
Explainable AI for Android Malware Detection:
Towards Understanding Why the Models Perform

So Well?
Yue Liu†, Chakkrit Tantithamthavorn†∗, Li Li†∗, and Yepang Liu‡

†Faculty of Information Technology, Monash University, Melbourne, Australia.
‡Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China

Email: {yue.liu1, chakkrit, li.li}@monash.edu, liuyp1@sustech.edu.cn

Abstract—Machine learning (ML)-based Android malware
detection has been one of the most popular research topics
in the mobile security community. An increasing number of
research studies have demonstrated that machine learning is
an effective and promising approach for malware detection,
and some works have even claimed that their proposed models
could achieve 99% detection accuracy, leaving little room for
further improvement. However, numerous prior studies have
suggested that unrealistic experimental designs bring substantial
biases, resulting in over-optimistic performance in malware
detection. Unlike previous research that examined the detection
performance of ML classifiers to locate the causes, this study
employs Explainable AI (XAI) approaches to explore what ML-
based models learned during the training process, inspecting
and interpreting why ML-based malware classifiers perform so
well under unrealistic experimental settings. We discover that
temporal sample inconsistency in the training dataset brings
over-optimistic classification performance (up to 99% F1 score
and accuracy). Importantly, our results indicate that ML models
classify malware based on temporal differences between malware
and benign, rather than the actual malicious behaviors. Our
evaluation also confirms the fact that unrealistic experimental
designs lead to not only unrealistic detection performance but
also poor reliability, posing a significant obstacle to real-world
applications. These findings suggest that XAI approaches should
be used to help practitioners/researchers better understand
how do AI/ML models (i.e., malware detection) work—not just
focusing on accuracy improvement.

I. INTRODUCTION

DESPITE significant and continuous improvements of
cybersecurity mechanisms, malware remains one of the

most serious threats in cyberspace. According to McAfee’s
report [1], the total number of malware samples reached
about 1.5 billion in 2020, with a gradual increase. Everywhere
malware is eroding cyberspace, spawning a slew of subtypes
such as mobile malware, MacOS malware, IoT malware,
and Coin Miner malware, all of which are causing massive
financial losses to both individuals and industries.

To this end, machine learning (ML) and deep learning (DL)-
based malware detection has received significant research
attention in recent years. Specifically, when trained on a large
set of data, the built model can distinguish malware from be-
nign samples automatically. Based on the surveyed results on
malware detection by [2], [3], [4], we discovered that ML/DL

*The Corresponding author.

techniques can generally achieve quite high performance, with
detection accuracy reaching up to 99%, leaving little room for
future research. However, these high-performance approaches
appear less viable in practice, as malware defences remain
a challenging problem to tackle and malicious applications
continue to pose a growing threat to people [5], [6], [7], [8],
[9].

Previous studies have reported that existing ML-based mal-
ware detection models are susceptible to experimental biases,
which could produce unrealistic model performance [10].
Particularly, Pendlebury et al. [11] found that the performance
of ML-based malware detection models [12] is substantially
decreased from 90% to 58% (F-score) after removing exper-
imental biases (e.g., spatial bias, concept drift). According
to our analysis of the recent research (see Table I) [2], we
discovered that 29 out of the 30 reviewed relevant studies
published between 2014 and 2020 do not consider the realistic
experimental design, achieving high accuracy of the ML-based
Android malware detection (i.e., over 99% of F1).

While accuracy improvement is the primary focus of prior
work in ML-based Android malware detection, little research
is known about why the models perform so well. Recent
research has discovered that the high accuracy of Android
malware detection could be due to various sources of experi-
mental biases [11]. However, prior studies still focus only on
the predictions (i.e., accuracy) without investigating whether
the models can detect malware based on the actual malware-
related characteristics or not. For example, a highly-accurate
classifier could correctly classify an image as a dog using
background features, which are irrelevant to the dog at all.
Similarly, ML-based malware detection models could correctly
classify an app as malware based on deprecated features
(e.g., GET TASKS Permission), which may be irrelevant to
the actual malicious/benign behaviours. Therefore, there is a
critical need to examine the explanations of the classifications
of ML-based Android malware detection as well (i.e., why
does the model classify an app as malware?).

In this paper, we investigate the impact of the temporal
inconsistency on the accuracy and the explanations of the
ML-based malware detection. The temporal inconsistency
refers to an unrealistic experimental setup where malware
and benign samples are randomly chosen without considering

Table I: A list of ML-based Android malware detection that achieves high performance (over 96% of F1) under an unrealistic experimental
setup due to the temporal inconsistency. That means malware samples were chosen from different periods of the benign samples.

Paper Malware sources Malware periods Benign sources Benign periods Performance

MalDozer [13] Drebin, Genome, Virushare, Contagio 2011 - 2017 Google Play 2017 0.96 F1 score
DeepRefiner [14] VirusShare <2015 Google Play 2016 0.977 accuracy
Su et al. [15] Drebin, Genome, Contagio 2011 - 2016 Google Play 2016 0.995 accuracy, 0.975 F1 score
Khoda et al. [16] Drebin, Genome 2010 - 2016 Google Play 2019 0.987 accuracy, 0.985 F1 score
Fan et al. [17] Drebin, Genome, AMD, etc. 2010 - 2017 Google Play 2019 - 2020 0.996 precision, 0.977 F1 score
DroidDeep [18] Drebin, Genome, etc. 2011 - 2017 Google Play 2020 0.995 accuracy

the time period (meaning that malware samples were chosen
from 2010, while benign samples were chosen from 2020, see
Table I). In our experiment, we collected a total of 165,000
Android applications (i.e., 33,000 malware and 132,000 benign
applications) that span ten years (2010-2020). Then, we focus
on the three state-of-the-art Explainable ML-based Android
malware detection models (i.e., Drebin [12], XMal [19] and
Fan et al. [17]).

Our experimental results reveal several important findings:

• Temporal inconsistencies between malware and benign in
the data significantly increase the detection performance.

• When a temporal inconsistency is introduced in the
datasets, the explanations of the ML-based Android mal-
ware detection indicate that the models can correctly
predict malware based on the temporal-related features,
instead of the actual characteristics of malicious and
benign behaviors.

• Although adjusting the experimental setups like feature
sets and malware/benign rates, temporal inconsistencies
still unrealistically increase the performance of the ML-
based malware detection approaches.

These findings suggest that security analysts should use
explainable AI approaches to better understand the models
(why the models predict an app as malware or benign?) to
better select the most appropriate malware detection models
when deciding to deploy them in production.

Novelty. To the best of our knowledge, this paper is the first
to:

• Investigate the impact of temporal inconsistency in An-
droid Malware Detection

• Employ Explainable AI approaches to understand why
ML-based malware detection approaches perform so well
under temporal inconsistency.

Open Science. To support the open science initiative, we
publish the studied dataset and a replication package, which
is publicly available in GitHub.1

Paper Organization. The remainder of this paper is struc-
tured as follows: Section 2 presents the background and related
work. Section 3 details our study design. Section 4 provides
our experimental results and analysis. Section 5 discusses the
study’s limitations and potential threats to its validity. Finally,
Section 6 concludes the paper.

1https://github.com/yueyueL/XAIforAndroidMalware

II. BACKGROUND AND RELATED WORK

Researchers raised concerns that many ML-based malware
detection techniques are over-optimistic [10], [11], [20], [21].
In addition, these malware detection approaches were usually
black-box models [4]. Thus, security analysts often asked
questions, e.g., How can we trust the predictions of the so-
accurate ML-based malware detection models? How can we
understand whether we are selecting a proper model before de-
ployment? To address this challenge, several studies proposed
various approaches to explain the predictions of ML-based
malware detection models [12], [19], [17], [22], [23] (i.e., local
explainability). Below, we introduce our motivational example
and summarize the three state-of-the-art explainable ML-based
malware detection techniques.

A. Motivation

Recent research raised concerns that the accuracy of the
ML-based malware detection approaches is nearly perfect [10],
[4]. Liu et al. [4] systematically reviewed 132 existing re-
search studies on ML/DL-based Android malware defence
approaches. Their review results show that most ML-based
malware detection approaches achieve an accuracy/F1 measure
of 0.98, or even higher. Moreover, 33 out of 132 surveyed
papers present up to 0.99 accuracy/F1 measure, indicating that
most ML-based malware detection approaches achieve nearly
perfect predictions. While existing ML-based malware detec-
tion approaches are extremely accurate, it remains unclear why
such approaches are so accurate, which still casts some doubt
on the research community.

As suggested by prior studies [11], [21], [24], [25], [26],
the evolution of both the Android platform and Android
applications leads to a severe model aging problem (or called
time decay, model degradation, and concept drift). Specifically,
malware detection approaches perform poorly on new malware
samples. For example, TESSERACT [11] reproduced three
state-of-the-art ML-based malware detectors which achieved a
high F1 score (up to 0.98), but they found that the performance
dropped significantly to 30% in a time-aware setting (i.e., older
apps were used for training and newer ones for testing). It
is still unknown why these Android malware detection
approaches perform so well on the original data (i.e., 0.98
F1 score). In other words, there is still uncertainty about
whether these approaches correctly identify samples based
on malware-related characteristics.

Although the majority of research studies surveyed by [4]
did not include information about the time period of collected

experimental samples, six relevant primary studies were found,
as shown in Table I. It is interesting to observe that these six
primary studies collected malware and benign samples from
different time periods (i.e., malware samples were older while
benign samples were newer). This result may be explained by
the fact that most malware datasets are usually not maintained
or updated after being released, whereas recent benign samples
are available via Google Play or third-party markets [4], [27],
[28]. However, prior work [11], [21], [24], [25], [29], [26], [30]
has proven that Android malware samples evolve and exhibit
distinct characteristics over time. As a result, it may lead to
unfair predictions, as malware samples and benign samples
are collected from distinct time periods. To the best of our
knowledge, no prior literature has studied whether this unfair
setting provides a reliable evaluation result for ML/DL-based
Android malware detection. In this study, we use temporal
inconsistency to define this problem, which is caused by
temporally inconsistent distributions of malware samples and
benign samples.

To evaluate the impacts of temporal inconsistency on An-
droid malware detection models, we consider three well-
known malware detection approaches using explainable ma-
chine learning techniques (i.e., Drebin [12], XMal [19] and
Fan et al. [17]). First, we would like to stress that we make
no specific criticisms of these three approaches. Because they
are available and provide consistent baselines, we choose these
three explainable methodologies for our evaluation.

B. Drebin with Linear Support Vector Machine

Arp et al. [12] leveraged an interpretable ML technique,
i.e., a linear Support Vector Machine (SVM) to classify if an
unknown application is malware or benign. To train an SVM-
based malware detection model, a linear SVM technique de-
termines a hyperplane that separates both malware and benign
classes with maximal margin based on the feature vectors of
malware and benign applications in the training data. To detect
the malicious activities of an unknown application, Drebin
requires a comprehensive yet lightweight representation of
mobile apps. In particular, Drebin extracts eight feature sets
from two main sources. First, the manifest file (i.e., Android-
Manifest.xml) is used to store information of the requested
hardware components (e.g., camera), the requested permis-
sions (e.g., SEND SMS), the list of used Android components
(e.g., activities, services, content providers, and broadcast
receivers), and filtered intents (e.g., BOOT COMPLETED).
Second, the disassembled dex code is used to store information
of the restricted API calls, used permissions, suspicious API
calls, and network addresses. Then, this information is used
to generate a vector representation using a one-hot encoding
technique where 1 indicates that an application x contains a
feature xi, otherwise 0. Once the SVM models are trained, the
SVM-based malware detection model is applied to classify
if an unknown application in testing data is considered as
malware or benign. Finally, Drebin generates an explanation
of each prediction using the multiplication (wi = w ∗ vi) of

the feature weights (w) of the linear classifier and the actual
feature value (v) of that test instance (i).

C. XMal with Attention Mechanism

Wu et al. [19] leveraged a multi-layer perceptron (MLP)
with the attention mechanism for malware classification, while
being able to locally explain the prediction. Similar to the
Debrin [12]’s approach, the XMal approach leverages feature
sets related to API calls and permissions. Since there exists
a large number of possible features (i.e., 20,000+), the XMal
approach selects only the top-154 effective features (including
94 API calls and 60 permissions) for model training. The
XMal approach consists of two layers: the attention layer
and the multi-layer perceptron (MLP). First, a feature vec-
tor is generated using a one-hot encoding technique with a
dimension of 158. Then, the feature vector is fed into the
attention layer. The attention layer leverages the attention
mechanism proposed by Bahdanau et al. [31], which is used
to capture the relationship between the features in the input
sequence and the next output features, allowing models to
retain all the information of the input sequence. Formally,
the attention vector αi = (α

(1)
i , ..., α

(j)
i) which represents the

attention weight of the jth feature of the ith test instance is
computed through a softmax function: α(j)

i =
exp(e

(j)
i)∑n

k=1 exp(e
(k)
i)

,

where α
(j)
i denotes the attention weight of the jth feature

for the ith test instance, where e(k)i) is the feature vector of
the ith test instance. Then, the attention vector is fed into
the Multi-layer Perceptron (MLP) layer to map the feature
weights into the binary classification. Finally, the explanation
of each prediction is generated based on the attention weights
to indicate which features contribute the most to the prediction.

D. Fan et al. with Model-Agnostic Explainable Approaches

Fan et al. [17] assessed five different local and model-
agnostic explanation approaches (i.g.,LIME [32], Anchor [33],
LORE [34], SHAP [35] and LEMNA [36]) for Android mal-
ware analysis. Unlike model-specific explanation approaches,
model-agnostic explanation approaches can explain any ma-
chine learning model. For example, LIME explains a predic-
tion by approximating the decision boundary of any black-
box classifier by a simple weighted linear regression model.
Thus, Fan et al. [17] evaluated the stability, robustness and
effectiveness of model-agnostic explanation approaches on
several different malware classifiers (i.e., multilayer perceptron
(MLP), random forest (RF), and support vector machines
(SVM)).

E. AI/ML-based Experimental Bias

Researchers have already realized the problem of unrealistic
performance in Android malware detection and identified
many pitfalls related to high performance, including temporal
biases (i.e., time decay or evolved malware) between training
and testing data [37], [38], [24], [25], [11], [39], [21], [40],
[26], [41], inappropriate malware rate [42], [11], [24], [43],
sampling duplication [44], etc. These studies have highlighted

a correlation between over-optimistic performance and specific
unrealistic experimental settings. For example, when studying
temporal biases, researchers have experimentally found that
applications that alter or update over time will cause the
trained models to perform poorly on future testing samples
[21]. As a result, the actual performance of the proposed ML
models might not be as high as the one reported. Our work
takes the initial attempt towards understanding the inner logic
of ML-based malware models under unrealistic settings to
empirically confirm that learning models could be misled by
pitfalls instead of solving the actual task based on benign and
malicious behaviors.

III. STUDY DESIGN

A. Goal, Motivation, and Research Questions

The goal of this paper is to perform a detailed model
inspection analysis on the explanations generated by three
explainable ML-based malware detection techniques (i.e.,
Drebin [12], XMal [19], and Fan et al. [17]). Such a detailed
model inspection analysis could help security analysts better
select the most appropriate malware detection models when
deciding to deploy in production and help researchers better
understand the potential risks associated with unrealistic ex-
perimental setups. To achieve this goal, we aim to address the
following three research questions.

(RQ1) What is the impact of temporal inconsistency on the
performance of ML-based malware detection approaches?

Motivation. Numerous research studies evaluate mal-
ware classification performance using temporally inconsistent
datasets, as we discussed before. We formulate this research
question to ascertain the effect of temporal inconsistency on
the performance of machine learning-based malware detec-
tion techniques. Through the replication of three high-profile
ML-based malware detection approaches (i.e., Drebin [12],
XMal [19] and Fan et al. [17]), we can confirm whether
temporal inconsistency results in over-optimistic detection
performance.

(RQ2) Why does temporal inconsistency make ML-based mal-
ware detection approaches perform so well?

Motivation. Only examining classification performance
metrics (e.g., accuracy and F1 score) still does not determine
what the model is based on to make accurate predictions.
Drebin [12], XMal [19] and Fan et al. [17] approaches are
designed to achieve high accuracy, while being explainable to
security analysts. Therefore, such explainable malware detec-
tion techniques allow security analysts to better understand
what features contribute to the predictions. Unfortunately,
these three studies have not performed a model inspection
analysis on the generated explanations to better understand
if the models behave correctly or not. Such a lack of detailed
model inspection analysis for the ML-based malware detection
models could lead to inappropriate model selection when
deploying them in production (i.e., practitioners still do not
know which models to be deployed given the same highly

accurate models). Thus, we formulate this research question to
analyze the explanations generated by these three approaches
to better understand why such ML-based malware detection
approaches under temporal inconsistency are highly accurate.

(RQ3) How sensitive is the impact of the temporal incon-
sistency on the accuracy and explanation of the ML-based
malware detection approaches?

Motivation. Prior studies [45], [46], [47], [10] raise con-
cerns that the experimental components often have a large
impact on the accuracy and explanations of defect prediction
models (e.g., data quality [48], class imbalance [49], parameter
settings [50], model validation techniques [51]). Similar to
ML-based malware detection studies, different studies also use
different experimental components [12], [19], [2]. Yet, little is
known about the impact of the experimental components on
the accuracy and explanation of explainable malware detection
approaches. As a result, we formulate this research question
to gain a better understanding of the impacts of temporal
inconsistency under different experimental settings.

B. Experimental setup

To address our research questions, our experiment con-
sists of the following steps: (1) data collection; (2) feature
extraction; (3) model training & model evaluation; and (4)
model explanations. Figure 1 illustrates the overview of our
experiment. We describe each step below.

1) Data Collection: Generally, ML-based malware detec-
tion is formulated as a binary classification task (i.e., clas-
sifying whether an application is considered as Malware or
Benign). Thus, it requires samples from two distinct classes
(i.e., Malware and Benign apps). To do so, we download
Android applications from the AndroZoo corpus [52]. The
AndroZoo corpus consists of a collection of more than 15
million Android applications published between 2010 and
2021, together with the ground-truth labels provided by the
VirusTotal software [11], [53], [54]. Since the number of
applications in the AndroZoo corpus is too large to be studied
(15 million), we randomly select a subset of applications in
the AndroZoo corpus.

To ensure that our random sample is representative of the
population of the AndroZoo corpus, we decide to maintain the
same malware ratio as the AndroZoo corpus (i.e., a malware
ratio of 17.3%). Thus, our studied dataset contains a total
of 165,000 Android applications (i.e., 33,000 malware and
132,000 benign applications) that span across a 10-year period
(2010-2020).

2) Feature Extraction: Similar to prior studies [12], [19],
we use the same feature extraction approach to generate
feature vectors in order to capture the characteristics of
Android applications. Thus, we use a reverse engineering
approach to extract the feature set of Android applications
using Androguard,2. Androguard is a common open-source
tool for static analysis to exploit features like permissions,
API calls and activities.

2https://code.google.com/archive/p/androguard/

Data Collection Building Ground
Truth

Feature Extraction

...
1

0

1

... ...

...

Permission 1

API call 1

Permission 2

ML classifier

Explaination
approach

Model metadata

Prediction

Explanation

Fig. 1: An overview of our experiment: the apps are collected from AndroZoo and labelled by VirusTotal; reverse engineering tools are used
to extract features; feature vectors are fed into an ML classifier to generate prediction and explanation.

For Drebin, we extract a total of eight feature sets from
two main sources, i.e., (1) the manifest file (i.e., Android-
Manifest.xml), which stores information of the requested
hardware components, the requested permissions, the list of
used Android components, and filtered intents; and (2) the
disassembled dex code which stores information of the re-
stricted API calls, used permissions, suspicious API calls, and
network addresses. For Xmal, we extract the same set of 154
features (including 94 API calls and 60 permissions) for model
training.3 For Fan et al., we use the feature set with XMal
since the detailed feature lists are not publicly available.4 Then,
feature information is used to generate a vector representation
using a one-hot encoding technique where one indicates that
an application x contains a feature xi, otherwise zero.

3) Model Training & Evaluation: According to Wu et
al. [19], 10-fold cross-validation (CV) is one of the most
commonly-used model validation techniques for ML-based
malware detection. Thus, we use a 10-fold CV for model
training and model evaluation. 10-fold CV splits a dataset into
K partitions, with one partition used for model evaluation and
the remaining partitions used for model training. Then, the
process is repeated ten times, and each testing performance is
recorded to ensure the stability of the models [51]. For Drebin,
we train the model using a linear support vector machine
(SVM). For XMal, we train the model using an attention-
based multi-layer perceptron (MLP). For Fan et al., we train
four different ML models (i.e., MLP, KNN, RF and SVM)
with the same settings as those used in the original paper.

4) Model Explainability (i.e., Most Important Features):
Finally, we generate explanations from the Drebin, XMal
and Fan et al. approaches. For Drebin with SVM models,
we generate an explanation of each prediction using the
multiplication (wi = w ∗ vi) of the feature weights (w) of
the linear classifier and the actual feature value (v) of that
test instance (i). For the XMal approach, we generate an
explanation of each prediction based on the attention weights
to indicate which features contribute the most to the prediction.
For the Fan et al. approach, we generate an explanation of
each prediction based on the LIME approach to indicate which
features contribute the most to the prediction. Note that we

3The original paper claimed 158 features, but they only provided a feature
set with 154 features on their personal page.

4The original paper claimed 296 features, including 259 API calls, 22
permissions and 3 intents.

don’t focus on other model-agnostic explanation approaches
discussed in Fan et al. [17] since their experimental results
demonstrate that LIME provides a better explanation for ML-
based malware detection approaches. Because we employ 10-
fold cross-validation, we record explanations for testing data
at each run.

IV. EXPERIMENTAL RESULTS

In this section, we present the approach and the results of
our three research questions.

RQ1: What is the impact of temporal inconsistency on the
performance of ML-based malware detection approaches?

In the first research question, we are interested in checking
the impacts of temporal inconsistency on detection perfor-
mance.

Experimental Setup. In this work, we decide to replicate
three prior studies, namely the Drebin, XMal and Fan et
al. approaches, which have been considered the most rep-
resentative ones available in the community. For each of
these three approaches, we further resort to five training
datasets (i.e., settings) to highlight their performances and
examine the potential impacts brought by the different settings.
Given a dataset, we first extract the features following the
strategies provided by these three approaches, respectively.
After that, 10-fold cross-validation will be leveraged to assess
their performances. In this work, we evaluate the classification
performance through four metrics: Accuracy, F1 measure,
Precision, and Recall.

The five settings are detailed as follows.
• Baseline. For the default setting (hereinafter referred to

as the baseline), we select all the malicious apps collected
in this work to form the training dataset. As discussed in
Section III-B1, we have prepared 33,000 malicious apps
that are released at times ranging from 2010 to 2020, with
each year containing 3,000 samples. To form a balanced
training dataset, as highlighted in Table II, we supplement
the training dataset by further adding 33,000 benign apps
(i.e., with also 3,000 samples per year), which are also
randomly selected from the apps collected in this work.

• Variant 1. The first variant keeps most of the configu-
rations in the Baseline setting except that, in this case,
only the samples in the latest three years (i.e., years
2018-2020, as highlighted in Table II) are considered. In

Time	periods	of	experimental	samples Drebin
Setup Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Accuracy F1 Precision Recall

Baseline	(Temporal	consistent)
Malware:

0.9239 0.9243 0.9203 0.9283Benign:

Variant1	(Temporal	consistent)
Malware:

0.9263 0.9259 0.9311 0.9208Benign:

Variant2	(Temporal	consistent)
Malware:

0.9535 0.9538 0.9470 0.9608Benign:

Variant3	(Temporal	inconsistent)
Malware:

0.9911 0.9911 0.9941 0.9881Benign:

Variant4	(Temporal	inconsistent)
Malware:

0.9927 0.9927 0.9907 0.9948Benign:

Table II: Experimental settings and part of evaluation results of the replication study. The full evaluation results can be found on our online
supplementary. The second column (i.e., sample dates) includes 11 years of app samples ranging from 2010 to 2020. The black cell represents
that the apps (i.e., all the 3,000 apps for the malware set while randomly selected 3,000 apps from the goodware set) in the corresponding
time frame are selected for training.

other words, variant 1 forms a balanced training dataset
including 9,000 malware and 9,000 goodware.

• Variant 2. Similar to the setting of Variant 1, in the
second variant, the app samples in the first three years
(i.e., years 2010-2012, as highlighted in Table II) are
considered for training.

• Variant 3. The readers may have observed that the
first two variants (Variants 1-2) have kept the training
apps collected from the same period of time. In the
third variant, we form the training dataset by collecting
the goodware and malware samples from two different
periods, i.e., benign samples from the first three years
(i.e., years 2010-2012) while malicious samples from the
latest three years (i.e., years 2018-2020).

• Variant 4. The last variant is essentially equivalent to
Variant 3 except that, in this case, the benign samples
are collected from the latest three years (i.e., years 2018-
2020) while the malicious samples are from the first three
years (i.e., years 2010-2012).

Finding 1: The performance of ML-based Android mal-
ware detection models could be significantly improved if
the temporal inconsistency is introduced in the evaluation
dataset.

Table II summarizes the experimental results for Drebin. For
all the five experimental settings, we are able to achieve high
performance with respect to all the four considered evaluation
metrics. The highest case can achieve over 99% for all four
metrics. These results experimentally confirm that we are
indeed able to replicate the high performance of prior studies
targeting machine learning-based malware detection.

When comparing the Baseline setting with the four variants,
we can observe that the Baseline setting is not able to yield bet-
ter performance. Variants 3-4 (temporally inconsistent between
malware samples and benign samples) achieve significantly
higher performance than the other settings, including that
achieved by Baseline and Variants 1-2. The only difference
between Variants 3-4 and others is the involvement of temporal
biases, whether the malware and benign datasets are collected
from the same time period or not. This evidence suggests that
temporal inconsistency could significantly impact the classi-
fiers’ performance if introduced in the experimental datasets of
machine learning approaches. Drebin can achieve the highest

detection performance (i.e., 99.27% accuracy) under Variant 4
where malware samples are older while benign ones are newer.
As for XMal and Fan et al. , we also observe the similar
effects of temporal inconsistencies, which can be found on
our online supplementary. In addition, Table I and the prior
work [4] confirm that Variant 4 is the most common cause of
temporal biases between malware and benign samples. Thus,
we mainly focus on discussing the temporal biases that the
benign samples are collected from the latest time while the
malware samples are collected from the older time in the
following experiments.

Answer to RQ1: Introducing a temporal difference between
malware and benign samples in the experimental datasets
could significantly increase the detection performance of
ML-based Android malware detection approaches.

RQ2: Why does temporal inconsistency make ML-based
malware detection approaches perform so well?

In the second research question, we are interested in explor-
ing why the aforementioned machine learning approaches can
achieve high performances, especially why temporal-related
settings (i.e., Variants 3-4) can achieve better performance than
non-temporal-related settings (i.e., Baseline and Variants 1-
2). To the best of our knowledge, temporal inconsistency in
the training dataset has not been well explored by our fellow
researchers yet, and it is still unknown to the community
why there is such an impact when temporal inconsistency
is introduced in the training dataset. This question motivates
us to go one step further. To this end, we resort to explain-
able machine learning techniques to highlight the features
that significantly contribute to the classifications, hoping to
understand the impact brought by these features with respect
to the corresponding training datasets.

Explainable Machine Learning Approach. After the
three ML-based malware detectors output prediction results,
an explanation vector aki with feature importance values
is calculated for each test sample xki , where k represents
the size of feature list S. For each feature Sj , the average
feature importance Avg fi(Sj) can be calculated as:
Avg fi(Sj) = 1

N ·
∑N

i=1 a
j
i , where N is the size of test

samples. Thus, we can obtain the average feature importance

for each characteristic when the model generates the
predictions on a test set.

Except calculating average feature important, we sort
the feature importance vector aki and count the frequency
Count top(Sj) whether characteristic exist in top features:
Count top(Sj , T) = 1

N ·
∑N

i=1[Sj ∈ top(aki , T)], where
function top(aki , T) means getting the top T important features
from the feature importance vector aki . Then, this equation will
judge whether feature Sj exists in top T important features
of xki . A proportion of feature Sj in top features would be
calculated.

Experimental Setup. To help readers better understand
this work, we resort to the same experimental settings pro-
posed for answering RQ1 to fulfill the experiments of RQ2,
i.e., three approaches with five settings constructed with bal-
anced training datasets. The only difference is that, when re-
running the machine learning classifications, we apply the
explanation module mentioned above to the original classifica-
tion so as to further collect the feature importance information
for each testing example. Prior studies [22], [12] have proven
that the selection of feature sets plays an important role in
explaining machine learning-based malware classifications, for
which their performances are often decided by a small number
of top-ranked features. Thus, our follow-up detailed analyses
hence mainly focus on the top-ranked features.

Finding 2: When applied to ML-based malware detec-
tion, the top-ranked features highlighted via explainable
machine learning approaches may not always capture the
difference between malicious and benign behaviors. They
could simply be time-specific features that only exist in
either historical or latest apps.

As discussed previously, there is a strong correlation be-
tween the evaluation performance of ML classifiers and the
temporal distribution of the training samples. In this RQ,
we hence resort to explanations of ML classifiers for each
testing sample to determine if such temporal distributions will
impact the classification results. Specifically, in this work, we
have identified two types of time-specific features: (1) Added
ones and (2) Removed ones, which are respectively defined as
follows.

• Added Features. Features that are added to the Android
framework after the apps are released to the ecosystem.
Therefore, these apps, either malicious or benign, will
have no chance to access those features. However, the
remaining apps, which are released after the time when
the features are added, may have the opportunity to in-
clude those features. It hence introduces biases specific to
time rather than maliciousness. Table III includes several
added features on Drebin’s predictions. For example, the
”gms.ads.adactivity” app component was only added at
Android 4.4 (or API level 19, the first revision released
in 2013) to allow apps to display advertisements and
earn revenue. Google Mobile Ads APIs became a part
of Google Play services (gms) in Oct. 2013, so the apps
released before 2012 will have unlikely included this
characteristic, while apps released after 2018 could have.

Under Variant 4 where malware samples are before 2012
while benign samples are after 2018, Drebin considers
this ads-related feature as one of the top features in terms
of benign identification, with 0.92 feature importance,
while a zero value for identifying malware. Yet, when
Drebin is trained under Variant 3 with malware data
after 2018 but benign data before 2012, this feature
is recognized as a malware-related feature, with 0.59
feature importance but performs a low impact on benign
identification. From Table III, added features usually have
higher feature importance in identifying the category
containing the latest samples, whether the category is
benign or malware.

• Removed Features. Features that have been deleted (or
deprecated) from the Android framework at some stage,
and hence the apps released after that will unlikely access
them. In this work, we also consider deprecated ones as
removed. Although deprecated features are still available,
they are explicitly discouraged from being used anymore.
Likely, developers who follow the official recommenda-
tions will no longer use them. Table III also includes
several removed features on Drebin’s predictions. For
example, the ”TelephonyManager.getDeviceId” API call
were deprecated from Android 8.0 (or API level 26, first
revision released in 2017), as this new release updated
new API calls to return the unique device ID. With
the same conclusion with [12], [19], the key features
relevant to malware identification outputted by Drebin
under Variant 4 include ”getDeviceID”, with 0.43 and
0.13 feature importance respectively. However, when
Drebin are trained under Variant 3 with malware data
after 2018 but benign before 2012, this risky feature is
recognized as a benign-related feature. From Table III,
removed features usually have higher feature importance
to identify the category containing historical samples,
whether the category is benign or malware.

Table IV summarizes the ratio of time-specific features
involved in each classification of the five experimental settings
by Drebin. Among top k important features observed, the
ratio of added and removed features (i.e., say x and y) are
calculated via x/k and y/k, respectively. Since only a small
number of features will be regarded as important ones, as
we experimentally discovered previously, in this table, we
only summarize the ratio based on top-10 and top-20 features
ranked based on their importance.

As indicated in the Baseline setting, the ratios of added and
removed features are quite high. This is expected as this setting
has included a wide range of samples (i.e., from 2010 to 2020).
The ratios of added features, w.r.t. predicting malware and be-
nign apps, are more or less the same, as the ratios of removed
features have a slight discrepancy. Similar results could also
be observed in Variants 1&2 settings as both of them have
collected app samples (i.e., both malware and benign apps)
from the same period. However, when comparing the results

5https://developer.android.com/reference

Table III: Examples of time-specific features

Feature Name Feature Type Updated at version Updated at Year
Feature importance (Drebin)
Variant 3 Variant 4

Malware Benign Malware Benign
com.google.android.gms.ads.adactivity App components Added at API level 19 2013 0.59 0.00 0.00 0.92
android.permission.read_external_storage Requested permissions Added at API level 16 2012 1.13 -0.03 -0.18 0.54
android.permission.foreground_service Requested permissions Added at API level 28 2017 0.09 0.00 0.00 0.05
landroid/telephony/telephonymanager:->getdeviceid Suspicious API calls Removed at API level 26 2017 -0.03 0.05 0.44 -0.16
lorg/apache/http/client/methods/httppost Suspicious API calls Removed at API level 22 2015 -0.03 0.10 0.38 -0.36
android.permission.get_tasks Used permissions Removed at API level 21 2014 0.00 0.00 0.08 -0.02

Table IV: Comparison of feature importance of time-specific features
for malware/benign prediction by Drebin. The chart records the
ratios of test samples containing relevant time-specific features in
top features when ML classifiers make predictions. The ground truth
of temporal information of each feature is generated based on the
official Android Developer Documentation5.

Top 10 Top 20

Added Removed Added Removed

Baseline
Malware 0.3342 0.8303 0.5230 0.8640

Benign 0.4935 0.3705 0.5783 0.5765

Variant 1
Malware 0.1402 0.9010 0.2163 0.9018

Benign 0.1097 0.3727 0.1229 0.4093

Variant 2
Malware 0.4818 0.3535 0.8194 0.5752

Benign 0.6697 0.1575 0.8216 0.3941

Variant 3
Malware 0.9259 0.3015 0.9342 0.6941

Benign 0.0968 0.4312 0.1142 0.4871

Variant 4
Malware 0.1834 0.8445 0.1970 0.8834

Benign 0.9047 0.2503 0.9187 0.6471

obtained in Variants 3&4, for which the malware and benign
samples are collected from different time periods, we could
observe clear differences. Under Variant 3, we observe that
when Drebin makes decisions to identify malware, 92% of
malware in testing samples contain newly added features in
the top 10 features, but only 9% benign in testing samples
contain added features in the top 10 features. The observation
is not surprising since the malware samples in this setting are
collected from apps released from 2018 to 2020 but benign
from 2010 to 2012. On the contrary, when looking at Variant
4, where malware samples are from 2010 to 2012, but benign
samples are created after 2018, Drebin can build distinguish
rules indicating that the benign identification greatly depends
on newly added features while malware identification highly
depends on removed (or deprecated) characteristics. This evi-
dence indicates that the important features contributing to the
high performance of Drebin may not necessarily be related
to apps’ maliciousness (or benignness) but could simply be
discrepancies introduced by temporal inconsistencies in the
training dataset. When experimental data is temporally incon-
sistent, newly added features have a higher positive impact
on identifying the category collected on a later date, while
deprecated/removed features have a higher positive impact on
the category collected on an earlier date.

Finding 3: When using testing samples from distinct
periods, ML models still distinguish malware/benign based
on temporal differences learned from training data, result-

ing in extremely poor performance.
To further understand the impacts of temporal inconsistency,

we obtain the models from RQ1 with the best performance
under Variant 3 and Variant 4, respectively, and test the per-
formance on another temporally inconsistent dataset. Table V
presents the prediction performance and relevant explanation
results. When Drebin is trained on Variant 4 (malware is from
2010-2012 while benign is from 2018-2020), but tested on
Variant 3 (malware is from 2018-2020 while benign is from
2010-2012), it only obtains 14% accuracy, which is much less
than 99% obtained in RQ1. The explanation results show that
the trained model under Variant 4 still thinks that the samples
with more added features are more likely to be benign, while
the samples with more removed features are more likely to be
malware. Similarly, when Drebin is trained on Variant 3 but
tested on Variant 4, the results show that Drebin considers the
samples with more added features as malware, causing only
9% accuracy. Therefore, this experiment demonstrates that if
the time difference between malware and benign changes, the
ML-based model trained under temporal biases doesn’t work.
This observation further demonstrates that ML-based malware
detectors distinguish malware from benign based on time-
specific features under the temporal inconsistency.

Finding 4: If temporal inconsistency exists, all three
ML-based malware detection approaches provide highly
accurate predictions based on temporal differences.

Table VI presents the prediction results and explanation
results of three ML/DL-based malware detection approaches
under Variant 4. We can observe that six ML-based An-
droid malware detection approaches achieve fairly high per-
formance, where all the accuracy and F1 score are higher
than 0.98 under temporal inconsistency. This finding indicates
that temporal biases between the experimental malware and
benign samples influence predictions regardless of the type
of machine learning algorithms. From the explanation results,
we can observe that ML-based Android malware detection
approaches capture time differences between malware and
benign (i.e., under Variant 4, malware is likely to include
removed features while benign is likely to include added
features).

Answer to RQ2: Many time-specific features are only
available in either historical or latest applications. Expla-
nations for testing samples reveal that ML models correctly
identify the temporal differences between malware and
benign samples, resulting in high performance.

Table V: Results of prediction performance and feature importance of time specific features when ML-based malware classifier is trained
on one temporally inconsistent dataset and is tested on another one (i.e., Variant 3 and Variant 4).

Prediction Performance
Explanation results

Top 10 Top 20

Accuracy F1 Precision Recall Added Removed Added Removed

Trained on Variant 3, tested on Variant 4 0.0968 0.0368 0.0395 0.0346
Malware 0.8754 0.7282 0.9074 0.8660

Benign 0.1151 0.4864 0.1366 0.8033

Trained on Variant 4, tested on Variant 3 0.1415 0.0536 0.0598 0.0487
Malware 0.0831 0.5626 0.0965 0.5695

Benign 0.7970 0.0778 0.8010 0.2759

0.75

0.8

0.85

0.9

0.95

1

0

0.2

0.4

0.6

0.8

1

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Drebin (malware : benign = 4:1)

0.75

0.8

0.85

0.9

0.95

1

0

0.2

0.4

0.6

0.8

1

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Drebin (malware : benign = 1:1)

0.75

0.8

0.85

0.9

0.95

1

0

0.2

0.4

0.6

0.8

1

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Drebin (malware : benign = 1:4)

0.75

0.8

0.85

0.9

0.95

1

0

0.2

0.4

0.6

0.8

1

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Xmal (malware : benign = 4:1)

0.75

0.8

0.85

0.9

0.95

1

0

0.2

0.4

0.6

0.8

1

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Xmal (malware : benign = 1:1)

0.75

0.8

0.85

0.9

0.95

1

0

0.2

0.4

0.6

0.8

1

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Xmal (malware : benign = 1:4)

Year of benign samples

Year of benign samples Year of benign samples

Year of benign samplesYear of benign samples

Year of benign samples

Co
un

t_
to

p
Co

un
t_

to
p

Ac
cu

ra
cy

 /
F1

 sc
or

e
Ac

cu
ra

cy
 /

F1
 sc

or
e

0.75

0.8

0.85

0.9

0.95

1

0

0.2

0.4

0.6

0.8

1

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

MLP+LIME (malware : benign = 4:1)

0.75

0.8

0.85

0.9

0.95

1

0

0.2

0.4

0.6

0.8

1

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

MLP+LIME (malware : benign = 1:1)

0.75

0.8

0.85

0.9

0.95

1

0

0.2

0.4

0.6

0.8

1

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

MLP+LIME (malware : benign = 1:4)
Accuracy
F1
Added_benign
Added_malwareCo

un
t_

to
p

Ac
cu

ra
cy

 /
F1

 sc
or

e

Year of benign samples Year of benign samples Year of benign samples

Fig. 2: Experimental results obtained via Setting 1 that keeps the malware data untouched (in the year 2010) and train the models on different
benign samples collected at different years (from 2010 to 2020)

Table VI: Evaluation results of the replication study under temporal
biases (Malware is from 2010-2012 while benign is from 2018-2020)

Prediction Performance Explanation Results
Accuracy F1 Added Removed

Drebin 0.9927 0.9927
Malware 0.1834 0.8445

Benign 0.9047 0.2503

Xmal 0.9822 0.9824 Malware 0.0104 0.8180
Benign 0.7702 0.7723

MLP + LIME 0.9861 0.9861 Malware 0.00821 0.7790
Benign 0.81651 0.7704

RF + LIME 0.9869 0.9869 Malware 0.00687 0.7819
Benign 0.81603 0.7670

SVM + LIME 0.9806 0.9807
Malware 0.0238 0.7709

Benign 0.8274 0.7806

RQ3: How sensitive is the impact of the temporal incon-
sistency on the accuracy and explanation of the ML-based
malware detection approaches?

Our previous experiments have empirically demonstrated
that the performance of ML-based malware classification
approaches could be significantly increased when temporal in-
consistencies are introduced in the training dataset. Especially
on Variant 4, malware samples are from an earlier time than
benign samples, achieving up to 98% accuracy for all ML-
based malware classifiers. Actually, Variant 4 is commonly
occurring in the research domain, as shown in Table I. The

finding is however only confirmed through a limited number
of experimental settings, letting it unknown if it holds true
for other experimental settings (i.e., the finding per se is
generic). To this end, in the last research question, we would
like to explore this by conducting large-scale experiments
with different settings. Specifically, we confirm the genericity
through varying settings with customized malware/goodware
ratios and temporal sample inconsistencies.

Experimental Setup. The purpose of this section is used to
further confirm the correlation between inconsistent temporal
distributions and classification performances when the rate of
malware to benign is changed. To this end, we split our ob-
tained dataset obtained in Section III-B1 into 22 subsets based
on the APK type (Malicious/benign) and appearance time
(2010 to 2020). Specifically, to investigate the influence of
time interval size on final prediction performance, we consider
the following time-related settings: keep the malware data
untouched (in the year 2010) and train the models on different
benign samples collected in different years Except that, we
further consider the impacts over three malware/benign ratios:
a balanced dataset with malware/benign ratio (i.e., 1:1), a large
malware set with malware/benign ratio (i.e., 4:1), and a smaller
malware set with malware/benign ratio (i.e., 1:4).

Finding 5: Varying the Malware/Benign Rates in the

training dataset will have a great impact on the per-
formance of machine learning-based malware detection
approaches.

Figure 2 further present the performance results and
the proportion of time-related features in top 10 features
(Count top(Sj , 10)) obtained via the explanable AI approach.
What stands out in the figures is that malware rates can
influence detection performance. When malware/benign rate is
set to 4:1, three ML-based malware classifiers always present
a much higher F1 score than the other two at all time points.
When the malware/benign rate is set to 1:4, the malware
detectors obtain the lowest F1 score. These results mirror
those of the previous studies [11], [42] that have examined
the impacts of unrealistic malware rates on ML-based malware
classifiers. As Pendlebury et al. [11] described, most mobile
applications in the real world are benign samples, but most
research studies build an unrealistic malware rate, causing
over-optimistic detection performance.

Finding 6: When temporal inconsistencies between mal-
ware and benign get bigger (with a larger time interval
size), ML classifiers tend to achieve “better” performance.

From Figure 2, it can be seen that Drebin, XMal and Fan et
al. can often achieve higher F1 and accuracy values regardless
of malware rate, when temporal biases between malware and
benign become larger. The first two subfigures of Figure 2
show that when the time interval between malware in 2010
and benign gets bigger, the detection performance of ML-
based malware classifiers gradually improves. Indeed, there
is a steady increase in the proportion of benign applications
with newly added features in their top 10 key features as
time increases when 2010 malware data is combined with
variable benign data at different time spots. This observation
indicates that as benign samples evolve, added features become
increasingly important in distinguishing benign from historical
malware samples. The experimental results further support
our previous finding that ML classifiers learn the temporal
differences between malware and benign samples, resulting in
unrealistic performance to rise.

Overall, our observations suggest that the rules for distin-
guishing malware built by the ML models strongly depend on
the temporal distribution of the training malware and benign
samples. When training data is inconsistent in time, malware
identification of the ML-based approaches is highly reliant
on learning temporal differences, and the temporal differences
are reflected in a wide range of characteristics. Explanations
for testing samples reveal that the feature importance of time-
specific features gradually increases as the unrealistic perfor-
mance improves. Further analysis of key feature explanations
reveals that temporal differences are related to a wide range
of features in the feature sets.

Answer to RQ3: The positive correlation between temporal
sample inconsistency in the training dataset (regardless
of balanced or imbalanced malware/benign sample sets)
and the ML-based classification results is generic. When
the temporal inconsistencies between malware and benign
samples are greater, ML classifiers learn a greater number
of time-related differences, which subsequently contribute
to higher prediction performances.

V. DISCUSSION

Explainability of Malware Detection. In this study, we
explore three explainable machine learning-based malware
classifiers. Currently, more complex deep learning algorithms,
such as recurrent neural networks and conventional neural net-
works, are becoming more popular for building malware clas-
sifiers because they could provide better detection performance
without a feature selection process. However, these algorithms
are usually black-box models with limited explainability. Al-
though prior works suggest that complex deep neural networks
boost performance, our experiments have demonstrated that
even simple ML models can achieve a high performance up
to 99% accuracy when experimental samples are temporally
inconsistent. We explore the over-optimistic and unreliable
experimental results caused by unrealistic evaluation designs,
which have no direct connection with the types of classifiers
used. Four types of ML models (i.e., SVM, attention-based
neural network, MLP and RF) generate consistent evaluation
results, confirming the generality of our findings for other
machine learning-based malware detection approaches. In ad-
dition, we investigate two types of explainable AI approaches
including model-specific explainable approaches (i.e., linear
SVM and attention-based neural networks) and model-agnostic
explainable approaches (i.e., LIME), confirming the validity
of explainable AI approaches for analyzing or improving ML-
based Android malware detection approaches.

Time-specific Features. We define the time-specific fea-
tures based on the official descriptions of the Google developer
documentation. By inspecting the feature importance of time-
specific features, we found that ML-based malware detection
approaches learn temporal differences to identify malware
from benign when training data is temporally inconsistent.
When using a smaller feature set with fewer time-specific
features, the explanation results of XMal and Fan et al. are
not always consistent with that of Drebin in RQ2, but from
RQ3, we found the performance of XMal and Fan et al. is
highly correlated with time biases in the training data. The
explanation is that except for the time-specified features we
defined based on Google Developer Documentation, temporal
differences depend on much more complex factors. For ex-
ample, we output the top 10 features for benign identification
when Drebin is trained on 2010 malware and 2020 benign of
RQ3. We observe that three added features are regarded as key
benign-related features but these features have no impact when
benign is from the historical time. What is surprising is that
other top 10 features also only show a high feature importance

only when benign is from the latest period. This result can
be explained by the fact that the temporal differences are
represented not just in the added features we defined based on
the Google Developer Documentation. Our motivation is not
to locate all time-specific features, but we utilize the feature
importance of these features to determine whether malware
detectors are reliable. More importantly, the evaluation results
help us confirm that temporal biases can’t be eliminated by
feature selection or reduction. Although XMal and Fan et
al. only use 154 features, our evaluation results of RQ3 show
that their detection performance is highly related to temporal
inconsistency.

Threats to Validity The primary threat to internal validity
lies in the implementation of the study. To reduce this threat,
we utilized three ML-based malware detection approaches.
The external threat to validity mainly lies in the used datasets.
We collect malware and benign samples from the Androzoo
repository, which comprises a collection of more than 15
million Android samples from various application markets.
We follow the same process with the reproduction study to
process the application and construct the feature vectors. To
further investigate the generality of our findings, we evaluate
the three approaches on the different period data.

VI. CONCLUSION

The paper utilized explainable malware detection models
to investigate why the existing research works present highly
accurate performance. By evaluating the explanation results of
ML models, we found that most of the results are not realistic
since ML models haven’t figured out the real difference be-
tween malware and benign. Specifically, accurate predictions
are strongly related to the temporal inconsistency in train-
ing data. Our work demonstrates that a robust experimental
setup for malware classification models is required, otherwise,
ML/DL-based models present over-optimistic results. We en-
courage the community to jump outside of the ideal world
of high-performance of machine learning and should focus
more on reliability and applicability, not only on classification
evaluation metrics. Furthermore, explainable AI techniques
helped us understand the inner logic and infer the decision
reasons for ML-based Android malware detection models. We
expect that our work will inspire future researchers to utilize
explainable AI techniques to explore the underlying issues in
ML/DL-based systems.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
who have provided insightful and constructive comments on
this paper. Chakkrit Tantithamthavorn was partly supported
by the Australian Research Council’s Discovery Early Career
Researcher Award (DECRA) funding scheme (DE200100941).
Li Li was partly supported by the Australian Research Council
(ARC) under a Discovery Early Career Researcher Award
(DECRA) project DE200100016, and a Discovery project
DP20010002.

REFERENCES

[1] Mcafee labs threats report, april 2021. [Online].
Available: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-
quarterly-threats-apr-2021.pdf

[2] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, “A survey of
android malware detection with deep neural models,” ACM Computing
Surveys (CSUR), vol. 53, no. 6, pp. 1–36, 2020.

[3] A. Razgallah, R. Khoury, S. Hallé, and K. Khanmohammadi, “A
survey of malware detection in android apps: Recommendations and
perspectives for future research,” Computer Science Review, vol. 39, p.
100358, 2021.

[4] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Deep
learning for android malware defenses: a systematic literature
review,” ACM Computing Surveys, jun 2022. [Online]. Available:
https://doi.org/10.1145/3544968

[5] J. Samhi, L. Li, T. F. Bissyandé, and J. Klein, “Difuzer: Uncovering
suspicious hidden sensitive operations in android apps,” in The 44th
International Conference on Software Engineering (ICSE 2022), 2022.

[6] X. Sun, X. Chen, K. Liu, S. Wen, L. Li, and J. Grundy, “Characterizing
sensor leaks in android apps,” in The 32nd International Symposium on
Software Reliability Engineering (ISSRE 2021), 2021.

[7] O. Zungur, A. Bianchi, G. Stringhini, and M. Egele, “Appjitsu: Investi-
gating the resiliency of android applications,” in 2021 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2021, pp. 457–
471.

[8] A. Possemato, D. Nisi, and Y. Fratantonio, “Preventing and detecting
state inference attacks on android,” in Proceedings of the 2021 Network
and Distributed System Security Symposium (NDSS), Virtual, 21st-25th
February, 2021.

[9] T. Liu, H. Wang, L. Li, X. Luo, F. Dong, Y. Guo, L. Wang, T. F. Bis-
syandé, and J. Klein, “Maddroid: Characterising and detecting devious
ad content for android apps,” in The Web Conference 2020 (WWW 2020),
2020.

[10] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wress-
negger, L. Cavallaro, and K. Rieck, “Dos and don’ts of machine learning
in computer security,” in Proc. of the USENIX Security Symposium,
2022.

[11] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“{TESSERACT}: Eliminating experimental bias in malware classifica-
tion across space and time,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 729–746.

[12] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[13] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “Maldozer: Au-
tomatic framework for android malware detection using deep learning,”
Digital Investigation, vol. 24, pp. S48–S59, 2018.

[14] K. Xu, Y. Li, R. H. Deng, and K. Chen, “Deeprefiner: Multi-layer
android malware detection system applying deep neural networks,” in
2018 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2018, pp. 473–487.

[15] X. Su, D. Zhang, W. Li, and K. Zhao, “A deep learning approach
to android malware feature learning and detection,” in 2016 IEEE
Trustcom/BigDataSE/ISPA. IEEE, 2016, pp. 244–251.

[16] M. E. Khoda, J. Kamruzzaman, I. Gondal, T. Imam, and A. Rahman,
“Mobile malware detection: An analysis of deep learning model,” in
2019 IEEE International Conference on Industrial Technology (ICIT).
IEEE, 2019, pp. 1161–1166.

[17] M. Fan, W. Wei, X. Xie, Y. Liu, X. Guan, and T. Liu, “Can we trust
your explanations? sanity checks for interpreters in android malware
analysis,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 838–853, 2020.

[18] X. Su, W. Shi, X. Qu, Y. Zheng, and X. Liu, “Droiddeep: using
deep belief network to characterize and detect android malware,” Soft
Computing, vol. 24, no. 8, pp. 6017–6030, 2020.

[19] B. Wu, S. Chen, C. Gao, L. Fan, Y. Liu, W. Wen, and M. R. Lyu,
“Why an android app is classified as malware: Toward malware classifi-
cation interpretation,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 30, no. 2, pp. 1–29, 2021.

[20] L. Li, K. Allix, D. Li, A. Bartel, T. F. Bissyandé, and J. Klein, “Potential
Component Leaks in Android Apps: An Investigation into a new Feature
Set for Malware Detection,” in The 2015 IEEE International Conference
on Software Quality, Reliability & Security (QRS), 2015.

[21] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang,
and M. Yang, “Enhancing state-of-the-art classifiers with api semantics
to detect evolved android malware,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020,
pp. 757–770.

[22] M. Melis, D. Maiorca, B. Biggio, G. Giacinto, and F. Roli, “Explaining
black-box android malware detection,” in 2018 26th European Signal
Processing Conference (EUSIPCO). IEEE, 2018, pp. 524–528.

[23] M. Melis, M. Scalas, A. Demontis, D. Maiorca, B. Biggio, G. Giacinto,
and F. Roli, “Do gradient-based explanations tell anything about adver-
sarial robustness to android malware?” arXiv preprint arXiv:2005.01452,
2020.

[24] S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou, V. P.
Ranganath, H. Li, and N. Guevara, “Experimental study with real-
world data for android app security analysis using machine learning,”
in Proceedings of the 31st Annual Computer Security Applications
Conference, 2015, pp. 81–90.

[25] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz, R. Bachwani,
R. Faizullabhoy, L. Huang, V. Shankar, T. Wu, G. Yiu et al., “Reviewer
integration and performance measurement for malware detection,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2016, pp. 122–141.

[26] H. Cai, “Assessing and improving malware detection sustainability
through app evolution studies,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 29, no. 2, pp. 1–28, 2020.

[27] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are android apps
removed from google play? a large-scale empirical study,” in The 15th
International Conference on Mining Software Repositories (MSR 2018),
2018.

[28] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li,
J. Tapiador, J. Cao, and G. Xu, “Beyond google play: A large-scale
comparative study of chinese android app markets,” in The 2018 Internet
Measurement Conference (IMC 2018), 2018.

[29] J. Gao, L. Li, P. Kong, T. F. Bissyandé, and J. Klein, “Understanding
the evolution of android app vulnerabilities,” IEEE Transactions on
Reliability (TRel), 2019.

[30] Y. Liu, L. Li, P. Kong, X. Sun, and T. F. Bissyandé, “A first look at
security risks of android tv apps,” in The 4th International Workshop
on Advances in Mobile App Analysis (A-Mobile 2021), co-located with
ASE 2021, 2021.

[31] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[32] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135–1144.

[33] ——, “Anchors: High-precision model-agnostic explanations,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
2018.

[34] R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and
F. Giannotti, “Local rule-based explanations of black box decision
systems,” arXiv preprint arXiv:1805.10820, 2018.

[35] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Proceedings of the 31st international conference on
neural information processing systems, 2017, pp. 4768–4777.

[36] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “Lemna: Explaining
deep learning based security applications,” in proceedings of the 2018
ACM SIGSAC conference on computer and communications security,
2018, pp. 364–379.

[37] L. Li, T. F. Bissyandé, and J. Klein, “Moonlightbox: Mining android api
histories for uncovering release-time inconsistencies,” in The 29th IEEE
International Symposium on Software Reliability Engineering (ISSRE
2018), 2018.

[38] Y. Lin, T. Liu, W. Liu, Z. Wang, L. Li, G. Xu, and H. Wang, “Dataset
bias in android malware detection,” arXiv preprint arXiv:2205.15532,
2022.

[39] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro, “Transcend: Detecting concept drift in malware clas-
sification models,” in 26th {USENIX} Security Symposium ({USENIX}
Security 17), 2017, pp. 625–642.

[40] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “Droidevolver: Self-evolving
android malware detection system,” in 2019 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2019, pp. 47–62.

[41] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “{CADE}: Detecting and explaining concept drift samples
for security applications,” in 30th {USENIX} Security Symposium
({USENIX} Security 21), 2021.

[42] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, Y. Le Traon et al.,
“Empirical assessment of machine learning-based malware detectors for
android,” Empirical Software Engineering, vol. 21, no. 1, pp. 183–211,
2016.

[43] Y. Bai, Z. Xing, X. Li, Z. Feng, and D. Ma, “Unsuccessful story about
few shot malware family classification and siamese network to the
rescue,” in 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 2020, pp. 1560–1571.

[44] Y. Zhao, L. Li, H. Wang, H. Cai, T. F. Bissyandé, J. Klein, and J. Grundy,
“On the impact of sample duplication in machine-learning-based android
malware detection,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 30, no. 3, pp. 1–38, 2021.

[45] C. Tantithamthavorn, “Towards a Better Understanding of the Impact of
Experimental Components on Defect Prediction Modelling,” in Compan-
ion Proceeding of the International Conference on Software Engineering
(ICSE), 2016, pp. 867—-870.

[46] C. Tantithamthavorn and A. E. Hassan, “An Experience Report on
Defect Modelling in Practice: Pitfalls and Challenges,” in In Proceedings
of the International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), 2018, pp. 286–295.

[47] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“Comments on “Researcher Bias: The Use of Machine Learning in
Software Defect Prediction”,” Transactions on Software Engineering
(TSE), vol. 42, no. 11, pp. 1092–1094, 2016.

[48] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and K. Mat-
sumoto, “The Impact of Mislabelling on the Performance and Interpre-
tation of Defect Prediction Models,” in Proceeding of the International
Conference on Software Engineering (ICSE), 2015, pp. 812–823.

[49] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, “The impact of
class rebalancing techniques on the performance and interpretation of
defect prediction models,” IEEE Transactions on Software Engineering,
vol. 46, no. 11, pp. 1200–1219, 2018.

[50] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“The Impact of Automated Parameter Optimization on Defect Prediction
Models,” Transactions on Software Engineering (TSE), pp. 683–711,
2018.

[51] ——, “An Empirical Comparison of Model Validation Techniques for
Defect Prediction Models,” Transactions on Software Engineering (TSE),
vol. 43, no. 1, pp. 1–18, 2017.

[52] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR). IEEE, 2016, pp. 468–471.

[53] M. Cao, S. Badihi, K. Ahmed, P. Xiong, and J. Rubin, “On benign
features in malware detection,” in 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2020,
pp. 1234–1238.

[54] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ml attacks in the problem space,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 1332–1349.

