
A First Look at CI/CD Adoptions in Open-Source Android Apps
Pei Liu, Xiaoyu Sun, Yanjie Zhao, Yonghui Liu, John Grundy, and Li Li∗

{Pei.Liu,Xiaoyu.Sun,Yanjie.Zhao,Yonghui.Liu,John.Grundy,Li.Li}@monash.edu
Monash University

Australia

ABSTRACT
Continuous Integration (CI) and Continuous Delivery (CD) have
been demonstrated to be effective in facilitating software building,
testing, and deployment. Many research studies have investigated
and subsequently improved their working processes. Unfortunately,
such research efforts have largely not touched on the usage of CI/CD
in the development of Android apps. We fill this gap by conducting
an exploratory study of CI/CD adoption in open-source Android
apps. We start by collecting a set of 84,475 open-source Android
apps from the most popular three online code hosting sites, namely
Github, GitLab, and Bitbucket.We then look into those apps and find
that (1) only around 10% of apps have leveraged CI/CD services, i.e.,
the majority of open-source Android apps are developed without
accessing CI/CD services, (2) a small number of apps (291) has even
adopted multiple CI/CD services, (3) nearly half of the apps adopted
CI/CD services have not really used them, and (4) CI/CD services
are useful to improve the popularity of projects.
ACM Reference Format:
Pei Liu, Xiaoyu Sun, Yanjie Zhao, Yonghui Liu, John Grundy, and Li Li. 2022.
A First Look at CI/CD Adoptions in Open-Source Android Apps. In 37th
IEEE/ACM International Conference on Automated Software Engineering (ASE
’22), October 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3551349.3561341

1 INTRODUCTION
Modern software development involves a variety of platforms, third-
party libraries, tools, and a large group of developers, who always
need to maintain a consistent development environment to in-
tegrate and validate local changes. However, it is non-trivial to
achieve that, i.e., significant efforts of developers are often required.
To mitigate this, developers has invented Continuous Integration
(CI) and Continuous Delivery (CD) processes. CI/CD are a set of
software development practices that enforce automation in build-
ing, testing, and deployment or delivery of applications and help
developers to deliver code changes more timely and reliably [6, 18].
Specifically, CI aims to facilitate such arduous maintenance with
an automated approach to build, package, and test their application
updates in a consistent environment. CD then takes over once CI
finishes to deliver the code into production so as to shorten the
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3561341

deployment cycle. This is greatly demanded as nowadays popular
software is released at an unprecedented pace to try to keep an edge
against the competition with similar software. For example, Face-
book, over a period of 4 years, has greatly shortened the deployment
cycle to once a week from every eight weeks [25]. Google chrome
also shortened its release cycle to four weeks from six weeks [2].

The convenience of CI/CD has already been leveraged both by
open-source [22] and proprietary software development teams,
such as Google, Mozilla, Microsoft, etc. With the help of CI/CD, the
HP LaserJet Firmware division announced that it helps them reduce
development costs by 78% [8]. The widespread adoption of CI/CD
enlightens the emergence of cloud-based CI/CD services, such as
CircleCI [7], TravisCI [15], and Github Actions, which provide
consumers the benefits of CI/CD without the additional efforts to
maintain the infrastructures of these online CI/CD services.

Other researchers have also seen the great potential of CI/CD
and hence have spent significant efforts in studying and improving
its working process. For example, Zhang et al. [28] did a large-scale
empirical study on 163,371 test failure builds in real-world Java
projects utilizing TravisCI to triage the failure CI builds. They pro-
posed an approach called BuildSheriff to classify the test failures
with the same root cause into the same group. Hilton et al. [22] uti-
lized three complementary methods to investigate the usage of CI
in open-source projects. They analyzed 1,529,291 builds generated
from the well-known CI provider TravisCI among 34,544 Github
projects, and surveyed 442 developers. Their experimental results
concluded that projects with CI are released twice as faster as the
ones without. The developers also manage to accept pull requests
faster and generally are less worried about build failures. Gallaba
et al. [20] conducted an extensive empirical study on 3.7 million
build jobs from 1,276 open-source projects adopting TravisCI. They
observed that some passing builds contain ignored failures, that
certain builds have misleading and erroneous results, and that some
failing builds have passing jobs. Their findings rejected two critical
assumptions: build results are not noisy, and builds are equal. In
addition, Gallaba et al. [19] also explored the 23.3 million builds
spanning 7,795 open-source projects utilizing CircleCI from 2012
to 2020. Their quantitative analysis reveals that approaches to accel-
erate builds are necessary to boost the adoption of CI/CD services.
The robustness of CI services would be enhanced via the optimi-
sation of compilation and testing procedures, the elimination of
improper configurations, and the resolution of service availability
problems.

Unfortunately, despite the fact that various efforts have been
put into studying CI/CD in open-source projects, our community
has not yet explored the adoption of CI/CD in Android apps, one
of the most popular types of software. In this paper, we propose
to bridge this gap by conducting the first empirical study about

https://doi.org/10.1145/3551349.3561341
https://doi.org/10.1145/3551349.3561341

ASE ’22, October 10–14, 2022, Rochester, MI, USA Pei Liu, Xiaoyu Sun, Yanjie Zhao, Yonghui Liu, John Grundy, and Li Li

CI/CD adoptions in open-source Android apps. We start by collect-
ing a dataset of open-source Android apps from well-known online
repository hosting sites, including Github, GitLab, and Bitbucket.
This step results in 84,475 open-source Android apps, which are
then leveraged to fulfill our research objective of understanding
the adoption of CI/CD services in open-source Android apps. Our
exploratory study has revealed several interesting findings: 1) The
majority (89.94%) of our collected Android projects do not access
any CI/CD services, 2) Concerning the projects configured with
CI/CD services, they are generally more popular (e.g., more Github
stars) than those projects that do not access CI/CD services, 3)
Among the apps that adopted CI/CD services, only 59.58% of them
have their CI/CD processes executed practically during the devel-
opment, 4) The apps with practical usage of CI/CD are even more
popular than those apps that only adopt CI/CD but do not configure
it properly to allow successful execution of the CI/CD processes.

Our work makes the following main contributions.

• We release to the community a set of 84,475 open-source An-
droid apps that are collected from three popular code hosting
platforms (i.e., Github, GitLab, and Bitbucket). We further
highlight 7,899 apps that have accessed CI/CD services.

• We have summarized a list of popular CI/CD services and
implemented a script to automatically check if any of those
services have been leveraged by given open-source Android
app projects.

• We conduct a large-scale empirical study of CI/CD adoption
in open-source Android apps and reveal to the community
various interesting findings.

2 EXPERIMENTAL SETUP
In this work, we propose to answer the following two research
questions to experimentally understand the adoption of CI/CD in
open-source Android apps.

RQ1: Towhat extent is CI/CD adopted byAndroid projects?
We use Python scripts to automatically explore the usages of CI/CD
services in all the collected open-source Android apps. Our experi-
mental study reveals that (1) the majority of open-source Android
apps do not involve CI/CD and (2) the apps that do adopt CI/CD
services are mainly hosted on Github rather than GitLab or Bit-
bucket.

RQ2: How are CI/CD services leveraged by Android app
developers? We go one step deeper to investigate the usage of
CI/CD services by additionally looking at the building history of
each Android app project. Our empirical investigation eventually
reveals (1) a small number of apps have involved multiple CI/CD
services and (2) nearly half of the apps adopted CI/CD services
have not really used CI/CD services (i.e., no building history can
be located).

2.1 Dataset Preparation
To support the experiments in answering these two research ques-
tions, we first prepare a dataset of open-source Android apps by
mining the popular online code hosting sites. Then, to help readers
better understand this work, we provide more details about CI/CD
and summarize the popular CI/CD services utilized by software

developers in their daily development. After that, we briefly intro-
duce our methodologies for checking if a CI/CD service has been
accessed by given Android apps. To identify open-source Android
projects we use the most famous open-source project hosting sites,
namely Github, GitLab, and Bitbucket:

Github. As is reported, Github [9] has attracted more than 83
million developers and has held more than 200 million reposito-
ries [14] (at least 35 million of them are public repositories). It
is non-trivial to iterate every public repository to determine if it
is Android project. To help researchers and developers discover
similar repositories, Github introduced topics [1] in 2017. Topics
are labels that establish connections between Github repositories
facilitating similar projects locating by type, technology, program-
ming language, etc. We, therefore, utilize topic Android first to filter
out non-Android repositories. However, there are still more than
90,000 repositories under topic Android and projects with the topic
Android are not necessarily authentic Android repositories. They
may be the Android design materials, books etc. To this end, we in-
spected every repositories containing topic Android to check if they
have the Android special configuration file AndroidManifest.xml
via the provided REST APIs [10]. We, therefore, conclude Android
repository if it contains the topic Android and has the Android
specific configuration file AndroidManifest.xml [24] as is shown in
the Android Repositories Identification section of the Figure 2.

GitLab. GitLab [9, 11] is a DevOps platform provided by the
open-core company GitLab Inc. It provides the core-functionalities
under the MIT open-source license for public users while additional
functionalities, such as vulnerability management, advanced secu-
rity testing etc., are provided under proprietary license. It enables
public developers to develop, secure, operate, and utilize CI/CD
to complete their artefacts development. To harvest public An-
droid repositories hosted on GitLab, we first listed all of the public
repositories and then inspected if the project has the file named
AndroidManifest.xml via the REST APIs provided by GitLab [12].

Bitbucket. Bitbucket [3, 4] is also a Git-based code hosting ser-
vice held by Atlassian. It provides commercial and free accounts
both with unrestricted number of private repositories support. It
is comprised of Bitbucket Cloud and Bitbucket Server. Bitbucket
Server is the commercial software product and can be deployed
on-premise with the license. Bitbucket Cloud is provided via URLs
on Atlassian’s Server. It gives the ability to complete the software
development and testing via the exclusive CI/CD service for free
accounts. Since we focus on Bitbucket Cloud, we would refer Bit-
bucket Cloud as Bitbucket for simplicity. To collect Android repos-
itories on Github, we also listed all of the open-source projects
hosted on Bitbucket, retrieved the latest commit for every project,
listed all of the files for the latest commit, and finally inspected if the
file of AndroidManifest.xml is provided or not via the self-hosted
REST APIs [5].

In total, we have identified 84,475 open-source Android apps,
including 78,245 Github apps, 341 GitLab apps, and 5,889 Bitbucket
apps.

2.2 CI/CD
Generally speaking, CI/CD accelerates the whole life cycle of ar-
tifact development via automatically building, testing, packaging,

A First Look at CI/CD Adoptions in Open-Source Android Apps ASE ’22, October 10–14, 2022, Rochester, MI, USA

Developers

 VCS

Build Test Release Deploy

Continuous Integration Continuous Delivery/Continuous Deployment

Repository Production Build, Test Logs

Figure 1: The typical working process for CI/CD systems.

releasing, and deploying. Figure 1 illustrates the typical working
process of the CI/CD system. Modern software artifacts are ex-
pected to be maintained through Version Control Systems such
as Git. Once new changes to the source code have been made by
the developers and the certain trigger condition has been satisfied,
the CI system will be involved to build and test the whole project
automatically to check if such changes will induce any potential
bugs. If there are build or test errors, developers will be notified
with the build and test logs, which will help developers to locate
the root causes to fix. Continuous Delivery/Deployment are tightly
related concepts. They can be used interchangeably. Continuous
Delivery usually means that the projects will be automatically up-
loaded to a repository (e.g., Github) and ready to deploy if they
are built and tested successfully in CI. In comparison, Continuous
Deployment refers to automatically deploying the released version
to the production environment for customers.

CI/CD systems usually fulfill the automation by specifying spe-
cific jobs in the YAML-based configuration text files. YAML refers
to YAML Ain’t Markup Language [13, 16]. It is a user-friendly data
serialization language. Listing 1 shows a build example excerpted
fromPeopleAndService/BBasDriver-Android 1. To build
the projects on Ubuntu-latest OS step by step, it first specify the
running platform to Ubuntu-latest with the key word runs-on. In
the following steps, it checks out the source code, specify the ver-
sion of Java, grant the execution permission for the Gradle wrapper
(i.e., gradlew), and finally build the project.

1 build:
2 name: Build Project
3 runs-on: ubuntu-latest
4
5 steps:
6 - uses: actions/checkout@v2
7 - name: set up JDK 11
8 uses: actions/setup-java@v2
9 with:
10 java-version: '11'
11 distribution: 'adopt'
12 cache: gradle
13
14 - name: Grant execute permission for gradlew
15 run: chmod +x gradlew
16
17 - name: Build with Gradle
18 run: ./gradlew build

Listing 1: Github Action Build Example. Script is written via
YAML.

Existing Popular CI/CD Services. In this work, we perform
an exploratory study (i.e., by searching online and reviewing the
1https://github.com/PeopleAndService/BBasDriver-Android/blob/develop/.github/
workflows/androidci.yml

Table 1: List of popular CI/CD services and their specific
configuration files.

Name Configuration File
Jenkins *.yaml (content contains: jenkins:)
CircleCI .circleci/config.yml

TeamCity .BuildServer/teamcity-startup.properties
Bamboo bamboo-specs/bamboo.yml
TravisCI travis.yml
Codeship codeship-services.yml

GoCD .gocd.yaml
Wercker wercker.yml

Semaphore semaphore.yml
Nevercode codemagic.yaml
Spinnaker ./.hal-staging/
Buildbot master.config

Github Actions .github/workflow/xxx.yml
GitLab Pipelines .gitLab-ci.yml

Bitbucket Pipelines bitbucket-pipelines.yml

literature) to identify popular CI/CD services that are available for
software developers to adopt. Table 1 summarizes our exploratory
findings. In total, we have found fifteen popular CI/CD services
or tools, including three self-hosted services by our data source
sites (cf. the last three rows). The second column presents the
proprietary information about the CI/CD services’ configuration
files (or directories where the configuration files are stored in). This
information could be leveraged to check whether the corresponding
CI/CD service is adopted or not, which has actually been used in
this work (details will be given in the next subsection).

2.3 Methodology
To determine if the Android repository was built by any of the
popular CI/CD tools or services, we use Python scripts to traverse
the file directories for each collected Android app project. Figure 2
represents the working process of our methodology (for selected
CI/CD services only), for which we first leverage the file Android-
Manifest.xml (the essential configuration file for Android apps) to
select Android app projects. Then, we scan the repository files again
to locate dedicated configuration files (as indicated in the second
column in Table 1) to determine the usage of CI/CD services. For
example, we will regard a given app has leveraged TravisCI as long
as we are able to locate the travis.yml file.

GitHub
Repositories

Repositories
(with topic Android)

Android
Repositories

Topic: Android

Android:
AndroidManifest.xml

CircleCI Repositories

TravisCI Repositories

Actions Repositories

Configuration:
circleci/config.yml

Configuration:
github/workflow/xxx.yml

Configuration:
travis.yml

Android Repositories Identification

CI/CD Identification

Figure 2: Theworking process of our approach – usingGithub
as an example for harvesting open-source Android app repos-
itories and TravisCI, CircleCI and Github Actions as exam-
ples for locating CI/CD services.

https://github.com/PeopleAndService/BBasDriver-Android/blob/develop/.github/workflows/androidci.yml
https://github.com/PeopleAndService/BBasDriver-Android/blob/develop/.github/workflows/androidci.yml

ASE ’22, October 10–14, 2022, Rochester, MI, USA Pei Liu, Xiaoyu Sun, Yanjie Zhao, Yonghui Liu, John Grundy, and Li Li

3 RESULTS
3.1 RQ1: To what extent is CI/CD adopted by

Android projects?
In this research question, we explore what type of CI/CD services
are practically utilized in open-source Android projects and then
how many Android projects adopt different services. To this end,
we launch our script to scan all the 84,475 open-source Android
apps to inspect if the special configuration files summarized in
Table 1 exist or not. The scanner eventually finds that 7,899 apps
accessed CI/CD services, accounting for only 10.10% (7,899/78,245)
of Android app repositories. This result suggests that Android de-
velopers still hesitate to integrate CI/CD services into their daily
development.

Table 2: The number of Android projects with CI/CD config-
urations.

Data
Source TravisCI CircleCI Github

Actions
Bitbucket
Pipelines Total

Github 3,153 927 4,095 0 7,870
Bitbuket 24 1 0 4 29

788

2930

57

3861
68

152

14

Actions

TravisCI

CircleCI

Figure 3: The distribution of the number of Android projects
with three different CI/CD configuration files.

More interestingly, among the 15 selected popular CI/CD ser-
vices, only four of them are adopted by open-source Android apps.
The four services are TravisCI, CircleCI, Github Actions, and Bit-
bucket Pipelines. Table 2 further summarizes the actual number of
Android app projects using these four CI/CD services w.r.t. the data
sources. Different services are listed if the corresponding special
files can be detected by our script in the Android projects. Specif-
ically, the total number of Android projects with CI service from
Github is 7,870, accounting for 10.06% (7,870/78,245) of total An-
droid apps. For Bitbucket, there are only 29 apps (less than 0.5%
(29/5,889) of total apps) that have leveraged CI/CD services. Sur-
prisingly, none of the Android projects on GitLab adopts any CI/CD
services. While for such projects that do access CI/CD services,
Github Actions is the most popular service that has been lever-
aged by 4,095 apps. The second most popular service is TravisCI,
which has been used by 3,177 apps.

We further check if the adoption of CI/CD services is helpful
in promoting the Android apps. We achieve this by investigating
whether apps with the help of CI/CD services will receive more
stars on Github than those apps without accessing CI/CD services.
Figure 4 summarizes the experimental results. It illustrates the distri-
bution of the number of stars given to Android projects configured
with CI/CD services and those without any CI service. On average,
the projects adopting CI/CD services receive more stars than those
without any CI/CD service. This difference has further been con-
firmed to be significant (at a significance level of 0.001) with an
MWW2 test. This result strongly suggests that CI/CD services are
useful for Android app development, i.e., the corresponding apps
are more popular and will be acknowledged by more developers.

None

CI/CD

0 20 40 60 80 100 120 140

Figure 4: Number of stars given for Android projects with
CI/CD service and without.

RQ1 Findings:
Among 84,475 open-source Android apps collected from
Github, Gitlab, and Bitbucket, only 7,899 of them (7,870
Github and 29 Bitbucket apps) have adopted CI/CD services,
showing that CI/CD adoption in Android apps is still rare.
Furthermore, the fact that apps with CI/CD services gener-
ally receive more stars on Github than those without sug-
gests that CI/CD is a useful technique for app developers to
implement and maintain apps.

3.2 RQ2: How are CI/CD services leveraged by
Android app developers?

In this research question, we investigate the usage of CI/CD services
during the development of Android projects. Observant readers
may have noticed that the total number of Android projects (e.g.
7,870) is not equal to the sum of projects with different services (i.e.
3, 153+927+4, 095 = 8, 175). This evidence suggests that some of the
Android projects may contain more than one CI/CD service (with
YAML-based configuration file). We confirm this by counting the
number of CI/CD services (i.e., checking the number of YAML-based
configuration files). Figure 3 summarizes the distribution of the
number of Android projects that involve three different types (i.e.,
TravisCI, CircleCI and Actions) of CI/CD configuration files. Indeed,
for Github Android projects, there are 291 ones containing more
than one special configuration file (with a rate of 3.56% (291/8,175)).

Given the fact that the adoption of CI/CD services in the source
code does not guarantee that such services would be deployed in

2http://www.r-tutor.com/elementary-statistics/non-parametric-methods/mann-
whitney-wilcoxon-test

A First Look at CI/CD Adoptions in Open-Source Android Apps ASE ’22, October 10–14, 2022, Rochester, MI, USA

the process of Android development. The aforementioned finding
motivates us to investigate the exact usage of CI/CD services in
practice. To this end, we retrieve the build history provided by the
corresponding CI/CD service. We consider the project was truly
built with CI/CD services if we could successfully retrieve its build
log (cf. Figure 1). Table 3 summarizes the experimental results. In
this work, we only consider the Android projects hosted on Github3
and those were successfully built at least once with CI services (i.e.,
build logs can indeed be located). As shown in the table, Actions oc-
cupies the maximum proportion, with a rate of 96.63% (3,957/4,095).
Except for the usage of Actions, the percentage of Android projects
adopted TravisCI and CircleCI are 20.01% (631/3,153) and 16.28%
(151/927), respectively. This result suggests that compared with
TravisCI and CircleCI, Github Actions either is easier to be success-
fully configured or receives better support from Github. Hence, we
suggest that Android app developers adopt Github Actions as the
CI/CD service if they decide to host their apps on Github.

Furthermore, we investigate the CI/CD processes from the re-
trieved build history for those apps that have successfully run
CI/CD services. Figure 5 illustrates the experimental results. It
shows the execution counts of the configured workflows fulfill-
ing the automated process among three CI/CD services. The me-
dian values of the execution are 38, 14, and 37 for Github Actions,
CircleCI, and TravisCI, respectively. Compared to the recent stud-
ies [19, 20, 27, 28] in services CircleCI and TravisCI, developers
in Android community may not fully exploit the ability as the
execution counts are relatively small.

Actions

CircleCI

TravisCI

0 50 100 150 200 250 300 350

Figure 5: Number of executions of different CI/CD services.

The fact that only around half of the apps (4,706) adopted CI/CD
services have actually run them in practice motivates us to revisit
the usefulness study of CI/CD services conducted in the previous
section. Specifically, we explore the difference of the number of
stars given to the Android projects only configured with CI/CD
special files and those processed with CI/CD services. Figure 6
shows the distribution of the number of stars for the projects only
with CI/CD configuration and those processed with CI/CD service.
The median value for the projects only with CI/CD configuration is
four while for the projects handled with CI/CD service is eight. The
experimental result confirms that the projects processedwith CI/CD
services indeed become more popular, i.e., gain more attention from
other developers.

3We exclude Android projects from GitLab and Bitbucket as the number of such
projects is limited.

Table 3: The number of Android projects with executions of
CI/CD services

TravisCI CircleCI Actions Total
631 151 3,957 4,706

Config

Utilize

0 50 100 150 200

Figure 6: Number of stars given for Android projects only
with CI/CD configuration and those with CI/CD utilization.

RQ2 Findings:
Only 59.60% (4,708/7,899) Android projects with a CI/CD
service actually executed at least once the adopted services.
Among these repositories, developers tend to use Github Ac-
tions to fulfill their automation process of building, testing,
and deploying etc. Compared to projects with CI/CD config-
uration, the projects that actually executed CI/CD services
gain more attention from other fellow developers.

4 THREATS TO VALIDITY
The primary threat to the validity concerns the approach to collect-
ing the Android projects. To curate the Android dataset, we only
consider the projects with the topic Android and count them as An-
droid if it contains the specific configuration fileAndroidManifest
.xml. However, we would miss some Android projects if they do
not provide the topic Android. Second, our study is solely based
on the files recorded on the online code hosting sites. It is highly
possible that some CI/CD services are only adopted in developers’
local environments. Such cases are directly ignored in this work.
Nonetheless, we believe such cases are rare in practice (as CI/CD
often needs to work with version control systems such as git), and
hence our experimental results should still be representative. Fur-
thermore, we can not guarantee that the open-source Android apps
are all under good maintenance and the conclusion that the projects
with CI/CD services imply more popular can be drawn under any
circumstances. Nevertheless, our empirical findings should still be
valid as long as the number of apps out of maintenance is within a
small portion in our dataset. We plan to explore the impact caused
by the apps out of maintenance and other factors influencing the
relationship between the number of stars and the adoption of CI/CD
services further in our future work.

5 RELATEDWORK
Travis-CI, one of the most popular CI platforms for open-source
projects, has attracted many different researchers. Beller et al. [17]
provides to the research community a dataset called TravisTor-
rent, which contains 2,640,825 Travis builds from more than 1,000

ASE ’22, October 10–14, 2022, Rochester, MI, USA Pei Liu, Xiaoyu Sun, Yanjie Zhao, Yonghui Liu, John Grundy, and Li Li

open-source Github projects. Going one step further, Gallaba et
al. [20] utilized the TravisTorrent dataset and extracted additional
data for the projects in the dataset from the REST APIs provided
by Travis-CI. They found that the build results are noisy and het-
erogeneous. Widder et al. [26] conducted a literature review of
37 papers focusing on CI and replicated the experiments in the
papers. In addition, they surveyed 12 interviews and received 132
responses. They summarized eight factors that resulted in abandon-
ing or switching the Travis CI among 6,239 Github repositories and
proposed potential research directions for researchers and possible
improvements for CI providers. Zhang et at. [27] conducted a large-
scale empirical study and concluded that CI build failures caused by
compiler errors are common even in successful builds. They [28]
further presented a large-scale study to triage test failures among
CI Github Java projects and proposed an approach BuildSheriff
to automate such classification.

Hung et al. [23] and Giang et al. [21] discussed the automation
of Android Application build and test and presented the imple-
mentation of the automation script for building and testing via CI
tool CircleCI. The example of the script implementation would
boost the Android app development by providing guidance for the
developers and automating the build and test per se. Gallaba et
al. [19] conducted an empirical study on 22.2 million builds over
7,795 open-source projects adopted CircleCI from 2012 to 2020.
Their quantitative analyses on the job build concluded that the
service consumers spent most of their time working on specific
build processes (e.g., dependency retrieval), and most of the build
time was spent on compilation and testing. Their findings suggest
that service consumers would benefit most if the long-duration
builds, compilation build, and testing build could be accelerated.
The robustness of the CI service would also be improved if the
misconfiguration of the build scripts and service availability issues
could be handled properly.

Hilton et al. [22] leveraged three complementary methods to
investigate the usage of CI services in Github open-source projects.
They curated a dataset containing 34,544 open-source projects
from Github and found that most of the projects adopted TravisCI.
Besides TravisCI, projects developers also utilize CircleCI, Ap-
pVeyor, ClouldBees, and Werker among the collected dataset.
Moreover, their analyses revealed that project developers did not
adopt CI services because they were unfamiliar with any of the CI
services, and the projects with CI services were released twice as
often as those without. In addition, they provided suggestions to
researchers, developers, and CI service providers.

6 CONCLUSION
In this study, we conducted an extensive empirical investigation of
the utilization of CI/CD services in open-source Android reposito-
ries from popular code hosting sites, including Github, GitLab, and
Bitbucket. To the best of our knowledge, we are the first to focus
on use of CI/CD services among Android app projects. Our study
reveals that most app developers do not adopt CI/CD services in
their development. Among the Android projects handled by the
CI/CD services, the most popular three services are Github Ac-
tions, TravisCI, and CircleCI. Interestingly, projects with CI/CD
services are generally more popular than those projects that do not

involve CI/CD. Such projects are even more popular if they further
guarantee that the CI/CD processes are well executed compared to
those that do not.

ACKNOWLEDGMENTS
This work is supported by ARC Laureate Fellowship FL190100035,
ARC Discovery Early Career Researcher Award (DECRA) project
DE200100016, and a Discovery project DP200100020.

REFERENCES
[1] 2017. Introduction Github Topics. https://github.blog/2017-01-31-introducing-

topics/.
[2] 2021. Changes to Chrome OS’s release cycle. https://blog.chromium.org/2021/

06/changes-to-chrome-oss-release-cycle.html.
[3] 2022. Bitbucket. https://en.wikipedia.org/wiki/Bitbucket.
[4] 2022. Bitbucket Official Site. https://bitbucket.org/product.
[5] 2022. Bitbucket REST APIs. https://developer.atlassian.com/cloud/bitbucket/rest/

intro/.
[6] 2022. CI/CD. https://www.infoworld.com/article/3271126/what-is-cicd-

continuous-integration-and-continuous-delivery-explained.html.
[7] 2022. Circle CI. https://circleci.com/.
[8] 2022. Continuous Delivery. https://continuousdelivery.com/evidence-case-

studies/.
[9] 2022. Github Official Site. https://github.com/.
[10] 2022. Github REST API. https://docs.github.com/en/rest.
[11] 2022. Gitlab. https://en.wikipedia.org/wiki/GitLab.
[12] 2022. Gitlab API Documentation. https://docs.gitlab.com/ee/api/.
[13] 2022. Introduction to YAML. https://en.wikipedia.org/wiki/YAML.
[14] 2022. Statistics on Github. https://en.wikipedia.org/wiki/GitHub.
[15] 2022. Travis CI. https://www.travis-ci.com/.
[16] 2022. YAML Official Site. https://yaml.org/.
[17] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Travistorrent: Syn-

thesizing travis ci and github for full-stack research on continuous integration.
In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR). IEEE, 447–450.

[18] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:
improving software quality and reducing risk. Pearson Education.

[19] Keheliya Gallaba, Maxime Lamothe, and Shane McIntosh. 2022. Lessons from
Eight Years of Operational Data from a Continuous Integration Service: An Ex-
ploratory Case Study of CircleCI. In 2022 IEEE/ACM 44th International Conference
on Software Engineering (ICSE). IEEE, 1330–1342.

[20] Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh. 2018.
Noise and heterogeneity in historical build data: an empirical study of travis
ci. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. 87–97.

[21] Nguyn Th Phng Giang and Tran Th Minh Hkoa. 2020. Automated Continuous
Integration Using CircleCI and Firebase for Android Application Development.
Journal of Science and Technology-IUH 47, 05 (2020).

[22] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In 2016 31st IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 426–437.

[23] Phan Duy Hung and Do Thai Giang. 2019. Continuous Integration for Android
ApplicationDevelopment and Training. In Proceedings of the 2019 3rd International
Conference on Education and Multimedia Technology. 145–149.

[24] Pei Liu, Li Li, Yanjie Zhao, Xiaoyu Sun, and John Grundy. 2020. AndroZooOpen:
Collecting Large-scale Open Source Android Apps for the Research Community.
In Proceedings of the 17th International Conference on Mining Software Repositories.
548–552.

[25] Chuck Rossi, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael Stumm.
2016. Continuous deployment of mobile software at facebook (showcase). In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 12–23.

[26] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu.
2019. A conceptual replication of continuous integration pain points in the
context of Travis CI. In Proceedings of the 2019 27th ACM JointMeeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 647–658.

[27] Chen Zhang, Bihuan Chen, Linlin Chen, Xin Peng, and Wenyun Zhao. 2019.
A large-scale empirical study of compiler errors in continuous integration. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 176–187.

[28] Chen Zhang, Bihuan Chen, Xin Peng, and Wenyun Zhao. 2022. BuildSheriff:
Change-Aware Test Failure Triage for Continuous Integration Builds. (2022).

https://github.blog/2017-01-31-introducing-topics/
https://github.blog/2017-01-31-introducing-topics/
https://blog.chromium.org/2021/06/changes-to-chrome-oss-release-cycle.html
https://blog.chromium.org/2021/06/changes-to-chrome-oss-release-cycle.html
https://en.wikipedia.org/wiki/Bitbucket
https://bitbucket.org/product
https://developer.atlassian.com/cloud/bitbucket/rest/intro/
https://developer.atlassian.com/cloud/bitbucket/rest/intro/
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://circleci.com/
https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/
https://github.com/
https://docs.github.com/en/rest
https://en.wikipedia.org/wiki/GitLab
https://docs.gitlab.com/ee/api/
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/GitHub
https://www.travis-ci.com/
https://yaml.org/

	Abstract
	1 Introduction
	2 Experimental Setup
	2.1 Dataset Preparation
	2.2 CI/CD
	2.3 Methodology

	3 Results
	3.1 RQ1: To what extent is CI/CD adopted by Android projects?
	3.2 RQ2: How are CI/CD services leveraged by Android app developers?

	4 Threats to Validity
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

