focus on non-
operator code entities of potential buggy code.

VI. THREATS TO VALIDITY

A threat to validity is the complexity of patches. Patches
could involve updating MethodDeclarations, and most repair
actions on MethodDeclarations (except for repair actions on its
Modifier and Identifier) lead to the changes of method bodies,
which further complicates accurate modeling or learning of
the repair actions. Patches about adding new methods or code
files, multi-hunk changes or several files would challenge fix
behavior learning and pattern mining. To reduce this threat,
we select patches with small size hunks. Threats to validity
also include the limitation of identifying bug fix commits. To
reduce this threat, our study collects bug-fixing commits in
two different ways.

VII. RELATED WORK

Bug fix commits study: Various studies have mined
software repositories to analyze commits [66]–[69]. Pu-
rushothaman and Perry [70] studied patch-related commits
in terms of sizes of bug fix hunks and repair action types
to investigate the impact of small source code changes. Ger-
man [71] analyzed the characteristics of modification records
(i.e., source code changes in the version control system of
software) from three aspects: authorship, the number of files,
and modification coupling of files. Alali et al. [72] analyzed the
relationships among three size metrics (# of files, # of lines,
and # of hunks) for commits to infer the characteristics of
commits from years of historical information. Yin et al. [73]
presented a comprehensive characteristic study on incorrect
bug-fixes which are figured out by tracking the revision history
of each patch, and showed that bug fixes could further cause
new bugs. Thung et al. [74] performed a study on real
faults to investigate whether bugs are localizable by extracting
faults from code changes manually. Their results showed
that most faults are not within small code hunks. Nguyen
et al. [75] studied the recurrent code changes and found
that repetitiveness is common in bug fix hunks with small
size. Eyolfson et al. [76] investigated the relationship between
time-based characteristics of commits and their bugginess,
of which results showed that the bugginess of a commit is
correlated with the commit time. However, these studies did
not investigate the links between the nature of bug fixes and
automatic program repair, which is analyzed in this study.

Patches study: Pan et al. [24] manually explored 27
common bug fix patterns in Java programs to understand
how developers change code to fix bugs. Martinez et al. [7]
and Zhong et al. [21] analyzed the repair actions of patches
at the statement level to understand the nature of bugs and
patches. Although these studies provide interesting insights
into program repair, they could be misleading for implement-
ing automated repair actions because of the coarse-grained
level of statements. As listed in Table IV, the three studies
focus on statement level to investigate patches. Indeed, as
investigated in this study, buggy parts can be localized in a

more fine-grained way, which could lead to more accurate
repair actions. Last but not least, moving buggy statement
is also an effective way of fixing bugs, which is, however,
ignored by them.

TABLE IV: Comparison of our work with other previous real-
world patch studies.

Patch study Granularity of code entities Granularity of change
operators

Pan et al. [24] Statement level. Abstract patterns.

Martinez et al. [7] Statement level and method
invocations. Update, delete, and insert.

Zhong et al. [21] Statement level. Modify, add, and delete.

Our work All AST node code entities
impacted by patches.

Update, delete, move, and
insert.

Program repair with real-world patches: Kim et al. [39]
proposed PAR which utilizes common fix patterns to automat-
ically fix bugs. Le et al. [11] extended PAR by automatically
mining bug fixes across projects in their commit history to
guide and drive a program repair. Bissyande [77] considered
also investigating fix hints for reported bugs. Tan et al. [78]
analyzed anti-patterns that may interfere with the process of
automated program repair. Koyuncu et al. [79] investigated
the practice of patch construction to study the impact of
different patch generation techniques in Linux kernel develop-
ment. Long et al. [14] proposed a new system, Genesis, that
processes patches to automatically infer code transforms for
automated patch generation. These studies obtained promising
results, but they have a common limitation that focuses on
statement level but not as the finer granularity at expression
level investigated in this study.

VIII. CONCLUSION

Real-world patches can provide useful information (e.g., on
repair actions) for learning-based and template-driven auto-
mated program repair techniques, allowing for fast generation
of correct patches. In general, we argue that towards boosting
the performance of automated program repair techniques, the
community needs to deepen its knowledge on bug fix code
transformations from real-world (i.e., human-written) patches.
In this study, we engaged in this endeavor through a systematic
and fine-grained investigation of 16,450 bug fix-related com-
mits collected from seven open source Java projects. We find
that there are opportunities for APR techniques to be targeted
at code elements that have not yet been investigated. We also
find that a small number of statement and expression types are
recurrently impacted by real-world patches, and expression-
level granularity could reduce search space of finding fix in-
gredients for similar bugs. We further discuss nine insights into
tuning APR tools, challenges and possible resolves through
investigating research questions around the actual locations of
buggy code and repair actions at the AST level.

Acknowledgements This work was supported by the
Fonds National de la Recherche (FNR), Luxembourg, un-
der projects RECOMMEND C15/IS/10449467, FIXPATTERN
C15/IS/9964569.

REFERENCES

[1] NIST, “Software errors cost u.s. economy $59.5 billion annually,” http:
//www.abeacha.com/NIST press release bugs cost.htm, Last Accessed:
Mar. 2018.

[2] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Trans. Software
Eng., vol. 38, no. 1, pp. 54–72, 2012.

[3] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezze,
“Automatic recovery from runtime failures,” in Proceedings of the
International Conference on Software Engineering. San Francisco, CA,
USA: IEEE, 2013, pp. 782–791.

[4] Z. Coker and M. Hafiz, “Program transformations to fix c integers,” in
Proceedings of the International Conference on Software Engineering.
San Francisco, CA, USA: IEEE, 2013, pp. 792–801.

[5] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The plastic
surgery hypothesis,” in Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. Hong
Kong, China: ACM, 2014, pp. 306–317.

[6] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs
with semantic code search (t),” in Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
Lincoln, NE, USA: IEEE, 2015, pp. 295–306.

[7] M. Martinez and M. Monperrus, “Mining software repair models for
reasoning on the search space of automated program fixing,” Empirical
Software Engineering, vol. 20, no. 1, pp. 176–205, 2015.

[8] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for simple
program repairs,” in Proceedings of the 37th International Conference
on Software Engineering-Volume 1. Florence, Italy: IEEE, 2015, pp.
448–458.

[9] F. Long and M. Rinard, “Staged program repair with condition synthe-
sis,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. Bergamo, Italy: ACM, 2015, pp. 166–178.

[10] X.-B. D. Le, Q. L. Le, D. Lo, and C. Le Goues, “Enhancing automated
program repair with deductive verification,” in Proceedings of the Inter-
national Conference on Software Maintenance and Evolution (ICSME).
Raleigh, NC, USA: IEEE, 2016, pp. 428–432.

[11] X. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in Proceedings of the IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, SANER, vol. 1. Suita, Osaka,
Japan: IEEE, 2016, pp. 213–224.

[12] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair without
the contracts,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. Urbana, IL, USA:
IEEE, 2017, pp. 637–647.

[13] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-
and semantic-guided repair synthesis via programming by examples,”
in Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering. Paderborn, Germany: ACM, 2017, pp. 593–604.

[14] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 11th Joint
Meeting on Foundations of Software Engineering. Paderborn, Germany:
ACM, 2017, pp. 727–739.

[15] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34–55, 2017.

[16] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the
31st International Conference on Software Engineering, May 16-24,.
Vancouver, Canada: IEEE, 2009, pp. 364–374.

[17] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
program repair via semantic analysis,” in Proceedings of the 35th
International Conference on Software Engineering. San Francisco, CA,
USA: IEEE, 2013, pp. 772–781.

[18] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in Proceedings of the
39th International Conference on Software Engineering. Buenos Aires,
Argentina: IEEE, 2017, pp. 416–426.

[19] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proceedings of the 35th In-
ternational Conference on Software Engineering. San Francisco, CA,
USA: IEEE, 2013, pp. 802–811.

[20] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. St. Petersburg,
FL, USA: ACM, 2016, pp. 298–312.

[21] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in Pro-
ceedings of the 37th IEEE/ACM International Conference on Software
Engineering, ICSE, vol. 1. Florence, Italy: IEEE, 2015, pp. 913–923.

[22] M. Monperrus, “A critical review of ”automatic patch generation learned
from human-written patches”: essay on the problem statement and the
evaluation of automatic software repair,” in Proceedings of the 36th
International Conference on Software Engineering. Hyderabad, India
- May 31 - June 07: ACM, 2014, pp. 234–242.

[23] ——, “Automatic software repair: a bibliography,” ACM Computing
Surveys, vol. 51, no. 1, pp. 17:1–17:24, 2017.

[24] K. Pan, S. Kim, and E. J. W. Jr., “Toward an understanding of bug fix
patterns,” Empirical Software Engineering, vol. 14, no. 3, pp. 286–315,
2009.

[25] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings of
ACM/IEEE International Conference on Automated Software Engineer-
ing. Vasteras, Sweden: ACM, 2014, pp. 313–324.

[26] Eclipse, “Eclipse jdt api,” http://help.eclipse.org/neon/topic/org.eclipse.
jdt.doc.isv/reference/api/overview-summary.html, Last Access: Mar.
2018.

[27] ——, “Statement,” http://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.
isv/reference/api/org/eclipse/jdt/core/dom/Statement.html, Last Access:
Mar. 2018.

[28] ——, “Expression,” http://help.eclipse.org/neon/topic/org.eclipse.jdt.
doc.isv/reference/api/org/eclipse/jdt/core/dom/Expression.html, Last
Access: Mar. 2018.

[29] J.-R. Falleri, “Gumtree,” https://github.com/GumTreeDiff/gumtree, Last
Access: Mar. 2018.

[30] Eclipse, “Java model,” http://www.vogella.com/tutorials/EclipseJDT/
article.html, Last Access: Mar. 2018.

[31] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing. Long Beach, CA, USA: ACM, 2005, pp. 273–282.

[32] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of simi-
larity coefficients for software fault localization,” in Proceedings of the
12th Pacific Rim International Symposium on Dependable Computing,
PRDC’06. University of California, Riverside, USA: IEEE, 2006, pp.
39–46.

[33] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Transactions on software engineering
and methodology (TOSEM), vol. 20, no. 3, p. 11, 2011.

[34] T. Janssen, R. Abreu, and A. J. Van Gemund, “Zoltar: a spectrum-
based fault localization tool,” in Proceedings of the ESEC/FSE workshop
on Software integration and evolution@ runtime. Amsterdam, The
Netherlands: ACM, 2009, pp. 23–30.

[35] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2014.

[36] Apache, “Apache projects,” http://www.apache.org/index.html#
projects-list, Last Access: Mar. 2018.

[37] A. Mockus and L. G. Votta, “Identifying reasons for software changes
using historic databases,” in Proceedings of the International Conference
on Software Maintenance. San Jose, California, USA: IEEE, 2000, pp.
120–130.

[38] M. Frigge, D. C. Hoaglin, and B. Iglewicz, “Some implementations of
the boxplot,” The American Statistician, vol. 43, no. 1, pp. 50–54, 1989.

[39] K. Herzig and A. Zeller, “The impact of tangled code changes,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13. San Francisco, CA, USA: IEEE, 2013, pp.
121–130.

[40] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11. Waikiki, Honolulu , HI, USA: ACM,
2011, pp. 351–360.

[41] JIRA, “Math-927,” https://issues.apache.org/jira/browse/MATH-927,
Last Access: Mar. 2018.

[42] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis. San Jose, CA, USA: ACM, 2014, pp. 437–440.

[43] Defects4J, “Math-12,” http://program-repair.org/defects4j-dissection/\#
!/bug/Math/12, Last Access: Mar. 2018.

[44] Eclipse, “Modifier,” https://docs.oracle.com/javase/7/docs/api/java/lang/
reflect/Modifier.html, Last Access: Mar. 2018.

[45] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan
Notices, vol. 39, no. 12, pp. 92–106, 2004.

[46] Apache, “Commons-io,” https://github.com/apache/commons-io/blob/
master/pom.xml\#L373, Last Accessed: Mar. 2018.

[47] ——, “Commons-lang,” https://github.com/apache/commons-lang/blob/
master/pom.xml\#L685, Last Accessed: Mar. 2018.

[48] ——, “Commons-math,” https://github.com/apache/commons-math/
blob/master/pom.xml\#L717, Last Accessed: Mar. 2018.

[49] ——, “mahout,” https://github.com/apache/mahout/blob/master/pom.
xml\#L771, Last Accessed: Mar. 2018.

[50] Defects4J, “Defects4j dissection,” http://program-repair.org/
defects4j-dissection/\#!/, Last Access: Mar. 2018.

[51] Apache, “Ant,” http://ant.apache.org/, Last Accessed: Mar. 2018.
[52] Bugzilla, “Bug 60582 - change to systemclasspath breaks eclipse in-

tegration,” https://bz.apache.org/bugzilla/show bug.cgi?id=60582, Last
Access: Mar. 2018.

[53] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identifier
naming flaws and code quality: An empirical study,” in Proceedings of
16th Working Conference on Reverse Engineering, WCRE’09. Lille,
France: IEEE, 2009, pp. 31–35.

[54] S. L. Abebe, V. Arnaoudova, P. Tonella, G. Antoniol, and Y.-G.
Gueheneuc, “Can lexicon bad smells improve fault prediction?” in
Proceedings of the 19th Working Conference on Reverse Engineering
(WCRE). Kingston, Ontario, Canada: IEEE, 2012, pp. 235–244.

[55] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L. Traon, “Name
suggestions during feature identification: the variclouds approach,” in
Proceedings of the 20th International Systems and Software Product
Line Conference. ACM, 2016, pp. 119–123.

[56] Oracle, “Java naming convention,” http://www.oracle.com/technetwork/
java/codeconventions-135099.html, Last Access: Mar. 2018.

[57] P. Johnson, “Don’t go into programming if you don’t have a
good thesaurus,” http://www.itworld.com/article/2823759/enterprise-
software/124383-Arg-The-9-hardest-things-programmers-have-to-
do.html, Last Accessed: Dec. 2017.

[58] E. W. Høst and B. M. Østvold, “Debugging method names,” in Proceed-
ings of the 23rd European Conference on Object-Oriented Programming,
ECOOP. Genoa, Italy: Springer, 2009, pp. 294–317.

[59] S. Kim and D. Kim, “Automatic identifier inconsistency detection using
code dictionary,” Empirical Software Engineering, vol. 21, no. 2, pp.
565–604, 2016.

[60] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. Hong
Kong, China: ACM, 2014, pp. 281–293.

[61] ——, “Suggesting accurate method and class names,” in Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering.
Bergamo, Italy: ACM, 2015, pp. 38–49.

[62] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in Proceedings
of the International Conference on Machine Learning. New York City,
NY, USA: JMLR.org, 2016, pp. 2091–2100.

[63] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating
the detection of api-related compatibility issues in android apps,” in

The ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2018), 2018.

[64] Oracle, “What’s new in jdk 8,” http://www.oracle.com/technetwork/java/
javase/8-whats-new-2157071.html, Last Access: Mar. 2018.

[65] G. Gregory, “The java lowercase conversion surprise
in turkey,” https://garygregory.wordpress.com/2015/11/03/
java-lowercase-conversion-turkey/, Last Access: Mar. 2018.

[66] L. Li, T. F. Bissyandé, Y. Le Traon, and J. Klein, “Accessing inacces-
sible android apis: An empirical study,” in Software Maintenance and
Evolution (ICSME), 2016 IEEE International Conference on. IEEE,
2016, pp. 411–422.

[67] D. Li, L. Li, D. Kim, T. F. Bissyandé, D. Lo, and Y. L. Traon, “Watch out
for this commit! a study of influential software changes,” arXiv preprint
arXiv:1606.03266, 2016.

[68] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, and
Y. Le Traon, “Facoy - a code-to-code search engine,” in The 40th
International Conference on Software Engineering (ICSE 2018), 2018.

[69] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “Charac-
terising deprecated android apis,” in The 15th International Conference
on Mining Software Repositories (MSR 2018), 2018.

[70] R. Purushothaman and D. E. Perry, “Toward understanding the rhetoric
of small source code changes,” IEEE Transactions on Software Engi-
neering, vol. 31, no. 6, pp. 511–526, 2005.

[71] D. M. German, “An empirical study of fine-grained software modifi-
cations,” Empirical Software Engineering, vol. 11, no. 3, pp. 369–393,
2006.

[72] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit? a
characterization of open source software repositories,” in Proceedings
of the 16th IEEE International Conference on Program Comprehension,
ICPC. Amsterdam, The Netherlands: IEEE, 2008, pp. 182–191.

[73] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How
do fixes become bugs?” in Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering. Szeged, Hungary: ACM, 2011, pp. 26–36.

[74] F. Thung, D. Lo, L. Jiang et al., “Are faults localizable?” in Proceedings
of the 9th IEEE Working Conference on Mining Software Repositories.
Zurich, Switzerland: IEEE, 2012, pp. 74–77.

[75] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. Rajan,
“A study of repetitiveness of code changes in software evolution,”
in Proceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering. Silicon Valley, CA, USA: IEEE,
2013, pp. 180–190.

[76] J. Eyolfson, L. Tan, and P. Lam, “Correlations between bugginess and
time-based commit characteristics,” Empirical Software Engineering,
vol. 19, no. 4, pp. 1009–1039, 2014.

[77] T. F. Bissyandé, “Harvesting fix hints in the history of bugs,” arXiv
preprint arXiv:1507.05742, 2015.

[78] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-
patterns in search-based program repair,” in Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. Seattle, WA, USA: ACM, 2016, pp. 727–738.

[79] A. Koyuncu, T. Bissyandé, D. Kim, J. Klein, M. Monperrus, and
Y. Le Traon, “Impact of Tool Support in Patch Construction,” in
Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis. New York, NY, USA: ACM, 2017, pp.
237–248.

