
Deep Learning for Android Malware Defenses: a Systematic Literature

Review

YUE LIU, CHAKKRIT TANTITHAMTHAVORN, and LI LI,Monash University, Australia

YEPANG LIU, Southern University of Science and Technology, China

Malicious applications (particularly those targeting the Android platform) pose a serious threat to developers and end-users.
Numerous research eforts have been devoted to developing efective approaches to defend against Android malware. However,
given the explosive growth of Android malware and the continuous advancement of malicious evasion technologies like
obfuscation and relection, Android malware defense approaches based on manual rules or traditional machine learning
may not be efective. In recent years, a dominant research ield called deep learning (DL), which provides a powerful feature
abstraction ability, has demonstrated a compelling and promising performance in a variety of areas, like natural language
processing and computer vision. To this end, employing deep learning techniques to thwart Android malware attacks has
recently garnered considerable research attention. Yet, no systematic literature review focusing on deep learning approaches
for Android malware defenses exists. In this paper, we conducted a systematic literature review to search and analyze how
deep learning approaches have been applied in the context of malware defenses in the Android environment. As a result, a
total of 132 studies covering the period 2014-2021 were identiied. Our investigation reveals that, while the majority of these
sources mainly consider DL-based Android malware detection, 53 primary studies (40.1%) design defense approaches based
on other scenarios. This review also discusses research trends, research focuses, challenges, and future research directions in
DL-based Android malware defenses.

CCS Concepts: · Security and privacy → Malware and its mitigation; Software security engineering; · General and
reference → Surveys and overviews.

Additional Key Words and Phrases: Android, malware defenses, malware analysis, malware detection, deep learning, reviews,
mobile security

1 INTRODUCTION

Android is one of the most popular smartphone operating systems (OS), having dominated more than 70% of
the mobile OS market share since October 2016, according to a Statista report [138]. Due to its openness and
popularity, Android has become one of the primary targets of cyber-attacks [38]. Developers may take advantage
of crafted malicious applications to divulge mobile user privacy or perform other dangerous operations on users’
mobiles, which is extremely harmful to mobile users. On the other hand, there is a large scale of Android apps
in the real world, with over 3 million Android apps available through the oicial store, Google Play. Although
Google is constantly upgrading its protection against malicious attacks and has developed Google Play Protection
(GPP) [52], it is not reliable and researchers have proved that crafted dangerous apps can easily bypass the GPP’s
detection [33, 68, 93, 100]. Apart from the oicial market, there are hundreds of unoicial and third-party markets,
where the security of Android apps is highly unpredictable [96, 97, 186, 189]. Therefore, it is a pressing demand
to propose an available and reliable approach to defend against malware attacks on the Android platform.

Authors’ addresses: Yue Liu, yue.liu1@monash.edu; Chakkrit Tantithamthavorn, chakkrit@monash.edu; Li Li, Li.Li@monash.edu, Monash

University, Melbourne, Australia; Yepang Liu, liuyp1@sustech.edu.cn, Southern University of Science and Technology, Shenzhen, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

0360-0300/2022/6-ART $15.00

https://doi.org/10.1145/3544968

ACM Comput. Surv.

https://doi.org/10.1145/3544968

2 • Liu et al.

Table 1. Summary of Related work

Paper Ref. size Newest Ref. Scope Review Approach Research trend
analysis

Alqahtani et al. [3] 9 2019 Malware detection Informal No
Souri et al. [137] 47 2018 Malware detection Informal No
Qiu et al. [127] 46 2019 Malware detection Informal No
Naway et al. [110] 25 2018 Malware detection Systematic search(method details not

described)
No

Liu et al. [99] 113 2019 Malware detection Systematic search No
Wang et al. [162] 54 2020 Malware detection Informal No
This work 132 2021 Malware defenses Systematic search + snowballing +

quality analysis
Yes

Android malware defenses are a critical research topic in computer security. Manually analyzing malware, by
formulating corresponding rules and inspecting the behaviors and source code of suspicious Android apps, is a
time-consuming processÐi.e., it does not scale to a large amount of Android software. Besides, with malware
techniques constantly evolving, manual malware analysis couldn’t keep pace with the evolving attack strategies. In
recent years, a large volume of research related to automatic Androidmalware analysis has been proposed, utilizing
data mining and machine learning approaches to achieve acceptable malware detection performance. These
approaches employ a series of machine learning algorithms (e.g., support vector machine, random forest) to build
a prediction model based on feature vectors extracted from the Android application package (APK) [13, 133, 168].
However, traditional machine learning algorithms are limited in their ability to learn complicated representations
in high-dimensional spaces [83]. In addition, the performance of machine learning models heavily relies on the
training data, and these trained models are likely to become obsolete as the Android apps evolve and software
engineering advances. What’s more, attackers continue to update their fraud techniques to bypass protection
software as well as well-trained machine learning models in order to victimize users and businesses. In front
of the increasing diiculty of Android malware defenses, it is non-trivial to construct a robust and transparent
defense model or system only by traditional machine learning techniques [191].
Deep learning has emerged as the dominant research ield of machine learning over the last decade, with

notable achievements in many domains like speech recognition [8, 60] and image processing [142, 173]. In
contrast to conventional machine learning techniques, feature extraction can be performed automatically when
deep learning methods are fed with raw data. Deep learning can learn feature representation from the inputted
raw data with little prior knowledge, which is the key advantage of deep learning. In 2014, deep learning tools
were applied to Android malware defenses and demonstrated superior performance [184]. Subsequently, an
increasing number of researchers have developed Android malware defenses models or frameworks based on
a variety of deep learning techniques. As a result, an up-to-date comprehensive survey of DL-based Android
malware defenses is urgently required.

The domain of Android malware defenses has been widely researched in recent years, and we present related
contributions of other researchers in Table 1. Several early studies [38, 95, 145] have comprehensively reviewed
Android malware techniques and traditional defensive approaches. With the wide use of advanced machine
learning techniques, many researchers have reviewed relevant studies on Android malware defenses with machine
learning or deep learning [3, 110, 127, 137, 162, 169]. However, these previous works couldn’t provide a complete
picture of current research interests and trends on DL-based Android malware defenses though they analyze all
possible available methods. First, these previous studies focus only on one aspect of Android malware defenses,
using machine learning/deep learning techniques to detect Android malware (ML/DL-based malware detection),
but neglect other critical aspects of using deep learning to prevent/defend against malicious behaviors (e.g.,
malware evolution, adversarial malware detection, deployment, malware families). While distinguishing malware
from benign apps is critical, enhancing Android software security is not a straightforward binary classiication

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 3

task. Indeed, it requires not only locating malicious applications but also comprehending malicious behaviors, to
which many researchers have contributed. However, these research studies are overlooked from previous review
work, making it diicult for future researchers to comprehend the state of the art of this research ield. More
importantly, these early surveys are not based on completed systematic approaches, and thus they could not
provide a comprehensive overview of the research trends and open issues in this domain. Thus, a number of
unanswered questions remain regarding the development of deep learning-based Android malware defenses.
For example, the prior works still could not answer what are the state-of-the-art DL-based malware defense
approaches (e.g., deep learning models and feature processing approaches) and what aspects require more
research eforts in the future. Furthermore, most previous works focused on relevant studies published before
2019. However, DL-based Android malware defenses have attracted signiicant research attention in recent two
years, which means it is necessary to conclude the signiicant recent research achievements. As a result, this
article ills the research gap in this ield by conducting a systematic and organized literature review, summarizing
previous research and presenting research trends on Android malware defenses related to deep learning.
This survey aims to shape the research area of using deep learning techniques to defend against Android

malware, and position existing works and current progress. Speciically, this paper makes the following contribu-
tions:

• We systematically collect and review 132 primary studies published between 2014 and 2021 on DL-based
Android malware defenses.

• We present a comprehensive qualitative and quantitative synthesis based on the collected studies. Our
synthesis covers the following themes: research objectives, APK characterization, deep learning techniques,
deployment, and model evaluation.

• We further enumerate current issues of the existing works from diferent aspects and provide recommenda-
tions based on indings to support further research in this domain.

• We provide trend analysis to identify potential future trends for the research community.

The remainder of this paper is structured as follows: Section 2 presents the review methodology used in this
paper. Section 3 discusses the reviewed results and open issues for the proposed research questions. Section 4
and 5 discuss potential implications and possible threats to validity of this study respectively. Finally, Section 6
concludes the paper.

2 REVIEW METHODOLOGY

In this paper, we followed the methodology suggested by Kitchenham [79] to conduct a systematic review.
The main steps of the Systematic Literature Review (SLR) can be summarized as follows: (1) planning the review
and developing a review protocol, (2) identifying research questions, (3) designing search strategies, proposing
exclusion criteria, (4) data extraction, and (5) data synthesis. The following subsections discuss the review protocol
used in this paper. Due to page limitations, we detailed the systematic review process and results online as
supplementary materials 1.

2.1 Research uestion

In this paper, we seek to investigate the following research questions:

• RQ1: What are the research objectives of the DL-based Android malware defense solutions?
• RQ2: What approaches have been developed for malware defenses?
ś RQ2.1: How are features processed for model training?
ś RQ2.2: What deep learning architectures are used?

1https://github.com/yueyueL/DL-based-Android-Malware-Defenses-review

ACM Comput. Surv.

4 • Liu et al.

Table 2. Search Keywords

Group Keywords

1 Android; Mobile; Smartphone*; Phone*
2 Malware; Malicious; Malice
3 "Deep learning"; "Deep neural network*"; DNN; "Convolutional neural network*"; CNN; "Deep belief network*";

DBN; "Recurrent neural network*"; RNN; "Long short-term memory"; LSTM

Note: * means the plural form. For example, "Phone*" refers to "Phone" or "Phones".

ś RQ2.3: How are DL-based Android malware defenses approaches deployed in practice?
ś RQ2.4: How are DL-based Android malware defenses approaches evaluated?

• RQ3: What are the emerging and potential research trends for DL-based Android malware defenses?

2.2 Search Strategy

After identifying the research questions, the next step is searching for relevant primary studies. To this end, ive
popular digital libraries, including IEEE, ACM Digital Library, Springer, Science Direct, and Wiley Online Library,
are identiied and the searching string is constructed based on the proposed searching items proposed in Table 2.
To ensure that we did not overlook any signiicant relevant work, we conducted further searching processes
on two of the most popular research citation engines, including Web of Knowledge2 and Google Scholar.3 In
addition, we also performed a lightweight backward snowballing [80], which means that we only carried out
snowballing once, before we identiied the inal review list.

2.3 Data Selection Process

Only those studies related to deep learning-based Android malware defenses should be considered for further
review; therefore, any primary studies that meets any of the proposed exclusion criteria would be deemed
irrelevant and would be excluded from the preliminary result set. On the other hand, obtaining all relevant
studies doesn’t guarantee that we are able to identify the inal list of papers, as it is impossible that the quality
of all selected studies is desirable. For this reason, we deined a quality appraisal criterion and evaluated the
quality of each paper by reading its full text. The complete list of exclusion criteria and quality appraisal criterion
is available at our online supplementary materials. After these steps, we inally obtained 132 primary studies.
Table 3 and in Figure 1 provided a summary for our examined papers.

Fig. 1(a) shows the distribution of the amount of chosen studies over time. Intuitively, the number of publications
related to DL-based Android malware defenses has seen a continued increase since 2014. Although we only
included the public articles before November 30, 2021, in this review, the number of selected publications in 2021
is still large. These facts demonstrate that the ield of Android malware defenses using deep learning is attracting
growing attention, illustrating the critical need for systematic and comprehensive review work to summarize the
prior work and current research trends.

On the other hand, we examined the distribution of venue domain and type for these 132 articles respectively.
The results showed that over 35% of primary studies are from Security (SEC) venues, accounting for the most
proportion. Both the proportion of Artiicial Intelligence (AI) and Software Engineering/Programming Languages
(SE/PL) is more than 10%. As for the type of venues, we found the percentage of collected studies published in
conferences and journals is quite close, at about 50%. In addition, we counted the frequency of all major venues
where our selected studies were published (see Fig. 1(b)). The results indicated that these primary studies were
mainly collected at top venues, especially the venues in SEC domain (e.g., CCS, USENIX Security, TIFS) and more

2https://webofknowledge.com
3https://scholar.google.com

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 5

Table 3. Summary of the process of data search and selection

Data source Number of search results Number of Candidate studies

(After selection)

IEEE 201 108
ACM 1182 35
Springer 2404 36
Science Direct 1031 19
Wiley 457 8

Merge 206
Further Searching 328

After Quality Assessment 132
After Backward Snowballing 132

Final result 132

1
0

8
10

14

32

44

23

0

5

10

15

20

25

30

35

40

45

50

2014 2015 2016 2017 2018 2019 2020 2021-Nov

N
u
m
b
e
r
	o
f	
P
u
b
li
c
a
t
io
n
s

Year

(a) Publication count over time

Comouters食S�curity
TKDE USENIX Security

i
sE TrustCom z , ,

SCNNeuro�。m：�ting TASE Z 己
内 CCC

I U>L IJCAI ACS C D

� r；ζS�u�FWN

(b) Word cloud of all major venue names of the sources

Fig. 1. Summary of the examined primary studies

and more relevant studies have started to be presented in top venues in SE domain recently (e.g., ICSE, ASE, and
FSE).

3 RESULTS ANALYSIS

In order to answer the research questions presented in Section 2.3, we conducted a detailed review of the
selected primary studies. Section 3.1 discusses the analysis results for RQ1; Section 3.2, 3.3, 3.4, and 3.5 presents
the results for RQ2.1, RQ2.2, RQ2.3, and RQ2.4 respectively; while Section 3.6 presents the results of RQ3. To help
our fellow researchers better understand the details for each primary study, we uploaded a detailed table in our
online supplementary materials.

3.1 Malware Defenses Objectives

Deep learning techniques have been applied to various aspects of malware defenses to protect mobile users
from severe malware attacks. After discussing among all authors and drawing on the classiication scheme used
in previous surveys by Faruki et al. [38] and Ucci et al. [149], we classify reviewed studies into the following
categories: malware detection (binary classiication), malware family attribution, repackaged/fake app detection,
adversarial learning attacks and protections, malware evolution detection and defense, and malicious behavior
analysis. Fig. 2 depicts the statistical trends of research objectives for the sources.

ACM Comput. Surv.

6 • Liu et al.

1 8 7

2

1

13

2

1

19

4

4

2

1

3

33

8

3

2

3

2

9

4

8

3

1

1

0 10 20 30 40 50 60 70 80 90

Malware	Detection	(Binary

Classification)

Malware	Family	Attribution

Adversarial	Learning	Attacks

and	Protections

Malware	Evolution	Detection

and	Defense

Repackaged/Fake	App

Detection

Malicious	Behavior	Analysis

Number	of	publications

2014

2015

2016

2017

2018

2019

2020

2021

Series9

Fig. 2. Summary of the primary studies by research objectives. Some primary papers contain multiple research objectives,

making the sum of percentages more than 100%.

Malware Detection (Binary Classiication). As shown in Fig. 2, malware detection (binary classiication),
which determines whether a given application is malicious or benign, receives the most research attention (68%)
and the increasing trend is expected to continue. This result is not surprising given that the most urgent task at
the moment is to protect mobile users from malicious attacks by automatically distinguishing malware from
goodware, which is why many previous surveys have primarily focused on this research topic. Droid-Sec [184] is
the irst attempt to detect Android malware using deep learning-based methods. The methodology of Droid-Sec
can be summarized as three steps: (1) Android applications collection and labeling, (2) feature extraction and
characterization, (3) deep learning models training and evaluation. The empirical results of Droid-Sec have
demonstrated that deep learning techniques are much more efective for malware detection compared with
traditional machine learning techniques like Support Vector Machine(SVM). In fact, most primary studies related
to DL-based malware detection usually follow a similar methodology with Droid-Sec but explore the applicability
and efectiveness of diferent state-of-arts deep learning techniques in more complex scenarios, which is consistent
with previous literature [127].

Malware Family Attribution. Another important aspect of Android malware defenses is malware family
attribution. Fig. 2 shows that 20 reviewed articles (15%) are specialized for identifying Android malware families.
Given the growing number of malware variants, malware can be categorized into certain categories that are
associated with diferent malicious objectives and behaviors, like the Adware family that displays unwanted
advertisements to mobile users. In contrast to malware detection (binary classiication), malware family attribution
identiies which family a malware sample belongs to. Most primary studies like [192] and [141] employ multi-class
classiication approaches to identify existing or old malware families. As a large number of new malware variants
are created, Qiu et al. [126] proposed deep learning-based approaches to detect zero-day malware families.
Repackaged/Fake App Detection. In 5% of sources, deep learning-based repackaged/fake app detection is

investigated. Attackers can unpack an existing malicious/benign application, modify its contents and repackage
it, depriving app developers of revenue and contributing to the spread of malware on mobile devices [94]. For
this reason, identifying repackaged or fake applications and analyzing the behaviors of variants is also critical.
For example, in order to locate counterfeit mobile applications in application markets, Ullah et al. [150] and
Karunanayake et al. [74] propose DL-based Fake app detectors to prevent the publishing of fake apps in app
stores.
Adversarial Learning Attacks and Protections. Fig. 2 shows that 16 primary studies (12%) focus on

adversarial learning attacks and protections on DL-based malware defenses. Despite the fact that numerous
research studies have demonstrated that deep learning models provide promisingly high performance to identify
malware, thesemodels have been shown to be particularly vulnerable to well-designed adversarial attacks [82, 183].
Adversarial attackers could inject a small but intentional perturbation to create adversarial examples, causing the

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 7

trained models to misclassify adversarial examples. For example, Chen et al. [25] performed adversarial attacks
on DNN-based malware detection models, decreasing the accuracy from over 90% to 0%. Consequently, there is
a corresponding increase in the attention dedicated to adversarial attacks against malware defense models, as
shown in Fig. 2. Depending on when the attacks occur, adversarial attacks are split into two main categories:
evasion attacks for testing samples and poisoning attacks for training samples. With respect to the two types of
adversarial attacks, the majority of sources (14 studies, 87%%) discuss evasion attacks and protections for DL-based
Android malware defense models, and conversely, only two recent studies focus on poisoning attacks [86, 135].
We discuss more details about this topic in Section 3.6.2.

Malware Evolution Detection and Defense.With regard to the malware evolution problem, Fig. 2 indicates
that only seven papers (5%) attempt to develop solutions for malware evolution, but it is remarkable that all seven
papers were published within the last three years. Due to the rapid evolution of mobile malware and the emergence
of new variants and families, the performance of DL-based malware defenses models decays signiicantly over
time. Pendlebury et al. [119] revealed that the detection performance of deep learning-based classiiers decreases
drastically from almost 90% to below 30% for future malware samples. Thus, model retraining and active learning
are applied to reverse and improve aged models by Pendlebury et al. [119]. However, the underlying models are
still incapable of distinguishing evolved malware in this manner, as they still rely on humans to determine when
models should be retrained. In the light of this issue, recent studies [37, 85, 89, 174, 178, 187] introduce a variety
of approaches to slow down the aging of malware defense models, which are further discussed in Section 3.6.3.
Malicious Behavior Analysis. There are six primary studies (5%) related to malicious behavior analysis

in collected studies. Malicious behavior analysis aims at identifying or assessing risk behaviors in unknown
applications. As for Android malware, malicious behaviors have diverse types, and a malicious application
often performs more than one malicious behavior, increasing the diiculty of analysis. In addition, malicious
applications may utilize code obfuscation and dynamic payload to conceal malicious behaviors. Hence, it is a
relatively challenging research topic to investigate. In order to prevent malicious activities while apps are running,
Gronat et al. [53] and Lorenzo et al. [30] employ recurrent neural networks to visualize potential risks for Android
malware samples. For Android malware, performing malicious behaviors requires using dangerous semantic
features such as permissions and API calls related to users’ privacy. To assist mobile users in determining the
security risk before installing unknown applications or granting permissions, some researchers examine the
consistency between risk permissions and metadata-based features of apps, like descriptions [39, 42] or icon
widgets [170].

DISCUSSION. Despite the rapidly growing number of research studies on deep learning for Android malware
defenses, it appears that previous research studies focus on relatively simple application scenarios. More than half
of the sources focus on malware detection through various deep learning strategies. Additionally, most of these
existing studies focus on improving malware detection performance through the use of various advanced deep
learning techniques and demonstrate that the newly proposed models outperform prior models on their own
experimental datasets. It is noteworthy that an increasing number of recent studies have started to address speciic
issues to better apply DL-based malware detection models in practice (e.g., on-device malware detection [40, 41],
explainable malware detection [167, 197], malware detection on imbalanced data [16, 112]). However, the number
of relevant studies remains small. How to improve the robustness, efectiveness, stability, and reliability of
malware detectors with the help of deep learning is an open issue for future researchers.

Compared with Android malware detection, the number of literature focusing on other research objectives is
relatively small, requiring further in-depth research. Taking malware behavior analysis as an example, deining
speciic malicious behaviors and associating them with the raw code of Android APKs remain challenging issues.
Thus, these research objectives require more works to integrate domain knowledge and provide fundamental
theoretical construction. Except that, while this review categorizes the existing literature’s research objectives

ACM Comput. Surv.

8 • Liu et al.

5 7

12

25

33

18

3
2

2

4

9

3

1

2 1

1

3

4

2

0

5

10

15

20

25

30

35

40

45

50

2014 2015 2016 2017 2018 2019 2020 2021

N
u
m
b
e
r
	o
f	
p
u
b
li
c
a
ti
o
n
s

Year

Static	analysis

Dynamic	analysis

Hybrid	analysis

Series4

(a) Trends of program analysis approaches

Static	analysis

73%

Dynamic	

analysis

17%

Hybrid	

analysis

10%

(b) Overall distribution

Fig. 3. Summary of the primary studies by program analysis approaches

into six categories, the scope of Android malware defenses is actually much broader. Therefore, future research
should not be limited to these six categories, but should instead propose Android malware defense approaches
that leverage advanced deep learning techniques in more new application scenarios.

RQ1 What are the research objectives of the DL-based Android malware defense solutions?

• The main objective is still malware detection (binary classiication) using deep learning techniques;
• On the whole, 53 primary studies focus on other research topics like malware family attribution
and adversarial attacks, and the number is not small and cannot be neglected;

• At the beginning, researchers only focused on the ield of malware detection, but in recent years,
an increasing number of primary studies have applied deep learning to analyze Android malware
in more complex scenarios.

3.2 APK Characterization

As a response to RQ2.1, this section discusses the APK feature processing approaches used in the collected
studies. Each Android application is packaged as an APK ile, a zip archive that primarily contains the app’s
manifest and bytecode. Before being fed into deep learning models, the collected Android APK data needs to
be transformed into a formalized representation compatible with deep learning models. These research studies
usually process APK iles using reverse-engineering tools (program analysis approaches) and then various
raw characteristics (feature categories) are extracted. After that, feature encoding approaches are utilized to
perform further feature embedding operations on the raw information extracted from applications. To gain a
better understanding of APK characterization mechanisms in DL-based Android malware defenses, we discuss
the reviewed results from three perspectives, including program analysis approaches, feature categories, and
feature encoding approaches.

3.2.1 Program analysis approaches. As shown in Fig. 3, program analysis approaches to extract raw features
from Android APKs can be categorized into three types: static analysis, dynamic analysis, and hybrid analysis.
Static Analysis. Fig. 3 presents that the majority of sources (73%) extract raw features using static analysis

approaches. Reverse-engineering tools such as Androguard [21] and APKtool [11] are required to disassemble
and/or decompile Android APK. The raw information extracted from the APK iles is used for further analysis
of malicious applications. The extracted information is diverse. Raw binary code and opcode sequence can be

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 9

1

1

1

6

5

3

2

1

4

1

1

5

3

2

1

1

1

1

1

1

1

1

1

5

6

2

2

2

1

4

1

1

1

2

17

17

12

8

8

6

4

3

2

4

4

5

3

3

25

22

11

11

4

5

6

6

3

6

3

2

4

14

14

11

7

6

6

2

2

5

2

4

1

0 10 20 30 40 50 60 70 80

API	call

Permission

Filtered	intent

App	component

Network	information

Hardware	component

System	call

Opcode

Dynamic	activities

Bytecode

Program	graph

String

App	metadata

Java	code

Number	of	publications

2014

2015

2016

2017

2018

2019

2020

2021

Series9

Fig. 4. Summary of the primary studies by feature categories.

fed directly to DL models [59, 66, 141, 196]. Aside from that, high-level semantic features like API calls and
permissions are also widely used [54, 77, 140, 188].
Dynamic Analysis. Only 17% of primary studies use dynamic analysis approaches to collect raw features

from Android APK iles. This inding is not surprising given that dynamic analysis requires executing apps in a
protected environment and dynamic analysis can only provide a partial picture of applications (i.e., it is challenging
to cover all code) [38, 95]. However, dynamic analysis works by running samples to examine the runtime
behaviors and system metrics of Android applications, which is more resilient to malware evasion techniques
like obfuscation [63]. Representative dynamic analysis tools include TaintDroid [35], CopperDroid [146], etc.
Dynamic features are obtained by dynamically executing collected app samples in a controlled environment, such
as an Android emulator or a real mobile device. Thirteen primary studies employ emulators such as Genymotion
to monitor the application’s dynamic behaviors. However, various anti-emulator techniques are developed to
conceal malicious activities. Thus, we also discovered that there are seven primary studies focusing on dynamic
analysis on real mobile devices. For example, Alzaylaee et al. [5] demonstrated that on-device dynamic analysis
performed much better than on-simulator dynamic analysis concerning stability and detecting ability.

Hybrid Analysis. Fig. 3 presents that 10% of primary studies involve hybrid program analysis (which combines
static and dynamic analysis). Static program analysis has the advantage of providing full code coverage at a
lower computational cost but it is vulnerable to evasion techniques like obfuscation, while dynamic program
analysis allows for the analysis of run-time behaviors in a controlled environment but the code coverage may
be limited [23, 154]. Although hybrid analysis leverage the complementary strengths of both types of program
analyses, it is still computationally intensive, which may explain why the number of related studies is small.

3.2.2 Feature categories. As illustrated in Fig. 4, extracted features can be summarized into 13 categories,
indicating the diversity of raw feature types. Note that many studies may combine multiple types of features in
order to accurately represent a malicious application.
As can be observed from Fig. 4, semantic features are the most common. API calls (55.3%) and permissions

(51.5%) have been the most frequently used feature types, accounting for well over half of primary studies. A

ACM Comput. Surv.

10 • Liu et al.

possible explanation for this might be that API calls and permissions carry suicient semantics and that the risk
API calls and permissions usually result in dangerous or malicious behavior. Other types of semantic information
extracted from the decompiled code such as iltered intents and app components are also used by a large number
of primary studies. There are also 13 primary studies (10%) using program graphs like Control Flow Graph
(CFG) and Data Flow Graph (DFG) to represent an application when analyzing Android malware. Apart from the
semantic information extracted from decompressed APK, we ind eight recent studies leverage app metadata
such as icons and app descriptions for the subsequent analysis.
Although the aforementioned features are usually extracted via static analysis, we discover two distinct

dynamic features. 18 primary studies employ Linux kernel system calls as extracted features to capture malicious
behaviors. Unlike API calls, Linux kernel system calls are not dependent on the Android OS version, making
them more resilient to malware evasion strategies [63]. Additionally, 14 primary studies examine characteristics
associated with dynamic activities such as network access and memory dump. These observations from Fig. 4
corroborate those from Fig. 3, indicating that static analysis is the most frequently occurring approach for program
analysis.

Although high-level semantic features such as API calls remain the most commonly used, there is an increasing
number of primary studies using raw code sequences to construct feature vectors. Fig. 4 indicates that the most
frequently occurring raw code feature is raw opcode sequences from disassembled Android apps (with 22 studies).
The raw opcode sequences are fed into deep neural networks to learn high-level semantic feature representation
automatically [127]. Notice that four primary sources convert disassembled code to Java source code to construct
feature vectors. On the other hand, we ind that 13 primary studies fed the deep neural models with the raw
classes.dex bytecode. For example, R2-D2 [67] converts bytecode into a color image by mapping the bytecode’s
hexadecimal value to the RGB color code.

3.2.3 Feature encoding approaches. Fig. 5 provides a summary of examined sources based on feature encoding
approaches. Following program analysis, the extracted information is further encoded into feature vectors and
then fed into deep learning models. There are numerous ways to represent extracted features in primary studies,
as extracted data from Android applications take on a variety of categories. Thus, we classify feature encoding
approaches into the following ive categories:

Categorical encoding. Fig. 5 indicates that categorical encoding approaches are most frequently occurring at
47% of sources (62 primary studies). This result appears to be consistent with Section 3.2.2 which indicates that
categorical semantic features like API calls and permissions are the most frequently used. Typically, a numerical
vector is constructed to indicate the presence of each categorical feature. It is noteworthy that we discovered
that 55 out of 62 primary studies adopt one-hot encoding to record the information of the presence of each
possible feature value for applications. For instance, DroidDetector [185] considers a total of 192 features through
hybrid analysis, and constructs a 192-dimensional vector for each app where each feature is assigned a value of
1 if it occurs in the app; otherwise, it is assigned a value of 0. Besides, we ind that seven sources assign each
feature a discriminative integer and store the used features in a numerical vector. Although categorical encoding
is the most prevalent strategy because of its simplicity, it has two signiicant drawbacks: (1).high dimensional
generation, (2).embedding in isolation between distinct patterns [98].

Text-based encoding. It is quite common to employ approaches from natural language processing to encoding
sequential features. Fig. 5 indicates that 26 primary studies (20%) attempt to utilize text-based feature encoding
approaches. Numerous state-of-the-art text encoding approaches have been introduced to process sequential data.
In fact, one-hot encoding is the simplest method of text encoding but one of its disadvantages is high dimensional
problem that we discussed before. In addition, some researchers employ discrete encoding approaches like Bag
of Words (BOW), Term FrequencyśInverse Document Frequency (TF-IDF), and N-Gram [9, 122, 126, 147, 150,
153, 176, 181]. These methods, however, are still limited by data sparsity and high dimensionality issues [160].

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 11

1 6

1

1

5

2

1

1

5

5

2

1

53

55

3

3

5

22

7

8

4

2

10

1

3

5

3

0 10 20 30 40 50 60 70

Categorical

Text-based

Image-based

Graph-based

Hybrid

Number	of	publications

2014

2015

2016

2017

2018

2019

2020

2021

Series9

Fig. 5. Summary of the primary studies by feature encoding approaches.

Therefore, many primary studies further investigate the efectiveness of pre-trained word embedding models,
such as Continuous Word2vec [18, 23, 42, 73, 158, 188, 198] and GloVe [73].

Graph-based encoding.We ind that 15 primary studies (11%) employ graph-based representation approaches.
Deep4MalDroid [63] obtains system calls through dynamic analysis tools to construct a weighted directed graph,
and graph structure information including weights of each edge and in-degree and out-degree of each node
is stored in vectors as inputs. Xu et al. [192] encode CFG and DFG into adjacency metrics respectively and
combine them into a single metric in embedding layers. In [117], the authors investigate several state-of-art graph
embedding approaches to encode API call graphs, including DeepWalk [121], Node2vec [55], HOPE [114], etc.

Image-based encoding. Image-based representation, employed in 16 primary studies (12%), usually transforms
extracted features into a grayscale or color image. The most common scenario is directly transforming bytecode
into images. For instance, IMCFN [151] reads an Android binary as a vector of 8-bit unsigned integers and
then converts it into a two-dimensional array. Following that, the Android bytecode is visualized as a color
image based on the RGB color map. Numerous research studies used similar approaches to encode Android
bytecode [19, 59, 66, 107, 130, 141, 171].

Hybrid encoding. Combining distinct feature encoding approaches to process richer features is also common
in collected research (6%). Take Kim et al. [77] as an example. The authors construct one-hot vectors to record
the existence of categorical features like permission, string and app components. At the same time, in order to
alleviate the impacts of obfuscation techniques, a similarity-based feature vector generation process is introduced
to encode sequential features like opcode and API calls. In [74, 116, 170], since these studies also consider icons
or pictures of Android applications, both image embedding approaches and text embedding algorithms are used
to encoding features.

DISCUSSION.According to our reviewed results, the majority of research constructs feature vectors by recording
the existence of various categorical features of Android applications. Many studies create a look-up table to list
all the potential features based on prior knowledge or feature selection approaches, and then build a ixed-size
one-hot feature vector to represent each application [16, 17, 36, 40, 41, 43, 50, 53, 64, 65, 91, 92, 105, 112, 129,
157, 159, 161, 167, 184, 185]. For instance, Wu et al. [167] identiied 158 high-risk features to construct feature
vectors (including 97 API calls and 61 permissions). However, there are several issues to process features in
this way. One of these is that it is pretty diicult to deine a robust malicious feature list using either humans’
experience or traditional feature selection approaches. The built feature lists can’t encompass all potential
malicious characteristics, resulting in poor performance in the practical application. Even when all features in
the training data are used, concept drift caused by Android malware evolution is a serious problem that cannot
be ignored [187]. Android malware continues to evolve with similar functionality but a completely diferent
implementation, easily evading detection by Android malware defense models. As a result, how to design efective
and practical feature lists is a challenging issue.

ACM Comput. Surv.

12 • Liu et al.

Table 4. A summary of learning paradigms

Supervised learning Unsupervised & supervised Unsupervised learning Reinforcement learning

Counts 108 20 1 3
Percentage 81.8% 15.2% 0.8% 2.3%

As shown in Fig. 3, static program analysis is the most common approach (73%). Furthermore, our results in
Section 3.2.2 show that the majority of reviewed studies extract static semantic features from disassembled iles. A
signiicant drawback of this approach is its weak ability to handle obfuscation problems. Obfuscation techniques
(e.g., polymorphic code, encryption) transform malware binaries into self-compressed and uniquely structured
binary iles that are resistant to reverse-engineering approaches [47, 113]. Obfuscation techniques improve code
protection for Android apps, but create signiicant barriers to malware analysis. For example, code reordering
aims to modify the order of instructions in smali code but preserve the original run-time execution trace, thereby
evading detection by malware defense tools [15]. By using a variety of obfuscation techniques, malware attackers
can produce multiple variants of a single malicious sample, complicating malware defenses. Although some
studies have shown that the proposed DL-based approaches are slightly afected by some simple obfuscation
approaches [77, 84, 108, 175], we cannot ignore the fact that the real-world obfuscation techniques constantly
update and evolve against anti-malware approaches [127]. Investigating obfuscated apps using deep learning
techniques is a potential future research topic, and we outline some potential research trends: (1). using deep
learning techniques to detect and analyze obfuscation approaches; (2). analyzing malware based on bytecode-level
rather than capturing semantic features.

RQ2.1 How are features processed for model training?

• Static analysis is mostly used to obtain features, and static semantic features like API calls and
permissions remain the most frequently utilized.

• The number of primary studies devoted to dynamic analysis is rising and many generally applicable
methodologies/frameworks are proposed.

• One-hot encoding and text encoding are mostly used to represent features.
• 13 primary studies encode raw bytecode into feature vectors.

3.3 Deep Learning Techniques

Responding to RQ2.2, this section provides a detailed review of the primary studies according to deep learning
techniques. To comprehend this section, readers are expected to be relatively familiar with deep learning. For
more details on the patterns described, readers are referred to the deep learning textbook by Goodfellow et
al. [51].

3.3.1 Learning paradigms. Regarding the type of deep learning paradigms, Table 4 indicates that supervised
learning-based Android malware defenses appear most frequently (81.8%). It is worth noting that only one
primary source employs unsupervised learning. Speciically, CADE [178] proposes an unsupervised representation
learning approach to combat concept drift for security applications. Twenty primary studies (15.2%) develop
Android malware defense approaches based on unsupervised & supervised scenarios. Speciically, unsupervised
DNN models such as Auto-Encoders are usually employed to initialize a neural network’s weights. Then,
the pre-trained model can be ine-tuned using labeled samples using a standard supervised back-propagation
algorithm [26, 43, 49, 63ś65, 76, 101, 139, 140, 157, 159, 161, 176, 184, 185, 195, 199]. Besides, three primary studies
rely on reinforcement learning to conduct the research [129, 156, 190]. These observations indicate that supervised

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 13

1

1

"

2

2

3

1

2

2

1

6

6

4

1

1

1

11

11

3

1

3

2

1

16

17

8

4

2

5

1

1

9

4

1

4

2

2

1

2

1

1

0 5 10 15 20 25 30 35 40 45 50

MLP

CNN

RNN

DBN

AE

hybrid

DRL

GAN

Transformer

GNN

Attention

Others

Number	of	publications

2014

2015

2016

2017

2018

2019

2020

2021

Series9

Fig. 6. Summary of the primary studies by deep learning models.

learning techniques that require suicient labeled data occupy an absolutely dominant position in this research
domain currently.

3.3.2 Deep learning models. The reviewed sources consider a variety of deep learning models. We categorize
these DL models according to their model architectures and summarize the primary studies regarding DL models
in Fig. 6.

Multilayer Perceptrons (MLPs), also known as deep feedforward networks or feedforward neural networks,
are among the simplest deep learning models for Android malware defenses. Building an MLP is straightforward
and MLP can learn hierarchical feature representation of inputs. MLPs are demonstrated to be universal approxi-
mators, capable of approximating any measurable function to any designed degree of accuracy [62]. As a result,
MLPs serve as the basis of many advanced deep learning models and are widely used in a variety of research
areas [51]. We thus observe from Fig. 6 that MLPs are the most frequently occurring DNN models, referring to 45
primary studies (34.1%).

Convolutional neural networks (CNNs, ConvNets) improve traditional MLPs by introducing convolution
and pooling (or subsampling) operations to learn high-level features from low patterns with higher eiciency and
accuracy. It is remarkable that CNNs have also been among the most popular deep learning models in Android
malware defenses, accounting for 41 sources (31.1%) since 2017. We observe that numerous sources employ CNNs
to learn feature representations for opcode, bytecode, and API call sequences [18, 19, 32, 59, 66, 69, 73, 90, 106,
111, 117, 141, 151, 179, 182]. This observation is unsurprising given that CNNs can automatically learn useful
context structural information of Android apps in comparison to MLPs.
Recurrent Neural Networks (RNNs) have emerged as a successful paradigm for modeling sequential data

since RNNs incorporate hidden units that implicitly maintain the history of all past elements in the sequence [34].
As such, it becomes a powerful tool in Natural Language Processing (NLP) and speech processing [83]. The
programming pattern of Android applications is sequential and logical, and capturing sequential and semantic
properties from the decompiled code is essential for improving malware defense models’ performance. Fig. 6
shows that 17 primary studies (12.9%) use RNNs to defend against Android malware attacks. Except for standard
RNNs, advanced variants such as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are often
deployed to overcome the vanishing gradient problem, thereby enhancing model performance [23, 30, 70, 153,
154, 172, 177, 193].

ACM Comput. Surv.

14 • Liu et al.

Autoencoders (AEs) are unsupervised neural networks that learn the latent space of inputs in an unsupervised
manner. AEs have been successfully used in dimensionality reduction and information retrieval tasks [20, 51].
The typical structure of AEs consists of two components: an encoder mapping inputs to a hidden representation,
and a decoder mapping the hidden representation back. AE and its variants, such as Denoising Autoencoders
(DAEs) and Variational Autoencoders (VAEs), have been widely applied to Android malware defenses, referring
to 11 sources (8.3%).
Deep Belief Networks (DBNs) belong to probabilistic generative models, and DBNs are hierarchically

constructed by multiple layers of stochastic hidden variables [61]. DBNs learn multiple layers of features from
unlabeled inputs in an unsupervised manner, and these features can then be used to optimize discrimination in a
supervised manner to perform the classiication tasks. Deep belief networks are one of the irst non-traditional
models to admit deep architecture training successfully, but they are currently rarely used compared with other
advanced deep learning networks [51]. Fig.6 presents a consistent result that DBNs were also the irst DNN
network to build Android malware defense models, with the highest proportion between 2014 and 2016.

Generative Adversarial Networks (GANs) are composed of a generative model and a discriminative model.
The generator is trained to generate new samples in order to fool the discriminative model, while the discriminator
tries to distinguish the generated samples from the real samples, liking in a game of cat and mouse to compete
with each other. GANs were even described as the most interesting machine learning idea in the last ten years by
AI pioneer Yann LeCun in 2016. Nevertheless, only three primary studies render GAN-based Android malware
defense architectures [7, 91, 108], showing that further explorations to the application of GANs in malware
defenses are still needed.
Graph Neural Networks (GNNs) are designed by extending deep learning techniques to graph data. AI

researchers have developed a variety of GNN architectures, such as Graph Convolutional Network (GCN) [78]
and Graph Attention Network (GAT) [152]. In Fig. 6, we can observe that two recent studies propose GNNs-based
heterogeneous graph representation learning approaches in Android malware defenses [37, 48].
Attention-based neural networks are capable of learning the dependencies between inputs and target

sequences, bringing a huge improvement in Machine Translation [166]. As such, one source [167] proposed an
explainable attention-based Android malware detection model since attention mechanisms can provide informa-
tion about the elements’ relevance to their targets. Although there is currently only one primary study employing
attention mechanisms, a variety of popular attention mechanisms have been proposed and demonstrated to
perform well in NLP or CV, such as self-attention, soft/hard attention, local and glocal attention, co-attention,
etc. As a result, we suggest that future researchers make more eforts to apply attention-based models to more
speciic issues in Android malware defenses.

Deep Reinforcement Learning (DRL) operates on a trial-and-error paradigm to teach an autonomous agent
how to perform a task without human guidance. DRL has demonstrated its signiicant performance in the ields
of games, robotics, and self-driving cars [14, 45]. In Android malware defenses, we also ind three DRL-based
primary studies [17, 129, 190]. For example, Zhao et al. [190] and Rathore et al. [129] examine the efectiveness of
reinforcement learning for evading adversarial attacks and relevant protection strategies.
Transformers enable much more parallelization than CNNs and RNNs by leveraging the self-attention

mechanism. This capability makes it possible to eiciently (pre-)train extremely large language models on GPUs.
Bidirectional EncoderRepresentations from Transformers (BERT) is among the most widely used transformer-
based pre-trained language models [31]. We found one research study that employed BRET to model sequential
features on highly imbalanced malware data.

Hybrid-based models integrate several basic DNN blocks to formalize more robust and efective models. As
shown in Fig. 6, hybrid-based models have been leveraged in 11 primary studies (8.3%). Numerous deep learning
framework combinations have been considered, like AE and CNN [72, 159], RNN and CNN [116, 118], MLP and
LSTM [175], etc.

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 15

Table 5. A summary of explanation approaches used in DL-based Android malware defenses

Tool/System.Ref Year DNN models Explanation approach Explanation type

Zhu et al. [197] 2019 CNN Global surrogate (training a simple CNN) Global
Pierazzi et al. [122] 2020 MLP, DBN ,CNN Mean Decreased Impurity Global
Fan et al. [36] 2020 MLP LIME, SHAP, LEMNE, Anchor, LORE Local
DENAS [24] 2020 MLP DENAS (approximating the non-linear decision

boundary of DNNs using an iterative process)
Global

Warnecke et al. [163] 2020 MLP, CNN Gradients and Integrated Gradients, Layer-wise relevance
propagation (LRP), LIME, SHAP, LEMNA

Local

Feichtner et al. [39] 2020 CNN LIME Local
XMal [167] 2021 Attention-based Attention mechnism Local
Severi et al. [135] 2021 MLP SHAP Local
Iadarola et al. [69] 2021 CNN Grad-CAM Local
CADE [178] 2021 AE A distance-based approach (contrastive learning) Local

Others. Recent years have seen rapid advancements in deep learning, with new deep learning techniques
being proposed constantly. Two sources leverage deep learning models that fall outside of the aforementioned
categories. Bai et al. [16] perform Android malware family classiication through siamese neural networks. Ma et
al. [103] adopt deep residual learning to detect sensitive behaviors.

Fig. 6 demonstrates that multiple types of deep learning models have been adopted to defend against Android
malware. In the earlier years, unsupervised DNN models like AE and DBN drew the most research attention.
However, beginning in 2017, popular supervised DNN architectures such as MLP, CNN, and RNN garnered
increased attention. Another intriguing inding is that a variety of advanced approaches have emerged over
the past three years, including GAN, GNN, attention, transformer, DRL, and hybrid models. These observations
further support that deep learning has garnered growing interest in the ield of Android malware defenses.

3.3.3 Model explanation. Deep learning approaches with a sophisticated architecture remain black-box mod-
els [109]. Speciically, these constructed models cannot provide evidence to interpret why a given sample is
identiied as malicious. The absence of suicient transparency and trustworthiness in the proposed approaches is
a signiicant obstacle to employing theoretical tools in practical malware analysis. As a result, it is necessary to
develop explanation approaches for malware defense models. In collected studies, ten studies (7.5%) exploited
interpretable deep learning techniques in Android malware defenses. Table 5 summarizes a comparative result
towards interpretable tools. Interestingly, nine out of ten primary sources are proposed after 2019, indicating that
explainable deep learning approaches for malware defenses are a current hot research topic.

With respect to the scope of interpretability, it is remarkable that most studies leverage local approaches (seven
out of the 10 studies). Global methods describe how features afect the prediction on average, whereas local
methods aim to explain individual predictions [109]. Regarding the explanation approaches used in sources, state-
of-the-art model-agnostic explanation approaches, including LIME [131], SHAP [102], Anchor [132], LORE [56],
and LEMNA [58], are most frequently occurring (four primary sources [36, 39, 135, 163]). These approaches treat
the target classiier as a blackbox and approximate the decision boundary of any machine learning model by
using a simple explainable model. Note that two primary studies employ gradient-based explanation approaches
(e.g., integrated gradients and Grad-CAM) to back-propagate gradients through the DNN in order to measure the
sensitivity of each feature [69, 163]. Wu et al. [167] design an interpretable approach to classify Android malware
by leveraging a customized attention mechanism.

DISCUSSION. Our results indicate that supervised learning techniques occupy an absolutely dominant position
in the current research. However, this kind of learning involves data labeling, which is costly and requires
domain-speciic knowledge. In Android malware defenses, Anti-Viruses (AVs) like VirusTotal are widely used to
provide ground truth for experimental data. We cannot ignore the following signiicant issues. First, it may be

ACM Comput. Surv.

16 • Liu et al.

convenient to use AVs to distinguish between malware and benign apps. However, AVs couldn’t perform complex
labeling tasks such as evolved malware labeling or malware behavior labeling, which still require substantial
expertise. Second, most of the AVs work on the signature, heuristic, and behavior-based detection engines [180].
These approaches, however, are still time-consuming and human-dependent, and the more serious problem is
that they cannot work well on future samples [180]. Furthermore, one commercial AV may produce inconsistent
results over time, or distinct AVs may produce diferent results, causing the ground-truth unreliable [22]. As a
result, reliable data labeling for Android malware defenses may be a potential research topic. We also encourage
our fellow researchers to focus more on deep learning techniques requiring less human labor to annotate data,
like active learning, semi-supervised learning, reinforcement learning, or unsupervised learning.

Although all studies we investigated in this review are related to deep learning, most studies employed neural
networks with three to four layers. Training a very deep neural network on a small scale of data would cause
severe overitting [51]. Although shallow DNN networks have demonstrated promising performance in Android
malware defenses, a deeper neural network is worth further exploring in this domain. On the other hand, pre-
trained models trained on large amounts of data play an important role in CV and NLP domains, as they lower
the barrier to applying these DNN models to real-world problems. With the explosive growth of the number of
Android malware, it appears that it is not a good solution to train a DNN model from scratch every time a model
is needed. A pre-trained DL model for Android malware can considerably bring convenience for the research in
this domain.

With the exponential growth of Android applications, the requirement for massive computational resources to
achieve the desired performance is becoming an increasing issue in this domain. In comparison to text and image,
Android iles are larger in size and have a more complex structure and feature processing by reverse-engineering
tools is required, which is time-consuming. Furthermore, current deep learning frameworks involve a considerable
amount of computational resources to approach state-of-the-art performance [125]. As a result, improving the
computational eiciency of DL-based Android malware defense approaches is a growing need.
Interpretable or explainable deep learning-based Android malware defenses are also a future interesting

topic [57, 148]. Recently, researchers have focused on conducting empirical studies to highlight the need of
explainable AI/ML models for software engineering [71] and developing novel approaches for explainable AI/ML
models for software engineering [71, 81, 120, 120, 124, 128, 164]. Although prior studies have attempted to employ
local/global explainable approaches to provide explanations based on the Android characteristic-based features
for each unknown sample [167], there are still several issues requiring further exploration. First, current studies
mainly focus on simple semantic characteristic-based features extracted from APK, so richer feature types and
in-depth explanations of source code should be investigated further. Speciically, deep learning techniques have
been widely utilized to analyze raw code but how to transform the unreadable code into semantic interpretation is
an unsolved problem. On the other hand, an efective evaluation system for explainable Android malware defenses
is currently unavailable, making it signiicantly more diicult for researchers to measure the quality of explanation
results and compare alternative explanation approaches. Indeed, it is nearly impossible for experienced malware
analysts to detect all malicious behaviors in malware samples without making a mistake. Therefore, improving
the reliability of explanations for malware samples is a potential challenge for future researchers.

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 17

Table 6. A summary of the deployment of malware defense tools

Of-device On-device Distributed

Number of papers 123 2 7

Ratio 93.2% 1.5% 5.3%

RQ2.2: What deep learning architectures are used?

• MLPs, CNNs, and RNNs are mostly used in Android malware defenses.
• Research is primarily focused on supervised learning tasks, especially binary classiication tasks.
• The applications of recent advanced DL techniques (e.g., GAN, attention and DRL) to Android
malware defenses are still relatively preliminary.

• The interest in explainable DL-based malware defenses raises, and ten related studies have been
published from 2019.

3.4 Deployment of Analysis

Deployment approaches for malware defenses can be grouped into three categories: (i) of-device, (ii) on-device,
and (iii) distributed, i.e., a combination of (i) and (ii) [38].

In 93.2% of sources, the proposed tools are deployed of-device (see Table 6). Speciically, most studies design
an of-device approach and conduct experiments on personal computers or higher-performance GPU servers.
Automated malware defenses on a large volume of data require massive computational resources. Thus, the
majority of sources didn’t consider deploying the obtained DL models on mobile devices for real usage.

Conversely, only two studies propose on-device approaches [40, 41]. On-device Android malware defenses pro-
vide analysis results through the mobile device itself, without the need to share or upload private data. Currently,
on-device Android malware defenses frameworks with deep learning techniques are usually implemented by
transplanting the model trained on servers to smartphones. Feng et al. [40, 41] proposed two on-device Android
malware detection systems, MobiDroid and MobiTive, which leveraged deep learning techniques to provide
real-time detection on the user’s mobile device. Speciically, they irst maintained an efective Android malware
detection model on the server side before migrating the pre-trained model to TensorFlow-lite 4 model. They
demonstrated that the proposed approach could provide a reliable and fast reactive detection service on mobile
devices.

We also found seven distributed approaches (5.3%) [4, 50, 66, 147, 150, 156, 179]. Distributed malware defense
that performs on-the-ly analysis and/or detection on the mobile device while performing detailed and computa-
tionally expensive analysis on a remote server [38]. A good example is R2-D2 proposed by Hsien et al. [66] in
which Android users scan a suspicious app on their own mobile device, and if the app is previously unrecognized,
the app’s classes.dex is transformed into an RGB image that needs to be uploaded to the server side. In their
back-end server, the image will be fed into a CNN network and, once identiied, the results will be sent to the
users’ phone. One of the major drawbacks is that distributed approaches reveal signiicant private data to the
cloud as the uploading process via the Internet and the analysing server itself may not be secure. In the machine
learning domain, Gâlvez et al. [46] utilize semi-supervised ensemble learning to implement a privacy-respect
malware detector. However, privacy protection for distributed DL-based approaches still needs to be thoroughly
studied.

4https://www.tensorlow.org/lite/

ACM Comput. Surv.

18 • Liu et al.

In commenting on these indings, we would encourage authors to propose more on-device and distributed
malware defense approaches. Furthermore, we would encourage future authors to investigate possible solutions
to real-world issues such as privacy protection and computation resource limitations.

DISCUSSION. Most of the surveyed studies proposed of-device Android malware defense models. They irstly
collected a number of malware samples and performed model training and model evaluation on personal
computers or GPU servers, which is a fairly common operation in the domain of deep learning applications.
However, as malware techniques evolve and update, the problem of model aging is inevitable, resulting in
signiicant performance degradation over time. When a new Android malware family is reported, it is relatively
diicult for these obsolete models to update it in a responsive time. In addition, of-device analysis can’t provide
timely protection for mobile users. Distributed or on-device Android malware is one of the potential solutions,
but the number of related research studies is relatively small at the moment. Furthermore, the prior approaches
sufer from several critical laws requiring further investigations.
The existing distributed/on-device frameworks for Android malware defenses are quite simple and limited.

Firstly, suspicious Android applications must be uploaded to the server-side, which requires a heavy communica-
tion overhead. It is a potential option to assign parts of the computational tasks to smartphones. But there is a
challenge to seeking the trade-of between the detection performance and the real-time demand. On the other
hand, the communication process between clients and servers via the Internet may not be secure enough. It is not a
diicult job for attackers to modify uploading data or steal private data. As a result, taking privacy protection into
account is necessary for future work. Without a doubt, with the rapid development of deep learning techniques
and smartphones, there will be new available DNN architectures supporting working efectively on mobile
devices. Thus, we hope future researchers can propose more practical on-device approaches.

RQ2.3 How are DL-based Android malware defenses approaches deployed in practice?

• Most studies propose the Android malware defense models based of-device.
• There are seven papers focusing on distributed malware defenses.
• Only two papers propose on-device models that can perform a whole malware defense process on
the mobile device.

3.5 Performance Evaluation

Assessing the performance of the proposed approach is an important process. As a response for RQ2.4, we
analyzed the evaluation approaches utilized in the surveyed studies.

3.5.1 Dataset. First, we examined the experimental datasets used in collected studies. Fig. 7 indicates that the
authors can collect malware and goodware samples from a variety of sources. With respect to goodware samples,
the oicial Google Play Store is the most frequently used one (37.1%). Note that third-party markets such as
Anzhi, HUAWEI app store, and APKPure are also popular sources for real-world Android samples. Conversely,
public research datasets such as Drebin [13], AMD [165], and Genome [194] are more popular to gather malicious
applications. It is remarkable that 61 primary studies collect malware samples from Drebin (46.2%). One potential
disadvantage is that these datasets are not maintained or updated after being released, causing collected samples
to be outdated. Taking Drebin as an example, the dataset includes 123,453 benign samples and 5,560 malware
samples from 2011 to 2014. Although these datasets are widely used, it appears that the evaluation results may
not relect the real detection capability of recent malware samples. To overcome such a limitation, Fig. 7 shows
that the authors show an increasing interest in online repositories like AndroZoo [10] and VirusShare [155] to
collect recent malicious samples.

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 19

1

1

1

�

1

1

1

4

1

2

1

1

1

1

4

3

1

1

2

3

1

1

2

2

2

3

2

2

1

7

6

1

4

1

2

1

1

1

4

7

1

1

3

13

1

11

3

1

5

4

2

1

1

1

8

2

13

2

6

8

24

1

6

1

8

2

10

3

5

9

8

2

3

8

3

13

2

2

5

4

12

2

3

4

1

5

1

1

7

6

1

2

2

1

8

1

1

! �! #! $! %! &! '! (!

Drebin

VirusShare

Genome

AMD

Contagio

AndroZoo

VirusTotal

Third-party	markets

Google	Play

Others

Number	of	publications

2014

2015

2016

2017

2018

2019

2020

2021

Series9

Fig. 7. Summary of the primary studies by evaluation datasets (Red frame for goodware and black frame for malware).

D
a
t
a
s
e
t
	s
iz
e

�

�����

�����

�����

�����

�����

�����

	����

)����

*����

������
Goodware

Malware

(a) The distribution of the number of evaluated

applications

0

5

10

15

20

25

30

≤0.5 0.5<a<1 a=1 1<a≤2 2<a≤5 5<a≤10 a>10

u
m
b
e
r
	o

�

	p
u
b
li
c
a
ti
o
n
s

a	=	4_566789:;/4_<9=89:;

(b) The distribution of the ratio of goodware to malware

Fig. 8. Summary of the size of evaluation data

Second, for the scale of evaluation data, Fig. 8(a) represents the distribution of the number of evaluation data,
while Fig. 8(b) displays the distribution of the ratio of the size of benign samples to malware samples. The median
number of goodware samples used in performance evaluation is 9945, while the median number of malware
samples used in performance evaluation is 7149 (see Fig. 8(a)). Fig. 8(b) shows that the goodware:malware rate of
19 primary studies is set to 1:1, constructing a balanced dataset. Pendlebury et al. [119] described that the number
of goodware in the real world is much greater than the number of malware, and Android malware accounts
for between 6% and 18.6% of all apps. However, it appears that only seven sources (5<a<=10) and six sources

ACM Comput. Surv.

20 • Liu et al.

1

1

1

6

5

7

1

1

5

6

2

1

4

1

1

9

7

3

6

4

1

1

2

4

3

1

2

14

12

15

14

5

4

3

5

2

1

2

22

21

16

15

11

4

7

5

2

4

3

2

10

8

7

8

4

7

2

2

2

3

2

�
� �� �� �� �� �� ��

����a�ison	with	ML	tools

K-fold	cross	validation

Holdout	validation

Comparison	with	DL	tools

Hyperparameters	evaluation

Adversarial	resilience

Features	exploitation

Time-aware	evaluation

Realistic	testing

Obfuscated	resilience

Case	study

Comparison	with	non-learning

tools

Number	of	publications

2014

2015

2016

2017

2018

2019

2020

2021

Series

9

Fig. 9. Summary of the primary studies by evaluation approaches.

(a>10) appear to adhere to a realistic setting for the ratio of goodware to malware. There are even 28 primary
studies constructing the evaluation dataset with more malware samples. Pendlebury et al. [119] conirmed that
unrealistic assumptions about the ratio of goodware to malware cause biased performance. As such, we would
encourage authors to construct evaluation data in appropriate and reliable settings.

3.5.2 Evaluation approaches. Fig. 9 summarizes the evaluation approaches used across the reviewed studies.
We can observe here that 59 primary studies (44.6%) employ k-fold cross-validation and 44 primary studies
(33.3%) utilize holdout validation. Due to malware evolution, 14 primary studies (10.6%) split evaluation data
based on timestamps in order to perform time-aware experiments. To compare performance, we can see that 67
sources (50.7%) compare the performance with traditional machine learning approaches like Drebin [13] and
MaMaDroid [104], while 44 sources (33.3%) compare the performance with other deep learning-based approaches.
It is interesting to observe that seven primary studies (5.3%) compare the proposed approaches with non-learning
tools such as signature-based anti-virus scanners. It is worth noting that 36 sources (27.2%) evaluate the inluence
of hyperparameters in deep learning models (e.g., learning rate and hidden layer size). Only seven primary
studies conduct case studies to conduct an in-depth manual analysis of speciic results. To prove the robustness
of the proposed approaches, some studies also examine their resilience against obfuscation (7.5%) and adversarial
attacks (12.8%). To demonstrate the reliability of the proposed approaches, 14 primary studies (10.6%) list the
top signiicant features to measure the contribution of diferent features for the predictions. Additionally, we
discover that 11 sources (8.3%) perform evaluation tests in real-world scenarios to further prove the performance.

3.5.3 Evaluation metrics. The previous results indicate that most studies focus on a classiication problem. As
such, evaluation metrics from traditional classiication problems are directly utilized to measure the performance
of proposed malware defense models in the majority of collected studies. These standard classiication evaluation
metrics (e.g., accuracy, precision, recall, F1-score, True Positive Rate, False Positive rate, Receiver Operating
Characteristic (ROC) curve) are discussed in [99, 127] in detail. Computational eiciency is another common
measure criterion in review papers. Speciically, time costs like feature processing time and hardware resource
consumption like memory usages are typically considered.
To ascertain the efectiveness of these deep learning-based approaches, we also looked at the speciic values

of the evaluation metrics. Because accuracy and F1 score are the most frequently occurring (71.2% sources use

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 21

A
c
c
u
r
a
c
y
/
F
1
		%

94

95

96

97

98

99

100

Accuracy

F1

Fig. 10. The distribution of the performance metric values.

Table 7. List of publicly available tools

Tool Year DNN models Open-source
tool-support

Tool Year DNN models Open-source
tool-support

McLaughlin et al. [106] 2017 CNN ✓ Feichtner et al. [39] 2020 CNN ✓

Kim et al. [77] 2018 MLP ✓ Warnecke et al. [163] 2020 MLP, CNN ✓

R2-D2 [66] 2018 CNN APICHECKER [50] 2020 MLP
Vinayakumar et al. [154] 2018 LSTM ✓ DENAS [24] 2020 MLP ✓

TESSERACT [119] 2019 MLP XMal [167] 2021 Attention ✓

Yen et al. [181] 2019 CNN ✓ Li et al. [88] 2021 AE, MLP ✓

Abderrahmane et al. [1] 2019 CNN ✓ RAMDA [92] 2021 Hybrid ✓

DeepIntent [170] 2019 Hybrid ✓ Dr.Droid [37] 2021 transformers,
GNN

✓

ANDRE [188] 2019 MLP ✓ PetaDroid [72] 2021 Hybrid ✓

Karunanayake et al. [74] 2020 CNN ✓ DexRay [28] 2021 CNN ✓

Li et al. [87] 2020 MLP ✓ Li et al. [89] 2021 MLP, CNN,
RNN

✓

BIHAD [116] 2020 Hybrid ✓ Severi et al. [135] 2021 MLP ✓

API-GRATH [187] 2020 MLP ✓ Iadarola et al. [69] 2021 CNN ✓

Shar et al. [136] 2020 MLP,CNN,RNN ✓ CADE [178] 2021 AE ✓

Chaulagain et al. [23] 2020 LSTM ✓ HRAT [190] 2021 DRL

accuracy and 43.1% sources use F1 score), we record the highest accuracy and F1 score values presented in
reviewed sources. Fig. 10 presents their distribution. It is remarkable that the median number of accuracy/F1 is
98%. Moreover, the accuracy/F1 values of 25% of sources are greater than 99%. Numerous research studies [12, 119]
have pointed out that most studies present overly-optimistic results caused by a series of biased experimental
settings (e.g., data imbalance, outdated data). However, this issue still needs to be thoroughly studied in the
future. For more information about potential risks/biases that undermine the evaluation performance, readers are
referred to the empirical study by Arp et al. [12].

3.5.4 Availability. The availability of proposed works in collected studies is investigated, which helps future
researchers measure and certify the proposed tools. Table 7 presents a summary of the publicly available tools. In
reviewed sources, there are only 30 primary studies providing publicly available tools, with just 22.7%. Among
the publicly available approaches, 26 approaches are open-sourced. It is noticeable that 26 sources out of the 30
are from 2019 to 2021, indicating that the research community in DL-based Android malware defenses is showing
an increasing interest in sharing their research eforts.

DISCUSSION. The irst problem is that evaluation results may not relect the real performance of the model.
For example, it is quite common to combine malware datasets released a long time ago such as Drebin and
Contagio, with the latest benign samples from oicial Android markets to build new experimental trained data
[9, 30, 32, 108]. These malware datasets have not been updated in real time to include the latest malware samples,
and thus contain outdated malware samples. On the other hand, as defense strategies evolve, some malicious

ACM Comput. Surv.

22 • Liu et al.

Table 8. Top 10 cited papers based on citations per year

Tool Year Cites Cit./Tear DNN models Objectives

Grosse et al. [54] 2017 393 78.6 MLP Adversarial Learning Attacks and Protections
DL-Droid [6] 2020 130 65.0 MLP Malware Detection
McLaughlin et al. [106] 2017 313 62.6 CNN Malware Detection
DroidDetector [185] 2016 341 56.8 DBN Malware Detection
Kim et al. [77] 2018 219 54.8 MLP Malware Detection
IMCFN [151] 2020 107 53.5 CNN Malware Family Attribution
Droid-Sec [184] 2014 414 51.8 DBN Malware Detection
MalDozer [73] 2018 207 51.8 CNN Malware Detection, Malware Family Attribution
Wang et al. [159] 2019 154 51.3 hybrid Malware Detection
TESSERACT [119] 2019 149 49.7 MLP Malware Evolution Detection and Defense

technologies used in public data sets are likely to be abandoned. The model trained using these types of data is
rather weak to deal with the most recent malicious apps.
The data distribution is highly imbalanced, posing a serial of challenges when performing malware analysis.

First, the amount of benign samples is much larger than that of malware samples in the real-world scenario
but this fact is usually overlooked by prior researchers [119]. Similarly, the number of samples difers greatly
among various malware families or malware categories. For Drebin data set as an example, though its 5560
malware samples can be classiied into 179 distinct families, there are only 33 families that include more than
15 examples. Thus, malware families with small scale are easy to be misclassiied into the training data set’s
dominant family categories. Bai et al. [16] demonstrated that although many proposed approaches have been
proven good performance with high accuracy, these models sufered from poor performance to predict small
families, even with the help of down-sampling methods. As a result, we suggest that considering data imbalance
when analyzing malware may be critical for developing a more practical malware defense approach.

Another signiicant issue is limited reproducibility. Our reviewed results reveal that only a small number
of primary studies share their source code, which makes future researchers’ validation of assessment results
more diicult. Except for the source code, most studies collect evaluation data from a variety of sources but
more details for the collected data are missing. Daoudi et al. [27] attempted to reproduce ive ML-based Android
malware detectors, but only one was successful. Thus, providing a transparent framework to manage performance
evaluation is required for future researchers.

RQ2.4 How are DL-based Android malware defenses approaches evaluated?

• Evaluation data is collected from a variety of resources.
• Classic classiication evaluation metrics are mostly used to measure the performance.
• Almost half of the sources reported a 98% accuracy.
• Thirty works have made their contributions publicly available.

3.6 Trend Analysis

Advanced deep learning techniques have been widely applied in Android malware defenses since 2014. Fig. 1
reveals there is a growing interest in this emerging research topic, far from reaching its peak. In order to determine
general research trends, we conduct a statistic analysis of the sources and present a detailed analysis for some
speciic popular topics as a response to RQ3.

3.6.1 Statistic analysis. In order to locate current research concerns, we irst sorted collected studies according
to the number of citations per year, and the counts are based on the citation counts of Google Scholar before Dec
2021. Table 8 mentions the top 10 primary publications. It is apparent from this table that integrating deep learning

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 23

Table 9. A summary of recent papers published in top venues

Tool Year Venues DNN models Objectives

TESSERACT [119] 2019 USENIX Security MLP Malware Evolution Detection and Defense
AiDroid [179] 2019 IJCAI CNN Malware Detection
DeepIntent [170] 2019 CCS CNN, RNN, atten-

tion, AE
Malicious Behavior Analysis

API-GRATH [187] 2020 CCS MLP Malware Evolution Detection and Defense, Malware
Detection

Karunanayake et al. [74] 2020 TMC CNN Repackaged/Fake App Detection
DENAS [24] 2020 FSE MLP Malware Detection
Bai et al. [16] 2020 ICSE Siamese network Malware Family Attribution
Severi et al. [135] 2021 USENIX Security MLP Adversarial Learning Attacks and Protections
CADE [178] 2021 USENIX Security AE Malware Evolution Detection and Defense
XMal [167] 2021 TOSEM Attention Malware Detection
Ficco et al. [44] 2021 TC MLP Malware Detection
Dr.Droid [37] 2021 SIGKDD Transformers, GNN Malware Evolution Detection and Defense, Malware

Detection
HDNFDroid [199] 2021 TKDE AE Malware Detection
RAMDA [92] 2021 WWW MLP, AE Adversarial Learning Attacks and Protections
HRAT [190] 2021 CCS MLP Adversarial Learning Attacks and Protections

techniques into malware detection is still the main focus (seven out of the ten sources). But speciically, these
research studies employ various deep learning models (e.g., MLP, CNN, DBN.) to detect malicious applications.
Note that Grosse et al. [54] has the largest number of citations, and one reason for the high citation counts is that
this work investigates the viability of adversarial attack techniques against neural networks in this ield, which
sets the foundations for future work. Another work [119] published in 2019 that examines malware evolution is
also a highly cited paper. These facts demonstrate that the robustness of DL-based detection models is attracting
increased research attention.
Although sorting these primary studies based on citations can help us identify high-impacted work, it is

not applicable to recent work due to the time delay. We, therefore, list all recent publications (from 2019 to
2021) presented in top venues that have the highest quality ranking (A*) in the CORE ranking system, as shown
in Table 9, which can help us seek the current research focus of top researchers. It is worth noting that top
venues, especially in the security domain (CCS and USENIX Security), publish an increasing number of relevant
studies. Although most listed papers in this table still focus on malware detection, they make deeper analysis
on more speciic issues in Android malware detection, such as evaluation metrics, data imbalance problems,
interpretability, model aging, etc. It is also noteworthy that "Adversarial Learning Attacks and Protections" and
"Malware Evolution Detection and Defense" are frequently occurring in the top venues recently. These two issues
are closely related to the practicability and efectiveness of the proposed architectures, which belong to key areas
for future research to improve the state of the art in Android malware defenses.

Table 8 and 9 further summarize the deep learning architectures used in these listed studies. Fig. 6 displays that
CNN, RNN, and MLP have been widely used in Android malware defenses in recent years, MLP appears most
frequently among listed important works. This is not a surprising outcome. MLP is the simplest but quintessential
deep neural network, and thus researchers would tend to conduct experiments based on MLP networks irst
when they have a new research idea. Compared with the sources listed in Table 8, recent studies adopt more
advanced deep learning models such as attention-based networks and GNN. These observations also illustrate
that the application of advanced deep learning techniques to the Android malware defenses domain is actually
in a preliminary stage. In recent years, deep learning has brought impressive progress in many domains and
many modern DL approaches are up-to-come, such as deep active learning, reinforcement learning, transfer
learning, controllable generative models, etc. However, the application of deep learning technologies in the ield
of mobile security is far behind the development of deep learning itself. Research toward DL-based Android
malware defenses is active currently, and hence we believe more advancements are expected in the near future.

ACM Comput. Surv.

24 • Liu et al.

Table 10. A summary of adversarial atacks and defenses

Category Percentage Papers

Target phase

Evasion attacks 87.5% [25, 29, 54, 75, 87ś89, 91, 92, 123, 129, 143, 144, 190]

Poisoning attacks 12.5% [86, 135]

Attacks scenarios

White-box 31.3% [29, 54, 75, 143, 190]

White-box & Black-box 37.5% [87, 88, 92, 123, 129, 135]

Black-box 31.3% [25, 86, 89, 91, 144]

Adversarial defenses strategies

Speciied 75.0% [25, 54, 86ś89, 92, 123, 129, 143, 144, 190]

Not Speciied 25.0% [29, 75, 91, 135]

3.6.2 Adversarial learning atacks and protections. Deep learning models are not resistant to adversarial attacks,
which can cause a model to output an entirely incorrect prediction. Adversarial examples can be generated by
just applying minor but intentional perturbations to original samples. A detailed taxonomy of adversarial sample
crafting techniques and defensive techniques can be found in these survey work [2, 115]. As discussed before, we
discovered 16 primary studies (12%) related to adversarial learning attacks and protections. Table 10 presents a
detailed summary for these 16 primary studies.
Focusing on the target phase of adversarial attacks, it is apparent that evasion attacks receive more research

attention, accounting for 87.5%. Evasion attacks modify the data point at inference time, resulting in misclassii-
cation. For example, Grosse et al. [54] perform adversarial evasion attacks on DNN-based malware detection
models. This work exploited Jacobian based white-box attacks [115] to generate adversarial examples, and the
evaluation results indicated that the evasion algorithm can misclassify 63% of all malware samples on Drebin.
Conversely, only two primary studies [86, 135] investigated poisoning attacks, where the adversary’s objective is
to victimize the model training process. It is interesting to observe that both of these two sources are devoted to
backdoor poisoning attacks.

Table 10 shows that ive sources focus on white-box attacks. White-box attacks assume that the adversary has
knowledge about the trained model such as model architectures and hyperparameters. For example, Grosse et
al. [54] require the gradient information of DNN networks to craft adversarial examples. Five sources perform
black-box attacks on DL-based malware detection models, where the adversary requires no knowledge about the
target classiier. Six primary studies also assess the robustness of DNN models in both black-box and white-box
scenarios. These studies demonstrated that the attackers are slightly more vulnerable when having a limited
knowledge of the model architecture.

With regard to adversarial defense strategies, Table 10 indicates that 75% of sources adopt defense mechanisms
for adversarial attacks. It is worth mentioning that most studies apply adversarial training and ensemble learning
to defend against adversarial attacks [54, 87, 88, 123, 172, 190].

3.6.3 Malware evolution detection and defense. In the security domain, malware evolution has several similar
concepts such as concept drift [178], time decay [119] and model aging [187]. Fig. 2 shows that seven recent
sources for detecting and defending malware evolution have been found. In order to better understand the
current research state, Table 11 provides a summary of these seven primary studies. It is worth highlighting
that four primary studies [37, 85, 174, 187] attempt to capture features’ semantic similarity to slow down model
aging. Pendlebury et al. [119] propose a time-aware performance metric for measuring classiiers’ resilience
to malware evolution. Indeed, these approaches merely slow down model performance degradation caused by

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 25

Table 11. A summary of DL-based malware evolution detection and protection approaches

Tool Year DNN models Approach Model updating

TESSERACT [119] 2019 MLP Proposing a new metric for time decay Retraining without drift understand-
ing, active learning, classiication
with rejection

EveDroid [85] 2019 MLP API semantics -
API-GRATH [187] 2020 MLP API semantics Active learning
Dr.Droid [37] 2021 Transformers, GNN Semantic relations; Heterogeneous tem-

poral graph
-

Li et al. [89] 2021 MLP, CNN, RNN Uncertainty -
SDAC [174] 2020 DNN API semantics -
CADE [178] 2021 AE Concept drift detection Retraining with drift understanding

malware evolution. Thus, model updating approaches like model retraining or active learning are also frequently
investigated to reverse and improve obsolete models [119, 187]. However, such model updating approaches
remain evolution-insensitive, requiring periodical retraining. In addition, this process often needs signiicant
amounts of efort in labeling new samples. To this end, Yang et al. employ contrastive learning to identify and
understand drift malware samples before updating the aging models.

RQ3 What are the emerging and potential research trends?

• Although there exists much research on DL-based on Android malware defenses, this topic still
requires more in-depth analysis.

• Malware evolution and adversarial attacks are two recent hot topics.
• How to improve the reliability, robustness and practicability of DL-based Android malware defense
frameworks is a future challenge.

4 OPEN ISSUES AND FUTURE TRENDS

In this work, we summarized the relevant sources of DL-based Androidmalware defenses and discussed research
trends and challenges from various aspects in Section 3. Here we draw on these indings of this systematic review
to provide a set of discussion points around the research and practice of Android security for future researchers.
Android malware defenses remain a hot topic for further investigation. As our systematic review

revealed, much research has been devoted to DL-based Android malware defenses in recent years, and the amount
of relevant research is constantly increasing. It suggests that mobile security is a major concern nowadays. Mobile
phones have become an integral part of people’s daily life, and mobile users also pay much more attention to
private mobile security, particularly the prevention of malicious applications.
However, the majority of existing research focuses on malware detection as a binary classiication problem,

which is far from enough to address current issues and improve mobile security. Malware remains among
the most efective threats in the cyber space, and malware writers continue to update malware techniques to
bypass security detection. As a result, this research requires more in-depth analysis rather than simply seeking a
binary label. Other research aspects, like malware attribution/behaviors, malware variants, malware triage and
treatments of infection, still receive scant attention.
Data imbalance. As shown in Section 3.5.1, the sources prefer to construct a relatively balanced dataset for

performance evaluation purposes. However, Android malware defenses sufer from serious sample sparsity and
imbalance issues. In the Android landscape, the number of goodware is signiicantly greater than the number
of malware [119]. Additionally, malware families are also highly imbalanced (thousands of samples in some
families but only a few in others). Many previous studies have demonstrated that imbalanced data distributions
hinder the performance [16, 119]. Thus, how to develop efective solutions against data imbalance in DL-based

ACM Comput. Surv.

26 • Liu et al.

Android malware defenses has gained immense research interest. From our reviewed results, we identiied two
related studies to handle the data imbalance issue, including a Siamese network-based approach for imbalanced
family classiication [16] and a BERT-based approach for imbalanced malware detection [112]. However, these
two studies are limited to relatively simple scenarios, and thus more eforts are still required to overcome the
negative inluences of data imbalance on Android malware defenses.

Improving practicality and reliability is a priority.Our review also revealed that improving the practicality
and reliability of DL-based Android malware defense approaches gathered increasing research interests. Although
advanced deep learning techniques have been demonstrated to be efective at defending against malware attacks
in a series of research experiments, how to efectively apply these approaches in practice remains unsolved.
Future research should not only ind a solution to overcome the limitation of mobile computing resources to
deploy DL-based malware defense architectures, but also propose a comprehensive framework to tackle many
realistic challenges such as internet privacy protection and information updating, which may require knowledge
in other speciic areas of cyber security and computer internet. Except for that, the black-box nature of deep
neural networks poses a serious barrier to implementing these proposed approaches in practice. How to improve
the transparency of the malware defense process will be a noteworthy research topic in the future.
Deep learning in Android security is still in an early stage. Compared with other research domains,

research towards deep learning in the Android security community seems to be relative singleness. First, super-
vised DNN networks are the most investigated, and these studies usually consider DNN networks with three to
four layers in their proposed architectures. Secondly, more advanced deep learning approaches like reinforcement
learning and online learning are covered by a minority of papers. Thirdly, most previous works adopt deep
learning techniques on some simple tasks like binary Android malware classiication. In fact, deep learning has
made considerable achievements in computer vision and natural language processing. These advanced techniques
have been demonstrated a powerful capability in solving many complex tasks [83]. For example, Wu et al. [167]
introduce an attention mechanism to improve the interpretability of Android malware detection models. Thus, it
is promising to apply advanced deep learning techniques to assist us in solving more complex and speciic issues
in Android security. At the same time, while supervised learning is dominant in the Android security domain,
labeling data is time-consuming and requires substantial expertise. As described by deep learning textbook
by Lecun et al. [83], unsupervised learning belongs to the future of deep learning. We encourage our fellow
researchers to make more eforts on unsupervised deep learning in Android security to make more advancements
in the future.

APK embedding is an important but untouched topic. Diferent from image or word information, Android
apps are composed of multiple complex data. Android APK is a zip archive consisting of multiple iles. Through
reverse engineering, various types of features like permissions and opcode can be extracted for further analysis.
In fact, deep learning still struggles to model these complex data modalities [125]. Therefore, existing research
either transforms APK into a single type of feature or designs a multimodel deep learning architecture to handle
them. To obtain a formalized representation compatible with DL models, embedding techniques from CV and NLP
are introduced to encode features, but these techniques may be relatively shallow for APK iles with complicated
structures. As for Android security, there is still a long way to explore "APK embedding" for DNN models.

5 THREATS TO VALIDITY

Even though this systematic review was conducted by following a well-established methodology [79], we can’t
guarantee that our results covered all relevant studies, caused by some limitations during the review process.
Thus, this section describes possible threats to the validity of our empirical study.

Search items and strategies. One main potential threat is relevant publication collection bias. In order to locate
relevant studies, we described a list of search strings and search databases in Section 2.2. Search strings were

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 27

formulated by diferent items from both software engineering and artiicial intelligence domains. Although we
added alternative spellings and synonyms for search items, we may still miss some search items. For instance, deep
learning is a rapidly developing research ield and AI scientists would continue to propose new DL techniques in
a short time; thus, identifying all relevant DL items is a challenge. To minimize this issue, we retained the DL
items described in [51, 83, 134] surveyed by AI experts. After search strings were identiied, ive well-known
electronic databases were used to collect relevant studies. We also conducted further searching processes on two
popular research citation engines and a backward snowballing to cover the relevant publications in the broadest
sense.
Data selection bias. The selection of publications was conducted by one researcher only, which may cause

missing studies. Despite that, all authors formulated an appropriate study selection scheme together, and the
other three authors gave efective and detailed feedback and monitored review execution closely throughout the
review process. On the other hand, in order to reduce the impact of subjective factors in the quality evaluation
process, H5-index of the venues was introduced as a quality appraisal criterion. Although the H5-value may
change over time, the inluential papers from the top venues were guaranteed to be taken into account.

6 CONCLUSIONS

This article provides an in-depth examination of the use of deep learning in Android malware defenses.
Additionally, the study discusses research objectives, characteristics, approaches, and challenges associated with
Android malware defenses using deep learning. We collected 132 relevant studies. Our reviewed results indicate
that deep learning techniques are becoming a powerful and promising tool to defend against Android malicious
applications. We discovered that (1) most studies are conducted to detect malware, but other types of more
detailed analysis on malicious apps are receiving increasing attention; (2) static program analysis is widely used
to collect features, and semantic features are frequently occurring; (3) various DNN architectures are employed to
analyze malware, among which MLPs and CNNs are the most widely used; (4) most approaches are performed as
a supervised classiication task; (5) distributed analysis and on-device analysis is gradually valued; (6) adversarial
learning and malware evolution are two recent hot topics.

REFERENCES

[1] Abada Abderrahmane, Guettaf Adnane, Challal Yacine, and Garri Khireddine. 2019. Android Malware Detection Based on System Calls

Analysis and CNN Classiication. In 2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW). IEEE, 1ś6.

[2] Naveed Akhtar and Ajmal Mian. 2018. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access 6

(2018), 14410ś14430.

[3] Ebtesam J Alqahtani, Rachid Zagrouba, and Abdullah Almuhaideb. 2019. A Survey on Android Malware Detection Techniques Using

Machine Learning Algorithms.. In 2019 Sixth International Conference on Software Deined Systems (SDS). IEEE, 110ś117.

[4] Hani Alshahrani, Harrison Mansourt, Seaver Thorn, Ali Alshehri, Abdulrahman Alzahrani, and Huirong Fu. 2018. DDefender: Android

application threat detection using static and dynamic analysis. In 2018 IEEE International Conference on Consumer Electronics (ICCE).

IEEE, 1ś6.

[5] Mohammed K Alzaylaee, Suleiman Y Yerima, and Sakir Sezer. 2017. Emulator vs real phone: Android malware detection using machine

learning. In Proceedings of the 3rd ACM on International Workshop on Security and Privacy Analytics. 65ś72.

[6] Mohammed K Alzaylaee, Suleiman Y Yerima, and Sakir Sezer. 2020. DL-Droid: Deep learning based android malware detection using

real devices. Computers & Security 89 (2020), 101663.

[7] Muhammad Amin, Babar Shah, Aizaz Sharif, Tamleek Ali, Ki-lL Kim, and Sajid Anwar. 2019. Android malware detection through

generative adversarial networks. Transactions on Emerging Telecommunications Technologies (2019), e3675.

[8] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro,

Qiang Cheng, Guoliang Chen, et al. 2016. Deep speech 2: End-to-end speech recognition in english and mandarin. In International

conference on machine learning. 173ś182.

[9] A Ananya, A Aswathy, TR Amal, PG Swathy, P Vinod, and Shojafar Mohammad. 2020. SysDroid: a dynamic ML-based android malware

analyzer using system call traces. Cluster Computing (2020), 1ś20.

[10] AndroZoo 2020. AndroZoo. Retrieved Oct 11, 2020 from https://androzoo.uni.lu/

ACM Comput. Surv.

https://androzoo.uni.lu/

28 • Liu et al.

[11] Apktool 2010. APKTOOL. Retrieved Oct 25, 2021 from https://ibotpeaches.github.io/Apktool/

[12] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and

Konrad Rieck. 2020. Dos and Don’ts of Machine Learning in Computer Security. arXiv preprint arXiv:2010.09470 (2020).

[13] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT Siemens. 2014. Drebin: Efective and

explainable detection of android malware in your pocket.. In Ndss, Vol. 14. 23ś26.

[14] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. Deep reinforcement learning: A brief

survey. IEEE Signal Processing Magazine 34, 6 (2017), 26ś38.

[15] Alessandro Bacci, Alberto Bartoli, Fabio Martinelli, Eric Medvet, and Francesco Mercaldo. 2018. Detection of obfuscation techniques in

Android applications. In Proceedings of the 13th International Conference on Availability, Reliability and Security. 1ś9.

[16] Yude Bai, Zhenchang Xing, Xiaohong Li, Zhiyong Feng, and Duoyuan Ma. 2020. Unsuccessful story about few shot malware family

classiication and siamese network to the rescue. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering.

1560ś1571.

[17] Yude Bai, Zhenchang Xing, Duoyuan Ma, Xiaohong Li, and Zhiyong Feng. 2021. Comparative analysis of feature representations and

machine learning methods in Android family classiication. Computer Networks 184 (2021), 107639.

[18] Nazanin Bakhshinejad and Ali Hamzeh. 2019. Parallel-CNN network for malware detection. IET Information Security 14, 2 (2019),

210ś219.

[19] Khaled Bakour and Halil Murat Ünver. 2020. VisDroid: Android malware classiication based on local and global image features, bag of

visual words and machine learning techniques. Neural Computing and Applications (2020), 1ś21.

[20] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation learning: A review and new perspectives. IEEE transactions

on pattern analysis and machine intelligence 35, 8 (2013), 1798ś1828.

[21] BlackHat 2011. Androguard. Retrieved Oct 25, 2021 from https://code.google.com/archive/p/androguard

[22] Marcus Botacin, Fabricio Ceschin, Ruimin Sun, Daniela Oliveira, and André Grégio. 2021. Challenges and pitfalls in malware research.

Computers & Security 106 (2021), 102287.

[23] Dewan Chaulagain, Prabesh Poudel, Prabesh Pathak, Sankardas Roy, Doina Caragea, Guojun Liu, and Xinming Ou. 2020. Hybrid

Analysis of Android Apps for Security Vetting using Deep Learning. In 2020 IEEE Conference on Communications and Network Security

(CNS). IEEE, 1ś9.

[24] Simin Chen, Soroush Bateni, Sampath Grandhi, Xiaodi Li, Cong Liu, and Wei Yang. 2020. DENAS: automated rule generation by

knowledge extraction from neural networks. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. 813ś825.

[25] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang Xiang, and Kui Ren. 2019. Android HIV: A study

of repackaging malware for evading machine-learning detection. IEEE Transactions on Information Forensics and Security 15 (2019),

987ś1001.

[26] Gianni D’Angelo, Massimo Ficco, and Francesco Palmieri. 2020. Malware detection in mobile environments based on Autoencoders

and API-images. J. Parallel and Distrib. Comput. 137 (2020), 26ś33.

[27] Nadia Daoudi, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein. 2021. Lessons Learnt on Reproducibility in Machine Learning

Based Android Malware Detection. Empirical Software Engineering 26, 4 (2021), 1ś53.

[28] Nadia Daoudi, Jordan Samhi, Abdoul Kader Kabore, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein. 2021. DexRay: A Simple,

yet Efective Deep Learning Approach to Android Malware Detection Based on Image Representation of Bytecode. In International

Workshop on Deployable Machine Learning for Security Defense. Springer, 81ś106.

[29] Asim Darwaish, Farid Naït-Abdesselam, Chaiq Titouna, and Sumera Sattar. 2021. Robustness of image-based android malware detection

under adversarial attacks. In ICC 2021-IEEE International Conference on Communications. IEEE, 1ś6.

[30] Andrea De Lorenzo, Fabio Martinelli, Eric Medvet, Francesco Mercaldo, and Antonella Santone. 2020. Visualizing the outcome of

dynamic analysis of Android malware with VizMal. Journal of Information Security and Applications 50 (2020), 102423.

[31] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:1810.04805 (2018).

[32] Yuxin Ding, Xiao Zhang, Jieke Hu, and Wenting Xu. 2020. Android malware detection method based on bytecode image. Journal of

Ambient Intelligence and Humanized Computing (2020), 1ś10.

[33] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F Bissyandé, Tianming Liu, Guoai Xu, and Jacques Klein. 2018. FraudDroid:

Automated Ad Fraud Detection for Android Apps. In The 26th ACM Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE 2018).

[34] Jefrey L Elman. 1990. Finding structure in time. Cognitive science 14, 2 (1990), 179ś211.

[35] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel,

and Anmol N Sheth. 2014. Taintdroid: an information-low tracking system for realtime privacy monitoring on smartphones. ACM

Transactions on Computer Systems (TOCS) 32, 2 (2014), 1ś29.

ACM Comput. Surv.

https://ibotpeaches.github.io/Apktool/
https://code.google.com/archive/p/androguard

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 29

[36] Ming Fan, Wenying Wei, Xiaofei Xie, Yang Liu, Xiaohong Guan, and Ting Liu. 2020. Can We Trust Your Explanations? Sanity Checks

for Interpreters in Android Malware Analysis. IEEE Transactions on Information Forensics and Security (2020).

[37] Yujie Fan, Mingxuan Ju, Shifu Hou, Yanfang Ye, Wenqiang Wan, Kui Wang, Yinming Mei, and Qi Xiong. 2021. Heterogeneous Temporal

Graph Transformer: An Intelligent System for Evolving Android Malware Detection. In Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery & Data Mining. 2831ś2839.

[38] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur, Mauro Conti, and Muttukrishnan Rajarajan. 2014.

Android security: a survey of issues, malware penetration, and defenses. IEEE communications surveys & tutorials 17, 2 (2014), 998ś1022.

[39] Johannes Feichtner and Stefan Gruber. 2020. Understanding Privacy Awareness in Android App Descriptions Using Deep Learning. In

Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy. 203ś214.

[40] Ruitao Feng, Sen Chen, Xiaofei Xie, Lei Ma, Guozhu Meng, Yang Liu, and Shang-Wei Lin. 2019. Mobidroid: A performance-sensitive

malware detection system on mobile platform. In 2019 24th International Conference on Engineering of Complex Computer Systems

(ICECCS). IEEE, 61ś70.

[41] Ruitao Feng, Sen Chen, Xiaofei Xie, Guozhu Meng, Shang-Wei Lin, and Yang Liu. 2020. A performance-sensitive malware detection

system using deep learning on mobile devices. IEEE Transactions on Information Forensics and Security 16 (2020), 1563ś1578.

[42] Yinglan Feng, Liang Chen, Angyu Zheng, Cuiyun Gao, and Zibin Zheng. 2019. AC-Net: Assessing the Consistency of Description and

Permission in Android Apps. IEEE Access 7 (2019), 57829ś57842.

[43] Hossein Fereidooni, Mauro Conti, Danfeng Yao, and Alessandro Sperduti. 2016. ANASTASIA: ANdroid mAlware detection using STatic

analySIs of Applications. In 2016 8th IFIP international conference on new technologies, mobility and security (NTMS). IEEE, 1ś5.

[44] Massimo Ficco. 2021. Malware Analysis By Combining Multiple Detectors and Observation Windows. IEEE Trans. Comput. (2021).

[45] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, and Joelle Pineau. 2018. An introduction to deep

reinforcement learning. arXiv preprint arXiv:1811.12560 (2018).

[46] Rafa Gálvez, Veelasha Moonsamy, and Claudia Diaz. 2021. Less is More: A privacy-respecting Android malware classiier using

Federated Learning. Proceedings on Privacy Enhancing Technologies 1 (2021), 20.

[47] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. 2014. Malware analysis and classiication: A survey. Journal of Information Security

2014 (2014).

[48] Han Gao, Shaoyin Cheng, and Weiming Zhang. 2021. GDroid: Android malware detection and classiication with graph convolutional

network. Computers & Security 106 (2021), 102264.

[49] Amirhossein Gharib and Ali Ghorbani. 2017. Dna-droid: A real-time android ransomware detection framework. In International

Conference on Network and System Security. Springer, 184ś198.

[50] Liangyi Gong, Zhenhua Li, Feng Qian, Zifan Zhang, Qi Alfred Chen, Zhiyun Qian, Hao Lin, and Yunhao Liu. 2020. Experiences of

landing machine learning onto market-scale mobile malware detection. In Proceedings of the Fifteenth European Conference on Computer

Systems. 1ś14.

[51] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT press.

[52] Google Play Protect 2020. Google Play Protect. Retrieved Sep 09, 2020 from https://www.android.com/play-protect/

[53] Petr Gronát, Javier Alejandro Aldana-Iuit, and Martin Bálek. 2019. MaxNet: Neural Network Architecture for Continuous Detection of

Malicious Activity. In 2019 IEEE Security and Privacy Workshops (SPW). IEEE, 28ś35.

[54] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick McDaniel. 2017. Adversarial examples for malware

detection. In European Symposium on Research in Computer Security. Springer, 62ś79.

[55] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD

international conference on Knowledge discovery and data mining. 855ś864.

[56] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco Turini, and Fosca Giannotti. 2018. Local rule-based

explanations of black box decision systems. arXiv preprint arXiv:1805.10820 (2018).

[57] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi. 2018. A survey of methods

for explaining black box models. ACM computing surveys (CSUR) 51, 5 (2018), 1ś42.

[58] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018. Lemna: Explaining deep learning based security

applications. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 364ś379.

[59] Ke He and Dong-Seong Kim. 2019. Malware detection with malware images using deep learning techniques. In 2019 18th IEEE

International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big

Data Science And Engineering (TrustCom/BigDataSE). IEEE, 95ś102.

[60] Geofrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke,

Patrick Nguyen, Tara N Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech recognition: The shared views of

four research groups. IEEE Signal processing magazine 29, 6 (2012), 82ś97.

[61] Geofrey E Hinton. 2009. Deep belief networks. Scholarpedia 4, 5 (2009), 5947.

[62] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward networks are universal approximators. Neural

networks 2, 5 (1989), 359ś366.

ACM Comput. Surv.

https://www.android.com/play-protect/

30 • Liu et al.

[63] Shifu Hou, Aaron Saas, Lifei Chen, and Yanfang Ye. 2016. Deep4maldroid: A deep learning framework for android malware detection

based on linux kernel system call graphs. In 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW). IEEE,

104ś111.

[64] Shifu Hou, Aaron Saas, Lingwei Chen, Yanfang Ye, and Thirimachos Bourlai. 2017. Deep neural networks for automatic android

malware detection. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

2017. 803ś810.

[65] Shifu Hou, Aaron Saas, Yanfang Ye, and Lifei Chen. 2016. Droiddelver: An android malware detection system using deep belief network

based on api call blocks. In International Conference on Web-Age Information Management. Springer, 54ś66.

[66] TonTon Hsien-De Huang and Hung-Yu Kao. 2018. R2-D2: color-inspired convolutional neural network (CNN)-based android malware

detections. In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2633ś2642.

[67] Na Huang, Ming Xu, Ning Zheng, Tong Qiao, and Kim-Kwang Raymond Choo. 2019. Deep Android Malware Classiication with API-

Based Feature Graph. In 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th

IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE, 296ś303.

[68] Shinelle Hutchinson, Bing Zhou, and Umit Karabiyik. 2019. Are We Really Protected? An Investigation into the Play Protect Service. In

2019 IEEE International Conference on Big Data (Big Data). IEEE, 4997ś5004.

[69] Giacomo Iadarola, Fabio Martinelli, Francesco Mercaldo, and Antonella Santone. 2021. Towards an interpretable deep learning model

for mobile malware detection and family identiication. Computers & Security 105 (2021), 102198.

[70] Amir Namavar Jahromi, Sattar Hashemi, Ali Dehghantanha, Reza M Parizi, and Kim-Kwang Raymond Choo. 2020. An enhanced

stacked LSTM method with no random initialization for malware threat hunting in safety and time-critical systems. IEEE Transactions

on Emerging Topics in Computational Intelligence (2020).

[71] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, Hoa Khanh Dam, and John Grundy. 2020. An Empirical Study of Model-Agnostics

Techniques for Defect Prediction Models. IEEE Transactions on Software Engineering (TSE) (2020).

[72] ElMouatez Billah Karbab and Mourad Debbabi. 2021. PetaDroid: Adaptive Android Malware Detection Using Deep Learning. In

International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 319ś340.

[73] ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid Derhab, and Djedjiga Mouheb. 2018. MalDozer: Automatic framework for

android malware detection using deep learning. Digital Investigation 24 (2018), S48śS59.

[74] Naveen Karunanayake, Jathushan Rajasegaran, Ashanie Gunathillake, Suranga Seneviratne, and Guillaume Jourjon. 2020. A Multi-

modal Neural Embeddings Approach for Detecting Mobile Counterfeit Apps: A Case Study on Google Play Store. IEEE Transactions on

Mobile Computing (2020), 1ś1.

[75] Mahbub Khoda, Tasadduq Imam, Joarder Kamruzzaman, Iqbal Gondal, and Ashfaqur Rahman. 2019. Selective adversarial learning for

mobile malware. In 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE

International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE, 272ś279.

[76] M. E. Khoda, J. Kamruzzaman, I. Gondal, T. Imam, and A. Rahman. 2019. Mobile Malware Detection: An Analysis of Deep Learning

Model. In 2019 IEEE International Conference on Industrial Technology (ICIT). 1161ś1166.

[77] TaeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer, and Eul Gyu Im. 2018. A multimodal deep learning method for android malware

detection using various features. IEEE Transactions on Information Forensics and Security 14, 3 (2018), 773ś788.

[78] Thomas N Kipf and Max Welling. 2016. Semi-supervised classiication with graph convolutional networks. arXiv preprint

arXiv:1609.02907 (2016).

[79] Barbara Kitchenham. 2004. Procedures for performing systematic reviews. Keele, UK, Keele University 33, 2004 (2004), 1ś26.

[80] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing systematic literature reviews in software engineering.

(2007).

[81] Rahul Krishna and Tim Menzies. 2020. Learning Actionable Analytics from Multiple Software Projects. Empirical Software Engineering

(EMSE) 25, 5 (2020), 3468ś3500.

[82] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236 (2016).

[83] Yann LeCun, Yoshua Bengio, and Geofrey Hinton. 2015. Deep learning. nature 521, 7553 (2015), 436ś444.

[84] William Younghoo Lee, Joshua Saxe, and Richard Harang. 2019. SeqDroid: Obfuscated Android malware detection using stacked

convolutional and recurrent neural networks. In Deep Learning Applications for Cyber Security. Springer, 197ś210.

[85] Tao Lei, Zhan Qin, Zhibo Wang, Qi Li, and Dengpan Ye. 2019. EveDroid: Event-aware Android malware detection against model

degrading for IoT devices. IEEE Internet of Things Journal 6, 4 (2019), 6668ś6680.

[86] Chaoran Li, Xiao Chen, Derui Wang, Sheng Wen, Muhammad Ejaz Ahmed, Seyit Camtepe, and Yang Xiang. 2021. Backdoor Attack on

Machine Learning Based Android Malware Detectors. IEEE Transactions on Dependable and Secure Computing (2021).

[87] Deqiang Li and Qianmu Li. 2020. Adversarial Deep Ensemble: Evasion Attacks and Defenses for Malware Detection. IEEE Transactions

on Information Forensics and Security 15 (2020), 3886ś3900.

[88] Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu. 2021. A framework for enhancing deep neural networks against adversarial

malware. IEEE Transactions on Network Science and Engineering 8, 1 (2021), 736ś750.

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 31

[89] Deqiang Li, Tian Qiu, Shuo Chen, Qianmu Li, and Shouhuai Xu. 2021. Can We Leverage Predictive Uncertainty to Detect Dataset Shift

and Adversarial Examples in Android Malware Detection?. In Annual Computer Security Applications Conference.

[90] Dan Li, Lichao Zhao, Qingfeng Cheng, Ning Lu, andWenbo Shi. 2020. Opcode sequence analysis of Android malware by a convolutional

neural network. Concurrency and Computation: Practice and Experience 32, 18 (2020), e5308.

[91] Heng Li, ShiYao Zhou, Wei Yuan, Jiahuan Li, and Henry Leung. 2019. Adversarial-example attacks toward android malware detection

system. IEEE Systems Journal 14, 1 (2019), 653ś656.

[92] Heng Li, Shiyao Zhou, Wei Yuan, Xiapu Luo, Cuiying Gao, and Shuiyan Chen. 2021. Robust Android Malware Detection against

Adversarial Example Attacks. In Proceedings of the Web Conference 2021. 3603ś3612.

[93] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien

Octeau, and Patrick Mcdaniel. 2015. IccTA: Detecting Inter-Component Privacy Leaks in Android Apps. In Proceedings of the 37th

International Conference on Software Engineering (ICSE 2015).

[94] Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2019. Rebooting research on detecting repackaged android apps: Literature review

and benchmark. IEEE Transactions on Software Engineering 47, 4 (2019), 676ś693.

[95] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel, Damien Octeau, Jacques Klein, and Le Traon.

2017. Static analysis of android apps: A systematic literature review. Information and Software Technology 88 (2017), 67ś95.

[96] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David Lo, and Lorenzo Cavallaro. 2017. Understanding

Android App Piggybacking: A Systematic Study of Malicious Code Grafting. IEEE Transactions on Information Forensics & Security

(TIFS) (2017).

[97] Li Li, Timothée Riom, Tegawendé F Bissyandé, Haoyu Wang, Jacques Klein, and Yves Le Traon. 2019. Revisiting the Impact of Common

Libraries for Android-related Investigations. Journal of Systems and Software (JSS) (2019).

[98] Yang Li and Tao Yang. 2018. Word embedding for understanding natural language: a survey. In Guide to Big Data Applications. Springer,

83ś104.

[99] Kaijun Liu, Shengwei Xu, Guoai Xu, Miao Zhang, Dawei Sun, and Haifeng Liu. 2020. A Review of Android Malware Detection

Approaches Based on Machine Learning. IEEE Access 8 (2020), 124579ś124607.

[100] Tianming Liu, Haoyu Wang, Li Li, Xiapu Luo, Feng Dong, Yao Guo, Liu Wang, Tegawendé F Bissyandé, and Jacques Klein. 2020.

MadDroid: Characterising and Detecting Devious Ad Content for Android Apps. In The Web Conference 2020 (WWW 2020).

[101] Tianliang Lu, Yanhui Du, Li Ouyang, Qiuyu Chen, and Xirui Wang. 2020. Android Malware Detection Based on a Hybrid Deep Learning

Model. Security and Communication Networks 2020 (2020).

[102] Scott M Lundberg and Su-In Lee. 2017. A uniied approach to interpreting model predictions. In Advances in neural information

processing systems. 4765ś4774.

[103] Haoyu Ma, Jianwen Tian, Kefan Qiu, David Lo, Debin Gao, Daoyuan Wu, Chunfu Jia, and Thar Baker. 2020. Deep-learningśbased app

sensitive behavior surveillance for Android powered cyberśphysical systems. IEEE Transactions on Industrial Informatics 17, 8 (2020),

5840ś5850.

[104] E Mariconti, L Onwuzurike, P Andriotis, E De Cristofaro, G Ross, and G Stringhini. 2017. MamaDroid: Detecting Android Malware by

Building Markov Chains of Behavioral Models. 2017 (2017).

[105] Alejandro Martín, Félix Fuentes-Hurtado, Valery Naranjo, and David Camacho. 2017. Evolving deep neural networks architectures for

android malware classiication. In 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1659ś1666.

[106] Niall McLaughlin, Jesus Martinez del Rincon, BooJoong Kang, Suleiman Yerima, Paul Miller, Sakir Sezer, Yeganeh Safaei, Erik Trickel,

Ziming Zhao, Adam Doupé, et al. 2017. Deep android malware detection. In Proceedings of the Seventh ACM on Conference on Data and

Application Security and Privacy. 301ś308.

[107] Francesco Mercaldo and Antonella Santone. 2020. Deep learning for image-based mobile malware detection. Journal of Computer

Virology and Hacking Techniques (2020), 1ś15.

[108] Stuart Millar, Niall McLaughlin, Jesus Martinez del Rincon, Paul Miller, and Ziming Zhao. 2020. DANdroid: A Multi-View Discriminative

Adversarial Network for Obfuscated Android Malware Detection. In Proceedings of the Tenth ACM Conference on Data and Application

Security and Privacy. 353ś364.

[109] Christoph Molnar. 2020. Interpretable machine learning. Lulu. com.

[110] Abdelmonim Naway and Yuancheng Li. 2018. A review on the use of deep learning in android malware detection. arXiv preprint

arXiv:1812.10360 (2018).

[111] Robin Nix and Jian Zhang. 2017. Classiication of android apps and malware using deep neural networks. In 2017 International joint

conference on neural networks (IJCNN). IEEE, 1871ś1878.

[112] Rajvardhan Oak, Min Du, David Yan, Harshvardhan Takawale, and Idan Amit. 2019. Malware Detection on Highly Imbalanced Data

through Sequence Modeling. In Proceedings of the 12th ACM Workshop on Artiicial Intelligence and Security. 37ś48.

[113] Ori Or-Meir, Nir Nissim, Yuval Elovici, and Lior Rokach. 2019. Dynamic malware analysis in the modern eraÐA state of the art survey.

ACM Computing Surveys (CSUR) 52, 5 (2019), 1ś48.

ACM Comput. Surv.

32 • Liu et al.

[114] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asymmetric transitivity preserving graph embedding. In

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. 1105ś1114.

[115] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. 2016. The limitations of

deep learning in adversarial settings. In 2016 IEEE European symposium on security and privacy (EuroS&P). IEEE, 372ś387.

[116] Xinjun Pei, Long Yu, Shengwei Tian, Huanhuan Wang, and Yongfang Peng. 2020. Combining multi-features with a neural joint model

for Android malware detection 1. Journal of Intelligent & Fuzzy Systems Preprint (2020), 1ś11.

[117] Abdurrahman Pektaş and Tankut Acarman. 2020. Deep learning for efective Android malware detection using API call graph

embeddings. Soft Computing 24, 2 (2020), 1027ś1043.

[118] Abdurrahman Pektaş and Tankut Acarman. 2020. Learning to detect Android malware via opcode sequences. Neurocomputing 396

(2020), 599ś608.

[119] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo Cavallaro. 2019. {TESSERACT}: Eliminating

experimental bias in malware classiication across space and time. In 28th {USENIX} Security Symposium ({USENIX} Security 19).

729ś746.

[120] Kewen Peng and Tim Menzies. 2020. Defect Reduction Planning (using TimeLIME). arXiv preprint arXiv:2006.07416 (2020).

[121] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social representations. In Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery and data mining. 701ś710.

[122] Fabio Pierazzi, Ghita Mezzour, Qian Han, Michele Colajanni, and VS Subrahmanian. 2020. A Data-driven Characterization of Modern

Android Spyware. ACM Transactions on Management Information Systems (TMIS) 11, 1 (2020), 1ś38.

[123] Robert Podschwadt and Hassan Takabi. 2019. On Efectiveness of Adversarial Examples and Defenses for Malware Classiication. In

International Conference on Security and Privacy in Communication Systems. Springer, 380ś393.

[124] Chanathip Pornprasit and Chakkrit Tantithamthavorn. 2021. JITLine: A Simpler, Better, Faster, Finer-grained Just-In-Time Defect

Prediction. In Proceedings of the International Conference on Mining Software Repositories (MSR). To Appear.

[125] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and SS

Iyengar. 2018. A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys (CSUR) 51, 5 (2018), 1ś36.

[126] Junyang Qiu, Jun Zhang, Wei Luo, Lei Pan, Surya Nepal, Yu Wang, and Yang Xiang. 2019. A3CM: automatic capability annotation for

android malware. IEEE Access 7 (2019), 147156ś147168.

[127] Junyang Qiu, Jun Zhang, Wei Luo, Lei Pan, Surya Nepal, and Yang Xiang. 2020. A survey of Android malware detection with deep

neural models. ACM Computing Surveys (CSUR) 53, 6 (2020), 1ś36.

[128] Dilini Rajapaksha, Chakkrit Tantithamthavorn, Christoph Bergmeir, Wray Buntine, Jirayus Jiarpakdee, and John Grundy. 2021.

SQAPlanner: Generating data-informed software quality improvement plans.

[129] Hemant Rathore, Sanjay K Sahay, Piyush Nikam, and Mohit Sewak. 2021. Robust android malware detection system against adversarial

attacks using q-learning. Information Systems Frontiers 23, 4 (2021), 867ś882.

[130] Zhongru Ren, Haomin Wu, Qian Ning, Iftikhar Hussain, and Bingcai Chen. 2020. End-to-end malware detection for android IoT devices

using deep learning. Ad Hoc Networks 101 (2020), 102098.

[131] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should I trust you?" Explaining the predictions of any classiier.

In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 1135ś1144.

[132] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-Precision Model-Agnostic Explanations.. In AAAI,

Vol. 18. 1527ś1535.

[133] Justin Sahs and Latifur Khan. 2012. A machine learning approach to android malware detection. In 2012 European Intelligence and

Security Informatics Conference. IEEE, 141ś147.

[134] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural Networks 61 (2015), 85 ś 117. https://doi.org/10.

1016/j.neunet.2014.09.003

[135] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. 2021. Explanation-Guided Backdoor Poisoning Attacks Against Malware

Classiiers. In 30th {USENIX} Security Symposium ({USENIX} Security 21).

[136] Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, and Wei Minn. 2020. Experimental comparison of features and classiiers

for Android malware detection. (2020).

[137] Alireza Souri and Rahil Hosseini. 2018. A state-of-the-art survey of malware detection approaches using data mining techniques.

Human-centric Computing and Information Sciences 8, 1 (2018), 3.

[138] Statista 2020. Mobile operating systems’ market share worldwide from January 2012 to July 2020. Retrieved Sep 09, 2020 from

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/

[139] Xin Su, Weiqi Shi, Xilong Qu, Yi Zheng, and Xuchong Liu. 2020. DroidDeep: using Deep Belief Network to characterize and detect

android malware. Soft Computing (2020), 1ś14.

[140] Xin Su, Dafang Zhang, Wenjia Li, and Kai Zhao. 2016. A deep learning approach to android malware feature learning and detection. In

2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, 244ś251.

ACM Comput. Surv.

https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 33

[141] Yuxia Sun, Yanjia Chen, Yuchang Pan, and Lingyu Wu. 2019. Android Malware Family Classiication Based on Deep Learning of Code

Images. IAENG International Journal of Computer Science 46, 4 (2019).

[142] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,

and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern

recognition. 1ś9.

[143] Rahim Taheri, Reza Javidan, and Zahra Pooranian. 2020. Adversarial android malware detection for mobile multimedia applications in

IoT environments. Multimedia Tools and Applications (2020), 1ś17.

[144] Rahim Taheri, Reza Javidan, Mohammad Shojafar, Zahra Pooranian, Ali Miri, and Mauro Conti. 2020. On defending against label

lipping attacks on malware detection systems. Neural Computing and Applications (2020), 1ś20.

[145] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Cavallaro. 2017. The evolution of android malware and

android analysis techniques. ACM Computing Surveys (CSUR) 49, 4 (2017), 1ś41.

[146] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015. Copperdroid: automatic reconstruction of android

malware behaviors.. In Ndss.

[147] Xinrui Tan, Hongjia Li, Liming Wang, and Zhen Xu. 2020. End-Edge Coordinated Inference for Real-Time BYOD Malware Detection

using Deep Learning. In 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 1ś6.

[148] Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, and John Grundy. 2020. Explainable AI for Software Engineering. arXiv preprint

arXiv:2012.01614 (2020).

[149] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. 2019. Survey of machine learning techniques for malware analysis. Computers &

Security 81 (2019), 123ś147.

[150] Farhan Ullah, HamadNaeem,Muhammad Rashid Naeem, Sohail Jabbar, Shehazad Khalid, Fadi Al-Turjman, andAbdelrahmanAbuarqoub.

2019. Detection of clone scammers in Android markets using IoT-based edge computing. Transactions on Emerging Telecommunications

Technologies (2019), e3791.

[151] Danish Vasan, Mamoun Alazab, Sobia Wassan, Hamad Naeem, Babak Safaei, and Qin Zheng. 2020. IMCFN: Image-based malware

classiication using ine-tuned convolutional neural network architecture. Computer Networks 171 (2020), 107138.

[152] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks.

arXiv preprint arXiv:1710.10903 (2017).

[153] R Vinayakumar, KP Soman, and Prabaharan Poornachandran. 2017. Deep android malware detection and classiication. In 2017

International conference on advances in computing, communications and informatics (ICACCI). IEEE, 1677ś1683.

[154] R Vinayakumar, KP Soman, Prabaharan Poornachandran, and S Sachin Kumar. 2018. Detecting Android malware using long short-term

memory (LSTM). Journal of Intelligent & Fuzzy Systems 34, 3 (2018), 1277ś1288.

[155] VirusShare.com 2020. Because Sharing is Caring. Retrieved Oct 11, 2020 from https://virusshare.com/

[156] Xiaoyue Wan, Geyi Sheng, Yanda Li, Liang Xiao, and Xiaojiang Du. 2017. Reinforcement learning based mobile oloading for

cloud-based malware detection. In GLOBECOM 2017-2017 IEEE Global Communications Conference. IEEE, 1ś6.

[157] Ji Wang, Qi Jing, Jianbo Gao, and Xuanwei Qiu. 2020. SEdroid: A Robust Android Malware Detector using Selective Ensemble Learning.

In 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 1ś5.

[158] Shanshan Wang, Zhenxiang Chen, Qiben Yan, Ke Ji, Lin Wang, Bo Yang, and Mauro Conti. 2018. Deep and broad learning based

detection of android malware via network traic. In 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS). IEEE,

1ś6.

[159] Wei Wang, Mengxue Zhao, and JigangWang. 2019. Efective android malware detection with a hybrid model based on deep autoencoder

and convolutional neural network. Journal of Ambient Intelligence and Humanized Computing 10, 8 (2019), 3035ś3043.

[160] Yuxuan Wang, Yutai Hou, Wanxiang Che, and Ting Liu. 2020. From static to dynamic word representations: a survey. International

Journal of Machine Learning and Cybernetics (2020), 1ś20.

[161] Zi Wang, Juecong Cai, Sihua Cheng, and Wenjia Li. 2016. DroidDeepLearner: Identifying Android malware using deep learning. In

2016 IEEE 37th Sarnof Symposium. IEEE, 160ś165.

[162] Zhiqiang Wang, Qian Liu, and Yaping Chi. 2020. Review of Android Malware Detection Based on Deep Learning. IEEE Access (2020).

[163] Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad Rieck. 2020. Evaluating explanation methods for deep learning

in security. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 158ś174.

[164] Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Hideaki Hata, and Kenichi Matsumoto. 2020.

Predicting Defective Lines Using a Model-Agnostic Technique. IEEE Transactions on Software Engineering (TSE) (2020).

[165] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep ground truth analysis of current android malware. In

International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 252ś276.

[166] Lilian Weng. 2018. Attention? attention. Lil’Log, June 24 (2018).

[167] Bozhi Wu, Sen Chen, Cuiyun Gao, Lingling Fan, Yang Liu, Weiping Wen, and Michael R Lyu. 2021. Why an Android App Is Classiied

as Malware: Toward Malware Classiication Interpretation. ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 2

(2021), 1ś29.

ACM Comput. Surv.

https://virusshare.com/

34 • Liu et al.

[168] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu. 2012. Droidmat: Android malware detection through

manifest and api calls tracing. In 2012 Seventh Asia Joint Conference on Information Security. IEEE, 62ś69.

[169] HuanyuWu. 2020. A Systematical Study for Deep Learning Based AndroidMalware Detection. In Proceedings of the 2020 9th International

Conference on Software and Computer Applications. 177ś182.

[170] Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan Xiong, Fengyuan Xu, Haoyu Wang, Peng Gao, Zhuotao Liu, Feng Xu, et al.

2019. DeepIntent: Deep icon-behavior learning for detecting intention-behavior discrepancy in mobile apps. In Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security. 2421ś2436.

[171] Xusheng Xiao. 2019. An image-inspired and CNN-based Android malware detection approach. In 2019 34th IEEE/ACM International

Conference on Automated Software Engineering (ASE). IEEE, 1259ś1261.

[172] Xi Xiao, Shaofeng Zhang, Francesco Mercaldo, Guangwu Hu, and Arun Kumar Sangaiah. 2019. Android malware detection based on

system call sequences and LSTM. Multimedia Tools and Applications 78, 4 (2019), 3979ś3999.

[173] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017. Aggregated residual transformations for deep neural

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1492ś1500.

[174] Jiayun Xu, Yingjiu Li, Robert Deng, and Ke Xu. 2020. SDAC: A Slow-aging solution for Android malware detection using semantic

distance based API clustering. IEEE Transactions on Dependable and Secure Computing (2020).

[175] Ke Xu, Yingjiu Li, Robert H Deng, and Kai Chen. 2018. Deepreiner: Multi-layer android malware detection system applying deep

neural networks. In 2018 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 473ś487.

[176] Lifan Xu, Dongping Zhang, Nuwan Jayasena, and John Cavazos. 2016. Hadm: Hybrid analysis for detection of malware. In Proceedings

of SAI Intelligent Systems Conference. Springer, 702ś724.

[177] Jinpei Yan, Yong Qi, and Qifan Rao. 2018. LSTM-based hierarchical denoising network for Android malware detection. Security and

Communication Networks 2018 (2018).

[178] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh, Xinyu Xing, and Gang Wang. 2021. {CADE}: Detecting

and Explaining Concept Drift Samples for Security Applications. In 30th {USENIX} Security Symposium ({USENIX} Security 21).

[179] Yanfang Ye, Shifu Hou, Lingwei Chen, Jingwei Lei, Wenqiang Wan, Jiabin Wang, Qi Xiong, and Fudong Shao. 2019. Out-of-sample

Node Representation Learning for Heterogeneous Graph in Real-time Android Malware Detection.. In IJCAI. 4150ś4156.

[180] Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. 2017. A survey on malware detection using data mining techniques.

ACM Computing Surveys (CSUR) 50, 3 (2017), 1ś40.

[181] Yao-Saint Yen and Hung-Min Sun. 2019. An android mutation malware detection based on deep learning using visualization of

importance from codes. Microelectronics Reliability 93 (2019), 109ś114.

[182] Baoguo Yuan, Junfeng Wang, Dong Liu, Wen Guo, Peng Wu, and Xuhua Bao. 2020. Byte-level malware classiication based on markov

images and deep learning. Computers & Security 92 (2020), 101740.

[183] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples: Attacks and defenses for deep learning. IEEE transactions

on neural networks and learning systems 30, 9 (2019), 2805ś2824.

[184] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014. Droid-sec: deep learning in android malware detection. In

Proceedings of the 2014 ACM conference on SIGCOMM. 371ś372.

[185] Zhenlong Yuan, Yongqiang Lu, and Yibo Xue. 2016. Droiddetector: android malware characterization and detection using deep learning.

Tsinghua Science and Technology 21, 1 (2016), 114ś123.

[186] Xian Zhan, Lingling Fan, Tianming Liu, Sen Chen, Li Li, Haoyu Wang, Yifei Xu, Xiapu Luo, and Yang Liu. 2020. Automated Third-party

Library Detection for Android Applications: Are We There Yet?. In The 35th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2020).

[187] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun Zhang, Mi Zhang, and Min Yang. 2020. Enhancing

State-of-the-art Classiiers with API Semantics to Detect Evolved Android Malware. In Proceedings of the 2020 ACM SIGSAC Conference

on Computer and Communications Security. 757ś770.

[188] Yanxin Zhang, Yulei Sui, Shirui Pan, Zheng Zheng, Baodi Ning, Ivor Tsang, and Wanlei Zhou. 2019. Familial clustering For weakly-

labeled Android malware using hybrid representation learning. IEEE Transactions on Information Forensics and Security 15 (2019),

3401ś3414.

[189] Zicheng Zhang, Wenrui Diao, Chengyu Hu, Shanqing Guo, Chaoshun Zuo, and Li Li. 2020. An Empirical Study of Potentially Malicious

Third-Party Libraries in Android Apps. In The 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec

2020).

[190] Kaifa Zhao, Hao Zhou, Yulin Zhu, Xian Zhan, Kai Zhou, Jianfeng Li, Le Yu, Wei Yuan, and Xiapu Luo. 2021. Structural Attack against

Graph Based Android Malware Detection. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security.

3218ś3235.

[191] Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawende Bissyande, Jacques Klein, and John Grundy. 2021. On the Impact of Sample

Duplication in Machine Learning based Android Malware Detection. ACM Transactions on Software Engineering and Methodology

(TOSEM) (2021).

ACM Comput. Surv.

Deep Learning for Android Malware Defenses: a Systematic Literature Review • 35

[192] XU Zhiwu, Kerong Ren, and Fu Song. 2019. Android malware family classiication and characterization using CFG and DFG. In 2019

International Symposium on Theoretical Aspects of Software Engineering (TASE). IEEE, 49ś56.

[193] Hanxun Zhou, Xinlin Yang, Hong Pan, and Wei Guo. 2020. An Android Malware Detection Approach Based on SIMGRU. IEEE Access 8

(2020), 148404ś148410.

[194] Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization and evolution. In 2012 IEEE symposium on security

and privacy. IEEE, 95ś109.

[195] Dali Zhu, Hao Jin, Ying Yang, Di Wu, and Weiyi Chen. 2017. DeepFlow: Deep learning-based malware detection by mining Android

application for abnormal usage of sensitive data. In 2017 IEEE symposium on computers and communications (ISCC). IEEE, 438ś443.

[196] Dali Zhu, Yuchen Ma, Tong Xi, and Yiming Zhang. 2019. FSNet: Android Malware Detection with Only One Feature. In 2019 IEEE

Symposium on Computers and Communications (ISCC). IEEE, 1ś6.

[197] Dali Zhu, Tong Xi, Pengfei Jing, Di Wu, Qing Xia, and Yiming Zhang. 2019. A Transparent and Multimodal Malware Detection Method

for Android Apps. In Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile

Systems. 51ś60.

[198] Dali Zhu, Tong Xi, Pengfei Jing, Qing Xia, Di Wu, and Yiming Zhang. 2020. Sadroid: A Deep Classiication Model For Android Malware

Detection Based On Semantic Analysis. In 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 1ś7.

[199] Huijuan Zhu, Liangmin Wang, Sheng Zhong, Yang Li, and Victor S Sheng. 2021. A Hybrid Deep Network Framework for Android

Malware Detection. IEEE Transactions on Knowledge and Data Engineering (2021).

ACM Comput. Surv.

	Abstract
	1 Introduction
	2 Review Methodology
	2.1 Research Question
	2.2 Search Strategy
	2.3 Data Selection Process

	3 Results Analysis
	3.1 Malware Defenses Objectives
	3.2 APK Characterization
	3.3 Deep Learning Techniques
	3.4 Deployment of Analysis
	3.5 Performance Evaluation
	3.6 Trend Analysis

	4 Open issues and future trends
	5 Threats to Validity
	6 Conclusions
	References

