
DAPANDA: Detecting Aggressive Push Notifications
in Android Apps

Tianming Liu1∗, Haoyu Wang1∗B, Li Li2, Guangdong Bai3, Yao Guo4, and Guoai Xu1
1 Beijing University of Posts and Telecommunications, Beijing, China

2 Monash University, Australia 3 The University of Queensland, Australia
4 Key Laboratory of High-Confidence Software Technologies (MOE), Peking University, Beijing, China

Abstract—Mobile push notifications have been widely used in
mobile platforms to deliver all sorts of information to app users.
Although it offers great convenience for both app developers and
mobile users, this feature was frequently reported to serve mali-
cious and aggressive purposes, such as delivering annoying push
notification advertisement. However, to the best of our knowledge,
this problem has not been studied by our research community so
far. To fill the void, this paper presents the first study to detect
aggressive push notifications and further characterize them in
the global mobile app ecosystem on a large scale. To this end,
we first provide a taxonomy of mobile push notifications and
identify the aggressive ones using a crowdsourcing-based method.
Then we propose DAPANDA, a novel hybrid approach, aiming at
automatically detecting aggressive push notifications in Android
apps. DAPANDA leverages a guided testing approach to systemati-
cally trigger and record push notifications. By instrumenting the
Android framework, DAPANDA further collects all notification-
relevant runtime information to flag the aggressive ones. Our
experimental results show that DAPANDA is capable of detecting
different types of aggressive push notifications effectively in
an automated way. By applying DAPANDA to 20,000 Android
apps from different app markets, it yields over 1,000 aggressive
notifications, which have been further confirmed as true positives.
Our in-depth analysis further reveals that aggressive notifications
are prevalent across different markets and could be manifested
in all the phases in the lifecycle of push notifications. It is hence
urgent for our community to take actions to detect and mitigate
apps involving aggressive push notifications.

Index Terms—Push notification, dynamic analysis, advertise-
ment, Android, mobile app

I. INTRODUCTION

Since the mobile push notification service was introduced
by Apple in 2008 [17], it has been widely adopted in various
mobile platforms including Android [7]. In essence, it provides
a mechanism to display messages outside of the normal
interface of a mobile app (usually in the status bar at the
top of the screen). Push notifications are generally used by
app developers to deliver various kinds of information, such as
timely reminders and up-to-date messages (e.g., location-based
messages and new content available in news).

Push notifications could be delivered without a specific
request from the app, which means that the app does not
have to be relaunched during the process. Users can directly
react to the notification by simply tapping on it, providing
timely information and allowing quick and easy responses for

*The names of the first two authors are in alphabetical order. Haoyu Wang
is the corresponding author.

You received a red envelope
Only today, hurry up and click this Link~

(a) An example of anonymous and ad-related APNs

Popular Free

Star

Shared by Lock

Extreme Temptation !

(b) An example of compulsive and malicious APNs

Downloads : 155540

Fig. 1. Motivating examples of aggressive and malicious push notifications.

app users. The notification interfaces are further allowed to be
customized by developers to provide flexibility and better user
experiences. Thanks to these benefits, push notifications have
been favored by both mobile users and app developers and
hence been extensively integrated into modern mobile apps.

Because notifications can effectively “push” an app into the
user’s attention, app developers are encouraged to utilize push
notifications for re-engaging mobile app users. However, despite
users are generally in favor of push notifications, the abuse of
such notifications can still annoy app users and likely result
in user complaints. For example, a number of reports revealed
that app developers have been abusing push notifications for
various purposes [4], [8], [11], [13], [14].

In addition to the way notifications are pushed, recent
studies reveal that app users are likely to also complain
about the contents delivered in the notifications [9]. For
example, Bell argues that Facebook has a notification problem
and enumerated 13 most annoying push notifications from
Facebook [12]. Most of these notifications are considered as
annoying because their contents are considered inappropriate
by users. Specifically, app users especially hate notifications
that contain advertisements [1], [3]. Actually, both Google [2]
and Apple [16] have released strict policies to regulate the
use of mobile push notifications: Push Notifications must not
be required for the app to function, and should not be used
for advertising, promotions, or direct marketing purposes, or
sending sensitive personal or confidential information.

Unfortunately, despite that mobile push notifications are
explicitly disallowed to deliver ads and promotions by app
markets, many app developers appear to be still enticed to such
practices, and even employing more sophisticated methods so
as to avoid being caught during app vetting. As shown in Fig. 1

(a), it is an ad-related push notification, while the interface
of this notification has been customized such that it does not
explicitly mention which app it belongs to. The most annoying
part is that it tricked the user into clicking the notification and
the link will be redirected to a page full of ads. This suggests
that, even though both Google and Apple have declared strict
policies, it is still difficult for app markets to automatically
regulate the apps that violate the policy, such that anomalous
apps are still able to sneak into app markets and mobile devices.
Consequently, annoying notifications are frequently pushed to
mobile app users in the real-world.

More seriously, push notifications could also be exploited
for malicious purposes. Fig. 1 (b) shows a push notifica-
tion triggered from the app com.keeeweee.lockscreen.
The annoying part of this notification is that it cannot be
closed by the users, i.e., mobile users have to click it.
Even worse, once the user clicks it, an app downloading
process will be triggered immediately (specifically app up-
yel.patyzbg.vbxsoef.kncp.cbsmk.rnnbs will be downloaded) and
the installation UI will pop out. When we uploaded this
downloaded app to VirusTotal, over 30 antivirus engines
flagged it as malicious [23]. This example suggests that push
notifications could be used as a new covert channel to spread
malware, which has been largely overlooked by our community.

In this work, we refer to such annoying and even malicious
notifications as aggressive push notifications (APNs for
short). To the best of our knowledge, except for some sporadic
news reports discussing specific instances of APNs, our research
community has not studied this problem systematically [44],
[47] and hence no research tools have been proposed to detect
and mitigate the occurrences of APNs.

This paper seeks to develop an automated approach to
detect APNs, and further dissect mobile push notifications
and characterize their behaviors in large-scale. To that end,
we first provide a taxonomy that characterizes a variety of
APNs based on a comprehensive user survey and a summary
of market policies. Towards the automated detection of APNs,
we aim to address several key challenges:

• How to automatically trigger push notifications ef-
ficiently? As push notifications are displayed outside
of the normal UIs of a given app, no existing tools
explicitly support automated testing of push notifications
(e.g., identify the notification views). Besides, APNs could
be triggered in either the foreground or background. Thus,
we need to develop a new approach that is scalable enough
and also ensures good coverage of APNs.

• How to accurately identify the content and network
traffic from push notifications? As push notifications
are running within the hosting app, the network traffic
triggered by push notifications would be mixed together
with the traffic generated by other parts of the app (e.g.,
banner ads or the contents in the main activities). As
we seek to characterize the malicious contents delivered
by push notifications, it is important to pinpoint the
corresponding content accurately.

• How to trace the origins of APNs? Mobile push
notifications could be implemented by the app developers,
or third-party libraries (e.g., Google Cloud Messaging).
In addition to detecting APNs, we also seek to trace
back to the origin of APNs, i.e., analyzing who should
be responsible for the aggressive behaviors (e.g., app
developers or ad networks).

To address the aforementioned challenges, we propose
DAPANDA (Detecting Aggressive Push Notification in Android
Apps), a novel hybrid approach that supports accurate detection
of APNs. DAPANDA mainly relies on two key techniques
to characterize the behaviors of mobile push notifications at
runtime. To trigger push notifications efficiently, we have
proposed an app queuing approach to enforce automated
exploration of push notifications. To accurately pinpoint the
information related to each notification, we have implemented
an instrumentation method that integrates call stacks and inter-
component tracing to record all necessary information to detect
APNs. Finally, we use a manually crafted benchmark set to
demonstrate the effectiveness of DAPANDA.

To further characterize the presence of APNs in the wild,
we have applied DAPANDA to 20,000 Android apps crawled
from 8 popular app markets including Google Play. We have
identified over 1,329 APNs from 1,036 apps, which accounts
for over 5% of the apps studied in this work. With further
inspection, we have also found that a large portion of these
APNs were originated from aggressive third-party libraries.

This paper makes the following main contributions:
• We have created a taxonomy of APNs in a systematic

way. To the best of our knowledge, this is the first
work that is focused on detecting and characterizing
aggressive/malicious push notifications.

• We have implemented DAPANDA, a new approach that
is able to expose push notifications with an automated
exploration strategy, and then characterize the behaviors
of APNs accurately.

• We have performed a large-scale measurement study by
applying DAPANDA to 20,000 apps, seeking to measure
the phenomenon of APNs in the wild. We have revealed
the severity of APNs in the mobile app ecosystem, and
further investigated the underlying working mechanisms
behind APNs.

To boost research along this direction, we have released the
benchmark and our experiment results at:

https://github.com/DaPANDA2019/DaPANDA

II. A TAXONOMY OF AGGRESSIVE PUSH NOTIFICATIONS

In order to automatically identify APNs, we seek to explore
why push notifications were considered as aggressive and what
types of APNs exist in the mobile app ecosystem. To this
end, we resort to a straightforward approach to understanding
push notifications manually. This manual process allows us to
form a taxonomy of all possible types of push notifications (cf.
II-A). We then leverage the taxonomy to confirm APNs using
a crowdsourcing-based approach, i.e., following the opinions

of Android app users responded in a survey and the policies
given by app markets (cf. II-B).

A. A Taxonomy of Android Push Notifications

Behavior

Content

Background Push

Anonymous Push

Malicious Content

Drive-by Download

Advertising Content

Updating Content

Normal Content

Frequent Push

Compulsive Push

Normal Behavior

Push
Notification

Fig. 2. A taxonomy of push notifications.

The first step is to understand the characteristics of Android
push notifications and their types. We resort to various sources,
including Android documentation, news reports, user comments
about annoying push notifications on app markets, as well as
running different Android apps ourselves. In the end, we have
created a taxonomy of Android push notifications from two
different aspects, as listed in Fig. 2.

The first aspect is concerned about the pushing behavior,
based on the way notifications are pushed/displayed to mobile
users. We found four specific types for this category and regard
all remaining scenarios as the Normal Behavior type1. The
specific types are explained as follows:

• Background Push. The notification would be triggered
while the hosting app is running in the background.

• Compulsive Push. In general, a notification could be
canceled or cleared by swiping it or clicking the Clear
button provided by the system. However, some intrusive
notifications cannot be canceled, i.e., users are forced
to click it. Such kind of push notifications is caused
by the misuse or malicious use of push notification
configurations. Two flag fields FLAG_ONGOING_EVENT
and FLAG_NO_CLEAR are related to this behavior.
Aggressive/malicious developers might intentionally set
the flag and force users to click these notifications.

• Anonymous Push. In general, push notifications should
explicitly show the icons and names of their hosting
apps. However, anonymous push may deliberately hide
its hosting app from mobile users (cf. Fig. 1).

1Note that the Normal Behavior type may also contain some other types
of abnormal behaviors, however, because we cannot assign them a specific
type, we will consider them as Normal in this taxonomy. It is the same for
the Normal Content type discussed later in this section

• Frequent Push. It refers to the situation where a number
of notifications are pushed from the same hosting app
during a short period of time (e.g., less than 2 minutes).

For the second aspect, we are concerned about the contents of
the push notifications, including both the contents displayed and
the redirected contents after clicking. We have also observed
four specific types in this aspect as follows (putting the rest
into the Normal Content type):

• Advertising Content. It refers to a notification that
contains advertising content, which is explicitly disallowed
by both Google and Apple. In general, it is non-trivial to
detect whether the content is ad-related or not. Thus, in
this paper, we regard the push notifications originated from
advertising libraries as ad push, which is a reasonable
assumption and we will further discuss it in Section V.

• Updating Content. It refers to a notification that serves
as a reminder of updating or downloading app-related
resources. For example, such push notifications would
always remind users to update the app with contents like
“new version found, need to update".

• Drive-by Download. This kind of notification may trigger
unintentional downloads (e.g., of advertised APKs) when
a user clicks the notification, without requiring user
confirmation. Such behaviors often heavily impact user
experience, and in most cases, drive-by downloads cannot
even be easily canceled.

• Malicious Content. This category refers to such notifica-
tions that, after clicked, may jump to landing pages where
malicious content is presented, or trigger the downloading
of malicious files (e.g., apks).

With this taxonomy, we are able to classify each push
notification into one or more types considering both their
behavior and content. For example, a push notification that is
frequent and with advertising content will be classified into
the “frequent + advertising” type. Ideally, we could have as
many as 25 different types (including the “normal behavior,
normal content” type). However, since frequent + updating
and anonymous + updating are not possible in practice, we
did not take these two types into account. Finally, we have
obtained 23 different notification types based on our taxonomy.

Note that while this taxonomy covers most common cases
of push notifications, it is not completely orthogonal. The
actual push notification may belong to more than one behavior
type and more than one content type simultaneously. For
example, the motivation example shown in Fig. 1 (b) belongs
to Compulsive and Anonymous behavior types, and Malicious,
Drive-by Download and Ad content types.

B. User Survey

Although we are now able to classify mobile push notifica-
tions into different types based on their behavior and content
aspects, we still do not know which types are considered
to be aggressive, as no previous studies have characterized
them. Instead of labeling them ourselves, we seek to adopt
a crowdsourcing-based approach, i.e., assigning the level of

Malicious Drive-by Ad Updating Other
Frequent 4.92 4.65 4.13 — 3.50

Anonymous 4.87 4.50 4.38 — 3.29
Compulsive 4.87 4.62 4.04 2.77 2.88
Background 4.81 4.52 3.54 2.62 2.69

Other 4.69 4.40 3.17 2.46 1.62

Fig. 3. The survey results. The green cell stands for benign and not aggressive
at all, the yellow stands for disturbing to users but not aggressive, and the red
ones stand for aggressive cases, and the deeper the color, the more aggressive
it is from users’ perspective. Overall, 17 ones (in red) are regarded as APNs.

aggressiveness of all possible types of the push notifications
from the perspective of real Android app users, in order to
confirm which notifications are more likely to be APNs.

Survey Design. Based on the taxonomy we created (cf.
Fig. 2), we further embed it into a Likert-scale [54] online
survey to measure the aggressiveness for each type of notifica-
tions. Participants in the survey, with the experience of using
Android mobile devices and the basic understanding of mobile
notifications, were provided with 23 types of push notifications
together with example screenshots and their explanations. The
details of the user survey could be found at the project on
Github [20]. Participants are asked to grade each type of push
notification from a level of 1 to 5 based on its aggressiveness,
which is defined as follows:

• 1 stands for benign and not aggressive at all.
• 2 stands for disturbing to users but not aggressive.
• 3 stands for somewhat aggressive.
• 4 stands for aggressive.
• 5 stands for extremely aggressive.
To encourage users to respond to our survey, we pay 2 US

dollars to the person who responds to our full survey. Eventually,
our online survey receives 52 effective responses, which is
a fairly representative number considering the difficulties to
encourage people to answer online surveys [29].

Survey Result. The responding results are illustrated as
a heatmap in Fig. 3. This heatmap is drawn based on the
average scores by all respondents. Following the convention
of Likert-scale, in this work, we define five aggressiveness
levels: Benign, Disturbing, Somewhat Aggressive, Aggressive,
and Extremely Aggressive, which are regarded as such if the
average score of all the responses falls into ranges [1,2), [2,3),
[3,3.5), [3.5,4.5), [4.5,5], respectively. In this work, we consider
such combinations that have an average score higher than three
as APNs. Eventually, as shown in Fig. 3, 17 combinations fall
into this category and hence are regarded as APNs.

C. Market Policies

After identifying the types of APNs, we go one step
deeper to check if some of the notification types, which are
considered to be aggressive by app users, have been explicitly
restricted by market policies. App markets have responsibilities
and incentives to regulate app behaviors that may lead to
dissatisfaction of users. When using apps with APNs, users
may not only complain about the app itself but also complain
about the market where the app is downloaded from. To this

TABLE I
APN-RELATED POLICIES DECLARED BY APP MARKETS.

Behavior Content
Freq Anonymous Compulsive BKG Malicious Drive-by Ad Update

GPlay
√ √

Huawei
√ √ √

Tencent
√ √ √

Push Exploration
Foreground Background

App Queue

Vieetree Click Push

Source Target Network
Traffic

Instrumented
Android Framework

APN Detection

Behavior-based Detection

Content-based Detection
APNs

Fig. 4. Overview of DAPANDA.

end, we crawl the policy descriptions from several Android app
markets (including Google Play) and manually go through them
to check if the policy has explicitly mentioned that certain types
of push notifications are not allowed by the apps submitted
to its market. As illustrated in Table I, market policies have
explicitly disallowed malicious pushes, ad-related pushes, and
anonymous/compulsive pushes, which are generally in line
with the choice of users from our survey, providing concrete
evidence to confirm the correctness of our survey results. Note
that the market polices are generally coarse-grained, while our
survey results have extended the policies with more detailed
combinations.

III. APPROACH

Aiming at systematically detecting APNs in Android apps,
we propose a dynamic analysis approach called DAPANDA
for automatically exploring and characterizing push notifica-
tions. Fig. 4 illustrates the working process of DAPANDA,
which is mainly made up of three modules: (1) Automated
exploration of push notifications. This module leverages
automatic Android GUI traversal techniques for triggering
the appearance of push notifications and clicking subsequently
the pushed notifications. (2) Framework Instrumentation.
This module aims at hooking relevant methods for capturing
runtime information of push notifications (e.g., how is a push
notification triggered and consumed?). (3) Aggressive Push
Notification Detection. This module follows the pre-defined
definition of APNs to identify the aggressive ones from all the
triggered notifications, utilizing the information collected in
the instrumented framework after the completion of automated
GUI exploration.

A. Automated Exploration of Push Notifications

The general idea of this module is to identify and understand
the layout of push notifications by constructing the correspond-
ing view trees of each UI page and click the notifications by
simulating the touch events at runtime. Since push notifications
could be triggered in both the foreground and background,
existing UI exploration tools focused on a single app becomes
ineffective, thus we propose a new exploration strategy called

App Queuing, aiming at exploring as many push notifications
as possible.

1) App Queuing: The key idea of app queuing is that,
instead of quitting the app directly after running it in the
foreground, which has been done by almost all the state-
of-the-art app testing approaches [19], [52], we will put the
app into the background, allowing silent notifications to be
still pushed. Additionally, the app queuing approach can also
improve exploration efficiency. In practice, although only one
app runs in the foreground, more than one app could run in
the background, which allows us to test multiple apps at the
same time. Specifically, our exploration strategy maintains an
app queue structure with three principal operations: insert,
which adds an app to the app queue and automatically tests it
in the foreground; downgrade, which puts the app into the
background; and remove, which removes an app from the
queue based on their arriving order (FIFO).

During exploration, we can configure the capacity of the
queue n and the foreground execution time tf for each app.
Specifically, (1) n apps are allowed to be concurrently tested
in our system and (2) each app is running in the foreground
for tf seconds. When experimenting on a large set of apps, we
follow the FIFO principle as in the queue structure, i.e., once
an app runs in the foreground for time tf , we will put it into the
background. Once the app queue reaches its capacity n, the app
at the rear of the queue (who enters the queue earliest) would
be removed and further be closed and uninstalled, making
room for new apps. Note that, each app runs in the foreground
for tf time, and in the background for (n-1)*tf time, thus n*tf
time in total, while the expected average execution time for
each app is still tf .

To ensure each app strictly follows this strategy and prevent
exceptional cases (e.g., app crash or interference of concurrent
running apps), our system monitors the execution states (e.g.,
use adb shell command dumpsys activity top to query the
foreground activity) at runtime for every 10 seconds. Once
exceptional cases are found, our system will either revoke the
app back to the foreground or restart the app (e.g., use adb
shell command am start with the launcher activity of the app).

2) View Tree based UI Exploration: For each app, we split
the UI exploration into two phases: (1) exploration of in-app
UIs, to trigger push notifications; (2) exploration of notification
UIs, to identify push notification views and click them. Thus
we can not only trigger the corresponding behaviors, but also
harvest their distribution contents.

Exploration of In-app UIs. In this work, we plan to trigger
push notifications by exploring apps with randomly generated
UI-focused test inputs, as the occurrence of push notification
is unpredictable, without the knowledge of predictable trigger
points. However, some apps present welcome pages or user
agreements on their first run during the experiment, which may
stop us from triggering the main app functionality. Therefore,
we take advantage of a model-based UI input generation method
here. During the exploration of the in-app UI, we propose to
analyze the view tree of each UI state, and then apply the
DFS (depth-first search) algorithm to generate the possible

input events, in order to trigger the functionality of the app.
Fig. 5(a) shows an example of the view tree we constructed
during in-app UI exploration.

Exploration of Notification UIs. In order to fully exploit the
app queuing mechanism, we decide to explore the notification
related UIs when the testing app switches its state, from running
in the foreground to running in the background. During this
interval, before the next app runs in the foreground, we first
simulate the Swipe Down action on the status bar to open
the notification drawer, where we can view more details and
take actions with the notification. We then get the view trees
of the current state (notification drawer), based on Google
Accessibility [15]. Fig. 5(b) shows an example of the view tree
we constructed for a notification drawer. Three FrameLayout
nodes are laid at the bottom, and each of them corresponds
to a notification view, which is also a tree-like structure, as
shown in Fig. 5(c). We can retrieve the notification related
information from the view tree, including its coordinates, text
messages, resource id, the package name of the original app.

Finally, with the retrieved coordinate information, we click
on the notification view accordingly by simulating a click
event at the center of the view. This process would be repeated
several times if we found more than one notification views.
Note that we only click once for each unique push notification.

B. Framework Instrumentation

The objective of this phase is to collect all the necessary
information relevant to push notifications, mostly the ones that
could be useful for characterizing APNs. Specifically, in order
to accurately identify APNs, we seek to collect three types of
runtime information. As shown in Fig. 6, which illustrates the
typical working scenario of push notifications, the following
three types of runtime information are needed: (1) The source
where the notification is pushed to the system, (2) The target
where the execution will jump to after the notification is clicked,
and (3) the network traffic triggered by the consumption of
the notification.

Unfortunately, it is not straightforward to collect some of
the aforementioned information. For example, it is difficult to
track the source where the notification is pushed. Furthermore,
although it is relatively easy to collect all network traffic after
a notification is clicked (e.g., via Tcpdump), it is still difficult
to locate the app that has actually generated those traffic, as
there are always multiple apps running at the same time. To
this end, we propose an instrumentation-based approach, in
which we leverage the Xposed framework [6] to hook all the
notification-relevant methods to collect the app execution logs
on demand. The Xposed framework allows us to collect the
runtime information of tested Android apps without actually
instrumenting the APK. We only need to set up the framework
once and it works for all the apps to be tested.

Table II summarizes the key methods hooked by the
instrumentation module in order to extract runtime information
that our approach is interested in (i.e., the runtime information
involved in the lifecycle of push notifications). Listing 1 further

0.android.widget.FrameLayout

View Tree

0:android.widget.LinearLayout

1:android.widget.LinearLayout

0.android.widget.FrameLayout

1.android.widget.LinearLayout

1.android.widget.FrameLayout

0.android.widget.FrameLayout

0.android.widget.LinearLayout

0:android.widget.FrameLayout

1:android.widget.Button:OK
Bounds:[543,1543][1009,1687]

0:android.widget.LinearLayout

0:android.widget.TextView:Close
Bounds:[77,1586][543,1643]

(a) The view tree of a user agreement.

0.android.widget.FrameLayout

0.android.widget.LinearLayout

1.android.widget.TextView

View Tree

0.android.widget.FrameLayout

0:android.widget.LinearLayout

2:android.widget.FrameLayout
Bounds:[0,637][1080,847]

1:android.widget.FrameLayout
Bounds:[0,427][1080,637]

0.android.widget.FrameLayout

2.android.widget.FrameLayout

0.android.widget.FrameLayout

0.android.widget.LinearLayout

0:android.widget.ScrollView

0:android.widget.FrameLayout
Bounds:[0,217][1080,427]

(b) The view tree of a notification drawer.

0.android.view.View

0.android.widget.ImageView

View Tree

1.android.widget.LinearLayout

0.android.widget.FrameLayout

1:android.widget.FrameLayout
Bounds:[0,427][1080,637]

0.android.widget.FrameLayout

0.android.widget.LinearLayout 1.android.widget.LinearLayout

0.android.widget.TextView
“Access Gesture Call !”

1.android.widget.TextView
“6:23 AM”

0.android.widget.TextView
“Gesture Call Donate”

"resource_id":android:id/
status_bar_latest_event_content ,
"bounds": [0,436][1080,628],
"package": ac.gestureCallPro .

(c) The view tree of a typical push notification.

Fig. 5. Constructing the view tree of push notifications.

Stack Tracing

Source

ICC

Target
Pushing Clicking

Notification

Network Traffic

Fig. 6. The life-cycle of a standard mobile push notification and the
corresponding information we collected (in gray).

TABLE II
KEY INFORMATION EXTRACTED WITH FRAMEWORK INSTRUMENTATION.

Category Specific Info Method

Source

PackageName

API Hooking:
NotificationManager.notify()

/Service.startForeground()

Title&Texts
Icons&Images

Flags
ResourceID

NotificationID
Source ClassName Call stack tracing

Target Intent API Hooking: PendingIntent.getActivity()
/getActivities()/getBroadcast()/getService()Target ClassName

Network Traffic

ClassName of Url API Hooking and trace call stacks
in network modulePackageName of Url

Drive-by Download API Hooking: execStartActivity()
PackageName&Text Extracted from Viewtree

URLs Extracted from PCAP fileDownloaded Files

illustrates the detailed runtime information we could collect
with the instrumentation module.

1) Notification Source: We mainly retrieve two types of
information for the notification source. The first is necessary
configuration information, the other one is the origin of the
push notification (e.g., the class that issues it).

During the implementation of push notifications, the de-
velopers would need to specify the detailed configurations.
Some of them could be obtained during runtime from the
view trees (e.g., text and icon), while some others cannot (e.g.,
flags). Thus, we have instrumented a list of APIs that can push
notifications including android.app.NotificationManager.notify()
and android.app.Service.startForeground() to get the instances
of Notification, and then we further get the configuration data
by checking the corresponding properties, as show in Table II.

1 //Source
2 Source ClassName: com.appquanta.dll.cookiemanager.ag
3 PackageName: cn.happyeclub.tjraduyy
4 Title&Texts:: Come and Buy!&Click to see details.
5 Icons&Images: 17301651.jpg
6 Flags: FLAG_ONGOING_EVENT
7 ResourceID of templates:

17367140/notification_template_base
8 NotificationID: 25503184
9

10 //Target
11 Intent: {
12 flg=0x18800000
13 cmp=cn.happyeclub.tjraduyy/com.appquanta.wk.MainActivity
14 (has extras) } (from API getActivity())
15 Target ClassName: com.appquanta.wk.MainActivity
16
17 //Network Traffic
18 {Url: http://c1.apkads.com/get/w/20190411/3d991cf
19 380d8422ab581e69f8cdc0a3c.142368472.21321705.apk
20 ClassName of Url: com.appquanta.dll.cookiemanager.be
21 PackageName of Url: cn.happyeclub.tjraduyy}
22 {Url: http://alog.umeng.com/app_logs
23 ClassName of Url: com.umeng.analytics.g
24 PackageName of Url: cn.happyeclub.tjraduyy}
25 Drive-by Download

Apk:file:///storage/emulated/0/download/
26 com.yiqimmm.apps.android-8627.zip
27
28 //Below are From PCAP
29 PackageName&Text Messages: cn.happyeclub.tjraduyy, Come

and Buy!&Click to see details.
30 URL:c1.apkads.com/get/w/20190411/3d991cf380
31 d8422ab581e69f8cdc0a3c.142368472.21321705.apk
32 alog.umeng.com/app_logs
33 Downloaded Files:3d991cf380
34 d8422ab581e69f8cdc0a3c.142368472.21321705.apk

Listing 1. An example of obtained runtime information.
com.example.pushhook.Hook$1.afterHookedMethod(Hook.java:227)

 de.robv.android.xposed.XposedBridge.handleHookedMethod(XposedBridge.java:645)

 android.app.NotificationManager.notify(Native Method)

 android.app.NotificationManager.notify(NotificationManager.java:109)

 com.appquanta.dll.cookiemanager.ag.run(Unknown Source)

Notification Load Method

Fig. 7. An example of stack traces.

To trace the origin of push notifications, we apply a call
stack based method. From the Notification instance we located
via instrumentation, we log its call stack, and further pinpoint
the package and class issuing this notification. Fig. 7 shows
an example of a call stack we harvested at runtime. In the
example, the notification is implemented by an ad library called

Quanta [10], where we can trace to its load method from the
call stack. Note that, to further assist our source tracing, our
system also integrates a third-party static library detection
tool, which could help us flag the possible ad libraries and
push libraries, even if in the form of naming obfuscation (e.g.,
com.a.b.c). In this work, during our implementation, we have
embedded LibRadar++ [57], [70], and based on which we have
labeled over 60 ad libraries and 20 push libraries.

2) Notification Target: The actual target of each push
notification, i.e., the component it connects to, is essential for us
to identify the actual traffic triggered by the corresponding push
notification. The target component is set via a PendingIntent,
a special Intent that can take an action in the future. After
the notification is clicked, the pending Intent will be sent
to the system. Following the inter-component communication
mechanism [46], the appropriate target component will be
activated to execute in the foreground. Thus, our goal is to
demystify the corresponding Intent.

In Android, there are two forms of intents: Explicit Intents
and Implicit Intents. Explicit Intents specify the target compo-
nent (i.e., via the cmp attribute), which can be directly inferred.
However, for implicit intents, the value of cmp is not directly
set but via several special attributes such as action, category,
etc. These attributes will be leveraged by the system to locate
the target components, which should have declared an Intent
Filter with the same attribute values.

By instrumenting a series of APIs getActiv-
ity()/getActivities()/getBroadcast()/getService() under
android.app.PendingIntent, we can acquire the value of
Intent concerning three types of components in Android –
Activity, Service and Broadcast Receiver. We check the cmp
attribute value to directly locate target components for explicit
Intents (e.g., line 2 in Listing 2). For implicit Intents, we
resort to the Intent and Intent Filter matching mechanism to
pinpoint the target component. Normally, the Intent Filter
contents can be extracted from the manifest configuration
file of Android apps (e.g., lines 6-13 in Listing 2). However,
this is not always true for Broadcast Receivers, in which
dynamic Intent Filters can be registered without mentioning
in the manifest file. To this end, we additionally hook
method android.app.ContextImpl.registerReceiverInternal,
the underlying implementation of API registerReceiver(), to
further include dynamically registered Intent Filters (e.g., lines
16-20 in Listing 2).

3) Network Traffic: For each push notification clicked, a
PCAP file is generated using Tcpdump [21] to record its
network traffic. We also gather the package name of the source
app that pushed the notification via the View Tree. This package
name will be used to check whether the notification is triggered
by the app running in the foreground. We then analyze the
PCAP files using Bro [22], where several scripts are further
introduced to extract contents from the traffic.

To further pinpoint the notification traffic, we have instru-
mented a list of network APIs in “HttpClient”, “HttpUrlConnec-
tion” and “OkHttp”, which are widely used networking modules.
By hooking and tracing the call stacks of these key APIs, we

1 //Explict Intent
2 Intent{flg=0x24000000 cmp=be.ppareit.swiftp_free
3 /be.ppareit.swiftp.gui.FsPreferenceActivity}
4
5 //Implict Intent targetting statically-registered

component
6 Intent={act=com.zhiyoo.UPDATE_CLICK (has extras)}
7 AndroidManifest.xml (Registration Info):
8 <receiver

android:name="com.zhiyoo.app.BBSReceiver">
9 <intent-filter>

10 <action
android:name="com.zhiyoo.UPDATE_CLICK"/>

11
12 </intent-filter>
13 </receiver>
14
15 //Implict Intent targeting dynamically-registered

Broadcast Receiver
16 Intent{act=com.unipay.secservice.action.SYNC (has

extras)}
17 Instrument API

android.app.ContextImpl.registerReceiverInternal :
18 IntentFilter.mActions: com.unipay.secservice.action.SYNC
19 BroadcastReceiver:com.unipay.xiaowo.pluginmgr.plugin1
20 .MyBroadcastReceiver$1

Listing 2. Three types of intents and their target components.

can acquire the URLs in the network traffic, and the origin
package that triggered the URLs (cf. Line 18-24 in Listing 1).
The extracted information will help identify network traffic
introduced by the corresponding push notification. For example,
as shown in Listing 1, the traffic of Umeng Analytics does not
belong to the push notifications, as its origin package (cf. Line
23) does not equal to the package of notification target (cf. Line
15). Note that, as drive-by-download notifications would trigger
app downloading first, and then pop up an installation activity
(interface provided by the system), we further instrument the
API execStartActivity() to capture this behavior.

C. Aggressive Push Notification Detection

As demonstrated in Fig. 2, push notifications are categorized
from two aspects: (1) runtime behavior and (2) notification
content. With the runtime information collected, we are now
able to detect APNs based on our taxonomy.

Behavior-based detection. It is quite straightforward to
characterize a given push notification to the specific types of
notifications based on the behaviors specified in Fig. 2. For
example, we regard a notification as a background push if
it is not pushed by the foreground app, compulsory push if
FLAG_ONGOING_EVENT or FLAG_NO_CLEAR flags are
enabled, and frequent push if three or more notifications with
different notification id are pushed from the same app within
two minutes. Regarding the anonymous push, since Android
7.0, the system forces notifications implemented with system
templates to display its source app name [5]. In order to keep
pushing anonymous notifications, app developers are required
to implement customized templates. We are able to extract
all possible system templates (seven kinds in total, based on
the ResourceID). Therefore, we regard a notification as an
anonymous push if system templates are not used while neither
the title nor icon is matched between the notification and the
tested apps.

Content-based detection. Content-based notification types
are also quite easy to classify, once the relevant runtime

information is collected. We can identify updating contents
based on keyword matching (e.g., download, update and new
version, a total of 9 keywords), while drive-by download based
on if an APK file is downloaded after each notification is
clicked, since no other interaction will be introduced. For
malicious content, VirusTotal will be leveraged to scan every
URL and files recognized from the network traffic (collected
after the notification is clicked). We consider a notification as
containing malicious content as long as VirusTotal flags its
content as such. For Advertising content, we will check if the
source method, which pushed the notification, belongs to ad
libraries.

Finally, the remaining push notifications that cannot be
classified into the above types will be considered as Normal
Behavior/Content types.

IV. EVALUATION

To evaluate the performance of DAPANDA, we consider
answering the following three main research questions.

• RQ1: Can DAPANDA effectively and accurately identify
APNs in Android apps?

• RQ2: What is the percentage of apps with APNs in the
wild? What is the distribution across different app markets?

• RQ3: How are the underlying working mechanisms of
APNs manifested in the lifecycle of push notifications?

A. Experimental Setup

To effectively answer the above research questions, we will
conduct both in-the-lab and in-the-wild experiments. The in-
the-lab experiment aims to provide reliable indications on the
performance of our approach and, at the same time, identify
appropriate parameters for setting up the in-the-wild experiment,
which subsequently is applied to evaluate the performance of
our approach for a large number of apps in real-world settings.

Setup for RQ1 (in-the-lab). To evaluate the effectiveness
of our tool, we need to build a benchmark to support in-the-
lab experiments. Unfortunately, to the best of our knowledge,
there are no publicly available benchmarks on mobile push
notifications in our community. Therefore, we resort to user
comments on app markets (Google Play in particular) to
manually construct such a benchmark. If a given app receives at
least two comments complaining about the annoying behaviors
of its notifications, the app has a high probability to push
aggressive notifications and hence is a good candidate to be
included in our benchmark. We first use a keyword-based (e.g.,
push notification, notification bar) method to filter relevant user
comments, and then we manually went over the reviews and
randomly selected 100 such apps to form our benchmark set.
Note that during our selection of benchmark apps, we cannot
figure out the type of APNs accurately, as some user comments
are vague and hard to infer their corresponding behaviors.

As for the parameters in the app queuing exploration strategy,
we further set the capacity “n” of our app queue to four different
scales, from 1 to 7. For n = 1, representing that our system
also supports running only one app each time, the app would
be explored fully in the foreground state. We set the maximum

capacity as 7 in our experiment, as the testing phone we used
(Nexus 5) is unable to host more apps running at the same time
due to its hardware constraints. We set the exploration time per
app “t” to 11 different scales, from 5 seconds to 1,800 seconds.
Note that the upper-bound was set dynamically during our
experiment, based on whether we could trigger more APNs.

Setup for RQ2 and RQ3 (in-the-wild). For RQ2 and RQ3,
we rely on real-world Android apps to support the in-the-wild
experiments. From August 2017 to December 2018, we had
crawled and collected over 3 million Android apps from 8
markets including Google Play. To perform an efficient study,
we seek to focus on those apps that are likely to invoke APIs
related to notifications delivery (e.g., notify()). To this end, we
have incorporated our system into a static analyzer to identify
the invocations of those APIs in the apps. By doing so, we
have managed to obtain 20,000 apps (without considering the
markets at this point) as our dataset.

In the large-scale experiments, we launch DAPANDA on
actual smartphone devices, i.e., Nexus 5 smartphones with
Android 4.4 (or API level 19). We do not use emulators
since apps may embed evasion techniques to avoid running on
emulator environments [65]. We use four Nexus 5 smartphones
running in parallel for testing. It takes roughly 42 hours to
explore all 20K apps, with the app queue size n = 5 such that
5 apps were running at the same time, and the exploration time
t = 600s, where each app would be running in the foreground
for 120s and in the background for 480s.2

B. RQ1: Effectiveness of DAPANDA

Table III shows the overall result of our evaluation on the
crafted benchmark under different configurations. In general,
our approach could achieve a high recall rate (84 APN-
triggering apps at most out of 100 labeled apps). We manually
confirmed and categorized those apps into our taxonomy, as
shown in Table IV. To further explore the reasons why our
exploration cannot recall all labeled apps, we conducted a
manual analysis. We installed and ran the remaining apps for
a long time, and we found that the notifications could not be
triggered even manually. There could be multiple explanations
on this. First, the apps were released years ago, and the
notification services could be invalid, or we did not get the
appropriate app version as users complained. Second, it may
require the right combinations and configurations in order for
the APNs to appear. Finally, it is also possible that some user
comments might not be accurate at all.

From our experiment result shown in Table III, we also
identified the appropriate parameters for the large-scale study.

(1) In general, the number of APN-triggering apps is
positively correlated with the exploration time. However, the
number reaches its peak at t = 600s or t = 900s in most
cases, and increasing the exploration time further would not
significantly improve the results.

(2) With the exploration time growing, it is interesting to
see that, strategies with app queuing (n > 1) achieve better

2This configuration is selected because it achieves the best performance in
the study of RQ1.

TABLE III
THE NUMBER OF APN-TRIGGERING APPS WITH DIFFERENT PARAMETER

SETTINGS FOR THE 100 APPS IN OUR BENCHMARK.

Time/Strategy App Queue
n = 1 (foreground) n = 3 n = 5 n = 7

5s 37 - - -
30s 48 - - -
60s 54 - - -

180s 63 60 55 36
300s 71 69 67 49
450s 74 77 78 58
600s 76 82 84 69
900s 76 84 84 75
1200s 76 84 84 74
1500s 76 84 84 78
1800s 76 84 84 76

TABLE IV
THE DISTRIBUTION OF DIFFERENT TYPES OF APNS IN OUR BENCHMARK.
WE ONLY SHOW THE 84 ONES THAT WERE TRIGGERED WITH APNS AND

FURTHER CONFIRMED BY US.

Behavior\Content Malicious Drive-by Ad Updating Other Total
Frequent 10 10 12 - 2 16

Anonymous 5 2 9 - 22 37
Compulsive 31 28 28 - - 55
Background 16 12 24 - - 33

Other 3 5 5 - - 5
Total 41 36 53 - 24 84

results than the strategy with fully foreground exploration
(n = 1). The underlying reason is that a number of APNs were
triggered when the apps were running in the background, which
is the advantage of our app queuing strategy. Note that with
very limited time (t < 60, cf. Table III), we did not perform
exploration based on app queuing. This is because with multiple
apps running simultaneously, the app install/uninstall process
may take longer than the foreground running time, which may
cause conflicting issues.

(3) It is interesting to observe that, the strategy with “n = 5”
is slightly better than “n = 3”, and both of them achieve
better results than “n = 7”. We seek to investigate the reasons
and found that with “n = 5”, more background cases could
be triggered. However, with “n = 7”, due to the hardware
limitations of Nexus 5, the smartphone would be lagging and
some apps cannot work properly.

As a result, the best configurations for the following large-
scale study are: the app queue size n = 5 and the exploration
time t = 600s.

Findings #1: DAPANDA is able to effectively and accu-
rately detect APNs in our manually crafted benchmark
set. Among 100 Google Play apps received complaints
about their annoying notification behavior, DAPANDA can
automatically flag 84 of them (a recall of 84%).

C. RQ2: The distribution of APNs in the wild

We then show results of RQ2, to understand how many
apps with APNs exist in the wild. For the selected 20,000
market apps, we have successfully triggered 2,446 unique push

TABLE V
THE OVERALL RESULT.

Behavior\Content Malicious Drive-by Ad Updating Other Total
Frequent 65(232) 58(210) 63(226) - 17(62) 93(331)

Anonymous 64(71) 56(63) 34(37) - 205(229) 328(359)
Compulsive 196(362) 141(294) 135(288) 132(144) 653(675) 978(1180)
Background 324(397) 187(247) 325(404) 95(116) 212(233) 675(805)

Other 120(152) 148(186) 73(87) 245(284) 155(164) 490(553)
Total 608(839) 471(694) 509(717) 432(512) 963(1023) 2052(2446)

notifications from 2,052 apps, which accounts for over 10%
of the apps in our dataset. The distribution among different
notification types is shown in Table V. Note that, although all
the apps selected in our dataset have been found incorporating
the related APIs, not all of them were identified with push
notifications during our experiment, mainly due to two reasons.
On one hand, the push notification related APIs would never be
executed by the app, and checking statically whether an API is
reached is an instance of the (undecidable) halting problem [37].
On the other hand, for non-aggressive push notifications,
most of them were implemented based on third-party services
(e.g., Google Cloud Messaging), and fully controlled by the
developers (e.g., pushing messages at a certain time of the day),
with strict regulations by the service providers (e.g., Google
GCM regulates that developers cannot push repetitive push
notifications in a single day [18]). For the identified 2,446 push
notifications, 1,329 of them (54%) are considered to be APNs,
based on the results of our user survey (cf. Section II-A). The
1,329 APNs were found to be pushed from 1036 apps, taking
up 5.18% of our dataset.

Distribution across Markets. Table VI shows the distri-
bution of our dataset and identified apps with APNs across
market3. Over 1.98% to 7.52% of app candidates in the studied
markets were flagged as apps with aggressive notifications.
Although each market has declared strict developer policies to
regulate the APNs, we still find a number of aggressive cases in
these markets. This result suggests that it is challenging to
perform automated regulation of APNs, thus both the app
markets and our research community should pay more
attention to this issue.

Findings #2: APNs are prevalent across all the app
markets we studied, i.e., covering over 5% of the apps
in our dataset. It is urgent for app markets to adopt
techniques like DAPANDA to identify and remove apps
with aggressive notification behaviors.

D. RQ3: Understanding the lifecycle of APNs

We further characterize the push notifications triggered in the
large-scale experiment from different phases in their lifecycle,
including (1) the origin of the push notification (including its
implementation template), (2) the reflected runtime behaviors,
(3) the triggered contents, and (4) the corresponding actions
after the notifications are consumed.

3Note that one APK may correspond to several markets, as different markets
have overlapped apps.

TABLE VI
THE DISTRIBUTION OF OUR DATASET AND IDENTIFIED AGGRESSIVE APPS.

Market #App # Aggressive % Aggressive
Google Play 1,265 25 1.98%

HUAWEI Market 1,499 104 6.94%
Tencent Myapp 5,332 186 3.49%

PP Helper 7,834 276 3.52%
Wandoujia 5,967 241 4.04%
HiMarket 3,795 240 6.32%

OPPO Mraket 3,503 109 3.11%
Anzhi Market 2,820 212 7.52%

Total 20,000 1036 5.18%

TABLE VII
DISTRIBUTION OF PUSH NOTIFICATIONS FROM DIFFERENT LIBRARIES.

Ad Library Push Library
Library Name # Push # App Library Name # Push # App

Airpush 173 170 Tencent Bugly 25 18
Moxiu 136 133 Jpush 25 7

Daoyoudao 121 72 Umeng Message Push 6 3
JYPush 67 28 Tencent Tpush (Xinge) 4 2

Wostore_UNIPAY 47 20 GCM/FCM 4 4
PandaAd 44 18 Baidu Push Services 4 3

Feiwo 31 15 Rongyun Push 2 1
Kuguo 23 16

Migu SDK 15 13
Mipush 13 12
Other 47 12
Total 717 509 Total 70 38

1) Origin of the Push Notifications.: Based on “ResourceID
of templates” obtained from Framework Instrumentation, we
observed that most push notifications were implemented using
system templates, while over 26% of the apps (536 in numbers)
and over 24% of the push notifications (584 in numbers)
triggered were implemented using customized templates. In
these 584 notifications, over 85% were labeled as APNs (498 in
numbers). We further analyze the origin of the triggered push
notifications, taking advantage of the call-stack based approach
we proposed in Section III-B. Over 32% of the notifications
were triggered by third-party libraries, including ad libraries
and push libraries. We listed the ad libraries and push libraries
with the number of triggered notifications in Table VII. While
notifications originated from ad libraries were all considered to
be APNs, taking up 30% of all notifications and 54% of APNs,
some popular push notification services, including Google
GCM/FCM and Baidu Push Services, were only identified
with a few cases in our experiment, and no sensitive ones.
As we mentioned earlier, these notification services have
strict regulations to keep away APNs. For example, Google
GCM/FCM does not allow developers to use customized push
notifications, which prevents anonymous pushes completely.

2) Runtime Behaviors: We then provide a detailed charac-
terization of their runtime behaviors based on the taxonomy
we summarized in Section II-A.

Frequent Push. We have identified 93 apps with frequent
push notifications, i.e., pushing 3+ messages in less than 2
minutes. For the 331 push notifications, over 232 of them were
considered to be malicious, leading users to malicious URLs
or downloading malware. Over 210 of them were also drive-by
download pushes, and 226 of them push ads frequently.

Anonymous Push. For the 584 push notifications that use
customized templates, 359 of them were considered to be

TABLE VIII
THE TOP 5 DOMAINS THAT HOST THE MOST NUMBER OF MALICIOUS URLS.

Domain # Number # Aggressive Aggressive%
api.airpush.com 193 162 83.94%

mobile.eagla.com 133 121 90.98%
ff.td68x.com 64 64 100%

img.qycdn.daoyoudao.com 39 39 100%
ei.nd.enjoyfinance.cn 35 35 100%

TABLE IX
THE TOP 5 DOWNLOADED MALICIOUS APPS.

MD5 # VT Source app
b0490a5d8cce59616a12705adc546b61 40 com.androidemu.harveshihun.alvinshihun
f93ec3d8490d583f425b0b5f312cb809 39 com.budwbo
7d8d182bf06d500217abca147ede9be1 36 com.RunnerGames.game.Jesgtingche
fd23f172bb3633453cf154e769884dfe 35 com.june.sixteen.juejizhuti
4a1417007cce3309e04b28f326953288 35 com.suishouxie.yemdssfhgfekeji

anonymous, i.e., hiding app name and app icon in any Android
versions. Additionally, 492 push notifications could also be
considered as anonymous in Android versions prior to V7.0,
as they do not provide such information, but they implement
the notifications based on system templates. The systems will
force them to show app names in Android 7.0 and afterwards.

Compulsive Push. Over 48% of the push notifications we
identified belong to the compulsive notification category. The
most aggressive cases were that, 362 of them deliver malicious
contents in this way, i.e., users cannot close the notifications
and have to visit malicious URLs or download malware.

Background Push. Over 33% of the push notifications
were triggered when the apps run in the background, which
demonstrates the effectiveness of our app queuing strategy.
Over half of the background notifications were malicious and
advertisement related.

3) Triggered Contents: The APNs usually pose threats and
spread sensitive contents including malicious contents. Then,
we further analyzed the triggered malicious contents.

URLs/Domains. As we have recorded all traffic triggered
by clicking push notifications, we are able to harvest 5584
distinct URLs, belonging to 997 different domains. We further
analyzed the malicious URLs, i.e., the malicious or phishing
pages introduced by clicking the push notifications. As reported
by VirusTotal, 1,034 URLs from 194 domains were flagged as
malicious. Table VIII shows the top 5 domains that host the
most number of malicious URLs we identified.

Drive-by-Download Apps. During our exploration, we have
collected 1,004 drive-by-download apps triggered by 471 apps
with aggressive notifications. For the 1,004 apps we harvested,
only 252 were unique, i.e., some apps were downloaded several
times. We further send these apps to VirusTotal. The result
suggested that 174 of them (69%) were flagged as positive,
and 75 of them were flagged by 10 anti-virus engines, while 44
apps were flagged by 20 anti-virus engines. Table IX shows the
top 5 downloaded malicious apps flagged by the most number
of anti-virus engines.

4) The Targets of Push Notifications: We further categorized
target components of push notifications. Over 42% of them
invoke components within the app, while over 25% of them
invoke third-party components that belong to ad libraries or

push libraries. Besides, over 15% of them invoke system
components (e.g., android.intent.action.VIEW) to perform
actions including opening files and visiting URLs.

Findings #3: APNs could be manifested in all the phases
in the lifecycle of push notifications, ranging from the
origin of the notifications to their triggering behaviors,
and from the contents to their target components, once
the contents are consumed.

V. THREATS TO VALIDITY

To the best of our knowledge, this work is the first
attempt in the community towards detecting APNs in Android.
The implementation of DAPANDA, however, carries several
limitations.

First, although we have created an effective app automation
tool to trigger push notifications, the timing of push notification
messages usually depends on the developers/advertisers. Our
empirical study on the labeled benchmark suggested that
most aggressive push notification behaviors could be triggered
within 10 minutes of app running (cf. Section IV-B), however,
malicious developers could use sophisticated ways to bypass
our detection. Indeed, the classic principle of the unwinnable
arms race between the attackers and defenders also applies to
our work. There is hence a need to continuously improve our
approach towards inventing advanced techniques for detecting
aggressive push notifications in the long run. Second, we
consider a push notification as advertisement-related by tracing
whether it is originated from known ad libraries, as it is
non-trivial for us to identify ads from the contents. However,
there may exist exceptional cases where the notifications are
pushed by app code to perform some in-app promotions. So
far, in this case, we will still regard them as non-advertisement
push notifications. Third, the contents (landing URLs or the
downloaded APKs) in push notifications may vary due to
factors such as time, location and user identifiers, etc, which
unfortunately are ignored at the moment.

VI. RELATED WORK

Mobile Push Notifications. This paper is the first to detect
aggressive push notifications for Android apps. Nevertheless,
there are several studies [24], [31], [33], [45], [51], [53], [58]–
[60], [72], [73] focused on analyzing mobile push notifications
from other aspects. For example, Chen et al. [31] studied
the security qualities of emerging push-messaging services
and developed a tool to evaluate the security qualities of
the service’s SDKs and its integration within different apps.
Ahmadi et al. [24] characterized the usage of Google Cloud
Messaging (GCM) in Android malware, and proposed to trace
the flows of GCM to improve malware detection. Lee et al. [45]
have explored a new C&C channel for mobile botnets based
on the push notification service of Android. These studies may
have a correlation with part of our work, however, our work

is the first to identify and characterize aggressive behaviors in
mobile push notifications.

Mobile Advertising. Mobile advertising has been widely
studied, including different techniques to detect third-party
libraries (including ad libraries) [27], [50], [57], [66]–[68],
analyzing the security and privacy behaviors of mobile ad
libraries [30], [38], [49], [55], [63], mobile ad fraud de-
tection [32], [34], [35], [56], and malicious contents dis-
tributed [61], [62]. Mobile push notification, which could also
be used as a means for delivering mobile advertisement, has
not been well studied in our research community. Nevertheless,
some related techniques could be applied in our study.

Malicious and Gray Behaviors of Mobile Apps. Android
malware detection is a more general research direction, with
a large number of techniques and measurement studies [26],
[28], [36], [37], [43], [48], [69]–[71], [74] proposed. Besides,
a number of studies were focused on analyzing gray behaviors
and aggressive/annoying behaviors in mobile apps. Andow et
al. [25] proposed to design and implement heuristics for seven
main categories of grayware, and then use these heuristics
to simulate grayware triage on a large set of Android apps.
Tang et al. [64] proposed a systematic and comprehensive
empirical study on a large-scale set of fake apps. Hatada et
al. [40] analyzed “potentially unwanted applications” (PUAs) in
Android and proposed to classify them based on the similarity
of DNS queries. A number studies were focused on fraudulent
behaviors in mobile apps, e.g., promotion attack [39], [75],
fake review [41] and new kinds of scams [42]. As APNs cover
both malicious behaviors (e.g., spreading malware) and gray
behaviors (e.g., compulsive or anonymous), our work is a
complementary study of these existing efforts.

VII. CONCLUSION

In this paper, we present the first work to demystify mobile
push notifications and detect aggressive push notifications
(APNs) automatically. In particular, we first create a comprehen-
sive taxonomy, and then propose DAPANDA, a hybrid approach
that leverages UI automation and framework instrumentation
techniques to identify APNs. We have applied DAPANDA
to 20K Android apps crawled from 8 app markets. Our
experimental results show that APNs indeed exist in many
Android apps. Among these aggressive notifications, some of
them were found to be maliciously used to distribute malware
and create annoying messages. Our results encourage our
research community to invest more efforts into the detection
and mitigation of APNs.

ACKNOWLEDGMENT

We sincerely thank our shepherd Prof. Amin Alipour
(University of Houston), and all the anonymous reviewers for
their valuable suggestions and comments to improve this paper.
This work is supported by the National Key Research and
Development Program of China (grant No.2018YFB0803603),
and the National Natural Science Foundation of China (grants
No.61702045 and No.61772042).

REFERENCES

[1] I, as a developer, HATE the idea of AirPush. Lets make a list of apps
that use it, 2011. https://www.reddit.com/r/Android/comments/gzdz6/i_
as_a_developer_hate_the_idea_of_airpush_lets/.

[2] Google Play Developer Programme Policies, 2013. https://play.google.
com/intl/en-gb/about/index.html.

[3] No More Notification Ads and Icon Ads in Android
Apps, 2013. https://googlesystem.blogspot.com/2013/08/
no-more-notification-ads-and-icon-ads.html#gsc.tab=0.

[4] How to Disable Notifications from Any App in Android, 2015. https:
//www.makeuseof.com/tag/stop-annoying-notifications-android/.

[5] Notifications in Android N, 2016. https://android-developers.googleblog.
com/2016/06/notifications-in-android-n.html.

[6] Xposed Framework API, 2016. https://api.xposed.info/reference/packages.
html.

[7] Android Cloud to Device Messaging, 2017. https://en.wikipedia.org/
wiki/Android_Cloud_to_Device_Messaging.

[8] Find out which app is pushing ads in my notification bar?,
2017. https://android.stackexchange.com/questions/41045/
find-out-which-app-is-pushing-ads-in-my-notification-bar.

[9] No More Notification Ads and Icon Ads in Android Apps,
2017. https://www.reddit.com/r/Android/comments/545x7k/theres_too_
many_popular_apps_that_are_abusing/.

[10] Quanta Sky Inc., 2017. http://www.appquanta.com/index.html.
[11] Suspicious Push Notification on Android Phone,

2017. https://security.stackexchange.com/questions/186653/
suspicious-push-notification-on-android-phone.

[12] The 13 most annoying Facebook notifications, ranked, 2017. https:
//mashable.com/2017/06/16/worst-facebook-notifications-ranked/.

[13] ‘Ghost Push’ Malware Threatens Android Users, 2017.
https://www.pandasecurity.com/mediacenter/mobile-security/
ghost-push-malware-android/.

[14] How to block spam notifications and rogue ads on Android
smartphones, 2018. https://www.androidpolice.com/2018/05/16/
track-block-rogue-ads-android/.

[15] Accessibility overview, 2019. https://developer.android.com/guide/topics/
ui/accessibility.

[16] App Store Review Guidelines, 2019. https://developer.apple.com/
app-store/review/guidelines/.

[17] Apple Push Notification service, 2019. https://en.wikipedia.org/wiki/
Apple_Push_Notification_service.

[18] Firebase console, 2019. https://console.firebase.google.com/.
[19] Monkey, 2019. https://developer.android.com/studio/test/monkey.
[20] Survey results on Github, 2019. https://github.com/DaPANDA2019/

DaPANDA.
[21] Tcpdump, 2019. http://www.tcpdump.org.
[22] The Zeek Network Security Monitor, 2019. https://www.bro.org/.
[23] Virustotal Detection Result, 2019. https://www.virustotal.com//#/file/

56469bccccb788176564a03451e8879d5c8b70c6c65294fa254ea7cbe852cf90/
detection.

[24] Mansour Ahmadi, Battista Biggio, Steven Arzt, Davide Ariu, and Giorgio
Giacinto. Detecting misuse of google cloud messaging in android
badware. In Proceedings of the 6th Workshop on Security and Privacy
in Smartphones and Mobile Devices, pages 103–112. ACM, 2016.

[25] Benjamin Andow, Adwait Nadkarni, Blake Bassett, William Enck, and
Tao Xie. A study of grayware on google play. In 2016 IEEE Security
and Privacy Workshops (SPW), pages 224–233. IEEE, 2016.

[26] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas
Zeller, Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Mining
apps for abnormal usage of sensitive data. In Proceedings of the 37th
International Conference on Software Engineering-Volume 1, pages 426–
436. IEEE, 2015.

[27] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library
detection in android and its security applications. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 356–367. ACM, 2016.

[28] Guangdong Bai, Quanqi Ye, Yongzheng Wu, Heila Botha, Jun Sun, Yang
Liu, Jin Song Dong, and Willem Visser. Towards model checking android
applications. IEEE Trans. Software Eng., 44(6):595–612, 2018.

[29] Yehuda Baruch and Brooks C Holtom. Survey response rate levels and
trends in organizational research. Human relations, 61(8):1139–1160,
2008.

[30] Theodore Book, Adam Pridgen, and Dan S Wallach. Longitudinal analysis
of android ad library permissions. arXiv preprint arXiv:1303.0857, 2013.

[31] Yangyi Chen, Tongxin Li, XiaoFeng Wang, Kai Chen, and Xinhui Han.
Perplexed messengers from the cloud: Automated security analysis of
push-messaging integrations. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS ’15), pages
1260–1272. ACM, 2015.

[32] Jonathan Crussell, Ryan Stevens, and Hao Chen. Madfraud: Investigating
ad fraud in android applications. In Proceedings of the 12th annual
international conference on Mobile systems, applications, and services,
pages 123–134. ACM, 2014.

[33] Junhua Ding, Wei Song, and Dongmei Zhang. An approach for
modeling and analyzing mobile push notification services. In 2014
IEEE International Conference on Services Computing, pages 725–732.
IEEE, 2014.

[34] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F Bissyandé,
Tianming Liu, Guoai Xu, and Jacques Klein. Frauddroid: Automated
ad fraud detection for android apps. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 257–268.
ACM, 2018.

[35] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Guoai Xu, and Shaodong
Zhang. How do mobile apps violate the behavioral policy of advertisement
libraries? In Proceedings of the 19th International Workshop on Mobile
Computing Systems & Applications (HotMobile ’18), pages 75–80. ACM,
2018.

[36] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy:
Semantics-based detection of android malware through static analysis.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 576–587. ACM, 2014.

[37] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller.
Checking app behavior against app descriptions. In Proceedings of the
36th International Conference on Software Engineering, pages 1025–
1035. ACM, 2014.

[38] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi.
Unsafe exposure analysis of mobile in-app advertisements. In Proceedings
of the fifth ACM conference on Security and Privacy in Wireless and
Mobile Networks, pages 101–112. ACM, 2012.

[39] Qian Guo, Haoyu Wang, Chenwei Zhang, Yao Guo, and Guoai Xu.
Appnet: understanding app recommendation in google play. In Proceed-
ings of the 3rd ACM SIGSOFT International Workshop on App Market
Analytics (WAMA ’19), pages 19–25. ACM, 2019.

[40] Mitsuhiro Hatada and Tatsuya Mori. Detecting and classifying android
puas by similarity of dns queries. In 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), volume 2, pages
590–595. IEEE, 2017.

[41] Yangyu Hu, Haoyu Wang, Li Li, Yao Guo, Guoai Xu, and Ren He.
Want to earn a few extra bucks? a first look at money-making apps. In
Proceedings of the 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER ’19), pages 332–343. IEEE, 2019.

[42] Yangyu Hu, Haoyu Wang, Yajin Zhou, Yao Guo, Li Li, Bingxuan Luo,
and Fangren Xu. Dating with scambots: Understanding the ecosystem of
fraudulent dating applications. IEEE Transactions on Dependable and
Secure Computing, 2019.

[43] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang.
Asdroid: Detecting stealthy behaviors in android applications by user
interface and program behavior contradiction. In Proceedings of the 36th
International Conference on Software Engineering, pages 1036–1046.
ACM, 2014.

[44] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and
Jacques Klein. Automated testing of android apps: A systematic literature
review. IEEE Transactions on Reliability, 68(1):45–66, 2018.

[45] Hayoung Lee, Taeho Kang, Sangho Lee, Jong Kim, and Yoonho Kim.
Punobot: Mobile botnet using push notification service in android. In
International workshop on information security applications, pages 124–
137. Springer, 2013.

[46] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau,
and Patrick McDaniel. Iccta: Detecting inter-component privacy leaks in
android apps. In Proceedings of the 37th International Conference on
Software Engineering, pages 280–291. IEEE, 2015.

[47] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon.
Static analysis of android apps: A systematic literature review. Informa-
tion and Software Technology, 88:67–95, 2017.

[48] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, David Lo, and Lorenzo Cavallaro. Understanding android
app piggybacking: A systematic study of malicious code grafting. IEEE
Transactions on Information Forensics and Security, 12(6):1269–1284,
2017.

[49] Li Li, Timothée Riom, Tegawendé F Bissyandé, Haoyu Wang, Jacques
Klein, and Yves Le Traon. Revisiting the impact of common libraries
for android-related investigations. Journal of Systems and Software,
154:157–175, 2019.

[50] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu,
Rui Xue, and Wei Huo. Libd: scalable and precise third-party library
detection in android markets. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pages 335–346. IEEE, 2017.

[51] Tongxin Li, Xiaoyong Zhou, Luyi Xing, Yeonjoon Lee, Muhammad
Naveed, XiaoFeng Wang, and Xinhui Han. Mayhem in the push clouds:
Understanding and mitigating security hazards in mobile push-messaging
services. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 978–989. ACM, 2014.

[52] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Droidbot: A
lightweight ui-guided test input generator for android. In Proceedings of
the 39th International Conference on Software Engineering Companion
(ICSE-C 2017), pages 23–26. IEEE, 2017.

[53] Yuanchun Li, Ziyue Yang, Yao Guo, Xiangqun Chen, Yuvraj Agarwal,
and Jason I Hong. Automated extraction of personal knowledge from
smartphone push notifications. In 2018 IEEE International Conference
on Big Data (Big Data), pages 733–742. IEEE, 2018.

[54] Rensis Likert. A technique for the measurement of attitudes. Archives
of psychology, 1932.

[55] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. Efficient privilege
de-escalation for ad libraries in mobile apps. In Proceedings of the 13th
annual international conference on mobile systems, applications, and
services, pages 89–103. ACM, 2015.

[56] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. {DECAF}:
Detecting and characterizing ad fraud in mobile apps. In 11th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
14), pages 57–70, 2014.

[57] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar:
fast and accurate detection of third-party libraries in android apps. In
Proceedings of the 38th international conference on software engineering
companion, pages 653–656. ACM, 2016.

[58] Zhaotai Pan, Xiaoxing Liang, Yu Chen Zhou, Yi Ge, and Guo Tao Zhao.
Intelligent push notification for converged mobile computing and internet
of things. In 2015 IEEE International Conference on Web Services,
pages 655–662. IEEE, 2015.

[59] Martin Pielot, Karen Church, and Rodrigo De Oliveira. An in-situ study
of mobile phone notifications. In Proceedings of the 16th international
conference on Human-computer interaction with mobile devices &
services, pages 233–242. ACM, 2014.

[60] Martin Pielot, Amalia Vradi, and Souneil Park. Dismissed!: a detailed
exploration of how mobile phone users handle push notifications. In
Proceedings of the 20th International Conference on Human-Computer
Interaction with Mobile Devices and Services, page 3. ACM, 2018.

[61] Vaibhav Rastogi, Rui Shao, Yan Chen, Xiang Pan, Shihong Zou, and
Ryan Riley. Are these ads safe: Detecting hidden attacks through the
mobile app-web interfaces. In NDSS, 2016.

[62] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What mobile ads
know about mobile users. In NDSS, 2016.

[63] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao
Chen. Investigating user privacy in android ad libraries. In Workshop on
Mobile Security Technologies (MoST), volume 10. Citeseer, 2012.

[64] Chongbin Tang, Sen Chen, Lingling Fan, Lihua Xu, Yang Liu, Zhushou
Tang, and Liang Dou. A large-scale empirical study on industrial fake
apps. In Proceedings of the 41st International Conference on Software
Engineering: Software Engineering in Practice, pages 183–192. IEEE,
2019.

[65] Timothy Vidas and Nicolas Christin. Evading android runtime analysis
via sandbox detection. In Proceedings of the 9th ACM symposium on
Information, computer and communications security, pages 447–458.
ACM, 2014.

[66] Haoyu Wang and Yao Guo. Understanding third-party libraries in mobile
app analysis. In Proceedings of the 39th International Conference on
Software Engineering Companion (ICSE-C), pages 515–516. IEEE, 2017.

[67] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. Wukong: A
scalable and accurate two-phase approach to android app clone detection.
In Proceedings of the 2015 International Symposium on Software Testing
and Analysis, pages 71–82. ACM, 2015.

[68] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. Automated
detection and classification of third-party libraries in large scale android
apps. Journal of Software, 28(6):1373–1388, 2017.

[69] Haoyu Wang, Hao Li, and Yao Guo. Understanding the evolution of
mobile app ecosystems: A longitudinal measurement study of google
play. In Proceedings of the 2019 World Wide Web Conference (WWW

’19), pages 1988–1999. ACM, 2019.
[70] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao

Guo, Li Li, Juan Tapiador, Jingcun Cao, and Guoai Xu. Beyond google
play: A large-scale comparative study of chinese android app markets.
In Proceedings of the 2018 Internet Measurement Conference (IMC ’18),
pages 293–307. ACM, 2018.

[71] Haoyu Wang, Junjun Si, Hao Li, and Yao Guo. Rmvdroid: towards a
reliable android malware dataset with app metadata. In Proceedings
of the 16th International Conference on Mining Software Repositories
(MSR ’19), pages 404–408. IEEE, 2019.

[72] Ian Warren, Andrew Meads, Satish Srirama, Thiranjith Weerasinghe, and
Carlos Paniagua. Push notification mechanisms for pervasive smartphone
applications. IEEE Pervasive Computing, 13(2):61–71, 2014.

[73] Zhi Xu and Sencun Zhu. Abusing notification services on smartphones
for phishing and spamming. In WOOT, pages 1–11, 2012.

[74] Wei Yang, Mukul Prasad, and Tao Xie. Enmobile: Entity-based
characterization and analysis of mobile malware. In 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), pages
384–394. IEEE, 2018.

[75] Hengshu Zhu, Hui Xiong, Yong Ge, and Enhong Chen. Discovery of
ranking fraud for mobile apps. IEEE Transactions on knowledge and
data engineering, 27(1):74–87, 2014.

