
DeepCT: Tomographic Combinatorial Testing for
Deep Learning Systems

Lei Ma1, Felix Juefei-Xu2, Minhui Xue3, Bo Li4, Li Li5, Yang Liu6, Jianjun Zhao7
1Harbin Institute of Technology, China 2Carnegie Mellon University, USA 3Macquarie University, Australia

4University of Illinois at Urbana–Champaign, USA 5Monash University, Australia
6Nanyang Technological University, Singapore 7Kyushu University, Japan

Abstract—Deep learning (DL) has achieved remarkable
progress over the past decade and has been widely applied to
many industry domains. However, the robustness of DL systems
recently becomes great concerns, where minor perturbation on
the input might cause the DL malfunction. These robustness
issues could potentially result in severe consequences when a DL
system is deployed to safety-critical applications and hinder the
real-world deployment of DL systems. Testing techniques enable
the robustness evaluation and vulnerable issue detection of a DL
system at an early stage. The main challenge of testing a DL
system attributes to the high dimensionality of its inputs and
large internal latent feature space, which makes testing each
state almost impossible. For traditional software, combinatorial
testing (CT) is an effective testing technique to balance the testing
exploration effort and defect detection capabilities. In this paper,
we perform an exploratory study of CT on DL systems. We
propose a set of combinatorial testing criteria specialized for
DL systems, as well as a CT coverage guided test generation
technique. Our evaluation demonstrates that CT provides a
promising avenue for testing DL systems.

Index Terms—Deep learning, combinatorial testing, robustness

I. INTRODUCTION

The Deep learning (DL) system has achieved tremendous
progress over the past decade and become the state-of-the-art
technique for many cutting-edge intelligent applications. How-
ever, recent studies reveal that the robustness of DL systems
is a big concern. A DL system that obtains a high prediction
accuracy could still be vulnerable against adversarial attacks
with minor perturbations on inputs [1]. Given that more and
more safety- and security-sensitive applications start to adopt
DL, deploying DL without thorough testing can potentially
lead to severe consequences. Although it is highly desirable
to systematically verify and provide formal guarantees on the
safety and robustness of a DL system, the current attempt
shows that the verification of DL systems [2] is still at an
early stage and could be exceptionally challenging due to the
huge runtime state space.

Software testing is widely adopted in traditional software
industry due to its scalability, effectiveness, and usefulness
for defect and robustness issue detection. Software testing
has recently started to be applied for defect detection of
deep neural networks (DNNs) [3]–[8]. Combinatorial testing
(CT) is an effective testing technique that systematically
explores the input configuration combinations, which can well
trade off the defect detection capability and huge testing

Po
ol
in
g

DeepCT

Po
ol
in
g

Po
ol
in
g

f1

f2

fp

gout
1

gout
2

gout
q

DeepCT DeepCT

Fig. 1: For CNNs, the features are composed of multiple convolu-
tional and pooling layers. DeepCT examines the interactions among
neurons within each layer, just like a computed tomography scan.

space searching effort. CT has been successfully applied to
traditional configurable software systems [9]. To minimize
the test suite size while obtaining desired CT coverage, CT
often transforms the test generation into a constraint solving
problem. The ability to handle constraints becomes crucial for
real-world applications since most of the real-world systems
are subjected to constraints involving multiple parameters and
configurations. Hence, research on CT [10] has experienced
a shift to the constrained CT which breaks down as meta-
heuristic approaches [11], SAT-based approaches [12], and
greedy approaches [13]. In this paper, we take the first step
towards exploring whether CT is helpful for testing DL
systems. We propose a set of CT coverage criteria for DL
systems, as well as a CT coverage guided test generation
technique. Our initial evaluation results demonstrate that CT
is indeed a promising direction for testing DL systems.

II. BACKGROUND AND MOTIVATION

To better motivate this work, we discuss the intentions of
this paper from the following two perspectives:
• Per1: Why ‘tomographic’, i.e., CT focuses on more

intensive testing within each layer?
• Per2: Why ‘combinatorial’, i.e., CT systematically exam-

ines the interactions among neurons within each layer?
For Per1, we rely on some observations from the viewpoint

of DNN formulation and properties, which allow us to arrive
at a testing method that is tailored towards being tomographic.
Let us take a convolutional neural network (CNN) for image
processing as an example,1 and the discussion followed can be
easily generalized to more general deep learning systems com-
posed of feed-forward DNNs and recurrent neural networks.
Figure 1 shows an abstraction of a particular CNN model with

1CNN is commonly used for image processing, which is a special case of feed-forward
deep neural network, with local receptive field and weight sharing.

978-1-7281-0591-8/19/$31.00 c© 2019 IEEE SANER 2019, Hangzhou, China535

multiple layers connecting input features and output features.
Let fl be the l-th image feature with dim(fl) = n × 1 and
g

(k)
l be the l-th feature map with dim(g

(k)
l) = n

(k)
l × 1. The

convolutional layer can be mathematically represented by:

g
(k)
l = ξ

(
qk−1∑
l′=1

W
(k)
l,l′ ? ξ

(
qk−2∑
l′=1

W
(k−1)
l,l′ ? ξ

(
· · · fl′

)))
,

where ξ is the activation function (e.g., ReLU, followed by
a pooling operator, such as g

(k)
l (x) = ‖g(k−1)

l (x′) : x′ ∈
N (x)‖p, p = 1, 2, or ∞).

For CNNs, a major assumption is that the data (image,
videos, audio) are compositional with patterns that are: local,
stationary, and most importantly, multi-scale (hierarchical).
CNNs leverage the compositionality structure of the data and
extract compositional features and feed them to the subsequent
classifier, recommender, etc., in an end-to-end fashion. The
design of CNNs (and DNNs in general) is entirely driven
by these ‘rules’ found in the data patterns. Let us take the
multi-scale property as an example, simple structures are
combined to compose slightly more abstract structures, and
so on, in a hierarchical and layer-by-layer way. Inspired by
brain visual primary cortex [14], features learned by CNNs
become increasingly more complex at deeper layers [15]. This
is especially interesting because weights in various layers of
a CNN are structured, hierarchical, and play different roles
in the entire DL system. At any hidden layer, the neurons
will consolidate all the previous information and pass along
to the subsequent layers as input data with higher levels of
abstraction. This is also confirmed by visualizing what the
neurons learn at each layer [15], from simple combinations
of corners and edges, to rich textures and 3D structure, to
high-level structures like object parts.

Therefore, to test the robustness of the DNN model, it could
be a good practice to test it layer by layer and systematically
explore its latent feature space just like a computed tomog-
raphy scan, since different layers of the DNN function at
different scales. Hence, ‘tomographic’.

As for Per2, there are several interesting aspects to discuss.
First, if we zoom into two adjacent layers in a DNN, all the
neurons only interact (in the forward pass) with neurons from
the next layer, and during back-propagation, all the neurons
only interact (in the backward pass) with neurons from the
previous layer. We can treat this local two-layer structure as
an undirected bipartite graphical model, where no interactions
happen within that layer. This is analogous to what ‘restricted’
refers to in the restricted Boltzmann machine. Figure 2 shows
interactions between two adjacent layers using standard con-
volution, two variants (locally connected convolution and tiled
convolution), as well as the fully connected version which is
essentially the DNN case. It is obvious that there are no neural
interactions within each layer.

Previous DL testing methods [3], [16] mostly focus on
the measurement of the single-neuron behavior of the entire
network at a time, and the coverage of a particular neuron
illustrates one dimension of the entire landscape, without mon-
itoring the interactions between neurons. In DNNs, although

(a)
(b)

(c)
(d)

Fig. 2: Interactions between two adjacent layers for (a) standard
convolution, (b) locally connected convolution, (c) tiled convolution,
and finally (d) fully connected case (DNN).

there are no direct (tangible) interactions between the logic
units (neurons) within each computational layer, there could
be logical (intangible) interactions between the logic units,
where neurons of current layer altogether decide the logic of
neurons of its next layer. We want to capture and examine
these intangible interactions among neurons of each layer
using CT. Hence, ‘combinatorial’.

Second, covering the output space of a layer of neurons (i.e.,
the testing input feature space of its next layer) in DL is chal-
lenging because (1) the number of output values of a neuron
is often huge (e.g., infinite for continuous case), (2) neuron
combination exponentially grows as neuron size increases,
causing exhaustive enumeration infeasible. To sidestep, we
discretize the space of the output values and only observe
whether a neuron is activated. The effective testing of neurons’
combinatorial behavior instead of an exhaustive strategy is
where CT comes into play. We adopt CT to systematically
test diverse neuron interactions within each layer to uncover
defects while reducing the number of test inputs that have to be
executed. Due to the aforementioned discussions, we propose
to perform tomographic CT to slice up the DL system and
examine layer-wise neural behavior as depicted by Figure 1.

The contributions of the paper are summarized as follows:
• We propose a set of combinatorial testing criteria special-

ized for DL systems.
• We also propose a general CT coverage guided test

generation technique for DL systems.
• We perform studies on DeepCT to demonstrate the po-

tential usefulness of CT for DL testing.
To the best of our knowledge, this is the first work to explore

the feasibility and usefulness of CT for DL systems.

III. COMBINATORIAL TESTING CRITERIA

We use N = {n1, n2, . . .} and T = {x1, x2, . . .} to
represent the set of neurons and test inputs of a DL system,
respectively. Let φ(n, x) be a function that returns the output
value of a neuron n ∈ N given a test input x ∈ T . For a DNN
with m layers, we use Li to denote the set of all neurons on
its i-th layer li (1 ≤ i ≤ m). Our CT coverage criteria for
DNNs are motivated by the combinatorial coverage metrics in
traditional software testing, and the ways that a DNN processes
an input through transformations layer by layer. Similar to
previous work [3], [16], we consider the neuron n to be
activated (resp. deactivated) given x if φ(n, x) ∈ (0,∞) (resp.
φ(n, x) ∈ (−∞, 0]). We use A(ni, x) ∈ {0, 1} to represent the

536

activation status of a neuron ni given x, where 1 corresponds
to activation and 0 deactivation. To test the functionality of a
layer, we first introduce the neuron-activation configuration.

Definition III.1 (Neuron-activation configuration). For a set
of neurons M = {n1, n2, . . . , nk} ⊆ Li of the i-th layer
li, a neuron-activation configuration of M is a tuple c =
(b1, b2, ..., bk), where bi = {0, 1}.2 A neuron-activation con-
figuration c = (b1, b2, ..., bk) is covered by T if there exists
at least a test input x ∈ T , such that bi = A(ni, x) for all i,
where 1 ≤ i ≤ k.

Given a test set T and the neurons Li of the i-th layer, we
use Θ(t, Li) to denote the set of all t-way combinations of
neurons in Li. Each element θ (i.e., θ ∈ Θ(t, Li)) is a set of
t neurons, with a total of 2t neuron-activation configurations.

Furthermore, We use Θfull(t, Li, T) (i.e., Θfull(t, Li, T) ⊆
Θ(t, Li)) to represent those t-way combinations of neurons of
Li, where all the neuron-activation configurations of θfull ∈
Θfull(t, Li, T) are fully covered by T . For a t-way neuron
combination θ ∈ Θ(t, Li), we use C (t, θ, T) to represent
the set of neuron-activation configurations of θ covered by
T . Next, we define the t-way combinatorial testing criteria.

Definition III.2 (t-way combination sparse coverage). We de-
fine the t-way combination sparse coverage as the percentage
of t-way neuron combinations in Li, of which all the neuron-
activation configurations are covered by T ,

SparseCov(t, Li, T) =
|{θ ∈ Θ(t, Li)|θ ∈ Θfull(t, Li, T)}|

|Θ(t, Li)|
Example III.1. Let Li = {n1, n2, n3, n4} be a set of
neurons in the same layer. Each row j in Figure 3 corre-
sponds to the neuron activation status given a test of T ,
denoted by A(Li, xj). There are in total six 2-way com-
binations of neurons in Li, {n1, n2}, {n1, n3}, {n1, n4},
{n2, n3}, {n2, n4} and {n3, n4}. Each 2-way combination has
four neuron-activation configurations (0, 0), (0, 1), (1, 0) and
(1, 1). Among the six 2-way combinations, only the full neuron-
activation configurations of {n1, n2}, {n1, n4}, {n2, n3} and
{n3, n4} are covered by T . Therefore, the 2-way combination
sparse coverage for T on Li is 66.6%.

Since the t-way combination sparse coverage cannot take
the coverage within each combination of neurons into account,
next we introduce the t-way combination dense coverage.

Definition III.3 (t-way combination dense coverage). For
a set of test inputs T and a set of neurons Li, the t-way
combination dense coverage is defined as below,

DenseCov(t, Li, T) =

∑
θ∈Θ(t,Li)

|C(t, θ, T)|
2t|Θ(t, Li)|

Example III.2. Consider the neuron activation status of Li
given test set T in Figure 3. Since there are six 2-way combi-
nations of neurons in Li and each has four neuron-activation

2Note that k is not necessarily the number of neurons of the layer Li. In the case of
t-way combination of Li, k equals to t.

Li LmLi-1L1

... ...

...

Test Inputs
T

Input Layer Hidden Layers Output Layer

n1 n2 n3 n4

0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

n1

n2

n3

n4

Fig. 3: Example of the neuron activation status of Li in layer li (that
contains 4 neurons) given test inputs T .

configurations, there are 24 neuron-activation configurations
in total. The test set T can cover 20 configurations and
the neuron-activation configurations that are not covered are
{n1, n3} = (0, 1), {n1, n3} = (1, 0), {n2, n4} = (0, 1) and
{n2, n4} = (1, 0). Therefore, the 2-way combination dense
coverage for T is 83.3%. Recall that the 2-way combination
sparse coverage for T is 66.6%.

Definition III.4 ((p, t)-completeness). For a set of neurons Li
and test inputs T , (p, t)-completeness is defined as the pro-
portion of those θ ∈ Θ(t, Li), where the covered t-way
neuron activation configuration ratio of θ is at least p (i.e.,
C(t, θ, T)/2t ≥ p).

Example III.3. We again take Figure 3 as an example. For
2-way combinations of neurons, the covered 2-way configura-
tion ratio for {n1, n2}, {n1, n4}, {n2, n3} and {n3, n4} are
100%, and 50% for {n1, n3} and {n2, n4}. According to the
Definition III.4, the (0.5, 2)-completeness of Li is 100% and
the (1, 2)-completeness for Li is 66.6%.

Although the combinatorial testing criteria defined above
consider neurons for a layer, they could be easily generalized
to the whole neural network level layer by layer. We leverage
these criteria to evaluate the testing effectiveness from the
perspective of CT and to further guide test generation.

IV. CT ROBUSTNESS TESTING OF DEEP LEARNING

Our proposed CT coverage criteria are general for both test
suite evaluation and test generation guidance. In this study,
we consider a typical problem of using CT criteria to test
the adversarial robustness of DNNs designed for the general-
purpose image classification [17]. Given an input x that can
be correctly classified by a DNN, the adversarial robustness
property is concerned with whether there exists another input
x′ close to x, with respect to some distance metrics (e.g.,
L∞-norm), where x and x′ are classified to different classes by
the DNN. Such an input x′, once exists, is called an adversarial
example of x and the DNN is not locally robust at x.

Let C(x) denote the class to which x is classified by DNNs.
Formally, a DNN is d-locally-robust at an input x w.r.t. a
distance parameter d iff we have the following [17]3:

∀x′ : ‖x′ − x‖ ≤ d⇒ C(x) = C(x′)

3Adversarial robustness could be analyzed by checking the local robustness property.
Therefore, the rest of this paper focuses on testing the local robustness of DNNs.

537

Algorithm 1: DeepCT Test Generation

INPUT: DNN N , t-way, CT Criteria CTC , seeding Tests Ts

OUTPUT: Passed Test Suite T , Adversarial Test Suite T ′

1: T ← {}, T ′ ← {}
2: CT table←initialize CT coverage table(Ts , t-way, CTC)
3: for t ∈ Ts do
4: Twork ← {}
5: for each layer neuron set Li in N do
6: CT table ← update CT coverage(CT table, Twork , CTC)
7: CT targets←calculate CT targets(CT table, Twork , Li, CTC)
8: while CT targets 6= ∅ ∧ time budget exists do
9: ctj ←random select(CT targets)

10: gen tests←TestGen(t, ctj)
11: covered targets ← cal cov targets(CT table, Twork , gen tests, CTC)
12: CT targets←CT targets - covered targs
13: update TestSuite(gen tests, Twork , T , T ′)
14: return T, T ′

One approach to analyze local robustness is through random
testing. However, random testing is often ineffective even if
a large number of tests are generated [4]. To systematically
generate tests to detect local robustness issues of a given input,
we propose a combinatorial testing technique for test suite
generation of a DL system. Algorithm 1 shows the details of
our CT coverage guided test generation. Given a seeded test
set, t-way, and CT criterion as input, the CT coverage table
of the whole DNN is first initialized (see Line 1-2). Then,
the test generation iteration starts for each seeding test guided
by the CT coverage layer by layer. For each candidate layer,
the coverage is analyzed on the generated tests so far. The
coverage table is updated and the uncovered CT targets of a
layer li are calculated (Line 6-7). After randomly selecting a
target ctj , we try to generate tests to cover ctj and analyze
all the coverage targets they reach. Note that a test case
might cover multiple CT targets in t-way testing, and the
generated tests might not cover any CT targets (Line 9-12).
Before attempting on the next CT target, we check whether
the generated tests contain adversarial examples and update the
generated test suite for T , T ′, and the test working set Twork

accordingly (Line 13). The test generation iteration continues
until CT coverage targets are covered or the time limit hits.

Our test generation technique to cover the specific CT
coverage target is general without assumption on specific types
of DNN structures (e.g., activation functions) or test generation
methods (e.g., search-based testing [18], guided random test-
ing [19], symbolic constraint solving based testing [20]). To
demonstrate the CT coverage guided test generation is helpful
for detecting adversarial examples, this study assumes that
DNN uses the popular ReLU activation function and adopts the
constraint solving based (i.e., the Cplex solver) test generator
[4]. In particular, a CT coverage target is encoded as the
linear constraints with the object to minimize the L∞-norm
perturbation distance on a seeding input.

V. EVALUATION

We have implemented DeepCT, a DL tomographic com-
binatorial testing framework that performs automated test
generation for DNNs based on Keras (ver.2.1.3) and Tensor-
flow (ver.1.5.0). The current version of DeepCT provides a

LP constraint solving based test generator, which we use to
investigate whether CT and our proposed criteria are useful
for testing DNNs.

In particular, we mainly investigate whether DeepCT and
our criteria are useful for adversarial example detection
by local robustness analysis. We use the publicly available
dataset MNIST and two pre-trained DNN models [4] that
achieve competitive prediction accuracy. The two studied
DNNs contain 3 (64*32*64 with 55,082 parameters) and
5 (84*42*64*42*84 with 79,454) fully-connected hidden lay-
ers, and obtain 99.965%, 99.872% training accuracy, and
97.63%, 97.51% test accuracy respectively. For the DNNs’
local robustness analysis, we randomly seed 1,000 tests from
MNIST accompanied test set as the study subject, which can
be correctly handled by our studied DNNs.

A. Random Testing

Although previous work [4] advocated that random test-
ing (RT) is ineffective in detecting the adversarial robustness
issues of DNNs, we believe that RT is easy to use and scalable,
which is worth a first shot before further in-depth analysis.
Therefore, our first step performs random test generation to
analyze the robustness of two studied DNNs (i.e., DNN 1 and
DNN 2) on the 1,000 seeded tests. To be specific, we randomly
generate 10,000 tests for each seeded test and analyze whether
robustness issues could be detected.4 The experiment results
show that the RT is already able to detect robustness issues
on 194 seeded tests on DNN 1 and 178 on DNN 2 with a total
of 266 unique issues, 106 of which are shared issues on both
DNN 1 and DNN 2. This is consistent with our intuition that
the robustness of a DNN on handling different test input could
be different. A test input near a DNN’s decision boundary
could trigger robustness issues more easily. Our experimental
results confirm this observation and indicate that RT could be
useful to detect the fragile test input as the first attempt.

B. DeepCT

For the 1,000 seeded tests, we filter out those 266 tests
whose robustness issues can already be detected by random
testing. For the remaining 734 tests, we randomly sample 50
tests for further analysis on d-locally-robustness by DeepCT
(where d = 0.15, and we use 2-way defined CT criteria,
also see Algorithm 1) in line with the corresponding tests
generated by random testing. DeepCT incrementally generates
tests to cover CT coverage targets layer by layer. Table I
summarizes the averaged results. Columns 4-7 show the
obtained coverage of 2-way sparse, 2-way dense, (0.5,2)-
completeness, and (0.75,2)-completeness coverage of DeepCT
under the corresponding criterion setting. Column 8 gives the
accumulated total number of generated tests and Column 9
shows the corresponding detected adversarial tests ratio.

Overall, for both studied DNNs, random testing achieves
fairly low coverage of all the evaluated criteria and DeepCT
achieves much higher coverage although with a similar number

4Each of 784 pixels of the test image is normalized to range [0, 1]. In this study, we
allow the random perturbation of each pixel within range [−0.15, 0.15].

538

TABLE I: The obtained CT coverage and detected adversarial issues
by random testing and DeepCT. The coverage is calculated by
considering the 2-way CT targets of all hidden layers of the DNN
instead of a single layer.

Testing 2-way Combinatorial Testing Coverage (%) Accu. Adv.
Method SparseCov DenseCov (0.5,2) (0.75,2) Tests Per.(%)

DNN 1

Random 2.28 34.95 33.75 3.75 10,000 0.00
CT l1 60.27 81.56 95.01 70.98 4,073 0.29
CT l2 76.94 91.98 99.67 91.30 6,768 2.17
CT l3 93.62 98.23 100.00 99.32 8,032 9.91

DNN 2

Random 1.18 32.56 26.98 2.10 10,000 0.00
CT l1 46.96 75.10 91.95 61.50 8,547 1.87
CT l2 68.91 87.52 98.64 82.55 11,573 3.53
CT l3 97.15 99.05 100.0 99.03 13,129 8.84
CT l4 97.41 99.11 100.0 99.03 13,217 9.35
CT l5 97.81 99.21 100.0 99.03 13,351 9.98

of tests. In addition, DeepCT increases the coverage as more
layers of a DNN is tested with more tests generated. We
could also see that, DeepCT could detect 0.15-local-robustness
issues on all of the 50 studied tests for both DNNs with a
reasonable number of tests. To be specific, Table I shows
that random testing achieves only 2.28% and 1.18% 2-way
sparse coverage on two studied DNNs. Compared with (0.5,2)-
completeness coverage, (0.75,2)-completeness coverage is also
much lower, indicating that random testing does not deeply
cover many of the neuron activation configurations of 2-way
neuron combinations. In comparison, DeepCT obtains 60.27%
and 46.96% 2-way sparse coverage even only the first hidden
layer is analyzed, with a reasonable test suite size while
already being able to detect some adversarial examples for
all seeded tests. As described in Algorithm 1, when DeepCT
analyzes the second hidden layer l2, it first analyzes the
coverage obtained by tests generated by all previous layers,
and generates tests to cover the uncovered target on layer l2. In
the two studied DNNs, after generating tests for layer l2, 2-way
sparse coverage of the whole network increases by 16.67%
and 21.95%, respectively. Similar coverage improvement could
also be observed by other coverage criteria. For example, the
obtained (0.75,2) coverage indicates that more than 80% the 2-
way neuron interactions are mostly covered deeply. When the
first three layers of the two studied DNNs are analyzed, the 2-
way sparse coverage reaches 93.62% and 97.15%, respectively,
with many of the adversarial examples detected. For DNN 2,
only about 220 new tests in total are created when analyzing
layers l4 and l5. As for the detected adversarial examples,
adversarial ratio gaps of l2 and l3 are much larger than other
layers for both DNNs. This indicates that the different layers
might contribute differently to detect adversarial examples by
CT, and some layers might need to be more intensively tested.

VI. CONCLUSION

Combinatorial testing is a well-established and useful tech-
nique in traditional software testing. Rather than exhaustively
searching all the combinations of input space, CT focuses on
testing the interactions of inputs, aiming to reduce the test
suite size while obtaining satisfiable defect detection abilities.
This paper initiates the first study to explore the usefulness of
CT for testing DL systems. Our results show that CT provides

a promising avenue for testing DL systems. Our future work
would perform more in-depth investigation on the effect of t in
t-way CT for adversarial example detection, and incorporate
more scalable CT test generators for real-world DL systems.

ACKNOWLEDGEMENTS

This work was partially supported by 973 Program (No.
2015CB352203), Fundamental Research Funds for the Central
Universities (No. AUGA5710000816) of China, and JSPS
KAKENHI Grant 18H04097. We gratefully acknowledge the
support of NVIDIA AI Tech Center (NVAITC) to our research.

REFERENCES

[1] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in ICLR, 2015.

[2] W. Xiang, P. Musau, A. A. Wild, D. Manzanas Lopez, N. Hamilton,
X. Yang, J. Rosenfeld, and T. T. Johnson, “Verification for Machine
Learning, Autonomy, and Neural Networks Survey,” ArXiv e-prints, p.
arXiv:1810.01989, Oct. 2018.

[3] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles, 2017, pp. 1–18.

[4] Y. Sun, X. Huang, and D. Kroening, “Testing Deep Neural Networks,”
ArXiv e-prints, Mar. 2018.

[5] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su,
L. Li, Y. Liu, J. Zhao, and Y. Wang, “Deepgauge: Multi-granularity
testing criteria for deep learning systems,” in The 33rd IEEE/ACM
International Conference on Auto. Software Engg. (ASE), 2018.

[6] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang, “DeepMutation: Mutation Testing of
Deep Learning Systems,” in The 29th IEEE International Symposium
on Software Reliability Engineering (ISSRE), 2018.

[7] X. Xie, L. Ma, F. Juefei-Xu, H. Chen, M. Xue, B. Li, Y. Liu, J. Zhao,
J. Yin, and S. See, “DeepHunter: Hunting Deep Neural Network Defects
via Coverage-Guided Fuzzing,” arXiv preprint arXiv:1809.01266, 2018.

[8] X. Du, X. Xie, Y. Li, L. Ma, J. Zhao, and Y. Liu, “Deepcruiser:
Automated guided testing for stateful deep learning systems,” arXiv
preprint arXiv:1812.05339, 2018.

[9] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), vol. 43, no. 2, p. 11, 2011.

[10] B. S. Ahmed, L. M. Gambardella, and et al., “Handling constraints
in combinatorial interaction testing in the presence of multi objective
particle swarm and multithreading,” IST, vol. 86, pp. 20–36, 2017.

[11] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combinatorial
interaction test generation strategies using hyperheuristic search,” in
IEEE/ACM 37th Intl. Conf. on Softw. Egg. (ICSE), 2015, pp. 540–550.

[12] A. Yamada, T. Kitamura, C. Artho, E.-H. Choi, Y. Oiwa, and A. Biere,
“Optimization of combinatorial testing by incremental sat solving,” in
The 8th Intl. Conf. on Softw. Test. Verif. & Valid. (ICST), 2015, pp. 1–10.

[13] J. Czerwonka, “Pairwise testing in real world,” in 24th Pacific Northwest
Software Quality Conference, vol. 200. Citeseer, 2006.

[14] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” The Journal of
physiology, vol. 160, no. 1, pp. 106–154, 1962.

[15] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and
A. Mordvintsev, “The building blocks of interpretability,” Distill, 2018.

[16] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proc. of the 40th
International Conference on Software Engineering, 2018, pp. 303–314.

[17] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
CoRR, vol. abs/1702.01135, 2017.

[18] P. McMinn, “Search-based software testing: Past, present and future,”
in ICST’11, 2011, pp. 153–163.

[19] L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler, “Grt:
Program-analysis-guided random testing (t),” in The 30th IEEE/ACM
Intl. Conf. on Auto. Softw. Engineering (ASE), 2015, pp. 212–223.

[20] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Comput. Surv., vol. 51,
no. 3, 2018.

539

