
MadDroid: Characterizing and Detecting Devious Ad Contents
for Android Apps

Tianming Liu∗
Beijing University of Posts and
Telecommunications, China

Haoyu Wang∗
Beijing University of Posts and
Telecommunications, China

Li Li
Faculty of Information Technology,

Monash University, Australia

Xiapu Luo
The Hong Kong Polytechnic

University, HongKong

Feng Dong
Shenzhen Institutes of Advanced

Technology, CAS, China

Yao Guo
MOE Key Lab of HCST, Peking

University, China

Liu Wang
Beijing University of Posts and
Telecommunications, China

Tegawendé F. Bissyandé
University of Luxembourg,

Luxembourg

Jacques Klein
University of Luxembourg,

Luxembourg

ABSTRACT
Advertisement drives the economy of the mobile app ecosystem. As
a key component in the mobile ad business model, mobile ad con-
tent has been overlooked by the research community, which poses
a number of threats, e.g., propagating malware and undesirable con-
tents. To understand the practice of these devious ad behaviors, we
perform a large-scale study on the app contents harvested through
automated app testing. In this work, we first provide a compre-
hensive categorization of devious ad contents, including five kinds
of behaviors belonging to two categories: ad loading content and
ad clicking content. Then, we propose MadDroid, a framework for
automated detection of devious ad contents. MadDroid leverages
an automated app testing framework with a sophisticated ad view
exploration strategy for effectively collecting ad-related network
traffic and subsequently extracting ad contents. We then integrate
dedicated approaches into the framework to identify devious ad
contents. We have applied MadDroid to 40,000 Android apps and
found that roughly 6% of apps deliver devious ad contents, e.g., dis-
tributing malicious apps that cannot be downloaded via traditional
app markets. Experiment results indicate that devious ad contents
are prevalent, suggesting that our community should invest more
effort into the detection and mitigation of devious ads towards
building a trustworthy mobile advertising ecosystem.

CCS CONCEPTS
• Security andprivacy→ Software and application security; •
Information systems→Online advertising; •Human-centered
computing → Ubiquitous and mobile computing.
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1 INTRODUCTION
The mobile app ecosystem has seen rapid growth in the past few
years. Google Play and third-party app markets host millions of
apps [14, 80]. Most apps on markets are free. Besides, there is also a
trend showing that more and more paid apps have been released as
free ones by their developers [77, 78], suggesting that the business
model in free apps offers potentially more attractive revenue. In
most cases, while users do not pay to install and run the apps,
developers can still monetize through displaying advertisements
(or ad in short) on app User Interfaces (UI). It is estimated that
the size of the global mobile ad market would reach 215 billion
US dollars by 2021, which will represent 72% of the total digital
budgets [26].

Unfortunately, the mobile ad business model has been abused
by malicious individuals to make undue benefits. For example, un-
scrupulous app developers are attempting to cheat both advertisers
and users with fake or unintentional ad clicks so as to earn prof-
its [19, 21, 28, 50]. As revealed by a recent report, mobile advertisers
have approximately lost 1.3 billion US dollars due to ad fraud in 2015
alone [30], making research on malicious mobile advertisement a
critical endeavor for sanitizing app markets [42, 44].

Fortunately, the research community becomes increasingly inter-
ested in this area with a variety of research directions targeting the
ecosystem ofmobile ads. For example, researchers have investigated
topics such as automated detection of ad networks [15, 41, 46, 54],
security and privacy analysis of ad libraries [23, 33, 62], and detec-
tion of mobile ad frauds [19, 21, 28, 50]. Nevertheless, these studies
have so far targeted mobile ad issues from the perspectives of either
app developers or ad networks. The latter plays the role of trusted
intermediary platforms for connecting mobile advertisers to app
developers by providing toolkits (e.g., ad SDKs) to be embedded in
apps. The perspective ofmobile advertisers themselves, who provide
ad contents and pay ad networks, has been rarely studied.

https://doi.org/10.1145/3366423.3380242
https://doi.org/10.1145/3366423.3380242
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Despite being a key component in the mobile ad business model,
mobile ad content has been overlooked by the research community.
Yet, ad content poses a number of threats. On one hand, ad content
downloaded at runtime from trusted ad networks could serve as
a channel for attackers to distribute undesirable contents or even
malware. For example, even Google Play apps have been reported
to display porn ads [2, 3]. Recent reports also suggested that some
ad contents actually come with the CoinMiner malicious script,
which uses the device’s physical resources in the background to
mine digital currency [4]. On the other hand, besides the ad content
itself, some unwanted payload may be triggered when the user
interacts with the ad content. For instance, the ad clicking event
could redirect the current execution page to a malicious website.
Overall, we refer to such ad contents as devious, since they are
deceitful for all parties (i.e., for app users, for app developers, and
potentially for ad networks when they are unaware of this bad
behavior of mobile advertisers).

To the best of our knowledge, there lacks an in-depth study on
both ad loading contents and ad clicking contents. The closest stud-
ies including Chen et al. [16] and Shao et al. [66] only examine ad
clicking contents, and thus have several limitations (detailed in the
evaluation section) and overlook numerous ad clicking contents. In
this paper, we fill this gap by performing a comprehensive study of
mobile ad contents, aiming to understand the state of practice in
devious ad contents and devise practical techniques for preventing
their spread in the mobile ecosystem. To this end, we first present
a systematic approach to categorizing devious mobile ad contents
based on a thorough investigation of ad-related policies and re-
ports (Section 3). Then we design and implement MadDroid, a
prototype framework for automated detection of devious mobile ad
contents (Section 4). MadDroid leverages a dedicated automated
app testing approach to explore ad views in an app, based on a so-
phisticated ad-first strategy (Section 4.1). While exploring mobile
ads, MadDroid records any network traffic and collects contents ex-
changed between mobile ad networks, advertisers and user devices.
By hooking the HTTP-related APIs in the Android framework,
MadDroid manages to precisely locate ad traffic from all recorded
traffic (Section 4.2). Finally, we implement a number of specialized
approaches (Section 4.3) to detect devious ad contents.

To summarize, we make the following main contributions:

• A novel ad traffic identification approach. We present
an HTTP hooking approach to iteratively build a mapping
between ad libraries and ad hosts. This mapping enables our
approach to precisely identify ad traffic from general net-
work traffic. Experimental results suggest that, our approach
outperforms state-of-the-art ad traffic identification methods
significantly, i.e., we have identified three times of the ad
hosts and increased the collection of ad contents by 126%.

• Acomprehensive detection framework.WeproposeMad-
Droid, a framework to detect devious mobile ad contents. To
the best of our knowledge, this is the first attempt in the
literature to detect five groups of devious mobile ad contents.

• A large-scale study in the wild.We conduct a large-scale
empirical evaluation on the usefulness and effectiveness of
MadDroid. By applying MadDroid to 40,000 apps, we find
roughly 6% of apps (2,322) that deliver devious ad contents.

We have released the dataset and experiment results to the
research community at:

https://github.com/MadDroid-2020/MadDroid-WWW

2 BACKGROUND AND TERMINOLOGY
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Figure 1: The general working process of mobile ads.

In order to clarify themeaning of specific terms used in this paper,
and to help readers get an overall understanding of how mobile ads
work, we briefly describe the workflow of mobile ad delivery on
users’ device interfaces. Figure 1 illustrates the overall workflow.
For simplicity, we will refer to any graphical user interface where
an ad can be displayed as aHome Page. When such a page appears
on the foreground of a device’s screen (e.g., after a menu item is
selected), an ad-related HTTP request is sent in an attempt to fetch
ad content from an Ad Network. In the mobile ecosystem, the Ad
Network plays the role of a trusted intermediary platform that
connects advertisers to app developers by providing ad libraries
(e.g., Google’s AdMob) to be embedded in app code for fetching
and displaying ads at runtime. In response to the ad-related HTTP
request, the Ad Network may serve for example an image that will
be used on the Home Page to update an ad view.

Once the ad view is displayed on the Home Page, users can click
it to observe its content. Normally, when the ad is clicked, it will
again trigger another ad-related HTTP request that attempts to
fetch additional ad contents from a Content Server, which may be
hosted by advertisers or other third-parties. There are three types
of ad contents that Content Servers recurrently push to users:

(1) A redirection link that switches the current Home Page to a
so-called Landing Page for displaying the ad information,
such as an online shopping page where the user can purchase
the items that were usually advertised on the Home Page.

(2) A deep-link that switches the current Home Page to Google
Play for helping users install advertised apps.

(3) Automatic download of a file. Typically, this is an APK file.
When the APK downloading is completed, the current Home
Page is switched to an App Installation Page, where users
can decide whether to install the downloaded app.

As shown in Figure 1, there are two types of ad-related HTTP
requests: one as Ad loading request and the other as Ad clicking
request. Unfortunately, the ad content served in response to both
requests may be comprised of devious artifacts that may threaten
the security and privacy of app users.

3 MOTIVATION AND CATEGORIZATION
We first describe a real-world example of devious ad contents that
we have encountered on a popular racing game app. We then create

https://github.com/MadDroid-2020/MadDroid-WWW
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a categorization of devious mobile ad contents based on a thorough
investigation of ad-related policies and reports, which will drive the
implementation of techniques for identifying devious ad contents.

3.1 Motivating Example
While using the free racing game app Speed Racing Ultimate [5], it
is not uncommon to see ads appearing on the foreground. Figure 2
provides the screenshot of an example ad view observed by one
of the authors while playing the game. At the top right corner,
there is a cross symbol (×), which conventionally suggests that the
ad view can be closed by clicking at this location. Once clicked,
however, a redirection is triggered and the current home page is
replaced by a landing page where ad content is displayed. At first,
one may suspect that the user failed to properly click on the correct
location, instead clicked on the actual ad, justifying the behavior.
Nevertheless, after several failed attempts, the user concludes that
the “close” functionality is not supported, or at least not working
as expected, via the cross symbol. Further manual investigations
into the ad later revealed that the (×) symbol is actually embedded
in the image. This demonstrates a deceitful behavior as the purpose
of the cross symbol was never to close the ad but to trick users into
clicking on the ad. Such devious ads are increasingly frequent in
practice, however, studies about them are scarce in the literature.

Figure 2: An example of click-deceptive Image.

3.2 Categorization of Devious Ad Contents
The consequence of the redirection triggered by the devious ad
content example presented above was a simple annoyance for users.
However, we can imagine scenarios where such a redirection lands
on malicious payload being performed. Thus, motivated by such
possibilities, we decided to conduct a systematic study of the current
devious mobile ad contents. To categorize such contents, we first
investigate the undesirable mobile ad contents from: (1) the policies
related to mobile ad contents of popular app markets [6, 31, 56, 57,
74], (2) media reports in news outlets [2–4, 24, 34, 38, 73], and (3)
some real-world apps that host devious ad contents. Based on our
empirical investigation, we summarize the observed devious ad
contents into five (5) groups enumerated in Figure 3.

Note that three groups, namely Click-deceptive Image, Censored
Image, and Malicious Script, are related to ad contents obtained fol-
lowing the Ad Loading request, while the remaining two, namely
Malicious Redirection Link and Malicious App are related to ad con-
tents obtained after an Ad Clicking request.

(1) Click-deceptive Image: As shown in Section 3.1, devious
ad networks (or advertisers) may provide, as ad content, a click-
deceptive image, where a “cross” symbol (×, or similar images) is
directly embedded in the ad image aiming at tricking users into

Devious Ad 
Content

Ad Loading
Content

Ad Clicking
Content

Click-deceptive Image

Censored Image

Malicious Script

Malicious Redirection Link

Malicious App

Figure 3: The five categorized groups of devious ad contents.

clicking on it to close the ad view. Normally, the “close” button of
an ad is displayed as a separate image: on one hand, this allows ad
networks (or app developers) to set events (such as click to close)
that are independent from events associated to the ad image (such
as click to follow a link); on the other hand, setting a separate image
offers the opportunity to display the “close” button after a delay of
several seconds, giving enough time for users to notice the ad.

(2) Censored Image: Censored Image refers to such ad images
that fall under censorshipwith respect to state legislation or themar-
ket policy. In this work, we enumerate the cases of Gambling, Vio-
lence,Medical, and Pornographic images, which might be prohibited.
Google itself explicitly warns developers that gambling advertising
should abide by local gambling laws and industry standards [6].
Similarly, Google also disallows the presentation of violent ads as
they are not appropriate for children, while some medical-related
contents cannot be advertised at all [31]. Adult ads also need to com-
ply with certain policies: for example, it is not allowed to distribute
ad contents that may be interpreted as promoting a sexual act in
exchange for compensation in many countries. Besides Google Play,
many third-party app markets [56, 57, 74] do not allow advertising
of Gambling and Pornographic contents.

(3) Malicious Script:Mobile ads, which are usually displayed
via the WebView widget in Android, can legitimately run code to
interact with the host app. For example, a code fragment can be
included to remove the ad after the close button is clicked. Unfor-
tunately, devious ad networks may inject malicious scripts in the
ad. For example, the 360 Fenghuo Lab has reported that some ad
networks distribute devious ad contents through which they mine
bitcoins on users’ devices, without their knowledge [4].

(4)MaliciousRedirectionLink: Somemobile ads, after clicked,
may jump to landing pages where malicious contents are presented
to the users. When such redirected content is clicked, the security
and privacy of the user may be in jeopardy.

(5) Malicious App: This group refers to such mobile ads that,
when clicked, may download malicious Android apps into the user
device. In this scenario, devious ad contents appear as an attractive
means to distribute malware on user devices.

3.3 Challenges
In this work, we aim at proposing an effective approach to detect
these aforementioned types of devious ad contents from Android
apps. It is nevertheless non-trivial to achieve this automatically.
There are at least three challenges that need to be effectively ad-
dressed. The three challenges are summarized as follows.

How to automatically trigger and collect ad content? Mo-
bile ad contents could be collected at the time when the ad is fully
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Figure 4: Overview of theMadDroid framework.

loaded or consumed, which requires not only triggering the appear-
ance of mobile ads but also clicking the presented ads. Unfortu-
nately, mobile ads could be delivered in different sizes (e.g. Banners,
Interstitials, Full Screens), different carrier widgets (e.g. WebView,
ImageView, ViewFlipper), different numbers and places (one or
multiple, within the same UI state or different states), sophisticated
approaches hence are needed to effectively traverse ads in apps
while ensuring good coverage.

How to efficiently pick out ad traffic from general net-
work traffic? Mobile ad contents can be extracted from the net-
work traffic, specifically the ad-related traffic (or ad traffic in short).
However, when collecting ad traffic at runtime, general network
traffic would be also collected, i.e., non-ad traffic and ad traffic
are inevitably mixed. Hence, there is a need to design effective
approaches to separate ad traffic from the general ones.

How to precisely differentiate devious ad contents from
normal ad contents?With a systematic approach, we have iden-
tified and categorized five groups of devious mobile ad contents,
which respectively need specialized techniques to characterize. Con-
sidering that new groups of devious ad contents can be added in
the future, the detection approach should not only be inclusive (e.g.,
cover all the devious groups), but also extensible (e.g., can be easily
extended to cover new devious groups).

4 APPROACH
Figure 4 depicts the essential modules of the workflow in our pro-
posed MadDroid framework. Towards detecting devious ad con-
tents that are delivered to an input Android app, we propose an
architecture with three modules that respectively address the afore-
mentioned three challenges:

• TCM: a network Traffic Collection Module, which focuses
on traffic generated as part of the ad loading or interaction
phases. This module requires careful design as it requires
dynamic execution which, in order to be effective, must be
focused on covering mainly ad-involved UIs.

• CEM: an ad Content Extraction Module, which learns to
identify, among exchanged traffic, which ones are about
loading content that must be extracted. It further explores
contents that are delivered after an ad view is clicked.

• DDM: an ad Deviousness Detection Module, which finally
analyzes the extracted ad contents to identify devious ones.
Given the diversity of devious ad contents, this module im-
plements specialized detection schemes with adapted tech-
niques ranging from character recognition to deep learning.

This modular architecture enables flexibility for extension and
maintenance. Given that the categorization presented in this paper
is based on the currently known devious ad contents, when other

2.android.widget.FrameLayout

4.android.widget.RelativeLayout

5.android.widget.LinearLayout

6.android.widget.ImageView

View Tree 

0.android.widget.FrameLayout

10:android.widget.RelativeLayout

12:android.widget.Button11:android.widget.ImageView

{"temp_id":11,
"parent": 10,
"class:android.widget.ImageView,
"bounds": [[108, 456], [972, 1320]],
"children": [],

"size": "864*864"}, 

state_2018-08-19_184405

1.android.widget.LinearLayout

9.android.widget.ViewFlipper

7.android.widget.ImageView

8.android.widget.ImageView

Ad Features:Type

Ad Features:Placement

3.android.widget.LinearLayout

Figure 5: An example of a view tree.

devious ad contents and distribution scenarios are uncovered, each
module can be appropriately extended to take them into account.
In the remainder of the section, we describe in detail our approach
for implementing each module.

4.1 Network Traffic Collection
The TCM module implements the first step in the MadDroid frame-
work. Its objective is to harvest all the network traffic that is in-
volved in operations for delivering ads on a given app. This traffic
carries not only data from exchanges between ad networks and
the home page view (i.e., when the app is being loaded), but also
data from exchanges between the home page and the advertiser’s
content server (i.e., when the user interacts with the ad). Thus,
given an Android apk file, TCM must visit all app UI pages where
ads are likely to be loaded, and then explore an interaction with
such ads to collect data in the reached landing page.

For scalability reasons, TCM must implement an effective and
automated strategy for covering all ad views in an app. Nevertheless,
although it is labor-intensive and time-consuming to implement the
exploration manually, it is also non-trivial to achieve automation
via traditional automated app testing [37]. Indeed, state-of-the-
art approaches in Android, such as MonkeyRunner [25], generate
random test cases that are not ad-specific: the majority of dynamic
execution scenarios will then be wasted for exploring irrelevant UI
states. As empirically demonstrated by Suman Nath [61] on a set
of ad-supported apps, over 90% of the automatically explored UI
states are not ad-involved pages.

To overcome the efficiency challenge in rapidly and quasi-exclusively
focusing on relevant UI states, we propose to tune the exploration
strategy by generating ad-intensive test cases, i.e., by favoring ad
views. We refer to it as an ad-first exploration strategy. We build
on the finding of a recent study [61] that most ads are displayed in
the main UI page and on the exit UI page. Our ad-first exploration
strategy thus attempts to prioritize the views of these pages, and
further rely on a breadth-first search algorithm where the views in
a page are reordered, i.e., ad views are prioritized.

Views are identified by traversing the nodes in a view tree that
can be obtained from a given UI state (i.e., a GUI page at a given
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time in app execution). Figure 5 shows an example of a view tree.
The root node represents the base layout view on top of which upper
views are placed. Parent nodes are containers to child nodes that
are subject to users’ manipulations. Each node is tagged with basic
view information such as position, size, class name, etc. Inspired
by a most recent work [28], we use such attributes to identify
which nodes among the leaf nodes are likely to be ad view nodes.
Specifically, during our exploration, to ensure good coverage, we
prioritize and click on each view that falls in the class of WebView,
ImageView or ViewFlipper.

Based on the results of the ad-first exploration, dynamic execu-
tion of ad-related UI states will lead to a large collection of network
traffic. Unfortunately, at this stage, the collected traffic contains
not only ad-related traffic but also non-ad related ones (such as
data exchanged for app analytics). There is hence a strong need
to precisely distinguish between ad and non-ad traffic, in order to
correctly extract ad content. To this end, we propose a framework
runtime hooking approach to achieve this purpose. Details will be
given in the next subsection.

4.2 Ad Content Extraction
The CEM module analyzes the traffic collected through TCM in
order to extract relevant content for further assessment. Indeed,
by default, TCM collects any traffic that occurs while the ad is
being loaded or after it is clicked. Since we are interested in traffic
carrying ad contents, CEMmust dismiss all traffic that is not related
to advertisements (e.g., parallel traffic from core app functionality).
To this end, the first step taken in CEM is to identify ad-related
HTTP requests/responses, considering those that are done as part
of exchanges with ad networks. Take Table 1 as an example, a
simplified list of HTTP requests harvested from the execution of
app com.bbsoft.InternetPolyglot is illustrated and startappservice.com
is known as an ad-domain. The first step is hence to highlight such
ad-domain related HTTP requests (cf. lines 1, 3 and 4).

Table 1: Simplified list of harvested requests (domain + path)

1 AD-DOMAIN info.static.startappservice.com
/1.4/getadsmetadata

2 NON-AD data.flurry.com /aap.do
//ad-load

3 AD-DOMAIN req.startappservice.com /1.4/gethtmlad
4 AD-DOMAIN imp.startappservice.com

/tracking/adImpression
//ad-click

5 NON-AD cl.untildogtop.com /t/clk
6 NON-AD my1trk.com /redirect/action

/1InYjNywuJnNnYTwiKHNmf3BlZ2E_eQ_Pyi
7 NON-AD www.spyoff.com /geo

As shown in Figure 6, given an ad-domain whitelist, it would
be straightforward to pick out ad-load traffic from a collection
of network traffic. Unfortunately, it is not easy to manually build
such a whitelist of ad domains, mainly due to two reasons. On one
hand, there are a plethora of ad libraries and new ad networks
might continuously join the ecosystem. On the other hand, we
empirically found that, for a given ad library, the domain names of
ad networks may change, and even one ad library may correspond
with a number of domain names, making it hard to label a complete

and accurate list of ad-domain names. For example, we found that
the ad network “daoyoudao” [22] has dozens of ad-domain names,
including “daoudao.com”, “guiji.com”, “133155.com”, “161161.com”
and “150155.com”, etc.

Therefore, we propose to develop in CEM a runtime HTTP hook-
ing approach (as shown in Figure 6) for iteratively identifying ad
relevant domain names, so as to locate ad-relevant traffic. Our ap-
proach dynamically hooks all the HTTP-related methods at the
framework level. Following the same ad-first exploration approach
detailed in the previous section, when an HTTP-related method is
reached, the hookingmodule will record the current execution stack
trace and the URL associated with the HTTP method. Following
the dumped stack trace, our approach can automatically locate the
package that initiates the HTTP connection and build a mapping
(hereinafter referred to as pkg-domain mapping) from packages to
URL domains. If the package belongs to a known ad library, all the
domains triggered by this package will be regarded as ad-domains
and recorded into the mapping. Similarly, if the domain matches
one of the ad-domains recorded in the mapping, the corresponding
package will be flagged as an ad library and hence recorded into
the mapping. By doing so, the runtime hooking approach enables
our approach to iteratively grow the whitelist of ad-domains.

Android
APK

Ad-domain
Whitelist Match

Runtime
Http Hooking

Pkg-domain
Mapping

Network
Traffic

Ad
TrafficIterative Ad-domain Discovery

Figure 6: Runtime hooking approach for locating ad traffic.

Once ad traffic is located from the network traffic collected by
TCM, it can unfold the next step of extracting ad contents from all
relevant ad-response messages (i.e., those sharing the same session
id as the identified ad request messages). Ad contents that are
extracted include images and executable scripts. Such ad traffic
that is only relevant to simple message exchange (e.g., sending a
message to confirm an ad impression) without carrying actual ad
content will be ignored (e.g., lines 1 and 4 in Table 1 will be ignored).

With regard to ad click, the response message of an ad-loading
request generally includes a URL indicating the target address when
the ad is clicked. Indeed, ad clicking requests are supposed to be
redirected to the appropriate content server whose domain address
is stored in the ad content. More specifically, the domain address is
bound to ad click events. Let us take Listing 1 again as an example,
after the ad is clicked (line 5), an ad clicking request will be sent
to a content server, which returns a redirection link (line 6) that
eventually leads to the ad landing page (line 7), which is a VPN app
website. By analyzing the binding information, we can retrieve this
address and subsequently identify ad clicking-related traffic. By dy-
namically exploring the ad clicking events on installed apps, we can
further collect three types of ad contents: (1) redirection links: the
URL bound to the ad click event might not be the final destination:
i.e., the landing page may be reached after several redirections. (2)
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downloaded APKs: the ad clicking request will trigger a download-
ing process of non-requested apps. (3) Google Play pages: the ad
click will be directed to Google Play to promote the advertised app.

There are at least two means to explore the ad clicking events: (1)
by simulating the clicking request (e.g., record the request URLs and
then send requests using a browser later) or (2) by actually clicking
the ad. The latter approach is adopted in this work as we have
experimentally found that the former approach is likely leading to
failures of requests. For example, we have empirically observed that
some redirection links are time-sensitive. The emulated request
after a certain time period will simply result in an invalid request.

4.3 Ad Deviousness Detection
The DDM module in MadDroid is the core component in charge
of implementing analysis procedures for assessing the variety of
artifacts collected by CEM in order to check against the presence
of any devious ad content. Given that each group of devious ad
content presents specific characteristics and detection challenges
that require specific detection schemes, we design DDM with a
plugin-based system architecture. This offers the flexibility to ad-
dress newly appearing groups of ad contents by integrating an
independent plugin implementing the required analysis of ad con-
tents using specialized state-of-the-art techniques.

In the current version of MadDroid, we have already proposed
prototype plugins that cover the devious ad content groups. We
now detail, for each plugin, the detection strategy that was applied
as well as some implementation details.

4.3.1 Click-deceptive Image. Themain idea is to checkwhether
the image actually embeds a “cross” symbol. This refers to the
problem of recognizing objects in images. Traditional object de-
tection algorithms have shown to be effective for object recogni-
tion [10, 12, 64]. In this work, we adopt the YOLO (You Only Look
Once) approach, which is proven to have achieved higher efficiency
and accuracy than other approaches [12, 64]. The work-process is
illustrated in Figure 7. First, the algorithm splits the image into an
𝑆 ∗ 𝑆 grid. Then, for each grid cell, it predicts 𝐵 bounding boxes to
mark the object, and the confidence for each box. These predictions
are encoded in a tensor of 𝑆 ×𝑆 × (𝐵 × 5+𝐶) dimension, where𝐶 is
the number of objects to be recognized. We set 𝐶 = 1 in our work
as we aim to recognize only a single object. Finally, YOLO uses a
non-maximal suppression approach to choose the box that yields
the best prediction score. For more details on the inner-working of
the algorithm, we refer the reader to the description in [12, 64, 65].

Although object recognition techniques have been proposed for
decades in various applications, including face detection, the litera-
ture, to the best of our knowledge, does not report any work related
to the case of “cross” (×) symbol, a simple but pervasive object. As
a result, there is no public dataset that we can leverage to train our
model for the detection of ad click-deceptive Images. As part of the
MadDroid effort, we propose to construct such a training set from
scratch. Although we had already harvested some sample images
during our manual investigations for the purpose of characterizing
devious ad contents, the obtained set is not representative. Since
normal ads also contain “cross” symbol and it is difficult for users to
distinguish if the “cross” symbol is displayed from an independent
image, we collect images from found ads and artificially embed
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Figure 7: Click-deceiving picture detection based on YOLO.

“cross” symbols into them. Note that we have collected more than
100 different kinds of “cross” symbol images from normal ads, and
we artificially embedded them into images with random positions
and random size (within a normal size range). Eventually, we obtain
a set of 2,375 pictures and record the ground truth (i.e., the actual
position of the “cross” symbol) via a common object recognition
format PASCAL Visual Object Classes [9].

4.3.2 Censored Image. We treat separately the cases of gam-
bling and pornographic/violence/medical devious ad content which
are all considered as censored images.

Pornographic/Violence/Medical Ad Picture. Image detection
has been a hot topic in the research community for decades. With
the recent advances in CV and deep learning, the research line has
matured, and many highly effective approaches [7, 49, 55, 71] are
available. Given as an input an ad image, Google Vision API [32]
will output a range from 1 to 5 (i.e., from very unlikely to likely and
very likely) indicating the likelihood of being the image targeted by
the analysis (e.g., pornographic, violence, or medical). In this work,
we consider that a given image is a censored one as long as the
prediction result is equal or higher than 4, indicating the image is
likely or very likely to be a pornographic/violence/medical image.

Gambling Ad Picture. Because of the heterogeneity in gam-
bling (e.g., blackjack, poker, etc.), it is hard to build a graphical
model that captures the “gambling” instances accurately. Thus, in-
stead of detecting gambling images graphically, we adopt a simple
approach that focuses on the text embedded in the ad images. To
that end, we rely on Optical Character Recognition (OCR) [8] tech-
niques to extract any text from a given ad image and match them
against a predefined set of gambling keywords. We consider that an
ad is about delivering gambling contents if any of its embedded text
tokens match any of the keywords enumerated currently in the pro-
totype plugin implementation. The gambling-related keywords are
collected from various sources, including the top searched Casino
keywords in Google [60], and the frequently presented words on
several online gambling websites (in both English and Chinese).
Since similar ad contents displayed on online gambling websites
might be also used in mobile apps, when counting the recurrently
presented words, we also take into account the words presented in
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pictures of those websites. Eventually, our gambling-related key-
word set contains 100 words in Chinese and English1.

4.3.3 Other Devious Ad Content Groups. Devious ad content
for other groups, namely Malicious Script, Malicious Redirection
Link and Malicious App, which, contrary to images, have been well
investigated in the security community. Hence, given that we build
a framework, for our plugin prototypes, instead of reinventing the
wheels, we leverage state-of-the-art techniques to detect issues
with such artifacts. Specifically, we rely on anti-virus scanners to
flag malicious artifact. Concretely, DDM sends these non-image
artifacts to VirusTotal [11], a free online service that integrates
over 60 anti-virus engines, has been widely adopted by the research
community [17, 35, 36, 69]. Our prototype plugins implement de-
tection schemes where, for each artifact that is sent to VirusTotal
will be considered as ad devious content whenever at least three
(3) anti-virus scanners flag it as suspicious.

4.4 Implementation
The core of the MadDroid framework is implemented in Python.
It includes the architectural foundation for gluing the input and
output formats of the different modules, as well as for reporting
decisions. We have implemented a lightweight UI-guided test in-
put generator to dynamically explore Android apps, with a special
focus on ad views during exploration, including the enforced ad-
first exploration strategy. The network traffic is harvested through
Fiddler [70], which serves as a Man-in-The-Middle (MiTM) ser-
vice between test devices and the server to decrypt and record
all HTTP(S) traffics, which are further sent to customized Fiddler-
scripts [39] to extract specific content from the traffic. The runtime
hooking is based on the Xposed framework [1], which can collect
the runtime information of tested Android apps.

5 EVALUATION
Our evaluation is driven by the following research questions (RQs).
RQ1: Can MadDroid detect devious mobile ad contents?
RQ2: How effective is the HTTP hooking approach (in the CEM
module) in locating ad traffic from general network traffic?
RQ3: How accurate is MadDroid in detecting devious contents?

Our experimental setup includes the construction of a large set
of ad-supported apps from markets, the execution of these apps on
a physical device, and the collection of network traffic.

5.1 Dataset Construction
To prepare the dataset for evaluating MadDroid, we resort to the
well-known AndroZoo dataset [43] to crawl Android apps. Since we
are only interested in apps displaying advertisements, we further
leverage VirusTotal to collect ad involved apps, i.e., adware. In this
work, we consider a given Android app is adware as long as one
anti-virus engine flags it as such. To this end, we randomly collected
40,000 adware from AndroZoo, including 20,000 Google Play and
20,000 third-party apps, to support our experiment.

Among the randomly selected 40,000 apps, we run each app on
a Nexus 5 smartphone, and we use six smartphones in parallel.

1Example keywords include gambling, casino, Macau dealer, beauty Croupier, lottery,
GoldenFlower (ZHAJINHUA in Chinese), etc.

Considering that loading an ad from a remote server may take time,
we set the transition time in app automation to 5 seconds. Overall,
automated exploration for each app takes on average 2 minutes. It
takes roughly ten days to run all the apps automatically. Contrary to
prior related work [16, 63], we do not rely on emulators given that
ad libraries may implement verification steps to avoid ad networks
from serving ads when the app is being experimented on emulated
environments [72] (the objective being to prevent fake impressions
of ads [21], i.e., unjustified profit for app developers).

5.2 Harvested Ad Content
Ad-related Traffic:Out of the 40,000 apps, wewere able to success-
fully run 38,553 (i.e., 96.38%) on the Nexus 5 smartphones. During
the execution of these apps, the TCM module has collected in total
2,488,897 HTTP and HTTPS messages, from which our CEM mod-
ule flags 541,129 messages related to ad-load (21.7%) and 692,122
messages related to ad-click (27.8%).
Ad Content: The CEM module then extracts ad contents from the
collected traffic: we retrieved 83,347 ad images, 52,592 executable
scripts, 49,392 redirection URLs, and 2,545 apps directly downloaded
and 2,081 apps promoted via Google Play by clicking the ad views.

5.3 RQ1: Overall Results
Devious Content Detection: As detailed in Table 2, the DDM
module flags 279 ad images (specifically, 172 adult, 61 medical, 37
gambling, and 9 violence ad images), 112 executable scripts, 1,822
redirection URLs and 1,457 downloaded apps as devious ad contents.
These statistics show that ad clicking contents (i.e., obtained by
clicking on displayed ads) are more likely to be devious than ad
loading contents (i.e., obtained when loading a page with ad view).
This is reasonable since dynamic analysis can reveal deviousness if
the content is available automatically on the host app (as what ad
loading request does) and subsequently may prevent their accep-
tance on markets. Instead, leaving their loading, at runtime, from
third-party servers is a more effective distribution model.

Nevertheless, although devious ad loading contents are more
scarce, they may have a higher impact on the security and privacy
of end users. Indeed, unlike ad clicking contents, which may not be
triggered (e.g., the ad is not clicked), ad loading contents will, in
any case, be delivered to users when the app is launched.

Table 2: Statistics on harvested ad contents.

Ad Content Total Devious Type
Ad Images 83,347 279 (0.33%) Ad Loading
Executable Scripts 52,592 112 (0.21%) Ad Loading
Ad Redirection URLs 49,392 1,822 (3.69%) Ad Clicking
Downloaded Apps 2,545 1,457 (57.25%) Ad Clicking

Malware Distributed by Ad Content: It is noteworthy that more
than 57% of the downloaded apps are alerted as suspicious by an-
tivirus engines (hence are categorized as devious content in Ta-
ble 2). More than 30% of these devious contents are even flagged
by over 10 anti-virus engines, indicating a consensus on their ma-
liciousness. Table 3 lists the top-3 identified malware ranked by
the number of VirusTotal anti-virus engines that agree on them
being malicious. We further resort to Google Play and an ASO
website (www.chandashi.com) that contains apps in more than 10
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Table 3: Top 3 downloaded malicious apps ranked by the
number of flagged VT engines.

Package Name MD5 Source App # Engines
com.zhulai.jingjimoren d3a6fa8359ad1b139004e617ce3baab8 com.ziipin.softkeyboard.kazakh 44

girl.game.weaimeng 21846ecdfe3ae93391372bdd1cd43032 air.com.aoaogame.game34 37
afltr.austscf798.zhnf760 e260fd6f711aea632bb4aae2776a1cef com.easaa.c000000021 31

third-party markets to search for these apps (based on their unique
identifiers). Expectedly, 21% of them (311/1457) are not hosted on
any markets (both official and alternative markets), and over 91%
(1332/1457) of them are not listed on Google Play. This result sug-
gests that attackers are leveraging ad contents as a new channel
to distribute malicious apps, especially considering that more and
more app markets are enforcing strict security checks.
Host Apps of Devious Content: We further look into the host
apps of these devious content to investigate the spread of devious
ad contents. Results are summarized in Table 4. Roughly 6.02% of
apps (2,322 out of 38,553) in our dataset are identified as deliver-
ing devious ad contents. The fact that more devious contents are
collected than the number of host apps suggests that one app may
repeatedly present devious ad contents. Sometimes the same app
may present a diversity of devious ad contents. Moreover, even
popular apps on the official Google Play market (e.g., the popular
“Magic Candy” game app2) are involved in providing devious ad
contents (distributing click deceptive images). This is evidence that
the identification and blocking of devious ad content remains an
unresolved issue in the industry. The research community thus
needs to put more effort into approaches and tools for addressing
unethical behavior in mobile ads so as to provide a clean and safe
environment for displaying mobile ads.

Table 4: Host apps of devious content.

Type # Devious Contents # Host Apps
Click-deceptive Image 525 40

Censored Image 279 240
Malicious Script 112 46

Malicious Redirection Link 1,822 838
Malicious App 1,457 1,267

Total - 2,322

TheRole of AdNetworks:We further investigate the distribution
of ad networks in terms of the number of devious ad contents that
they push to app users’ devices. In this work, we have identified in
total 3,518 ad host names (or networks in simplicity). Due to space
limitation, we only listed the top 3 ad networks that distribute devi-
ous ad content for each group, as shown in Table 5. It is interesting
to observe that, for censored images, malicious scripts and mali-
cious links, most of them are distributed by popular ad networks.
For example, over 46% of malicious links were distributed by star-
tapp and the google ad network. Considering that these popular ad
networks are widely adopted, many users may have already been
affected by the presence of devious ad contents on their devices.
For deceptive images and malicious apps, most of them were found
in less-popular ad networks. We argue that the ad networks need
to be responsible for such threats by implementing adequate means
to keep devious ad contents from being pushed to end users.

2By the time of this study, this app is still available on the Google Play market [13]
and has received more than 10 million installs.

Table 5: Top ad networks that distribute devious ad content.
Top 3 ad networks ranked by the number of distributed click deceptive images
ad network # devious content % devious content
me2s.co 382 72.8%
go2s.co 120 22.9%
droidhen.com 8 1.5%

Top 3 ad networks ranked by the number of distributed censored images
startappexchange.com 146 52.3%
googleads.g.doubleclick.net 34 12.2%
adeco.com 16 5.7%

Top 3 ad networks ranked by the number of distributed malicious scripts
googleads.g.doubleclick.net 74 66.1%
startappexchange.com 18 16.1%
nads.wuaiso.com 3 2.7%

Top 3 ad networks ranked by the number of distributed malicious links
startappexchange.com 496 30.1%
googleads.g.doubleclick.net 267 16.2%
mobincube.com 155 9.4%

Top 3 ad networks ranked by the number of distributed malware
ie2o.com 343 23.5%
gamezi.com 217 14.9%
td68x.com 132 9.2%

Table 6: The origin of devious contents.

Top 5 landing page domains of malicious redirection links
domain # malicious link % malicious link
revcontent.com 145 8.0%
take-your-prize-now1.life 119 6.5%
ds-club.ru 75 4.1%
wolve.pro 42 2.3%
inhabitny.com 39 2.1%

Top 5 downloading domains of malicious apps
domain # malicious apps % malicious apps
ie2o.com 343 23.5%
gamezi.com 217 14.9%
td68x.com 132 9.2%
clouddn.com 78 5.4%
cmbst.cn 54 3.7%

The Origin of Devious Contents:We further seek to investigate
the advertisers that distribute the devious contents by analyzing the
landing page of malicious redirection links and the downloading
address of malicious apps. Table 6 lists the top 5 for each of them.
We observe that most of the malicious links and malware were
originated from several specific domains. Top 5 domains occupied
over 23% of malicious links, and over 56% of malware downloading
URLs. This result suggested that some advertisers have the tendency
to release malicious contents. Therefore, it is important and urgent
to identify them and remove them from all the ad networks.
Comparisonwith the state-of-the-art:A recent closest study [16]
characterizes the malicious behavior of mobile ad landing pages.
Unfortunately, their tool and dataset are not publicly available.
Thus, we can neither apply their approach to the apps we randomly
selected in this work nor apply MadDroid to their apps. Hence,
we explain why our approach can collect much more ad contents
than theirs according to the design. First, like all the other previous
studies, Chen et al. only focuses on ad clicking contents, letting ad
loading contents untouched. Second, they only take into account
WebView widgets for inferring advertisements. However, we ex-
perimentally find that WebView is only used by roughly two-thirds
of the advertisements (67.58%). ImageView and ViewFlipper wid-
gets have also been frequently leveraged to display ads. Third, they
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Iteration:  0        15

Figure 8: Results of RQ2 in 15 Iterations. Each iteration is
denoted by an edge: vertical edge for expanding ad hosts
(based on the latest ad library list) while horizontal edge for
expanding ad libraries (based on the latest ad host list).

exclude all apps with multiple WebViews from their dataset. Our
experiment reveals that around 30% (2,581/8,604) of the apps are in-
volved in two or more distinct ad widgets, while 67.2% (1,734/2,715)
of them contains two or more Webviews. Finally, the list of ad hosts
considered by Chen et al. also limits their capability of identify-
ing all advertisements. As shown in the next section, our HTTP
hooking approach can significantly increase the list of ad hosts for
identifying advertisements.

5.4 RQ2: Effectiveness of the HTTP hooking
TheCEM is a keymodulewhere non-ad traffic is filtered out through
a HTTP hooking approach. Given that this step is essential to locate
and extract ad contents, it is important to assess its effectiveness
so as to validate this step in the workflow. Recall that the HTTP
hooking approach takes as input a set of ad libraries and/or ad hosts
and the library-host mapping is built iteratively. We evaluate our
approach through the following three settings.

• S1: Ad libraries only.We send only ad libraries (with the
ad host set as empty) to evaluate the effectiveness of the
HTTP hooking approach. Specifically, 52 popular ad net-
works, maintained by LibRadar [54], are considered.

• S2: Ad hosts only. Instead of giving ad libraries as input,
we send only ad hosts to run the experiment. Specifically, the
1,315 ad hosts3 leveraged by Chen et al. [16] in their mobile
advertising threats study are considered in this experiment.

• S3: Ad libraries and hosts. Finally, we take into account
both the aforementioned 52 ad libraries and the 1,315 ad
hosts as input to conduct the evaluation.

Figure 8 illustrates the experimental results. The x-axis and y-
axis represent respectively the number of ad libraries and ad hosts.
Interestingly, no matter starting from which setting, all the exper-
iments tend to converge to the same result within 15 iterations.
Thanks to the HTTP hooking approach, the number of ad hosts has
almost tripled, resulting in around 3,500 ad hosts, which in turn
immensely increases the collection of ad contents by 126%.

Figure 9 presents the top five involved ad libraries and ad hosts,
w.r.t. the number of hosts triggered by each library and the number
of libraries triggering the same host, respectively. The top-ranked
library, namely com.applovin, is even associated with 357 distinct
ad hosts, while the top-ranked ad host, namely googleads.g.

3This list is continuously being updated. At the time of the study presented by Chen
et al. [16], the number is 1,183.
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Figure 9: Top five involved ad libraries and ad hosts.

doubleclick.net, is triggered by 175 ad libraries. It is surprising that
one ad library can trigger multiple distinct ad hosts and one ad
host can be triggered by multiple ad libraries. Our in-depth manual
investigation reveals that those top-ranked libraries have usually
embeddedwithmultiple other ad libraries and the actual ad requests
are triggered by those embedded ones, resulting in hence different
ad hosts mapping to different ad libraries.

Our in-depth analysis further reveals that some libraries pointed
to the same ad hosts are actually the same ones but have been
deeply obfuscated. For example, api.airpush.com is a well-known
ad library. In this experiment, we find various libraries such as
com.avtqk.ubjir220086 and com.filGh.hXwrF124710 that trigger the
same ad host (i.e., api.airpush.com) and these libraries are actually
the obfuscated versions of the original airpush library. This result
suggests that our HTTP hooking approach can be even a promising
approach for identifying obfuscated libraries.

5.5 RQ3: Performance Evaluation
5.5.1 Click-deceptive Image. Given that we have built ourselves
the training dataset for detecting click-deceptive ad images, and
selected a technique that has not been applied in the literature for
such cases, we evaluate the performance of this detection as the
main pain point in the validation of the DDM module. We recall
that we have collected 2,375 click-deceptive images as introduced in
Section 4.3. To evaluate the performance of our plugin for detecting
click-deceptive images, we randomly select 2,175 images to form
a training set for YOLOv3. Then, we put the remaining 200 click-
deceptive images, along with 200 normal ad images (i.e., without
“cross” button embedded) into a testing set and apply the trained
YOLOv3 model to it. Among the 400 images, our YOLOv3 model
flags 201 and 199 images as click-deceptive and normal, respectively.
With 5 false positives and 4 false negatives, our approach yields a
precision and recall of 97.51% and 97.99% respectively for predicting
click-deceptive images, demonstrating that our approach is quite
reliable for recognizing the “cross” button embedded in images.

Most of the closing buttons in ad images follows the form of a
cross symbol, but exceptions exist that some of the closing buttons
are demonstrated in text images. To this end, we implement a
keyword matching based approach to identify close, exit, and skip
in Chinese and English. Eventually we identify one such case.

5.5.2 Censored Images. Scenarios for detecting Pornographic, Vio-
lence, and Medical images are directly based on the popular Google
Vision API with pre-trained deep learning models. Google Vision
API has been widely used by state-of-the-art approaches and has
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been experimentally demonstrated to be effective in flagging porno-
graphic, violence, and medical images [16, 18, 27, 58]. As experi-
mentally demonstrated by Chen et al. [16], Google Vision API can
indeed outperform other image scanning services.

For the gambling image detection, with a set of 100 gambling-
related keywords in both Chinese and English (configurable), Mad-
Droid achieves 100% of accuracy for identifying gambling images,
as all the identified images indeed contain the defined keywords.
Despite that we have formed a relatively large set of gambling-
related keywords, it is still possible that some gambling images
are overlooked, e.g., they do not contain keywords, or our list of
keywords is incomplete. However, these cases are rare in our study.

5.5.3 Malicious Scripts/Links/Malware. Since we are not capable
of manually confirming if a given app, redirection link or script is
malicious, we rely on VirusTotal to flag malicious ones, which is
widely used in our research community.

6 DISCUSSIONS
Implications. Our findings in this paper suggest that ad networks,
even popular ones such as AdMob, are involved in the delivery of
devious ad contents to end users’ devices. The fact that ad networks
are not always delivering legitimate ad contents suggests that the
ad contents (likely provided by Advertisers) might not be properly
checked by ad networks before being pushed to user devices. As
a result, devious Advertisers may exploit the limitations in the
current system to advertise devious contents, leading to a poor
user experience which harms the reputation of both ad networks
and app developers. We argue that ad networks need to introduce
automated tools to regulate the behavior of advertisers. Moreover,
it is hard to know if ad networks are involved in this black market.
They may turn a blind eye on purpose as they have actually hosted
the content servers. We hence appeal to the community for putting
more effort to explore this new research direction.

Limitations.The implementation ofMadDroid, however, carries
several limitations. First, we take advantage of state-of-the-art app
automation technique [47] to explore the app, and use an ad-first
exploration strategy, to achieve a balance between time efficiency
and ad view coverage, which may cause some ad views to be missed
during UI exploration. Nevertheless, our experiments suggest that
we could extract much more ad contents than existing studies.
Second, our categorization of devious content might be incomplete
since it was built based on existing knowledge. Nonetheless, for new
types of devious content, it is quite easy to extend the framework
of MadDroid for further analysis. Third, the ad contents shown
in a given app may vary due to factors such as time, location,
user identifiers, etc. Thus, in our automation testing, some devious
behaviors may not be triggered due to various reasons.

7 RELATEDWORK
Mobile Ad Clicking Content Analysis. Beside the state-of-the-
art work by Chen et al. [16], the closest work related to ours is
proposed by Rastogi et al. [63], who have experimentally explored
the security issues of ad clicking contents, without considering the
ad loading content. Similarly, Son et al. [67] are also interested in the
devious behavior of advertisers. They have discovered that mali-
cious advertisers may push executable scripts to access the external

storage of user’s devices so as to infer sensitive information of users.
Our work has also taken into account the aforementioned three
kinds of contents, namely malicious link, malware and malicious
script. Moreover, to the best of our knowledge, it is the first work
that considered the click-deceptive images and censored contents
during the loading of mobile ads.

Malicious Web Advertising Analysis. Malicious advertise-
ment has been extensively studied in the context of web advertising,
which is so-called web malvertising. This line of studies mainly
falls in the group of drive-by-download attack detection. Cova et
al. [20] and Lu et al. [53] proposed to detect drive-by-download
attack and malicious Javascripts that embedded in the advertising.
s. Stringhini et al. [68] and Mekky et al. [59] used the properties of
HTTP redirections to identify malicious advertisement behaviour.
Li et al. [48] performed a large-scale study through analyzing ad-
related Web traces, and found that malicious advertising infects
both top Web sites and leading ad networks (e.g., DoubleClick).

Mobile Ad Fraud Detection. Various research studies are pro-
posed to investigate the malicious and fraudulent behaviors of
mobile app developers [79, 81], who aim to entice users to click ads
or push notifications [21, 28, 29, 50, 52]. Our approach, targeting
the devious behavior of advertisers, can be considered as a supple-
ment of these studies towards building a trustworthy and clean
ecosystem for mobile advertising.

Mobile Ad Library Detection and Analysis. The majority of
research studies targeting the mobile ad ecosystem are actually fo-
cused on ad libraries [75]. One line of work focuses on identifying
ad libraries [41, 46, 54, 76]. The other line of work focuses on the se-
curity and privacy issues of ad libraries [15, 23, 33, 40, 45, 51, 62, 82].
Since ad libraries are normally provided by ad networks, who play
an important role in distributing ad contents, the aforementioned
approaches could be useful for complementing our approach to-
wards better understanding the lifecycle of devious ad contents.

8 CONCLUSION
In this paper, we perform a large-scale characterization study of
mobile ad content, which has been largely overlooked by the re-
search community. We first create a comprehensive categorization
of devious mobile ad contents, then we build MadDroid, a frame-
work for automated detection of devious mobile ad contents. By
applying MadDroid to 40,000 Android apps, we find that devious
ad contents are prevalent: 6% of apps in our study are identified
as delivering devious ad contents. To the best of our knowledge,
MadDroid is the first attempt towards mitigating threats from both
ad-load and ad-click introduced by mobile ad contents.
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