AndroZooOpen: Collecting Large-scale Open Source Android
Apps for the Research Community

Pei Liu, Li Li, Yanjie Zhao, Xiaoyu Sun, John Grundy
Faculty of Information Technology, Monash University, Australia
{peiliu,lili,yanjie.zhao,xiaoyu.sun,john.grundy}monash.edu

ABSTRACT

It is critical for research to have an open, well-curated, representa-
tive set of apps for analysis. We present a collection of open-source
Android apps collected from several sources, including Github. Our
dataset, AndroZooOpen, currently contains over 45,000 app arte-
facts, a representative picture of Github-hosted Android apps. For
apps released on Google Play, metadata including categories, rat-
ings and user reviews, are also stored. We share this new dataset
as part of our ongoing research to better support and enable new
research topics involving Android app artefact analysis, and as a
supplement dataset for AndroZoo, a well-known app collection of
close-sourced Android apps.

CCS CONCEPTS

- Software and its engineering — Software libraries and repos-
itories.

KEYWORDS
Android, Open-source, AndroZoo, AndroZooOpen

ACM Reference Format:

Pei Liu, Li Li, Yanjie Zhao, Xiaoyu Sun, John Grundy. 2020. AndroZooOpen:
Collecting Large-scale Open Source Android Apps for the Research Com-
munity. In 17th International Conference on Mining Software Repositories
(MSR °20), October 5—6, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3379597.3387503

1 INTRODUCTION

Android is now the most popular mobile operating system with
over 80% market share [5]. Due to the increase in affordability and
adoption of smart touchscreen and powerful handheld devices such
as smartphones, tablets, and smartwatches, etc., mobile application
development has witnessed an unprecedented growth in recent
years. In particular, the millions of Android Apps produced by de-
velopers have empowered over a billion users’ daily tasks, ranging
from emails and games to daily health monitoring.

Due to this popularity and the openness of the Android platform,
researchers and practitioners have spent a large amount of effort in
improving the quality and security of Android apps [19, 24, 30]. For
example, Li et al. have identified more than 100 papers leveraging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7517-7/20/05....$15.00
https://doi.org/10.1145/3379597.3387503

static analysis techniques to analyze Android apps, and around 60
articles targeting the repackaging problem of Android apps [23, 24].
Martin et al. have found over 180 works proposed to support the
analysis of mobile apps through App Store mining [30].

A key reason for this activity and success of analyzing Android
apps is the development by the community of many open datasets
for supporting the evaluation of these approaches. For example,
Zhou et al. [37] introduce the Genome project, which contains
thousands of malicious Android apps (also known as malware) and
has now been leveraged by hundreds of research works. Similarly,
Arp et al. [8] released the Drebin dataset, a larger dataset of mali-
cious Android apps, that has also been well leveraged. Regarding
benign Android apps (regular apps that are available on popular
app markets and are reported by VirusTotal as such), the most
representative dataset is currently AndroZoo [7, 27], which was
mainly collected by researchers at the University of Luxembourg.
They have made AndroZoo available to other researchers online.
To date, this dataset contains more than 10 million Android apps,
collected from various app markets, including the official Google
Play store.

Unfortunately, all the aforementioned datasets are mainly made
up of close-sourced Android apps. This is to be expected, as Android
apps are normally only released without source artifacts. However,
in many cases, the source code of Android apps is also needed to
support a detailed evaluation [12, 25]. For example, among 24 papers
targeting Android published in the research track of the Mining
Software Repositories (MSR) conference (2015-2019), only five of
them have leveraged open-source apps (cf. Scalabrino et al. [34],
Habchi et al. [16], Nayebi et al. [32], Ahmad et al. [6], Bao et al. [9]).
The numbers of open-source apps used however are all less than
2,000, despite that both F-Droid and Github being used to discover
apps. Considering that there are over 45,000 open-source Android
apps available, many of these have been overlooked. Subsequently,
the experiments conducted in these research efforts may not be
generalizable or representative of all the currently available open-
source Android apps.

We hypothesize that one of the key reasons causing only a small
number of open-source Android apps (to date, concerned by the
MSR community) is that our community lacks a well-curated, rep-
resentative public dataset of open-source Android apps. The fact
that all five of these MSR articles have leveraged F-Droid to find
apps confirms this hypothesis. Indeed, to the best of our knowledge,
F-Droid is one of the few repositories that manage open-source An-
droid apps, although the number of managed apps is quite small, i.e.,
roughly 2,000. Another dataset introduced by Krutz et al. [20] con-
tains an even smaller number of apps, i.e., 1,179 apps. To fill this gap,
we provide to the community a growing dataset of open-source An-
droid apps, namely AndroZooOpen. At the moment, AndroZooOpen

https://doi.org/10.1145/3379597.3387503
https://doi.org/10.1145/3379597.3387503

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

contains 46,521 app repositories providing a representative pic-
ture of open-source Android apps available on Github and F-Droid.
Whenever possible, in addition to the metadata of the repositories,
we also retrieve the Google Play pages (if published on Google
Play) and their AndroZoo app artifacts (if available in AndroZoo)
for these apps.

2 DATA COLLECTION

We describe the data sources leveraged to build AndroZooOpen.
We also discuss the key challenges we faced when crawling and
retreiving data from these data sources.

2.1 Data Source

F-Droid and Github are currently the most popular data sources
leveraged by researchers to collect open-source Android apps. In
this work, we use these two data sources to collect open-source An-
droid apps. Additionally, for open-source apps released on Google
Play, we supplement this data with their metadata listed on Google
Play, including their user ratings and reviews.

Github is a subsidiary of Microsoft that offers online source code
management and distributed software development version control
using Git. With over 100 million software repositories, Github is
currently the most significant code hosting site in the world and
the most preferred source to conduct research related to mining
software repositories.

F-Droid is an online repository dedicated to maintaining a col-
lection of free and open-source Android apps, including their source
artefacts and code. These are often hosted on popular code hosting
sites such as Github and Gitlab. Currently, F-Droid contains 2,078
apps covering different topics ranging from Utility Tools to Games.

Google Play is the official app store for the Android operating
system that allows developers to publish and manage their apps
developed with the Android Software Development Kit (SDK). Its
users can browse and download apps to meet their requirements.
Google Play also provides various metadata information for users
to better understand them. Representative metadata information
includes app description, app overall user rating, user reviews, etc.
These metadata have been demonstrated to be very useful for im-
proving the quality and security of the apps, and hence have been
frequently leveraged by researchers and practitioners to comple-
ment their approaches.

AndroZoo is a growing collection of closed-source Android
apps. We leverage this dataset to harvest open sourced app artifacts
and app lineage (i.e., the historical versions of the same app).

2.2 Collecting Challenges

We now enumerate several challenges keeping us from immediately
collecting open-source Android apps and share our experiences in
resolving each of them, to enable other researchers and practitioners
to replicate our work.

First, as mentioned earlier, there are over 100 million software
repositories hosted on Github. How can we quickly and accu-
rately locate open source Android app repositories from them?
It is not practically possible to go through all of them. Fortunately,
Github provides the concept of topics to categorize repositories. At
present Github provides over 180 topics, among which “Android” is

Pei Liu, Li Li, Yanjie Zhao, Xiaoyu Sun, John Grundy

star | Year | Year Str>2 |
1 800 [1300 “""“-"9-5-0—
2 300 | 200 [TTTTTT TR

s | 200 | 100 Year 2018

4 100 | 50 -8-(;(; ----------

Figure 1: An illustrative example of divide-and-conquer
strategy adopted in our approach.

one of them offered for Android-related repositories. In this work,
we rely on this topic to locate Android app related repositories.

Second, given a repository with android as its topic, it does not
necessarily mean the repository contains source Android app
artefacts. Indeed, this repository can be Android-related libraries,
architecture designs, books, etc. For example, one of the most pop-
ular repositories, namely justjavac/free-programming-books-zh_CN,
received 62.9K stars, is not an Android app repository, although
android is one of its topics. To this end, we further clone these
repositories (i.e., having android as one of their topics) and use
analysis scripts to check if the file structure is that of a source An-
droid app, e.g., containing AndroidManifest.xml configuration files
and main launcher Activity java file, etc., which are essential to all
the Android apps. This process is nonetheless time-consuming.

Third, there are certain limitations enforced by Github to
avoid potential Distributed Denial-of-Service (DDoS) attacks.
These make it further challenging for locating Android app repos-
itories. To begin with, for each search request, Github will only
return up to 100 results and up to 1000 results via pagination. How-
ever, the number of Android-related repositories is over 62,000[2].
Therefore it is not possible to crawl the full list of Android-related
repositories. To cope with this, we propose a divide-and-conquer
approach, for which we attempt to divide the original problem (i.e.,
to crawl all the Android-related repositories) to smaller problems
(e.g., to crawl all the Android-related repositories that receive 2
stars and are created in 2018) and resolve them respectively. Fig-
ure 1 illustrates a simplified example demonstrating the working
process of this divide-and-conquer strategy. Since we cannot crawl
all the repositories at once — there are 3,050 repositories as shown
in the table on the left — we first divide the problem into two small
problems: (1) crawling repositories with one star and (2) crawling
repositories with at least two stars. Unfortunately, the first small
problem still results in more than 1,000 items. Hence, we need to
divide this problem further. We further leverage the creation time
of Github repositories to divide the problem so as to reduce the
search scope for each request.

Last but not least, once Android app repositories are identified,
we need a robust way to collect all of their relevant metadata.
This includes the ones provided by Github (such as the creation
date of the repository, the date of the last commit, the total number
of commits, etc.), and by Google Play (such as app description, user
rating, user reviews, etc.). For Github, we leverage the RESTful APIs
provided by Github to achieve the purpose. However, these APIs
are limited by Github in terms of their calling frequencies: Requests
using Basic Authentication or OAuth is limited to 5,000 per hour
while unauthenticated requests are limited to only 60 per hour[4].

AndroZooOpen: Collecting Large-scale Open Source Android Apps for the Research Community

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

sha256, shal, md5, dex_date, apk_size,
pkg_name, vercode, vt_detection,
vt_scan_date, dex_size,
markets, if_the_latest_version

title, description, descriptionHTML, summary, installs, mininstalls, score, scoreText,
ratings, reviews, histogram, price, free, currency, priceText, offers|AP, IAPRange, size,
androidVersion, androidVersionText, developer, developerld, developerEmail,
developerWebsite, developerAddress, developerinternallD, genre, genreld, icon,
headerlmage, screenshots, contentRating, adSupported, released, updated, version,

recentChanges, comments, appld, url ...

AndroZoo Item Package Name (appld)

Github Repo

Google Play Profile

Review Info

entry, num_commits, num_branches, num_packages, num_releases,
num_stars, create_time, update_time, push_time, num_contributors,
package_name, on_googleplay, has_test, has_kotlin, email_address

scoreText, url, title, text, replyDate,

id, userName, userlmage, date, score,
replyText, version, thumbsUp, criterias

Figure 2: The simplified schema of AndroZooOpen.

To overcome these limitations, we have to slow down the crawling
process.

While crawling the repository metadata from Github, we notice
that the number of contributors provided by Github is limited to 500.
If a given repository has more than 500 contributors, the RESTful
API provided by Github will only return the first 500 contribu-
tors and regard all the remaining ones as anonymous contributors.
Therefore, the metadata of repository contributors we collected in
this work may not be the same as the one showing on the website.

In order to collect any app metadata from Google Play, we re-
sort to the AndroidManifest.xml to extract the unique package
name (also known as appld) to locate the app pages on Google
Play (app metadata is then extracted from the located web pages).
This extraction is however not always straightforward. Some
apps declare their package name via Macro (e.g., <%= appPackage
%=>), where the actual package names are defined at different loca-
tions. Additional steps are hence implemented to extract the unique
package name in such app repositories.

3 ANDROZOOOPEN

Our dataset currently contains 46,521 open-source Android app
repositories, which, to the best of our knowledge, is the first and
by far the largest dataset ready to be accessed by other researchers
and practitioners. At the end of this section, we give some example
statistics to help readers better understand the composition of our
dataset.

3.1 Accessing the Dataset

We provide an HTTP API for users to download our dataset as
a single compressed artifact (i.e., a zip file) [1]. As highlighted in
Figure 2, this artifact contains all the metadata we have collected
for AndroZooOpen, including Github metadata, apps’ Google Play
profile and user reviews, as well as other the relevant metadata
(including the APKs) gathered in AndroZoo.

We further transform the AndroZooOpen dataset into a knowl-
edge graph! and upon which we offer an online service allowing

!Knowledge Graph (KG) announced by Google in May 2012 was used to integrate its
search engine to enhance the search result with information from a variety of sources.

N
“ v
50000 o &
45000 s
40000 36621
35000
30000
25000 22901
20000
15000
10000 7344
2881
5000 1, 30 96 206 525 1183 I
0 == ==
P P PP S

Figure 3: The distribution of open-source Android apps over
creation time.

users to search open-source Android app repositories with detailed
search terms [31, 36].

3.2 Example Statistics

Figure 3 illustrates the distribution of apps according to their cre-
ation time. Open-source Android apps have been uploaded to Github
from as early as 2009, just after Android OS was introduced. Since
then, the number of app repositories continuously increases with
several leaps in recent years (e.g., there are 15,557 new app reposi-
tories created on Github in 2017).

Table 1 further highlights the composition of our dataset. Among
the 46,521 collected repositories, as shown in the second column,
we were able to locate 3,316 of them on Google Play, accounting
for roughly only 7% of total apps. This evidence indicates that real-
world Android apps are usually not open-sourced. Among the 3,316
repositories that have their apps released on Google Play, 2892 of
them have their released app versions included in AndroZoo. These
apps, including their lineages, are also included in our dataset. F-
Droid hosts 2,078 open-source Android apps that are also included
in our dataset. Among the 2,078 F-Droid apps, 1,646 of them have
their source code maintained on Github, as shown in Table 1.

Table 1: Breakdown of AndroZooOpen.

Total
46,521

Google Play (AndroZoo)
3,316 (2892)

F-Droid (Github) Kotlin Test Case
2,078 (1,646) 10,202 34,174

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

Pei Liu, Li Li, Yanjie Zhao, Xiaoyu Sun, John Grundy

80 24
23
7.5 2
7.0 21
20
: 2T
60 18
17
55 e
50 15
= 14
45 s
4.0 12 T
11
35 b
30 9

25
20
15

200 100 : 8.0
190 95) 75
180 90
7.0
170 85 .
160 80 6.5
150 75 : : 6.0
140 70 . 55
130 65
120 60 H 50
110 55 . i 45
100 50 . H 4.0
9% 45 H 35
80 40
3.0
70 35
60 30 25
50 25 2.0
40 20 15 —‘7
30 15
RS 10
20 10
10 5 05
P — T . 0/ 00

1.0
0.5

|

0.0

Non-Google Play Google Play Non-Google Play Google Play

(a) # Commits. (b) # Releases.

Non-Google Play Google Play

(c) # Stars.

Non-Google Play Google Play Non-Google Play Google Play

(d) Active Time. (e) Average Update Interval.

Figure 4: Comparison results between app repositories that have their apps uploaded to Google Play and those that are not.

In May 2017, Kotlin was announced as an officially supported
language for Android Platform development by Google. We made
effort to check the adoption of Kotlin in our dataset. As shown in Ta-
ble 1, 10,202 apps are written in Kotlin, accounting for roughly 22%
of the total app repositories. If we only consider such repositories
created after May 2017, the ratio of Kotlin written apps increases to
30.19%. To support automated testing of Android apps, we further
look into the source code of open-source Android app reposito-
ries to check if test cases are provided by the app developers. Our
empirical investigation reveals that over 70% of the collected app
repositories have provided test cases, which could be leveraged to
check code correctness against evolutionary changes.

4 LEVERAGING ANDROZOOOPEN

As an example demonstrating the usefulness of our dataset, we
leverage our AndroZooOpen dataset to conduct a lightweight com-
parative study of open-source Google Play and non-Google Play
apps. Our hypothesis is that Google Play apps should be more
mature (i.e., bigger code size, more frequently updated) than such
open-source apps that are not released on Google Play. To evaluate
this hypothesis, we resort to our dataset to form a control group to
evaluate this hypothesis empirically. The control group contains
(1) 3,316 app repositories that have their apps uploaded to Google
Play, and (2) the same number of app repositories that are randomly
selected from the remaining repositories.

Based on the control group, we empirically compare the two
sets of open-source app repositories in terms of their size (i.e.,
number of commits, number of releases, number of stars) and their
updatability (i.e., active time (last update time - create time) and
average update interval (active time divide number of commits).
Figure 4 highlights the comparison results. Regarding size, app
repositories that have their apps uploaded to Google Play indeed
have more commits, more releases, as shown in Figure 4(a) and
Figure 4(b), respectively. This evidence confirms our hypothesis that
Google Plays are generally more mature than non-Google Play apps.
This evidence is further backed up by the fact that Google Play app
repositories receive more developer stars than that of non-Google
Play app repositories (cf. Figure 4(c)). Moreover, as illustrated in
Figure 4(d) and Figure 4(e), Google Play app repositories generally

have longer active time and are updated more frequently than that
of non-Google Play repositories. This significant result (as proofed
by Mann-Whitney-Wilcoxon (MWW) tests) once again ramparts
the correctness of our hypothesis.

The aforementioned study is just an example demonstrating the
usefulness of our dataset. We believe our dataset could be leveraged
to support many other research studies, including but not limited to
study the code smells of Android apps [17, 33], the fixes of bugs [18],
energy anti-patterns and performance bottlenecks [11, 12], security
vulnerabilities [13, 22, 28, 29], and compatibility issues [10, 25, 26,
35], the evolution of open-source Android apps [14, 15, 21], and so
on.

5 LIMITATION

The Github repositories collected are all under the topic of An-
droid [3]. Unfortunately, there are likely other open-source An-
droid app repositories that do not come with the Android topic and
thereby overlooked by our approach. Furthermore, open-source
Android apps may not only be hosted on Github, but also hosted on
other online code repositories, such as Bitbucket or Gitlab, which
have not been taken into account at the moment. We plan to con-
sider them in our future work as part of our endeavor towards
offering the community a continuously growing large collection of
open-source Android apps.

6 CONCLUSION

In this work, we presented to the research community the An-
droZooOpen dataset containing over 45 thousand of open-source
Android apps and their metadata and reviews from Google Play, as
well as their connections with the most prominent Android App
repository AndroZoo.

ACKNOWLEDGMENT

This work was supported by the Australian Research Council (ARC)
by a Laureate Fellowship project FL190100035, a Discovery Early
Career Researcher Award (DECRA) project DE200100016, and a
Discovery project DP200100020.

AndroZooOpen: Collecting Large-scale Open Source Android Apps for the Research Community

REFERENCES

[10

[11]

[12

=
&

[14

[15]

[16

[17]

(18

[19

[20

2020. AndroZooOpen. http://knowledgezoo.xyz/AndroZooOpen/

2020. Github android topic website. https://github.com/topics/android

2020. Github topic: Android. https://github.com/topics/android

2020. REST API v3. https://developer.github.com/v3

2020. Smartphone Market Share. https://www.idc.com/promo/smartphone-
market-share/os

Wagar Ahmad, Christian Késtner, Joshua Sunshine, and Jonathan Aldrich. 2016.
Inter-app communication in android: Developer challenges. In 2016 IEEE/ACM
13th Working Conference on Mining Software Repositories (MSR). IEEE, 177-188.
Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
Androzoo: Collecting millions of android apps for the research community. In
2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR).
IEEE, 468-471.

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket.. In Ndss, Vol. 14. 23-26.

Lingfeng Bao, David Lo, Xin Xia, Xinyu Wang, and Cong Tian. 2016. How
Android App Developers Manage Power Consumption?-An Empirical Study by
Mining Power Management Commits. In 2016 IEEE/ACM 13th Working Conference
on Mining Software Repositories (MSR). IEEE, 37-48.

Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu. 2019. A Large-Scale Study of
Application Incompatibilities in Android. In The 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2019).

Luis Cruz and Rui Abreu. 2019. On the Energy Footprint of Mobile Testing
Frameworks. IEEE Transactions on Software Engineering (2019).

Luis Cruz, Rui Abreu, John Grundy, Li Li, and Xin Xia. 2019. Do Energy-oriented
Changes Hinder Maintainability?. In The 35th IEEE International Conference on
Software Maintenance and Evolution (ICSME 2019).

Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F Bissyandé, Tianming Liu,
Guoai Xu, and Jacques Klein. 2018. FraudDroid: Automated Ad Fraud Detection
for Android Apps. In The 26th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2018).

Jun Gao, Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2019. On the Evolution
of Mobile App Complexity. In The 24th International Conference on Engineering
of Complex Computer Systems (ICECCS 2019).

Jun Gao, Li Li, Pingfan Kong, Tegawendé F Bissyandé, and Jacques Klein. 2019.
Understanding the Evolution of Android App Vulnerabilities. IEEE Transactions
on Reliability (TRel) (2019).

Sarra Habchi, Naouel Moha, and Romain Rouvoy. 2019. The rise of Android
code smells: who is to blame?. In 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). IEEE, 445-456.

Geoffrey Hecht, Naouel Moha, and Romain Rouvoy. 2016. An empirical study of
the performance impacts of android code smells. In Proceedings of the international
conference on mobile software engineering and systems. 59—69.

Pingfan Kong, Li Li, Jun Gao, Tegawendé F Bissyandé, and Jacques Klein. 2019.
Mining Android Crash Fixes in the Absence of Issue- and Change-Tracking
Systems. In The 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2019).

Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein.
2018. Automated Testing of Android Apps: A Systematic Literature Review. IEEE
Transactions on Reliability (2018).

Daniel E Krutz, Mehdi Mirakhorli, Samuel A Malachowsky, Andres Ruiz, Jacob
Peterson, Andrew Filipski, and Jared Smith. 2015. A dataset of open-source
android applications. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. IEEE, 522-525.

[21

[22

[23

[24

[25

[26

[27

[28

[30

[31

[32

[34

[35

[36

]

]

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

Li Li. 2017. Mining androzoo: A retrospect. In The Doctoral Symposium of 33rd
International Conference on Software Maintenance and Evolution (ICSME-DS 2017).
Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps. In
Proceedings of the 37th International Conference on Software Engineering-Volume
1. IEEE Press, 280-291.

Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2019. Rebooting Research on
Detecting Repackaged Android Apps: Literature Review and Benchmark. IEEE
Transactions on Software Engineering (TSE) (2019).

Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Le Traon. 2017. Static analysis of
android apps: A systematic literature review. Information and Software Technology
88 (2017), 67-95.

Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. CiD:
Automating the Detection of API-related Compatibility Issues in Android Apps.
In The ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2018).

Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2020.
CDA: Characterising Deprecated Android APIs. Empirical Software Engineering
(EMSE) (2020).

Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F Bissyandé, Alexandre
Bartel, Jacques Klein, and Yves Le Traon. 2017. AndroZoo++: Collecting Millions
of Android Apps and Their Metadata for the Research Community. arXiv preprint
arXiv:1709.05281 (2017).

Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David
Lo, and Lorenzo Cavallaro. 2017. Understanding Android App Piggybacking: A
Systematic Study of Malicious Code Grafting. IEEE Transactions on Information
Forensics & Security (TIFS) (2017).

Tianming Liu, Haoyu Wang, Li Li, Xiapu Luo, Feng Dong, Yao Guo, Liu Wang,
Tegawendé F Bissyandé, and Jacques Klein. 2020. MadDroid: Characterising and
Detecting Devious Ad Content for Android Apps. In The Web Conference 2020
(WWW 2020).

William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman.
2016. A survey of app store analysis for software engineering. IEEE transactions
on software engineering 43, 9 (2016), 817-847.

Guozhu Meng, Yinxing Xue, Jing Kai Siow, Ting Su, Annamalai Narayanan, and
Yang Liu. 2017. Androvault: Constructing knowledge graph from millions of
android apps for automated analysis. arXiv preprint arXiv:1711.07451 (2017).
Maleknaz Nayebi, Konstantin Kuznetsov, Paul Chen, Andreas Zeller, and Guen-
ther Ruhe. 2018. Anatomy of functionality deletion: an exploratory study on
mobile apps. In Proceedings of the 15th International Conference on Mining Software
Repositories. 243-253.

Fabio Palomba, Dario Di Nucci, Annibale Panichella, Andy Zaidman, and Andrea
De Lucia. 2017. Lightweight detection of android-specific code smells: The
adoctor project. In 2017 IEEE 24th international conference on software analysis,
evolution and reengineering (SANER). IEEE, 487-491.

Simone Scalabrino, Gabriele Bavota, Mario Linares-Vasquez, Michele Lanza, and
Rocco Oliveto. 2019. Data-driven solutions to detect API compatibility issues in
Android: an empirical study. In 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). IEEE, 288-298.

Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2019. Pivot: learning API-device
correlations to facilitate Android compatibility issue detection. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 878-888.
Yanjie Zhao, Haoyu Wang, Lei Ma, Yuxin Liu, Li Li, and John Grundy. 2019.
Knowledge Graphing Git Repositories: A Preliminary Study. In IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER 2019).
Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization
and evolution. In 2012 IEEE symposium on security and privacy. IEEE, 95-109.

http://knowledgezoo.xyz/AndroZooOpen/
https://github.com/topics/android
https://github.com/topics/android
https://developer.github.com/v3
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os

	Abstract
	1 Introduction
	2 Data Collection
	2.1 Data Source
	2.2 Collecting Challenges

	3 AndroZooOpen
	3.1 Accessing the Dataset
	3.2 Example Statistics

	4 Leveraging AndroZooOpen
	5 Limitation
	6 Conclusion
	References

