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Abstract. In this paper, we propose a privacy-preserving contact trac-
ing protocol for smart phones, and more specifically Android and iOS
phones. The protocol allows users to be notified, if they have been a
close contact of a confirmed patient. The protocol is designed to strike
a balance between privacy, security, and scalability. Specifically, the app
allows all users to hide their past location(s) and contact history from the
Government, without affecting their ability to determine whether they
have close contact with a confirmed patient whose identity will not be
revealed. A zero-knowledge protocol is used to achieve such a user pri-
vacy functionality. In terms of security, no user can send fake messages
to the system to launch a false positive attack. We present a security
model and formally prove the security of the protocol. To demonstrate
scalability, we evaluate an Android and an iOS implementation of our
protocol. A comparative summary shows that our protocol is the most
comprehensive and balanced privacy-preserving contact tracing solution
to-date.

1 Introduction

The COVID-19 pandemic has significantly changed many aspects of our society,
with both short-term impacts (e.g., temporary lockdowns, and social and phys-
ical distancing) and long-term impacts (e.g., economic [15]). In recent times, a
number of cities, states, and countries are re-opening, where some businesses and
activities are allowed to operate and proceed with certain limitations (e.g., wear-
ing of personal protection equipment, and practising social / physical distanc-
ing). However, there is also the possibility of individuals, and in some instances
large number of individuals, coming in close proximity with another person with
undetected COVID-19 infection (e.g., the individual is asymptomatic or dis-
play mild symptoms) unknowingly. A recent high profile example is the recent



incident involving the sitting U.S. president [17,55]. This highlights the impor-
tance of contact tracing [27,46], particularly in the current climate where there
is the potential of a subsequent wave of COVID-19 affecting the public. The
U.S. Centers for Disease Control and Prevention (CDC), for example, has re-
leased resources, such as contact tracing communications toolkit and guidelines
for various stakeholder groups. The effectiveness of contact tracing, particularly
digital contact tracing, has also been the focus of recent studies. For example, in
a recent Science article, Ferretti et al. [20] reported that “Improved sensitivity
of testing in early infection could also speed up the algorithm and achieve rapid
epidemic control”.

Contact tracing allows relevant stakeholders, such as healthcare authorities,
to identify and reach out to potentially infected individuals, so that appropriate
measures can be taken (e.g., further testing, self-quarantine, and/or hospitaliza-
tion). However, there are limitations in contact tracing. For example, how can we
ensure that individuals who have unknowingly come into contact with a person
with undetected COVID-19 infection be identified and subsequently contacted?
This reinforces the importance of leveraging technologies, such as smart devices
with built-in features such as Bluetooth communication and geolocation (e.g.,
mobile and wearable devices), to facilitate contact tracing.

A number of automated contact tracing protocols and applications (apps)
have been developed, and examples include those designed by Apple Inc. and
Google Inc. (GAEN) [3,4], the decentralized privacy-preserving proximity tracing
(DP-3T) app [51], and those reported in [45,13]. A security analysis is provided
in [16] for some of these schemes, such as GAEN, DP-3T, etc. The approaches
in [45,13] rely on the use of smart devices to learn and possibly share the de-
vice user’s location and associated timestamp with other users. However, such
approaches may reveal certain metadata about the user’s device (e.g., make and
model) and contact information. Hence, there have been studies on the security
of these approaches [25]. For example, it was revealed that DP-3T is vulnerable
to relay and replay attacks, and an interactive scheme designed to prevent relay
and replay attacks without affecting the existing features was presented [52].
In addition, a non-interactive scheme to counter relay and replay attacks in
DP-3T [51] and the approaches of [45,13] was introduced in [40], using ‘delayed
authentication’. This is a novel message authentication code (MAC) in which
the verification step is done in two phases, where the key is not required in one
phase and the message is not in the other phase. A fake exposure notification
attack on GAEN-based schemes is described in [8].

Similar to other healthcare frameworks [14,6,26,34], there are also privacy
considerations in the use of such contact tracing apps. Individual citizens may
not wish to be traced, particularly when they are participating in sensitive
events (e.g., political demonstrations). As recent as January 2021, the Singa-
pore Government reportedly contact tracing data will be made available to the
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law enforcement agency to facilitate the investigation of serious criminal cases6.
This clearly has privacy implications. This reinforces the importance of having a
privacy-preserving contact tracing system. However, designing secure, privacy-
preserving, and scalable contact tracing apps remains a challenge, and this is
the challenge we seek to address in this proposal.

Our Contributions. In this paper, we will design a privacy-preserving COVID-
19 contact tracing protocol for Bluetooth-enabled smartphone users. The proto-
col allows users to record their close contacts in a privacy-preserving yet authenti-
cated manner (i.e., prevents the sending of fabricated identification information).
The ‘closeness’ can be customized based on existing medical advice, say within 6
feet. The zero-knowledge proof allows the user to preserve his/her privacy, in the
sense that users can hide their prior locations and contact histories, for example
from unauthorized entities. For example, when a user has been determined to be
infected, (s)he proves using the zero-knowledge protocol to the medical doctor
all his/her previous close contacts. Without gaining direct access to the contacts,
information required to notify the related individuals is published, without the
public learning the identity of the patient. Hence, the medical doctor does not
learn the patient’s contacts, including the location, name or any identification
information. However, the individual been notified can be assured that (s)he is
a close contact of an infected person. The probability of this particularly indi-
vidual of correctly guessing the infected person among a list of close contacts
is not better than a wild guess. The zero-knowledge protocol also ensures that
no one is able to send any fabricated message, in the sense that if a user is not
determined by a medical doctor to be infected, (s)he will not be able to convince
others using the app. In addition, a confirmed infected patient will not be capa-
ble of convincing anyone who is not a close contact to be a close contact. As the
notification does not include any link to any website or contain any attachment,
this reduces the risk of malware/ransomware infection.

The layout of this paper is as follows. We present the system and threat
models in Section 2. The cryptographic primitives that underpin our proposed
system are presented in Section 3. We then present our proposed system in
Section 4, and describe the implementation and evaluation findings in Sections 5
and 6 respectively. The last two sections present our discussion and conclusion.
The recent literature will be reviewed in Appendix A. Remark: We also want to
remind readers that the references on preprints posted on arXiv or IACR eprint
are not peer-reviewed by arXiv or IACR; they should not be relied upon without
context to guide clinical practice or health-related behavior and should not be
reported in news media as established information without consulting multiple
experts in the field.

6 https://www.technologyreview.com/2021/01/05/1015734/

singapore-contact-tracing-police-data-covid/, last accessed January 13,
2021
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2 System and Threat Models

2.1 System Model

Our system comprises the following entities:

– Bulletin board BB: Once information has been posted on the BB, it cannot
be erased. The BB can be instantiated by using a blockchain system.

– User: User refers to an individual who has our contact tracing app installed
on their smartphone. In the rest of this paper, we will use Alice and Bob to
denote two individual users who have come into close contact.

– Medical doctor D: Individuals can be only be confirmed to be positive by a
practising D, who is also affiliated with a medical institution (e.g., medical
practice or hospital).

– Government GV: GV is responsible for the registration of users and their app.
This is not an unreasonable requirement, since users need to provide proof
of identification when signing up for their smartphones. GV’s public/private
key pair is (PKGV ,SKGV), and clearly PKGV is known to the public.

In our system model, we assume that no one is able to modify the app,
and the owner can read all data generated, stored and communicated via the
app installed on an Internet-connected and Bluetooth-enabled smartphone (e.g.,
WiFi). We also assume that users will not reveal their infection status publicly
(e.g., social media posts) or share their own secret keys.

2.2 Threat Model

The adversary is assumed to be honest-but-curious, in the sense that they follow
the defined algorithms but are sufficiently curious to learn more information.
Also in our threat model, we only include cryptographic attack. In other words,
network attacks (e.g. distributed denial of service), software attacks (e.g. modify-
ing the app and uploading the modified app to a third-party app store), physical
attacks (e.g. stealing the smartphone), etc, are out of scope. Under these condi-
tions, we define the following threat model to our system (see also Figure 1):

1. [Tracebility Completeness] All close contacts of a confirmed infected in-
dividual (hereafter referred to as patient) will be notified of the contact
date(s). All honest-but-curious cryptographic adversaries should not be able
to prevent any close contact of the patient from being notified. In Figure 1,
Bob and John are the close contacts of Alice, and both Bob and John should
be notified as a close contact of a patient (without learning that the patient
is Alice).

2. [False Positive (case 1)] Anyone who is not a patient cannot impersonate
as one and send out messages to their close contacts (e.g., ask them to self-
quarantine). In Figure 1, Andy cannot send any “close contact message” to
Ben and Bob. Peter also cannot send any “close contact message” to Bob.
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Fig. 1. Threat Model

3. [False Positive (case 2)] Patients can only send messages to their close
contacts (e.g. ask them to self-isolate). For example, as shown in Figure 1,
Alice is not able to send any “close contact message” to Ben, who is not her
close contact. Here, we do not consider the medical doctor as an adversary
in both cases (2) and (3).

4. [Patient Privacy] Other than the medical doctor who certified that the
user is infected, no one else should not be able to find out the identity of the
patient (in the sense not better than a wild guess). For example, as shown
in Figure 1, Ben does not know any information about the patient. Bob, a
close contact of Alice, who had met both Andy and Peter, can correctly guess
Alice as the patient with a probability of 1/3. John, another close contact
of Alice, will know Alice is the patient.

5. [Contact Privacy] No one, except the owner of the app, should be able to
find out the identity or location of the close contact of a patient, as shown in
Figure 1. An cryptographic adversary may attempt to (unsuccessfully) locate
information about the close contact of a patient.

3 Cryptographic Primitives

3.1 Signature Scheme

A signature scheme consists of three algorithms, which are defined as follow:

– (SK,PK) ← KeyGen(λ) as a PPT algorithm that on input a security pa-
rameter λ ∈ N outputs a secret/public key pair (SK,PK).
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– σ ← Sign(SK,M) that on input a secret key SK and a message M produces
a signature σ.

– accept/reject← Verify(PK, σ,M) that on input a public key PK, a message
M and a signature σ returns accept or reject. An accept output implies that
the message-signature pair is valid.

A secure signature scheme should provide existential unforgeability against adap-
tive chosen-message attacks, based on the standard definition of [23]. Existential
unforgeability under a weak chosen message attack (a.k.a. weakly unforgeable) is
a weaker definition [11], where the adversary submits all signature queries prior
to seeing the public key.

3.2 Group Signature Scheme

A group signature allows a user to sign on behalf of the group, while the verifier
only knows that the signer is one of the users of this group without knowing the
signer’s identity. In this setting, there is a group manager tasked with setting up
of the group (e.g., publication of the group public key) and issuing of individual
user’s secret key. The group manager may also have the ability to open the
signature, that is, to find out who the actual signer is.

There are several algorithms in a group signature scheme. For simplicity, we
only state the algorithms related to our system here:

– σ ← GSign(USK,GPK,M) that on input a user secret key USK (issued
by the group manager), group public key GPK (generated by the group
manager) and a message M produces a signature σ.

– accept/reject← GVerify(GPK, σ,M) that on input a group public key GPK,
a message M and a signature σ, returns accept or reject. An accept output
implies that the message-signature pair is valid.

We follow the standard security definition of group signature in [9], including
anonymity and traceability which also implies unforgeability.

3.3 Mathematical Assumptions

Bilinear Pairings. Let G1, G2 and GT be cyclic groups of prime order q. u is a
generator of G1 and g denotes a generator of G2. A function e : G1 ×G2 → GT
is a bilinear map if the following properties hold:

– Bilinearity: e(Ax, By) = e(A,B)xy for all A ∈ G1, B ∈ G2 and x, y ∈ Zq;
– Non-degeneracy: e(u, g) 6= 1, where 1 is the identity of GT ;
– Efficient computability: there exists an algorithm that can efficiently com-

pute e(A,B) for all A ∈ G1 and B ∈ G2.

Assumption 1 underpins our contact privacy (see Section 2.2), which is similar
to the truncated decision (q′ + 2)-ABDHE problem [22].

Definition 1 (Assumption 1). Suppose that ũ ∈R G1, g ∈R G2, b ∈R Zq,
Z0 ∈R GT and Z1 = e(ũ, g)b

q′+2

. When given (ũ, ũb, . . ., ũb
q′

) ∈ G1 and g, gb ∈
G2, no PPT adversary can distinguish Z0 and Z1 with non-negligible probability.
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3.4 Zero-Knowledge Proof

A zero-knowledge proof is a two-party protocol that allows one party to con-
vince the other party that the topic presented is true without revealing anything
else. In this paper, we are interested in zero-knowledge proof for NP language.
Specifically, let R be a polynomial time decidable binary relation and LR be
the NP language defined by R, i.e., LR = {x|∃w s.t.(x,w) ∈ R}. We say w is
a witness for statement x. The zero-knowledge proof protocol we considered in
this paper is known as Σ-Protocol, which is a 3-move protocol between prover
P and verifier V such that the second message (from V to P ) is just the random
coins of V . A Σ-protocol between P and V satisfies the following properties.

– Completeness: If x ∈ LR, prover P with auxiliary input w convinces V with
overwhelming probability.

– Special Soundness: Given two transcripts (t, c, z) and (t, c′, z′) for statement
x, there exists an algorithm that outputs w s.t. (x,w) ∈ R.

– Honest Verifier Zero-Knowledge (HVZK): Given x and c, there exists an
algorithm that outputs (t, z) such that (t, c, z) is indistinguishable to the
real transcript between P with auxiliary input w and V .

Σ-Protocol can be converted to full zero-knowledge in the common refer-
ence string model using standard techniques. Also, it can be converted to non-
interactive zero-knowledge argument in the random oracle model by replacing
the random coins of the verifier with the output of a cryptographic hash function
on the first message of the prover.

4 Our Proposed System

There are four phases in our system. In the Registration Phase, each user
chooses his/her secret key and public key, and uploads the public key to the
Government website for registration. This allows the Government to link the
public key with the user’s name or identity. This is to provide accountabil-
ity and prevent double or multiple registration of the same user. This process
will repeat each day with a new key pair registered. A medical doctor gets an
additional individual secret key issued by his/her affiliated organization (e.g.,
hospital), which is used to generate a group signature on behalf of the affiliated
organization.

In the Meeting Phase, each user’s app will use Bluetooth to broadcast a
package to other users’ smartphones (and the apps) at a regular time interval
(e.g., a minute). Upon receiving a threshold number of the same package within
a certain timeframe (e.g., 15 minutes), the app will confirm the relevant user as
a close contact. After a mutual validation (of package) process, the two apps will
jointly generate two different credentials to be stored on each smartphone. The
credential will be used later to prove to the medical doctor (in zero-knowledge)
that the other person is a close contact, if one party is medically confirmed to
be infected.
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In the Medical Treatment Phase, the patient executes the zero-knowledge
proof protocol with the medical doctor, to prove (s)he has close contact with
other individuals. However, the doctor is not able to learn the identities, public
keys, or location of the close contact(s). The doctor signs the zero-knowledge
proof using the group signature user secret key (on behalf of his/her affiliated
organization), and posts the signature together with the proof to the bulletin
board for public awareness (e.g., statistics about the number of infected individ-
uals).

In the Tracing Phase, each user checks whether the new entry in the bulletin
board is related to them, based on computations using their own secret key. This
can be performed either manually (e.g., pull) or automatically (i.e., having the
checks pushed to apps).

Next, we will present the detailed description of each phases.

4.1 The Phases

Setup Phase: In this phase, GV first generates the parameters and the users
register with GV. Users also need to update the key with GV daily, unless they
are medically confirmed as infected. The detailed steps are outlined below:

1. (Parameter Generation) The input 1λ ∈ N is a security parameter, and
let G1, G2 and GT be cyclic groups of prime order q such that q is a λ-bit
prime. Also, let e : G1 ×G2 → GT be a bilinear map. GV selects generators
u, u1, u2 ∈ G1 and g, g1, g2 ∈ G2. Let H : {0, 1}∗ → Zq be a cryptographic
hash function. GV also selects its secret and public key pair (SKG, PKG)←
KeyGen(λ). GV publishes public parameters (λ,H, PKG, u, u1, u2, g, g1, g2).
In practice, these parameters can also be embedded into the user’s app which
can be downloaded from the official app stores.

2. (User Registration) On each day, non-infected user (e.g., Alice) chooses
a secret key SKA as a ∈ Zq and computes the public key PKA as A = ga.
The user, say Alice, registers with GV by uploading her personal information
and PKA

7. GV also randomly generates an identifier IDA ∈ Zq for Alice.
GV generates a signature σA ← Sign(SKG, {‘‘-VE’’, PKA, IDA, DATE}) and
sends σA and IDA back to Alice, where DATE is the current date. Alice checks
the signature by running Verify(PKG, σA, {‘‘-VE’’, PKA, IDA, DATE}). If
this is valid, Alice stores σA and IDA in her app. Otherwise, she aborts.
NOTE: GV will give a signature with {‘‘+VE’’, PKA, IDA, DATE} (instead
of the typical ‘‘-VE’’ message) to confirmed infected user. This is to distin-
guish a confirmed case from others. The infected user’s public key will also
not be updated.

3. (Additional step taken by the medical doctor) Each medical doctor
D gets an additional group signature user secret key GSK from the hospital
manager (who acts as the group manager of the group signature) in the app.
Each hospital also publishes the group signature group public key GPK.

7 GV may record the related identification information (e.g., name, phone, email) of
the user if this is a first-time registration.
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Meeting Phase: In this phase, each non-confirmed user (e.g. Alice) will use
bluetooth to broadcast the hash hA = H(‘‘-VE’’, IDA, PKA, σA) to the sur-
rounding people periodically (e.g. every minute). For any confirmed user, a
‘‘+VE’’ package (e.g. without hashing (‘‘+VE’’, IDP , PKP , σP ) denoting the
owner of the app who has been confirmed by the medical doctor as positive) will
be broadcasted instead. If it has been received, other users should report to GV
immediately after verifying the signature σP . Otherwise once another user (e.g.
Bob) has received a number of the same hash broadcast within a certain time
(e.g. receive 15 packages in 15 minutes), they (Alice and Bob) are considered as
close contact. In below, we describe a protocol executed between Alice and Bob
so that Alice will record Bob’s information as her close contact. Bob will also
Alice’s information as his close contact at the end of the protocol.

1. (Package Validation) After receiving (a threshold number of) Alice’s hash
hA, Bob(‘s smartphone) pairs with Alice(‘s smartphone) and Bob needs
to validate Alice’s package. Bob first asks Alice to send him the tuples
(IDA, PKA, σA). Then, Bob computes h′A = H(‘‘-VE’’, IDA, PKA, σA) and
checks if hA = h′A. Bob aborts if it is not equal; otherwise, he continues and
randomly generates a challenge number rB ∈R Z and sends rB to Alice.
Alice uses her SKA (a ∈ Zq) to generate a Schnorr signature on the message
rB , as follow:

(a) Randomly chooses k ∈R Zq.
(b) Computes t = H(gk, rB).
(c) Computes s = k − at mod q.
(d) Outputs the signature σ′A = (s, t) for message rB .

Alice sends σ′A to Bob for verification. Bob first verifies PKA (A ∈ G2) by
running

Verify(PKG, σA, {PKA, IDA, DATE}). (1)

If it is valid, Bob verifies Alice’s Schnorr’s signature σ′A = (s, t) by checking
if

t = H(gsAt, rB)

If it is equal, Bob stores Alice’s package (IDA, A, σA) in his app. Otherwise,
aborts the protocol.

Similarly for Alice, Bob’s package (IDB , B, σB) will be stored in Alice’s app
if the verification is successful.

2. (Identity Mutual Commitment) Alice and Bob need to store each other’s
identification information and subsequently generate a zero-knowledge proof
to D as a close contact to a patient (if either of them is confirmed). In order
to ensure the correct generation of the proof, we need to have an additional
mutual commitment in this phase.

Bob uses his secret key b ∈ Zq and Alice’s identifier IDA to generate

σ′′B = u
1

H(IDA)+b
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and sends σ′′B to Alice. Alice checks if

e(σ′′B , g
H(IDA)B) = e(u, g)

If it is equal, Alice stores (B, IDB , σ
′′
B , DATE) in her app.

Alice uses her secret key a ∈ Zq and Bob’s identifier IDA ∈ Zq to generate

σ′′A = u
1

H(IDB)+a

and sends σ′′A to Bob. Bob checks if

e(σ′′A, g
H(IDB)A) = e(u, g)

If it is equal, Bob stores (A, IDA, σ
′′
A, DATE) in his app.

The meeting phase is illustrated in Figure 2.

Fig. 2. Meeting Phase

Medical Treatment Phase: In this phase, we assume Alice is determined to
be infected by the medical doctor D. Alice also informs D of her close contacts
during the dates required, without revealing their identifiers or public keys. In-
stead, she (Alice’s app) will generate a pseudo-public key of each of her close
contacts (e.g., Bob) together with a zero-knowledge proof from the mutual com-
mitment generated in the Meeting Phase – see Step (2) to prove that she has
contacted with the people. D then publishes the pseudo-public key to BB and
the public can check whether this pseudo-public key is associated with them.
D and Alice execute the following protocol:

1. (Authentication of Alice) D authenticates Alice by executing Meeting
Phase Step (1) (Package Validation) and obtains her identifier IDA.
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2. (Contact Retrieval) Alice retrieves her contacts that she came into contact
with during the incubation period, say DATEi. Suppose Alice was in contact
with Bob on May 13, then Alice retrieves (IDB , B, σ

′′
B , 13th May) from her

app.
3. (Pseudo-Public Key) Alice generates the pseudo-public key for Bob, by

first randomly choosing x ∈R Zq and computing:

h = e(u, g)x, B̂ = e(u,B)x = e(u, gb)x = hb (2)

Then, (h, B̂) is sent to D.

4. (Zero-Knowledge Proof) Alice needs to prove to D that (h, B̂) is correctly
formed. Correct means Alice has received a valid signature σ′′B under the

public key B = gb and B̂ = hb, h = e(u, g)x. Note that D also knows Alice’s
identifier IDA. Conceptually, Alice needs to prove in zero-knowledge that

PK{(σ′′B , B, x) :

h = e(u, g)x, B̂ = e(u,B)x, e(σ′′B , g
H(IDA)B) = e(u, g)}. (3)

In order to instantiate this proof, Alice first randomly generates s1, s2, t ∈R
Zq and computes

A1 = gs11 g
s2
2 , A2 = Bgs21 , C = σ′′Bu

t
1

Alice sends A1, A2, C to D and proves that

PK{(s1, s2, t, α1, α2, β1, β2, x) :

A1 = gs11 g
s2
2 ∧Ax1 = gα1

1 gα2
2 ∧

At1 = gβ1

1 gβ2

2 ∧ h = e(u, g)x ∧ B̂ = e(u,Ax2g
−α2
1 )∧

e(Cu−t1 , gH(IDA)A2g
−s2
1 ) = e(u, g)} (4)

This can be turned into a non-interactive zero-knowledge proof, using the
following algorithm:

[Proof Generation]
(a) Randomly chooses r1, r2, r3, r4, r5, r6, r7, r8 ∈R Zq.
(b) Computes

T1 = gr11 g
r2
2 , T2 = A−r61 gr41 g

r5
2 , T3 = A−r31 gr71 g

r8
2 ,

T4 = e(u, g)r6 , T5 = e(u,Ar62 g
−r5
1 ),

T6 = e(ur31 , g
H(IDA)A2)e(Cr2u−r81 , g1)

(c) Computes the hash

c = H(T1, T2, T3, T4, T5, T6, B̂, h,A1, A2, C, DATE)

where DATE is the current date.
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(d) Computes

z1 = r1 − cs1 mod q

z2 = r2 − cs2 mod q

z3 = r3 − ct mod q

z4 = r4 − cs1x mod q

z5 = r5 − cs2x mod q

z6 = r6 − cx mod q

z7 = r7 − cs1t mod q

z8 = r8 − cs2t mod q

(e) Outputs the proof π : (c, z1, z2, z3, z4, z5, z6, z7, z8).

[Proof Verification] Computes

T ′1 = Ac1g
z1
1 g

z2
2

T ′2 = A−z61 gz41 g
z5
2

T ′3 = A−z31 gz71 g
z8
2

T ′4 = hce(u, g)z6

T ′5 = B̂ce(u,Az62 g
−z5
1 )

T ′6 =

(
e(C, gH(IDA)A2)

e(u, g)

)c
e(uz31 , g

H(IDA)A2)e(Cz2u−z81 , g1)

Accepts the proof if, and only if,

c = H(T ′1, T
′
2, T

′
3, T

′
4, T

′
5, T

′
6, B̂, h,A1, A2, C, DATE)

5. (Publish Pseudo-Public Key) If the proof is correct, D generates a

group signature σD ← GSign(USK,GPK,M) on message M = (h, B̂, DATE)

and publishes (σD, h, B̂, DATE) into BB. D also informs GV that Alice (with
identifier IDA and public key A) has been confirmed as positive. GV will
update its entry on Alice: {‘‘+VE’’, PKA, IDA, DATE} and sign this entry
every date (update DATE only) until Alice has deemed to be fully recovered
(and no longer infectious).

Tracing Phase: At the end of each day (e.g., 23:59:59 hrs), each non-infected
user, say Bob, executes the following step:

Bob scans through BB for all new entries. For each entry

(σD, h, B̂, DATE)

Bob first retrieves his secret key SKB (b ∈ Zq) corresponding to that DATE and
checks if:

B̂ = hb. (5)

If yes, Bob then verifies the signature by running GVerify(σD,GPK, {h, B̂, DATE}).
If it is valid, he has been in close contact with a confirmed patient on DATE.
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4.2 Security Discussion

We first state our lemmas in the context of the threat model outlined in Section
2.2, while the detailed analysis of each lemma will be presented in Appendix B.

1. [Traceability Completeness]

Lemma 1. Our system provides Traceability Completeness if our protocol
is correct.

2. [False Positive (case 1)]

Lemma 2. Our system does not have Case 1 False Positive error if the
underlying group signature scheme (Section 3.2) is unforgeable.

3. [False Positive (case 2)]

Lemma 3. Our system does not have Case 2 False Positive error if the zero-
knowledge proof in Equation (3) is sound and the Boneh-Boyen signature
[11] is weakly unforgeable.

4. [Patient Privacy]

Lemma 4. Our system provides Patient Privacy from the public uncondi-
tionally, and from the patient’s close contacts if the underlying signature
scheme (Section 3.1) is unforgeable.

5. [Contact Privacy]

Lemma 5. Our system provides Patient Privacy if the zero-knowledge proof
in Equation (3) and its instantiations are zero-knowledge and Assumption 1
(on page 6) holds in the random oracle model.

5 Implementation

We have launched the contact tracing app for both Android and iOS platforms.
We tested the Android version on Android 8.0 and 10.0, while the iOS version on
iOS 13.7. Figure 3 illustrates its architecture. The contact tracing app consists of
four main modules, namely Bluetooth service, device discovery service, Crypto
manager, and utility module. When the app is installed for the first time, the
Crypto manager will be initialised with a set of operations such as key generation,
downloading public keys or parameters from other parties, etc. Then, the app
will start two background services which will interact with other components:

– Crypto manager module encapsulates most of aforementioned operations of
Crypto algorithms, such as signing, verification, and etc. The module also
helps the user generate key pairs((SKA,PKA)) on a daily basis. Then, it
will upload the user’s personal information and PKA to GV for finishing the
registration, and will wait for the identifier IDA and the signature σA from
GV, which will be stored in the storage module along with SKA, PKA and
other user information.
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Fig. 3. A diagram of the workflow and architecture of our implementation.

– The device discovering service is a background service listening to nearby
Bluetooth advertising packets and filtering out irrelevant packets. When the
number of packets received from other devices running our contact tracing
app exceeds a predefined threshold, which is set to 15 packets within 15
minutes from the same sender by default, it will pair with that device for
further communication.

– The Bluetooth service is another background service listening to nearby
Bluetooth pair and connection requests. It also advertises the user’s own
hash of message periodically to nearby devices.

– The Utility component handles regular tasks such as user interface activities,
Network IO, to support other components of this app. For example, user may
need to download information from Bulletin Board, which is running on the
servers maintained by governments or hospitals.

6 Evaluation

We have conducted experiments to carefully evaluate the performance of our
contact tracing system. We install the app in a Google Pixel 4 and a Google
Pixel 2 smartphones for emulating the interactions of two people, and execute
the tool for doctor in a PC (Macbook Pro, Core i7, 16GB RAM). As to run
the test for the iOS version, we use an iPhone 11 and an iPhone SE2 as test
machines.
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To characterize the latency required by our solution, we measure the three
phases in the contract tracing app, including meeting, medical treatment and
tracing phase. We execute the process including advertising data, receiving and
processing packets, for 100 times and compute the latency of each phase. In the
Android tests, the mean delay and the standard deviation for them are 94ms(49),
144ms(19), 5ms(0.3), respectively, When it comes to the iOS tests, the latency
of these three phases is 136ms(48), 187ms(11), 5ms(0.2).

Moreover, we evaluate the time required by the tool for a doctor to finish
the verification. By running the tool to conduct the verification for 100 times,
we observe the mean elapsed time is 515ms and standard deviation is 224.

Note that the mean time for tracing phase includes 1 checking on equation (5)
plus one verification of a group signature. In reality, there should be a very large
number of checking on equation (5) (e.g., 10000) which represents the number
of new contacts made by the overall number of new patients. Therefore we also
separately evaluate the time of executing this equation. The mean time is only
72ms. The running of the verification of a group signature should be only a few
(e.g., 2 or 3). We can argue that even if there are 100 new patients confirmed
each day, and each patient has around 20 to 30 close contacts (and overall a
few hundred contacts over the past two weeks), the running time for the tracing
phase is still acceptable, and can be completed within a few hours in this extreme
case. We have also addressed a practical consideration for this case in the next
section.

7 Discussion

In addition to the findings presented in the preceding section, we will discuss a
few practical issues for privacy-preserving contact tracing.

7.1 Cluster Identification and Formation

Cluster formation is essential to the analysis of how diseases spread in the com-
munity. For example, the identification of clusters can inform government mitiga-
tion strategy as observed in the responses in Singapore and Hong Kong. Specif-
ically, once clusters in Singapore (e.g., foreign workers’ dormitories) were iden-
tified, individuals in these clusters were quarantined. Similarly, in Hong Kong,
the identification of a cluster (in the same residential building) facilitated the
scientists in narrowing the specific cause of the spread (in this context, leaking
toilet pipes).

In our privacy-preserving contact tracing app, the meeting location for users
is hidden from the Government and the medical doctor. We propose that cluster
identification and formation should be performed after the contact tracing phase.
Suppose that Alice is infected and she has contact with Bob and John. If John
is not infected, the meeting location of Alice and John should be kept private. If
Bob is infected, then the Government can perform normal cluster identification
and formation between Alice and Bob (e.g., to determine if they worked in the
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same organization, visited the same venues, or lived in the same building), based
on information provided by the patients or their devices.

7.2 Privacy Leakage

In our proposal, we also consider privacy leakage that stems from the medical
doctor. For example, if the medical doctor is a pediatrician, then it is likely
that the patient is a child. Therefore, we use the anonymity property of group
signature to ensure that such information is not leaked through the doctor’s
signature on the bulletin board.

On the other hand, it is also possible for the Government to host COVID-
19 information website with an appropriate access control policy, rather than
relying on the bulletin board. Only authorized medical doctors can post on this
website and the identity of the medical doctor is hidden. Then, we can replace
the group signature and the bulletin board with a standard signature (from
the doctor) and the COVID-19 information website. All users should trust the
validity of the information posted on this website.

7.3 Improving System Performance

The number of computation required in the tracing phase is directly proportional
to the number of newly confirmed patients each day. In other to improve the
system performance in a country with a large number of new confirmed cases
each day, we suggest that our protocol can be parameterized to the state, city, or
county level. This can be easily achieved by adjusting the group signature so that
the state, city, or county forms a group (instead of a hospital) and users from
the state, city, or county only needs to check those entries signed by the medical
doctors in the state, city, or county. In this case, the checks can be significantly
simplified.

8 Conclusion

In this paper, we proposed a privacy-preserving COVID-19 contact tracing app.
Using zero knowledge proof, our apps allows the notification of close contacts,
without revealing the location and identification of these close contacts (to gov-
ernments). We formally proved the security of our approach, and the findings
from our evaluation of the Android and iOS prototype demonstrated the utility
of the app in a real-world setting. Future research includes extending the eval-
uation to a broader population, such as the students and staff members of the
authors’ institutions.
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A Related Literature

Privacy-preserving service matching is relatively well-studied. For example, a
privacy-preserving profile-matching (PPPM) algorithm based on proximity-based
mobile social networking (PMSN) was proposed by Zhang et al. [57], which en-
ables users to match their profiles without revealing any information about the
profiles. FindU is a PPPM [30], which only shares minimal information about
the private attributes of the participating users. Another line of related research
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is privacy-preserving location sharing in mobile social networks [41,56,31,35,47].
However, most solutions in this area assume that the social network platforms
know the location of each user and they provide a privacy-preserving searching
function based on location. Other privacy-preserving location-based services use
k-anonymity, dummy locations, fully homomorphic encrpytion (FHE) or private
information retrieval (PIR) to protect location or query privacy. These schemes
are either not secure (e.g., flaws revealed in [37,33]) or not very practical (e.g.,
due to the use of FHE).

An alternative approach to PPPM is the TraceTogether [36] app introduced
by Singapore’s Ministry of Health, which uses Bluetooth and Wifi sensing based
on the idea of EPIC [1]. EPIC allows a set of observed devices to be compared
to a device that belongs to an infected person. Researchers such as Asghar et al.
and Tang [48] have raised a number of privacy implications in the TraceTogether
app. The Australian Government launched the COVIDSafe app [7] that stores
the contact’s identification information on the mobile device in an encrypted for-
mat. When an individual is diagnosed with COVID-19, the app users can permit
the encrypted contact information on the app to be shared with the Govern-
ment, who will then use the contacts to facilitate manual contact tracing. Israeli
Government’s contact tracing app, HaMagen [28], is similar to that of COVID-
Safe [7]. Specifically, user data is stored on the device, which can subsequently
be shared with the relevant authorities. Both approaches require users to trust
the relevant authorities with their user data. The South Korean Government
uses mobile phone location data to track the movements of COVID-19 positive
individuals [49]. As this approach uses GPS location data, and telecommunica-
tion providers in the country require all customers to provide their legal names
and national government registration numbers, users can be easily tracked. Re-
peated offenders can be mandated to wear tracking wristbands. Hong Kong uses
a similar technology to enforce quarantine, where users are required to wear a
wristband with a unique QR code that pairs with their smartphone. Users can
download the StayHomeSafe app [50], which uses geofencing technology to track
their movements.

DP-3T [51] uses a cryptographic hash function, a pseudorandom number gen-
erator and a pseudorandom function, and as previously discussed it was found to
be vulnerable to relay and replay attacks [52,40]. Reichert, Brack and Scheuer-
mann [43] used multi-party computation (MPC) and oblivious random access
memory (ORAM) in their proposed contact tracing system. Their system relies
on a centralized party (e.g., some health authority). CAUDHT (Contact tracing
Application Using a Distributed Hash Table) [12] is a decentralized peer-to-peer
generalization of [43]. The authors of [44] investigated the existing Bluetooth-
based approaches and classified them systematically regarding security and pri-
vacy criteria. Specifically, a decentralized messaging system for infected persons
and their contacts is constructed based on a distributed hash table. Blind signa-
tures are also employed to ensure the authenticity of the messages. The major
drawback of this approach is the use of computationally expensive garbled cir-
cuits for MPC in the tracing phase, which limits its practicality.
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Trace-Σ [10] uses an accumulator scheme to keep track of the credentials of
users built on top of a cenetralized graph, and prove accumulated credentials in
Zero-Knowledge. Both Catalic [19] and [18] uses private set intersection (PSI)
to develop privacy-preserving contact tracing schemes. In particular, Catalic
(ContAct TrAcing for LIghtweight Clients) minimizes bandwidth cost and com-
putation workload on client devices by shifting most of it to untrusted servers. In
contrast [18] proposes a two-server decentralized model and employs symmetric
primitives only to enable fast computation and plausible post-quantum security
assurances.

Ovid [42] is a message-based contact tracing that informs users of their risk.
It uses a blind-signature to verify infections with an anonymous postbox service.
Finally, ContactChaser [54], employs a group signature and requires a health
authority to issue group private keys to users for only once, without frequently
updating keys with the authority. It helps the authority to find out the close
contacts of infected people, but just leaks the minimum information necessary
for contact tracing to the health authority.

Covidbloc [38] and [39] are both decentalized solutions to the privacy-
preserving contact tracing. While the former implements an exposure database
on Hyperledger Fabric Blockchain Network, the latter uses blockchain for record-
ing every transaction in a secure manner that involves communications be-
tween users who are equipped with cloud-enabled wireless body area networks
(WBAN).

[21] generates per-user-per-contact hashes for two parties in close contact.
The hashes of infected users are sent to a matching service provider. All users
can ask whether his stored hashes match any hash from all infected users.

The author of [24] used a non-deterministic encoding function to hide the
GPS location of users in a way that there is no false negative notification, while
having a negligible number of false positive notification.

PHyCT [29] proposed a privacy-preserving method to recover the identity of
close contact if he is a non-compliant user. PHyCT creates a session key when
generating a token. The session key is shared with a close contact and a central
server. In addition, PHyCT also sends the user ID encrypted with the session key
to the central server. Hence, the identity of close contact can be jointly revealed
by the infected user and the centrl server.

[2] uses the information collected from mobile operator to determine close
contact. In order to preserve privacy across different operators, they use secret
sharing and Paillier encryption to share information.

The author of [53] addressed the delimma of cenetralized vs decentralized. In
the above existing protocols, one can trigger false positives on a massive scale
by launching an “inverse-Sybil” attack [5]. In this framework, a large number of
devices pretend to be the same user, such that later, just a single person needs
to be diagnosed (and allowed to upload) to trigger an alert for all users that were
in proximity to any of this large group of devices. They then propose schemes
prone to such attacks. A summary comparison of the state-of-the-art schemes is
provided in Table 1.
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Table 1. A privacy comparison of contact tracing apps.

Name Technology Archit. Privacy Level: Infected
user / close contact / public

COVIDSafe [7] &
TraceTogether [36] & Bluetooth Centralized 2 / 4 / 4

HaMagen [28] &
COVID Disease-19 [49] GPS Decentralized 1 / 1 / 5

COVID Watch [13] &
PACT [45] Bluetooth Decentralized 2 / 2 / 3

DP3-T [51] Bluetooth Decentralized 2 / 2 / 3

Health Code [32] QR Code Centralized 4 / 4 / 4

ContactChaser [54] Bluetooth Centralised 3 / 3 / 4

Ovid [42] Bluetooth Decentralized 2 / 2 / 2

Trace-Σ [10] Bluetooth Centralized 3 / 3 / 3

[24] GPS Centralized 4 / 1 / 3

PHyCT [29] Bluetooth Centralized 4 / 3 / 3

[21] Bluetooth Centralized 3 / 3 / 3

[2] Operator Centralized 4 / 3 / 3

Ours Bluetooth Centralized 4 / 1 / 2

Privacy level 1: No data is shared, level 2: Token shared with nearby users, level
3: Token shared with server, level 4: personal ID is shared with server, and level 5:
personal ID is published to public

B Security Analysis

We now discuss the security of our system, in the context of the threat model
outlined in Section 2.2.

1. [Traceability Completeness]

Lemma 6. Our system provides Traceability Completeness if our protocol
is correct.

As discussed earlier, We only consider honest-but-curious cryptographic ad-
versary. Therefore, we consider Alice (the infected individual – patient), the
medical doctor D, Government GV, and the bulletin board BB are all honest-
but-curious. That is, they all follow the defined algorithms to execute the
computation. The remaining thing that can prevent Bob (the close contact
of Alice) from being informed is the correctness of the post (by D) on BB.

The correctness of the tuple (B̂, h) posted on BB, in which Bob will use it to
identify himself as the close contact, can be easily observed from Equation
(2).

2. [False Positive (case 1)]

Lemma 7. Our system does not have Case 1 False Positive error if the
underlying group signature scheme (Section 3.2) is unforgeable.
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In this case the adversary is a non-infected user (e.g., Andy in Figure 1) who
seeks to impersonate an infected individual in order to convince his close
contacts (e.g., Ben in Figure 1) that they are close contacts of an infected
individual (e.g., to cause chaos). A user believes (s)he is a close contact of

an infected individual only if the user downloads entries (σD, h, B̂, DATE)
from BB and checks the following: (1) σD is a valid group signature; and

(2) B̂ = hb. The adversary who was a close contact of other user(s) can

compute (h, B̂) as in Equation (2) (as the adversary knows the public key
of the close contact). However, if the adversary is successful, the adversary
should be able to forge the group signature σD that contradicts with the
unforgeability of the underlying group signature scheme.

3. [False Positive (case 2)]

Lemma 8. Our system does not have Case 2 False Positive error if the zero-
knowledge proof in Equation (3) is sound and the Boneh-Boyen signature
[11] is weakly unforgeable.

In this case, the adversary (Alice) is an infected individual who wants to
convince the medical doctor that a certain user, say Ben, is a close contact
(when this is not the case). Let B′ be the public key of Ben. Alice needs to
produce a valid proof for Equation (3). If the proof is sound, there exists an
extractor (H is considered a random oracle) to extract witnesses (σ′′B , B, x)
such that σ′′B is a Boneh-Boyen signature on IDA under public key B such

that B̂ = e(u,B)x and h = e(u, g)x for some x. For Ben to believe he has
been in close contact, B̂ has to satisfy the relation that DLg(B

′) = DLh(B̂).
By the soundness of the proof, this requires B′ = B. If Alice has never been
in close contact with Ben, it means Alice has forged a Boneh-Boyen signature
from Ben on IDA. This is impossible if we assume Boneh-Boyen signature is
unforgeable against weak chosen message attacks8.

Now, we need to demonstrate that soundness for the proof of Equation (4)
implies that of Equation (3). The argument goes as follows. If the proof for
Equation (4) is sound, one could extract witness (s1, s2, t, α1, α2, β1, β2, x).
Further, since A1 = gs11 g

s2
2 and Ax1 = gα1

1 gα2
2 , we have α2 = s2x. We also

have

e(Cu−t1 , gH(IDA)A2g
−s2
1 ) = e(u, g).

In other words, Cu−t1 is a valid Boneh-Boyen signature on IDA under public

key (A2g
−s2
1 ). By B̂ = e(u,Ax2g

−α2
1 ), we have B̂ = e(u,A2g

−s2
1 )x. Further-

more, we have h = e(u, g)x. One could output witness (Cu−t1 , A2g
−s2
1 , x) as

the witness of the proof for Equation (3).

4. [Patient Privacy]

8 Note that we assume IDA is chosen by the government or is the hash of some seed
value chosen by Alice. This assumption restricts the message the attacker could
obtain and allows us to reduce to the weak chosen message security of the Boneh-
Boyen signature.
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Lemma 9. Our system provides Patient Privacy from the public uncondi-
tionally, and from the patient’s close contacts if the underlying signature
scheme (Section 3.1) is unforgeable.

We consider two types of adversaries here. The first type is the general
public, who also has the knowledge of what has been posted in BB. The
second type is the close contact of an infected individual, who wants to
guess which particular close contact is the confirmed patient. Note that we
do not consider D or GV as the adversary here, as they are supposed to know
the identity of the patient.

For the first type, we consider the information posted in BB: (σD, h, B̂,
DATE). h = e(u, g)x is generated by Alice (patient) where x is a random

number (and u, g are the public generators). B̂ = e(u,B)x where B is the

public key of the patient’s close contact. It is obvious that the tuple (h, B̂)
does not contain any information about Alice. σD is a group signature on
the message (h, B̂, DATE), which also does not have any information related
to the patient (only the hospital’s name, where the patient was diagnosed).

For the second type, we can use a reduction proof involving an ad-
versary, say Bob who is able to distinguish who the patient is, to output
a forged signature. Suppose Bob met n close contacts on DATE. He is also
confirmed to be the close contact for a patient for the particular DATE. Sup-
pose the probability of guessing correctly of the patient among his contact
is ρ. If we have ρ > 1/n + ε, where ε is the negligible probability, then the
adversary should be able to distinguish the patient from other users with
non-negligible probability. Observe that Bob has collected all transactions
between all users, and he can also see the tuple (σD, h, B̂, DATE) posted in
BB. In order to distinguish the patient and the others, Bob has to make
use of the tuple in BB. σD is just the group signature from D on message
(h, B̂, DATE). h = e(u, g)x is randomly generated by the patient (from a ran-
dom number x chosen by the patient), which does not give any information

to distinguish. The only element that can be used is B̂ = e(u,B)x, where B
is the public key given by Bob to his close contact in Step (1) of the Meet-
ing Phase. In order to allow the protocol to complete the execution, the
verification algorithm in Equation (1) should be performed for each contact.
For n > 1, suppose n = 2. Bob has two valid signatures σB on B and σB′ on
B′. However, he can only get one signature from GV daily. Bob then outputs
the other signature as the forged one.

5. [Contact Privacy]

Lemma 10. Our system provides Patient Privacy if the zero-knowledge proof
in Equation (3) and its instantiations are zero-knowledge and Assumption 1
(on page 6) holds in the random oracle model.

If there exists an attacker A that can break contact privacy, we can build an
algorithm B to break Assumption 1. B picks a random degree q′ polynomial
F (b) and sets u = ũF (b). B sets the public key of Bob as B = gb. By using
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the random oracle model, B can simulate q′ signatures of Bob σ′′B = ũ
F (b)

b+H(ID)

by setting −H(ID) as the roots of F (b).
The information from Alice (patient) about her close contact, Bob, are zero-
knowledge proof for Equation (3) and the pair (B̂, h). If there exists an
attacker who can identify Bob, one could use standard game-hopping tech-
nique to change the tuple from (B̂, h) to (R̂, h), where R̂ is a random group
element. In this case, B sets h = e(ũF (b), gab) for some random a ∈ Zq. It

implicitly sets x = ab. B sets R̂ = e(ũF (b), gb)x by using Z0 or Z1 as the term
with degree bq

′+2. The difference between settings (B̂, h) and (R̂, h) will be
bounded by the advantage of breaking Assumption 1. The switch further
requires that the zero-knowledge proof for Qquation (3) is simulation-sound,
since the zero-knowledge simulator is using a fake tuple (R̂, h). Since the
Σ-Protocol we use is simulation-sound and if the proof for Equation (3) is
zero-knowledge, then no one will be able to learn any information about
Bob.
It remains to argue that actual instantiation, proof for Equation (4), is indeed
HVZK. It is easy to see that the three moves protocol itself is HVZK. The
argument that auxiliary values, A1, A2 and C, leak no information goes as
follows. For any possible witness (B, σ), there exists a unique randomness
(s2, t) such that A2 = Bgs21 and C = σ′′Bu

t
1. Now, for each possible s2, there

is a unique randomness s1 such that A1 = gs11 g
s2
2 . Thus, the simulator can

pick random elements A1, A2, C and use the zero-knowledge simulator to
simulate proof for Equation (4) since these random elements will also be
correctly formed. In other words, they also leak no additional information.
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