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ABSTRACT
Context: Memory error vulnerabilities have been consequential and several well-known, open-source
memory error vulnerability detectors exist, built on static and/or dynamic code analysis. Yet there is a
lack of assessment of such detectors based on rigorous, quantitative accuracy and efficiency measures
while not being limited to specific application domains.
Objective: Our study aims to assess and explain the strengths and weaknesses of state-of-the-art
memory error vulnerability detectors based on static and/or dynamic code analysis, so as to inform
tool selection by practitioners and future design of better detectors by researchers and tool developers.
Method: We empirically evaluated and compared five state-of-the-art memory error vulnerability
detectors against two benchmark datasets of 520 and 474 C/C++ programs, respectively. We
conducted case studies to gain in-depth explanations of successes and failures of individual tools.
Results: While generally fast, these detectors had largely varied accuracy across different vulnera-
bility categories and moderate overall accuracy. Complex code (e.g., deep loops and recursions) and
data (e.g., deeply embedded linked lists) structures appeared to be common, major barriers. Hybrid
analysis did not always outperform purely static or dynamic analysis for memory error vulnerability
detection. Yet the evaluation results were noticeably different between the two datasets used. Our case
studies further explained the performance variations among these detectors and enabled additional
actionable insights and recommendations for improvements.
Conclusion: There was no single most effective tool among the five studied. For future research,
integrating different techniques is a promising direction, yet simply combining different classes of
code analysis (e.g., static and dynamic) may not. For practitioners to choose right tools, making
various tradeoffs (e.g., between precision and recall) might be inevitable.

1. Introduction
Cybersecurity threats are considerably attributed to

software vulnerabilities. In response, various kinds of
techniques have been developed to detect these
vulnerabilities, yet there is a lack of understanding of their
strengths and limitations. Many of the existing relevant
studies are limited to technical discussion and qualitative
assessment [23, 1, 39], domain-specific scopes (e.g., SQL
injection vulnerabilities [41, 2, 31, 19]), and/or incomplete
comparisons (e.g., only concerning the numbers of
vulnerabilities found rather than computing and comparing
precision and recall) [7, 6, 32, 3]. In [5], benchmarking
metrics were proposed yet not applied.

A few benchmarking studies (with precision and recall
quantified against ground truth) exist [4, 14, 37], yet they
targeted commercial tools exclusively. Without knowing
the technical details of these tools, it is difficult to explain
their performance differences or insufficiency, which is
necessary for distilling insights into the design of future
advanced techniques. As it stands, there has been no
published comparative evaluation of open-source
code-analysis-based vulnerability detectors that (1) uses the
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same benchmark datasets with ground truth to
quantitatively assess precision and recall, (2) provides
insights into the variations in detection performance, and
(3) offers actionable recommendations for future detector
design and development. Performing such a comparative
evaluation is key to understanding where we are with such
detection techniques and how we may improve in this
domain.

To fill this gap, we conducted an extensive study of five
state-of-the-art, open-source memory error vulnerability
detectors [27, 9, 35, 40, 20]. While these detectors may
also be built on data-driven (e.g., machine/deep learning)
techniques, we start with focusing on the techniques that
are primarily based on (static, dynamic, or hybrid) code
analysis, given that the most commonly adopted detectors
are of the latter class. We chose to target memory error
vulnerabilities (i.e., those compromising memory safety)
because (1) they represent a dominant class of
vulnerabilities in modern C/C++ software, (2) C/C++ has
been by far the most vulnerable language [33] yet also the
language in which many critical software systems are
written, and (3) memory error vulnerability detectors have
seen promising practical adoption. Our goal is to provide
an evaluation and comparison of these detectors hence the
types of techniques underlying them, so as to understand
potential gaps in their detection performance. To that end,
our study design has the following key elements.

First, we measured the detection performance in terms
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of rigorously computed accuracy metrics (precision, recall,
and F1 score). Second, we used two benchmark datasets
that are different in multiple ways (e.g., objective, size,
distribution of vulnerable and non-vulnerable samples,
closeness to real-world programs) while applying them to
the same five detectors. We chose to do so in order to gain
a more complete picture of the performance of these tools
through a more comprehensive comparative evaluation.
Third, we ensured that both datasets only include memory
error vulnerabilities, in accordance with our scope of
evaluating detectors targeting memory related
vulnerabilities. Thus, from existing datasets we selected
samples that are relevant to our study. We do not intend to
build a new benchmark or benchmarking approach.

We separately set up, configured, and ran five
vulnerability detectors against each of the two datasets with
different approaches according to the different ways they
work (see Figure 1). Then, we collected the vulnerability
detection results, and computed the statistics on the
accuracy and efficiency (time cost and memory usage) of
these detectors. We considered precision, recall, and F1
score as our accuracy metrics, computed against the
vulnerability ground truth available with the two datasets.

With these chosen benchmark datasets and detectors, we
sought to answer five research questions:

• RQ1: How effective are these detectors in terms of
accuracy? Previous relevant works were mainly
based on counting the number of vulnerabilities the
detectors found against benchmarks without
respective ground truth. Thus, the accuracy in terms
of precision, recall and F1 score was not fully
measured. In our study, we ran each of the chosen
detectors against each sample and collected the
detection results (e.g., vulnerable code lines), from
which we computed the tool accuracy in terms of
precision, recall, and F1 score, separately for each of
the vulnerability categories covered by each of the
two benchmark datasets.

• RQ2: How do these detectors compare in terms of
their accuracy? As mentioned, a key aim of our
study is to understand why certain techniques
perform well while others do not, so as to distill new
understandings and knowledge about the design of
memory error vulnerability detection, at least in the
realm of open-source tools. Thus, we compared
accuracy in terms of F1 score among the chosen
detectors. Since we intend to explain the
performance of current techniques and their
differences in that regard according to their technical
nature, it is essential to evaluate the performance
differences with statistical evidence. Such evidence
would provide necessary confidence about the
validity of ascribing performance gaps to technical
differences. As a result, we conducted statistical
analyses, computing the statistical significance and
effect size of performance differences, to assess the

strength of the confidence.
• RQ3: How efficient are the detectors in terms of

their time costs and memory usage for detecting
vulnerabilities? Efficiency is another important
metric for evaluating the performance of a detector.
A technique costing too much time and memory for
detecting vulnerabilities in a program may encounter
adoption barriers in practice. Thus, we assessed and
compared the efficiency of the detectors by
measuring their time costs and memory usage for
detecting each of the program samples. We also
evaluated the scalability of the detectors by
investigating the relationship between the efficiency
(i.e., time costs and memory usage) and the program
size (i.e., lines of code), so as to identify any
potential efficiency challenges faced by these
state-of-the-art techniques.

• RQ4: Why did some of the detectors fail with certain
instances of vulnerabilities? Several previous works
compared commercial vulnerability detectors in
terms of precision, recall and F1 score. However,
there was no deep investigation into those detectors
regarding the underlying causes of large performance
gaps or failure cases. Our preliminary study [30]
suffers the same drawback. Yet understanding those
causes is an important means for deriving insights
about developing future vulnerability defense
techniques. Thus, we conducted a set of in-depth
case studies with respect to notable failure and
low-performing cases, dissecting the underlying
causes. We also provided actionable insights into
how these failures could be addressed.

• RQ5: How did the benchmark selection impact the
evaluation results? The performance of the chosen
detectors can be different just because of the different
selection of benchmark datasets. Intuitively, many
factors of the datasets (e.g., size, composition, etc.)
might affect the evaluation results. Studying such
effects can help understand the reliability of the
empirical assessment hence identify potential biases.
Thus, we compared the overall performance of the
five detectors against the two datasets, from which
we analyzed the impact of benchmark selection.

Among other findings, our study revealed:
1. The accuracy of these detectors varied widely, due to

differences among various vulnerability categories
and different underlying technical design choices.
Meanwhile, the results suggested that the accuracy of
these detection tools can be further improved.

2. Incorporating static analysis in vulnerability
detection tended to bring substantial accuracy
benefits, especially compared to purely dynamic
approaches, mainly due to the low recall of the latter.
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3. Both complex code structure (e.g., deep loops and
recursions) and sophisticated data structures (e.g.,
deeply embedded linked lists) constituted significant
barriers for effective memory error vulnerability
detection with the studied tools. Also, vulnerabilities
in real-world applications tended to be more
challenging to detect than those generated artificially.

4. In general, it was difficult for any detector to achieve
both high precision and high recall at the same time.
Design choices made in a technique (e.g,
DRMEMORY) may favor precision (recall) but
compromise recall (precision) at the same time.

5. Among the studied detectors, those based on hybrid
analysis were not always more accurate than those
based on purely static or dynamic analysis. Likewise,
purely dynamic detectors did not always outperform
the purely static detector, and vice versa.

6. The detectors were generally efficient, taking no
more than 5 minutes and no more than 2.5GB
memory at maximum for a program sample, despite
timeout cases with some detectors against certain
program samples. The time costs and memory usage
had moderate and non-monotonic variations for
different program sizes, indicating that the detectors
were scalable for our chosen datasets.

7. The selection of benchmarks had noticeable impact
on the performance measurements of the studied
detectors. The highest accuracy (F1 score) achieved
by any of these detectors overall was 87% against the
Software-Analysis-Benchmark dataset, while the
number was 72% against the SV-Benchmark dataset.
This difference can be attributed to the fact that the
former is noticeably less complex in code and data
structures than the latter.

In sum, our main goal and contribution is to provide,
through a comparative evaluation, empirical results for
understanding where current vulnerability defense
techniques are. Focusing on memory error vulnerabilities
and techniques detecting them based on code analysis, our
study complements existing peer work in terms of scope
and depth. Also, our results shed light on how techniques
of varied nature perform differently and why. Based on our
empirical findings, we further distilled key lessons learned
and provided recommendations for both researchers and
practitioners in the field of software vulnerability analysis.
We have released the code and datasets used in our study to
facilitate reproduction and reuse, as found here.

2. Background
This section provides key background materials

necessary for understanding the rest of the paper.
2.1. Software Vulnerabilities

Software vulnerabilities are weaknesses in software that
are exploitable for malicious purposes [38]. They may
result in consequences like information leak, software

crashes, and data tampering. Vulnerabilities are different
from bugs. A software bug can be any defect, while a
vulnerability is a bug that poses security threats. Generally
whether a bug is a vulnerability or not depends on specific
program contexts. It is possible that one type of software
bugs constitutes vulnerabilities in one program, while they
do not in another. In our study, to investigate potential
vulnerabilities more comprehensively, we treated all types
of bugs that might be used for malicious purposes as
vulnerabilities, regardless of their program contexts and
practical consequences.
2.2. Loop Unwinding

Loop unwinding, or loop unrolling, is a technique used
for optimizing the execution efficiency of programs. It
rewrites the loop statements in programs into repeated
sequences of independent statements, so that some offsets
of array variables can be pre-calculated and built into the
binary code instructions directly hence the run time of
arithmetic computation can be reduced [29]. Since loop
unwinding can be used to transform program statements
into related plain statements, it is also widely used in
formal verification techniques, especially bounded model
checking [22, 20, 25]. Control flow graphs (CFGs) where
loops are eliminated by loop unwinding can be easily used
to generate conjunctive normal forms (CNFs) that can be
solved by SAT solvers for property verification. However,
because of the limited memory and computation resources,
loop unwinding cannot be used to comprehensively verify
programs with too many or endless loops and recursions.
2.3. Shadow Memory

Shadow memory is a technique that tracks the
information about memory and registers as a program is
running, by mapping individual bits or bytes in the main
memory and registers into shadow bytes. This technique is
widely utilized for dynamically detecting memory related
vulnerabilities, such as invalid access, memory leak, double
free, and use after free. More specifically, it can be used to
track allocation and deallocation operations in heap and
stack memory to detect uninitialized access [27, 9, 35]. It
can also be used to find data from untrusted sources and
detect unsafe uses of untrusted data [28, 10, 15]. Shadow
memory can be implemented in different ways that have
different effectiveness, efficiency and robustness [26]
implications. For instance, all of the four dynamic
detectors considered in our study use shadow memory for
detecting memory error vulnerabilities.

3. Methodology
We start with an overview of the design of our study.

Then, we describe the benchmark datasets and vulnerability
detectors chosen, procedure of our study, and metrics and
measures considered.
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Figure 1: An overview of the overall process �ow of our study.

3.1. Process Overview
Figure 1 depicts the process flow of our study. We

selected samples from the Software-Analysis-Benchmark
and SV-Benchmark datasets that are most relevant to
memory error vulnerabilities, on which our study is
focused. While the chosen detectors all focus on detecting
memory error vulnerabilities, they implemented different
techniques in different ways. Thus, for tools of different
workings and configurations, we took different approaches
to perform our experiments.

For static tools (i.e., those that are based on purely
static code analysis and scan code without recompiling the
code), we developed and ran scripts so that the tools could
run against every program sample automatically. Then, we
manually checked the outputs to compute statistics of
results including accuracy and efficiency (i.e., run time and
memory usage).

For tools that are based on integrating the analysis
mechanisms into subject programs via compilation
(referred to as compiler-based tools), we first removed all
optimization flags before compiling so that the capabilities
of the tools can be tested genuinely. Next, we built each
program sample with each tool, reported the compiling
time, and ran the rebuilt program sample to obtain results
through study scripts. Then, we computed relevant
statistics of the results as for the static tools.

For runtime tools (i.e., those that only detect
vulnerabilities in executables), the process is similar to
what we followed for the compiler-based tools, except for
building the program samples with an ordinary compiler
and running the programs along with the detectors.

With the results on accuracy and efficiency of
individual tools, we computed the statistical significance
between each pair of the detectors we studied, so as to
assess the differences among them. Then, we picked
representative program samples to perform in-depth case
studies in order to further explain the reasons why certain
tools succeeded or failed in some situations, hence to gain a
deeper understanding about the performance of the
underlying techniques.
3.2. Benchmark Datasets

We used two disparate datasets as mentioned earlier as
our benchmarks. We elaborate each below.

The first was formed by samples from the
Software-Analysis-Benchmark introduced in [37], which
includes 638 positive (i.e., vulnerable) samples and 638

Table 1
Categories of chosen samples in Software-Analysis-Benchmark

Category #Samples #Positives #Negatives
Dynamic Buffer Overrun 64 32 32

Dynamic Buffer Underrun 78 39 39

Static Buffer Overrun 108 54 54

Static Buffer Underrun 26 13 13

Stack Overflow 14 7 7

Stack Underrun 14 7 7

Invalid Memory Access

Already Freed Area
34 17 17

Cross Thread Stack Access 12 6 6

Double Release 12 6 6

Double Free 24 12 12

Free Non-Dynamically

Allocated Memory
32 16 16

Free Null Pointer 28 14 14

Data Overflow 50 25 25

Data Underflow 24 12 12

Total 520 260 260

corresponding negative (i.e., non-vulnerable) samples in
C/C++—each sample came with a vulnerable version and
a corresponding non-vulnerable version (i.e., with the
vulnerability fixed). While the authors originally curated
the benchmark for evaluating static analysis detectors, we
intended to see if and how well the vulnerabilities can be
detected by detectors based on purely dynamic or hybrid
analysis as well. All of the samples in this dataset covered
51 categories of errors (e.g., static/dynamic buffer overrun,
stack overflow, data overflow, etc.), out of which we chose
14 categories that are most relevant to memory safety.
Accordingly, we obtained 260 positive samples and the 260
associated negative samples, as summarized in Table 1.
These 520 C/C++ programs formed the first dataset
actually used in our study. Each of these programs came
with the vulnerability ground truth, which enabled our
accuracy computation. All of these samples are artificially
created and generally simple in terms of code complexity.

For a more comprehensive and extensive comparative
assessment, we have considered another dataset. This
second dataset was formed by samples chosen from
SV-Benchmark, as previously used for the 2019 edition of
SV-COMP [8], a competition event that promotes the
invention and improvement of software verification. The
dataset includes a total of 10,522 samples written in
C/C++ in 6 categories for different verification tasks, with
each category including several sub-categories. We chose 5
of the sub-categories from the MemSafety category, and the
Systems-BusyBox-MemSafety sub-category from the
SoftwareSystems category, because these are about memory
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Table 2
Categories of chosen samples in SV-Benchmark

Category #Samples #Positives #Negatives

MemSafety_Arrays 71 22 49

MemSafety_Heap 180 93 87

MemSafety_LinkedLists 103 27 76

MemSafety_MemCleanup 32 32 0

MemSafety_Other 48 20 28

Systems-BusyBox-MemSafety 40 4 36

Total 474 198 276

safety hence closely relevant to our study focus. As a result,
we selected 198 positive and 276 negative (not all
corresponding to the positive ones) program samples
falling in 6 memory error vulnerability categories, as
summarized in Table 2. These 474 program samples were
contributed by 24 different individuals or organizations
from academia or industry. While most of the program
samples were artificially generated, 55 of them (including
16 positive and 39 negative ones) were from real-world
projects. These 55 had the levels of complexity in
algorithmic logic and code/data structures that are
representative of real-world applications.

In certain samples, there are some undefined functions
that express special information that is difficult to capture
with the C language. For software verification tools, such
samples are configured to assume that those functions have
been implemented in certain ways (e.g., by the run-time
environment of the competition). We do not use the
competition platform, though. Thus, to allow our tools to
run on those samples, we defined such functions with the
implementation assumed by the competition platform. The
definitions are shown as follows.

• __VERIFIER_error(): This is for checking
(un)reachability as by verification tools. It is not
relevant to our experiment. We defined it as:
void __VERIFIER_error() { abort(); }

• __VERIFIER_assume(expression): In the
function, if the expression is evaluated to be 0, then
the function loops forever, otherwise the function
returns as normal. We defined it as:
void __VERIFIER_assume(int expression)
{ if (!expression) { while(1); }; return; }

• __VERIFIER_nondet_X(): The function is
assumed to return a nondeterministic value. X is the
type of the return value, such as bool, char, int,
double, etc. For these functions, we return a random
value of type X.

• __VERIFIER_atomic_begin(): This is for
modeling atomic execution statements in a
multi-threaded run-time environment. In our study,
we define it as an empty function:
__VERIFIER_atomic_begin() {}

3.3. Detectors
For our study, we selected the following five

state-of-the-art, open-source memory error vulnerability
detectors.

CBMC [20] is a bounded model checker that
automatically verifies security properties such as memory
(e.g., array bounds and pointer use) safety in a C program
through validating assertions against property violations.
Specifically, it works for a given C program as follows:

1. The property generator in CBMC inserts assertions
to the program, which allow CBMC to locate 6 types
of bugs: buffer overflow, pointer safety, memory
leak [24], dividing by zero, not a number, and
arithmetic overflow.

2. CBMC converts the program into intermediate
representation (IR) by unrolling iterations and
function recursions, so that the IR has forward
control flows only. Then, based on the IR, a control
flow graph (CFG) is constructed.

3. On the CFG, CBMC traverses all the paths which
reach each of the assertions. Then, CBMC
symbolically executes each path and builds a CNF
(conjunctive normal form) formula for verification.
The generated CNFs are verified via an existing
high-performance SAT solver. If a CNF is not
boolean satisfiable, CBMC reports a potential bug
for the respective path.

However, CBMC cannot prove the correctness for
programs with unbounded loops. It allows users to define
the unwinding bound and depth so that the verification can
be terminated within a finite time and resource usage. In
our study, we set the unwinding bound and depth to 300 so
that most program samples can be terminated with a
reasonable time and resource usage.

VALGRIND [27] is a heavy-weight dynamic binary
instrumentation framework that supports a group of
dynamic binary analysis tools to implement shadow
memory for analyzing machine code at runtime. In this
study, we used the most popular VALGRIND-based tool
Memcheck [36], a run-time bit-precise memory error
detector, to assess the performance of VALGRIND.
VALGRIND/Memcheck detects memory errors in a given
executable via the following main steps:

1. After the VALGRIND core and Memcheck start, the
executable is loaded and disassembled into a tree IR.

2. Following the disassemble-and-resynthesize (D&R)
principle, the tree IR is converted into a flat IR. Then,
the instrumentation IR (i.e., analysis code) is inserted
for each of the statements in the original IR. These
IR statements map each of the memory bits used in
the program into a shadow memory, and trace and
modify the status of each memory bit (i.e., whether it
is defined for a valid use) based on the behaviors of
the original IR statements.

3. The flat IR is optimized and converted back to tree IR
and executable machine code.
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4. The VALGRIND core starts the program and runs it in
a guest CPU which is simulated by the core.

5. Through the instrumented code and the shadow
memory, each of the (a) memory accesses, (b)
conditional jumps, and (c) system calls is checked
against whether the access to or operation on relevant
memory bits is invalid. If so, a memory error would
be reported.

DRMEMORY [9] is a cross-platform memory checking
tool that dynamically detects memory errors in binary
executable programs running on Windows and Unix-like
operating systems. Built on DynamoRIO (an open-source
dynamic binary instrumentation platform), DRMEMORY
works in following main steps:

1. It loads the binary executable and then (dynamically)
instruments the machine code directly, following the
copy-and-annotate (C&A) principle.

2. Dynamic library calls are wrapped so that redzones
(i.e., safety regions for avoiding and detecting invalid
accesses to adjacent allocations) are added between
dynamic memory regions, to track heap access.

3. The (instrumented) executable is launched within
DRMEMORY. Similar to VALGRIND, DRMEMORY
allocates shadow memory for each of the memory
addresses used in the original program. Yet unlike
VALGRIND which supports bit-precise mapping,
DRMEMORY only supports byte-precise mapping.
Each of the bytes used in the original memory is
mapped into a 2-bit shadow memory area which has
three states: unaddressable, uninitialized, and
defined. The instrumentation inserts code that traces
and modifies the shadow memory based on the
behaviors of the original code.

4. Any access to unaddressable memory would cause
reporting errors. For uninitialized memory, only
accesses related to conditional jumps and system
calls would cause error reports.

5. To accommodate C++ code, DRMEMORY only
reports memory leaks in the middle of the heap,
since the dynamic memory allocated with new[],
memory for modeling multiple inheritance, and
memory for std::string objects have headers that the
respective pointers do not point to.

ADDRESSSANITIZER [35] is a compiler-based memory
error checker for C/C++ programs that is built on
LLVM [21] and can find out-of-bounds access to heap,
stack, and global objects, as well as use-after-free errors. It
does so for a given C/C++ program by the following steps:

1. It recompiles the program while performing
source-code-level (static) instrumentation.

2. Unlike DRMEMORY which wraps dynamic library
function calls, ADDRESSSANITIZER replaces them
with specialized implementations. Similarly, each
dynamic memory region would have a redzone
before and after it, which is unaddressable.

3. The instrumented code is started directly on the OS
(rather than by an executor like VALGRIND or
DRMEMORY). At runtime, the code inserted during
the instrumentation builds a shadow memory,
directly mapping every 8 bytes to 1 byte (no mapping
table is required as by VALGRIND and DRMEMORY).

4. The mapped shadow address stores the status of each
8-byte memory block. A status of 0 indicates that the
whole memory block is unaccessible; a
negative-number status indicates that the whole
block is accessible; and a status encoded by a
positive number N indicates that the first N bytes of
the block are accessible. The code inserted in
instrumentation traces and modifies the shadow
memory based on the behaviors of the original code.
If there is any access to an invalid memory address,
the program reports an error and aborts. The analysis
combines static program information obtained at
compile-time and shadow memory maintained at
runtime, representing a hybrid analysis for
vulnerability detection.

MEMORYSANITIZER [40] is a fast compiler-based
dynamic memory error detector that focuses on detecting
use of uninitialized memory in C and C++ programs with
reduced time and memory overhead. It works in the
following major steps:

1. Like ADDRESSSANITIZER, it first recompiles the
given program and performs static instrumentation.
More specifically, the program is first converted into
LLVM IR. Then, MEMORYSANITIZER instruments
the IR and inserts shadow memory code to the
program for bit-to-bit mapping.

2. The instrumented program is started directly on the
OS. During the execution, each of the bits in the
original program’s memory space is mapped to a
shadow memory by simply applying an OR operation
with a ShadowMask constant. The shadow memory
traces whether the original memory is initialized.

3. Based on the instrumentation at compile-time, each
of the operations on the memory should have a
corresponding operation on the shadow memory.
Copying of uninitialized memory would result in the
propagation of uninitialized status bits in the shadow
memory. However, to achieve higher efficiency,
instead of implementing all operations in the shadow
memory to model the corresponding operations in
the original memory, MEMORYSANITIZER
implements approximate propagation by applying
simple bit shifts and bit logic operations to trace the
memory without yielding too many false positives
and false negatives.

4. Similar to other dynamic detectors, any access to a
memory address that the shadow memory indicates
as uninitialized would result in an error report.

We chose these tools among others for two reasons.
First, we wanted to cover different categories of code
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analysis approaches underlying the detection techniques,
including those based on purely static analysis (CBMC),
purely dynamic analysis (VALGRIND, DRMEMORY,
MEMORYSANITIZER), and hybrid analysis combining static
and dynamic analyses (ADDRESSSANITIZER). In addition,
we intended to include at least one state-of-the-art,
representative technique in each category. We selected
more dynamic approaches because, among the techniques
we surveyed, most of those for which we can find publicly
available tools were dynamic. In addition to these source
code based analysis approaches, software vulnerability
detection has also been addressed through data
mining [18, 16] and machine learning [18] methods—as we
clarified earlier, we excluded these techniques in this paper
for a more focused and more in-depth comparative study.
The reason we summarized the detection technique
underlying each of the chosen tools above is because we
will refer to those technical details in discussing our
empirical results later on.
3.4. Metrics and Measurement

In our study, we considered accuracy and efficiency
(time cost and memory usage) as our metrics. For the
accuracy metric, we considered precision, recall and F1
score. We computed the accuracy both for each category
and for the entire set of chosen samples in each of the two
datasets as a whole. For the efficiency metrics, we
considered the CPU time cost and the peak memory usage
incurred by the detection process with each detector. We
evaluated the scalability of these detectors in terms of time
costs and peak memory usage by examining how these
efficiency measures change with varying subject sizes. We
ran all of our experiments on an HP server of a 10-core
Intel Xeon E7 2.4GHz CPU and 512GB RAM, running
64-bit Ubuntu 16.04.

To compute the recall, precision and F1 score, we
compared the detection results of each detector with the
ground truth associated with each sample. Accordingly, we
identified true/false positives/negatives as follows. The
results that report vulnerabilities on positive samples were
counted as true positives. The results that report no
vulnerability on positive samples were counted as false
negatives. The results report vulnerabilities on negative
samples were counted as false positives. The results that
report no vulnerability on negative samples were counted
as true negatives.

Some of the detectors could not finish the detection run
against certain sample programs within a reasonable
amount of time. Therefore, we had to set a detection time
threshold, such that any detection run that takes longer than
the threshold is killed and counted as a timeout case. We
set this threshold to 24 hours (1440 minutes) in an attempt
to minimize the number of timeout cases, since no valid
accuracy or efficiency results can be collected from these
cases. Accordingly, the accuracy results we report are those
computed based on non-timeout cases.

We computed the statistical significance of F1 score

difference between each pair of detectors and the
magnitude of the difference in terms of effect size. We
chose Wilcoxon signed-rank tests [42] to compute the p
value at the 0.95 confidence level, thus the differences with
p⩽0.05 would be considered significant. We used Cliff’s
Delta [12] as the effect-size measure and interpret the
strength of this measure as per the commonly adopted
breakdown [34]: Given a Cliff’s Delta value d, effect size is
negligible if |d|⩽0.147, small if 0.147<|d |⩽0.33, medium if
0.33<|d|⩽0.474, and large if |d|>0.474.

4. Results
Wepresent our study results andmajor findings as per the

five research questions. For each of the first three questions,
we do so for the two benchmark datasets separately. We then
looked across these datasets for RQ4 and RQ5.
4.1. RQ1: Accuracy

We first look at the accuracy (in terms of precision,
recall, and F1 score) of the five detectors as a whole (i.e., as
representatives of state-of-the-art code-analysis-based
memory error vulnerability detectors) to understand where
current vulnerability defense techniques are. Then, we
provide insights and recommendations based on our results.
4.1.1. Software-Analysis-Benchmark

Figures 2, 3, 4 shows the recall, precision, and F1 score
of each of the five detectors (each group) against each of
the 14 vulnerability categories (each bar). Each category
contains equal numbers of positive and negative samples.
In each of the figures, each group of bars shows the
respective accuracy metric of one detector against these
categories. Each bar in a group indicates the metric of that
detector against one category and is distinguished from
others by the fill patterns as listed at the bottom of the
figure. The last bar of each group in the figures shows the
metric of the detector against the entire dataset.

The results indicated that the detectors had in many
cases perfect precision, except for ADDRESSSANITIZER and
CBMC against the stack underrun samples, which saw
false positives. Note that all the vulnerabilities reported by
purely dynamic analysis based tools were true positives.
The reason was that the insertion of assertion statements in
CBMC is based on a static analysis hence conservative, so
is the insertion of memory status check logic during the
static instrumentation in ADDRESSSANITIZER. While
ensuring soundness, the conservativeness inherently brings
about false positives. To mitigate this issue, more precise
static analysis could be adopted in these tools, which
however would come at the cost of risking soundness
and/or incurring higher overhead.

ADDRESSSANITIZER and CBMC both reported
false positives for stack underrun vulnerabilities due
to the conservative nature of the static analysis they
use. In contrast, other vulnerability detectors re-
ported no false positives.
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Figure 2: Recall of the �ve compared memory error vulnerability detectors, per category and overall, for
Software-Analysis-Benchmark.

Figure 3: Precision of the �ve compared memory error vulnerability detectors, per category and overall, for
Software-Analysis-Benchmark.

Generally, the recall was low with these detectors for
many vulnerability categories. CBMC had relatively the
highest recall, because of the completeness advantage of
static analysis against simple programs (less than 300 depth
of iterations or recursions), where all the control flow paths
and assertions were traversed by CBMC. With the perfect
precision in general, this led to CBMC having the highest
F1 score as well. In contrast, dynamic analysis did not
seem to bring accuracy benefits compared to static analysis
for vulnerability detection here. The reason was that the
dynamic analysis was commonly limited to the specific
executions—it did not execute all program paths hence
missed some vulnerabilities.

For this reason, our evaluation and benchmark datasets
may not be fair, especially for the dynamic detectors, since
we only considered limited run-time inputs for the samples;
using two disparate datasets was attempted to reduce, but
not eliminate, this limitation. A typical way to mitigate this
general challenge to dynamic analysis due to the limited
coverage of limited run-time inputs considered is to run
each program multiple times with different inputs while
running the detector against each execution. This of course
would incur higher overall costs of the detection. Another
promising solution would be to employ fuzzing to
automatically generate more run-time inputs to more
extensively explore the run-time state space of the samples,
so as to capture vulnerabilities more comprehensively.

The dynamic detectors had lower recall than the
static detector CBMC, because dynamic analysis
was commonly limited to the specific executions.
This challenge to the dynamic detectors may be
overcome by considering multiple executions with
different existing run-time inputs or more extensive
inputs automatically generated through fuzzing.
Overall, the accuracy of these detectors varied widely:

0% to 100% precision, 0% to 100% recall, and 0% to 100%F1
score per category, indicating most of the techniques worked
extremely well on certain kinds of vulnerabilities yet quite
poorly on others. The main reason for this large variation
was that each of the underlying detection techniques tended
to focus on particular kinds of vulnerabilities, leaving others
largely unattended.

For instance, MEMORYSANITIZER is designed to fast
detect use of uninitialized memory. Thus, arithmetic
overflows, corresponding to data overflow and data

underflow vulnerabilities in the dataset, are not within its
detection scope. Likewise, VALGRIND is a dynamic
detector by nature, not capable of detecting source-code
level buffer errors (corresponding to static buffer overrun

and static buffer underrun vulnerabilities in the dataset).
In all, none of these tools were able to detect a vast variety
of vulnerabilities at the same time. The last bar of each
group shows the overall accuracy, computed by treating the
entire benchmark dataset as a whole: The two detectors

Figure 4: F1 score of the �ve compared memory error vulnerability detectors, per category and overall, for
Software-Analysis-Benchmark.
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Figure 5: Recall of the �ve compared memory error vulnerability detectors, per category and overall, for SV-Benchmark.
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Figure 6: Precision of the �ve compared memory error vulnerability detectors, per category and overall, for SV-Benchmark.

with static analysis, CBMC and ADDRESSSANITIZER,
achieved the highest F1 score (87.3% and 77.7%,
respectively). VALGRIND was the best-performing purely
dynamic tool (62.4% F1 score), while MEMORYSANITIZER
performed the worst (40.5% F1 score).

The accuracy of these detectors varied widely. Most
of them worked very well on certain kinds of vul-
nerabilities yet poorly on others, given their different
focus on different types of vulnerabilities.

4.1.2. SV-Benchmark
Figures 5, 6, and 7 show the recall, precision, and F1

score of the five detectors we studied against the 6
vulnerability categories, in the same format as Figures 2, 3,
and 4, respectively. For instance, VALGRIND had nearly
53% recall, 37% precision, and 44% F1 score against the
category MemSafety_LinkedLists. For each detector, the
result shown in these figures was computed only from
samples for which the detector finished the analysis without
timeout (as detailed in Section 4.3.2).

We found that VALGRIND, a heavy-weight dynamic
detector, achieved the highest overall F1 accuracy (72%),
while the lightweight compiler-based tools,
ADDRESSSANITIZER and MEMORYSANITIZER, had
relatively poor F1 (54% and 24%, respectively) against this
benchmark dataset. This advantage was attributed not
really to the detection being backed by a dynamic
analysis—in fact, MEMORYSANITIZER is a purely dynamic
detector as VALGRIND, and ADDRESSSANITIZER also
incorporates a dynamic analysis phase. The merit of
VALGRIND here is more due to the disassemble and

resynthesize (D&R) mechanism and simulated guest CPU
adopted in the tool. Thus, the mere fact that a detector is
static, dynamic, or hybrid does not necessarily have
accuracy implications. What really matters is the specific
detection strategy used.

Overall, these detectors had large variations in accuracy
across the 6 vulnerability categories. For instance, CBMC
achieved 98% F1 score against MemSafety_MemCleanup

samples, for which ADDRESSSANITIZER and
MEMORYSANITIZER had 0% F1 score.
ADDRESSSANITIZER had relatively poor recall (23%) and
F1 score (37%) against MemSafety_Arrays but better recall
(62%) and F1 score (76%) against MemSafety_Heap. In
contrast, MEMORYSANITIZER had higher recall (68%) and
good F1 score (81%) against MemSafety_Arrays but poor
recall (8%) and F1 score (14%) against MemSafety_Heap.
CBMC had relatively poor recall (38%) and F1 score (52%)
against MemSafety_Heap but had almost perfect recall and F1
score against MemSafety_Arrays (95% and 97%, respectively)
and MemSafety_MemCleanup (95% and 98%, respectively).
Treating all the samples in this dataset as a whole,
VALGRIND achieved the highest F1 score (72%) while
MEMORYSANITIZER had the worst F1 score (24%).

Our results indicate that the studied techniques worked
well on certain categories but poorly on others, confirming
the finding from the experiments on the other benchmark
dataset. The accuracy differences drill down to the
differences in the techniques underlying these detectors,
which we further discuss via case studies in Section 4.4.

Looking at the five detectors as representatives of
current state-of-art memory error vulnerability detection
techniques, we found that the highest recall, precision, and
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80.00%

100.00%

Valgrind DrMemory AddressSanitizer MemorySanitizer CBMC
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Figure 7: F1 score of the �ve compared memory error vulnerability detectors, per category and overall, for SV-Benchmark.
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F1 score was 68%, 99%, and 72%, respectively. For
practical use, this level of accuracy may not be sufficient.
Generally, most detectors had higher precision than recall
for a given set of samples, indicating that among the
vulnerabilities that have been detected, there were not many
false positives, yet there were still many vulnerabilities that
these state-of-the-art detectors did not catch. A main
reason is that these detectors chose to prioritize precision
over recall in their design [27, 9, 35, 40, 20], which is
justifiable with respect to the earlier finding that users (e.g.,
developers) tended to seek for tools that give fewer false
positives hence save defect inspection/confirmation
time [11]. Meanwhile, this also suggests a recommendation
for further improving the overall accuracy through a better
tradeoff between the precision and recall.

For the overall detection accuracy, the detection
strategy used by a tool is more important than the
type of analysis technique (static, dynamic or hy-
brid) applied.

4.1.3. Summary
The five detectors had overall high precision on both

datasets when the recall was not zero. Yet against some
categories the recall was so low that the F1 score was
nearly zero. Treating all the categories as a whole in each
dataset, the five detectors had moderate F1 score, even
though the best result against SV-Benchmark was worse
than the best result against Software-Analysis-Benchmark.
These findings suggest not only that the accuracy of these
detection tools can be further improved but also that the
accuracy measured against different datasets may vary.
4.2. RQ2: Statistical Accuracy Comparison

After looking at the status quo of code-analysis-based
memory error vulnerability detection in terms of accuracy,
we now look comparatively into the five detectors chosen in
this aspect. Tables 3 and 4 show the analysis results for the
10 possible pairs of comparison. For each pair, the two data
groups are the per-vulnerability-category F1 score of the two
detectors in the pair. For a pair A-B, a positive (negative)
effect size indicates that the metric (F1 score) of A is smaller
(greater) than that of B.We highlighted in boldface the cases
where the p value is significant (i.e., ⩽0.05) and effect size
is statistically large (i.e., |d |>0.474).
4.2.1. Software-Analysis-Benchmark

The results of our two statistical analyses are shown in
Table 3. The numbers indicate that only CBMC was
significantly more accurate than MEMORYSANITIZER with
a statistically large difference in terms of the F1 score. This
is consistent with the foregoing observation that CBMC
had the highest, while MEMORYSANITIZER had the lowest,
accuracy according to our results (Figure 4). Between
MEMORYSANITIZER and ADDRESSSANITIZER, the
accuracy difference was significant but not large (only with
a medium effect size of 0.357): the negative sign means the

Table 3
Statistic signi�cance and size of F1 score di�erences
between each pair of the studied detectors, for
Software-Analysis-Benchmark

Detector Categories Pair of detectors p value e�ect size

Runtime - Runtime Valgrind-DrMemory 1 -0.071

Compiler Based - Compiler Based AddressSanitizer-MemorySanitizer 0.035 -0.357

Runtime - Compiler Based

Valgrind-AddressSanitizer 0.281 0.071
DrMemory-AddressSanitizer 0.402 0
DrMemory-MemorySanitizer 0.205 -0.214
Valgrind-MemorySanitizer 0.247 -0.143

Runtime - Static
Valgrind-CBMC 0.236 0.214
DrMemory-CBMC 0.236 0.214

Compiler Based - Static
AddressSanitizer-CBMC 0.635 0.214
MemorySanitizer-CBMC 0.032 0.571

Table 4
Statistic signi�cance and size of F1 score di�erences between
each pair of the studied detectors, for SV-Benchmark

Detector Categories Pair of detectors p value e�ect size

Runtime - Runtime Valgrind-DrMemory 0.259 -0.333

Compiler Based - Compiler Based AddressSanitizer-MemorySanitizer 0.251 -0.333

Runtime - Compiler Based

Valgrind-AddressSanitizer 0.004 -0.667
Valgrind-MemorySanitizer 0.000 -1
DrMemory-AddressSanitizer 0.047 -0.667
DrMemory-MemorySanitizer 0.001 -0.844

Runtime - Static
Valgrind-CBMC 0.400 0.000
DrMemory-CBMC 0.259 0.000

Compiler Based - Static
AddressSanitizer-CBMC 0.045 0.167
MemorySanitizer-CBMC 0.011 0.833

accuracy of the second was lower than that of the first in
respective pairs. In all other cases, the detectors contrasted
were not significantly different in detection accuracy for
this dataset.

The only purely static detector was significantly
more accurate than the weakest purely dynamic de-
tector, which corroborated the completeness advan-
tage of static approaches against simple programs.

4.2.2. SV-Benchmark
Like for the other dataset, we performed pairwise

comparisons among the five detectors against the
SV-Benchmark dataset via the same statistical analyses.

Our results revealed that half (five) of the paired
comparisons came with statistically significant and large
accuracy differences. Between the other five pairs, the two
detectors either had no significant difference in accuracy, or
the differences were at most moderate (medium).
Nevertheless, the five pairs with significant and large
differences covered all of five detectors we studied, which
allowed us to assess the comparative strengths and
weaknesses of the entire set of tools.

Both the two heavyweight, purely dynamic analysis
based detectors (VALGRIND and DRMEMORY) and the
purely static detector (CBMC) were significantly and
largely more accurate than the lightweight, compiler-based
detectors (ADDRESSSANITIZER and MEMORYSANITIZER).
One reason lies in the efficiency optimization mechanism
of lightweight compiler-based dynamic detectors, as in
ADDRESSSANITIZER and MEMORYSANITIZER. The
optimization led to certain losses of completeness of the
detection. Given that ADDRESSSANITIZER is a hybrid
detector, the contrasts further suggest that combining static
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and dynamic analysis did not seem to be necessarily better
than purely static or dynamic analysis, at least for memory
error vulnerability detection.

While significantly different from both lightweight
compiler-based detectors (ADDRESSSANITIZER and
MEMORYSANITIZER), the accuracy of the purely static
detector (CBMC) was significantly higher only than
MEMORYSANITIZER. One reason is that
ADDRESSSANITIZER has a compile-time instrumentation
module that performs semantic analysis of source code,
while MEMORYSANITIZER is a purely dynamic detector
which does not have the semantic check. The static
semantic check helped improve the detection accuracy.

For memory error vulnerability detection, while hy-
brid analysis did not necessarily outperform purely
static or dynamic analysis, incorporating a static
phase for semantic check helped a dynamic detector
achieve higher accuracy.
Meanwhile, between any of the two purely dynamic

detectors (VALGRIND and DRMEMORY) and the purely
static detector (CBMC), the F1 score difference was not
significant. This was mainly because CBMC had a higher
recall but lower precision compared to VALGRIND and
DRMEMORY, and the higher recall was offset by its lower
precision, resulting in overall similar F1 measures. This
further confirms the essence of balancing precision and
recall in improving the overall accuracy, as discussed
earlier.

Static analysis tended not to generally have signifi-
cantly different F1 accuracy from dynamic analysis
for memory-error vulnerability detection, due to the
offsetting effects between their intrinsic precision
and recall advantages/disadvantages.

4.2.3. Summary
Only one pair of detectors (the best versus the worst)

showed a statistically significant and large difference
against Software-Analysis-Benchmark, while five pairs of
detectors showed significant differences against
SV-Benchmark. In other words, benchmark selection did
play a role in telling the performance differences among
compared detectors. If two detectors did not appear to have
statistically significant and large differences in detection
performance against a benchmark dataset, that does not
necessarily mean the two detectors are actually close in
their detection capabilities. Our results on comparing the
accuracy of the five detectors between the two benchmark
datasets indicate that these detectors showed greater
differences against more complex program samples.
4.3. RQ3: Efficiency

We examine the efficiency (in terms of time costs,
memory usage, and scalability) of the five detectors as a
whole, while also comparing among these detectors in this
regard to understand the efficiency of current vulnerability

defense techniques and to provide actionable insights and
recommendations based on the empirical results.
4.3.1. Software-Analysis-Benchmark
Time Costs. Table 5 lists the per-sample average time
costs incurred by each of the studied detectors, for each
vulnerability category (third to sixteenth rows). We show
the costs for positive and negative samples separately—we
intended to see if the presence/absence of vulnerabilities
was correlated with higher/lower analysis costs. Each cost
number included all relevant parts of the time spent (e.g.,
recompiling the program sample if necessary). To help
understand the run-time (slowdown) overheads incurred by
run-time tools, the table (second and eighth columns) also
lists the average original execution time per sample
(Directly). Given the negligible variance of these efficiency
numbers in any vulnerability category—as justified by the
closeness in size and complexity among program samples
in this dataset, we only report the means here and do not
show the full distribution as we do for the efficiency results
against the other benchmark dataset.

Our results show that the costs of vulnerability
detection with these detectors were hundreds or even
thousands of times greater than the Directly costs. This is
because the detectors have common steps like module
initialization and code analysis and transformation, which
incurred non-trivial amount of time, while the costs of
running the simple and short programs in this dataset were
generally tiny.

In contrast to the other tools, VALGRIND had the
highest time costs, because it has the most sources of costs
(e.g., initializing its heavy-weight core and the Memcheck
module, translating code to IR, dynamic code
instrumentation and optimization, running code in its
simulated CPU) each incurring substantial overhead.
Similar to VALGRIND by nature, DRMEMORY incurred the
second highest time costs in an average case. Yet the costs
were only about half of those incurred by VALGRIND
mainly because it ran programs on a real CPU, avoiding the
overhead of CPU virtualization. With the two
compiler-based detectors, ADDRESSSANITIZER and
MEMORYSANITIZER, just compiling and instrumenting
these very small programs incurred much less cost.

Compared to these dynamic tools, CBMC incurred
relatively moderate costs but with larger variations. This is
because it analyzes control flow to determine where to
place the assertions against memory access validity,
followed by solving CNFs for paths reaching those
assertions (Section 3.3). These steps intuitively cost higher
wherever the control flow is more complex (e.g., having
more or deeper nested branching structures). As a result, it
saw the maximal costs (about 21 seconds, as highlighted in
boldface) with the positive stack underrun samples and
negative stack overflow samples, which do contain more
complex control flow than others in this dataset.
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Table 5
Time costs (ms) of the compared detectors, per category (size in parentheses) and overall,
against the Software-Analysis-Benchmark dataset

Vulnerability Category
Positive Samples Negative Samples

Directly Valgrind DrMemory
Address
Sanitizer

Memory
Sanitizer

CBMC Directly Valgrind DrMemory
Address
Sanitizer

Memory
Sanitizer

CBMC

Dynamic Bu�er Overrun (64) <0.1 1,018.8 578.8 26.8 26.8 290.4 <0.1 1,058.4 592.2 29.8 26.8 298.8

Dynamic Bu�er Underrun (78) <0.1 1,019.2 575.0 25.6 30.2 362.6 0.2 1,052.0 577.2 29.4 27.2 343.8

Static Bu�er Overrun (108) <0.1 1,020.6 568.7 27.1 27.4 214.7 <0.1 1,021.8 591.9 30.7 27.6 208.9

Static Bu�er Underrun (26) 2.5 934.1 506.1 29.8 27.8 139.4 <0.1 1,019.4 626.1 30.8 27.2 139.7

Stack Over�ow (14) <0.1 993.7 573.7 33.1 28.4 139.4 <0.1 1,022.3 573.1 33.1 26.7 20,875.4

Stack Underrun (14) 0.6 1,022.9 4,948.5 26.9 30.7 21,775.4 <0.1 1,029.7 669.7 28.0 28.4 1,187.4

Invalid Memory Access to
Already Freed Area (34)

0.2 1,023.1 572.0 26.8 28.1 366.6 <0.1 1,084.9 575.1 32.0 27.8 350.1

Cross Thread Stack Access (12) <0.1 1128.6 614.7 32.0 30.3 250.0 <0.1 1132.0 652.7 32.0 29.0 244.7

Double Release (12) <0.1 1,085.3 630.7 35.3 26.0 229.3 1.3 1,084.7 643.3 32.0 30.3 229.3

Double Free (24) 0.3 1,007.7 571.3 28.3 26.6 166.0 0.3 1,017.3 575.0 32.7 28.3 164.7

Free Non-Dynamically
Allocated Memory (32)

<0.1 1,071.5 716.75 31.0 30.7 183.5 <0.1 1,014.7 615.0 32.0 27.0 183.5

Free Null Pointer (28) <0.1 1,016.3 550.3 25.7 27.6 321.1 <0.1 1,105.7 573.1 28.3 29.3 456.0

Data Over�ow (50) <0.1 1,020.6 627.5 28.9 27.6 133.8 <0.1 1,016.2 618.6 29.1 27.6 137.6

Data Under�ow (24) 0.3 1,013.0 567.3 31.3 29.0 130.0 0.3 1,122.7 592.3 31.3 29.0 132.0

All (520) <0.1 1,021.3 702.5 28.2 28.1 822.4 <0.1 1,047.6 597.8 30.4 28.2 829.8

Table 6
Peak memory usage (MB) of the compared detectors, per category (size in parentheses)
and overall, against the Software-Analysis-Benchmark dataset

Vulnerability Category
Positive Samples Negative Samples

Directly Valgrind DrMemory
Address
Sanitizer

Memory
Sanitizer

CBMC Directly Valgrind DrMemory
Address
Sanitizer

Memory
Sanitizer

CBMC

Dynamic Bu�er Overrun (64) 2.9 9.0 6.8 6.0 5.1 8.8 2.8 8.1 6.2 5.5 4.9 8.7

Dynamic Bu�er Underrun (78) 2.8 9.0 6.9 5.9 5.2 11.2 2.8 8.4 6.1 5.7 4.8 10.8

Static Bu�er Overrun (108) 3.0 8.9 6.6 6.0 5.3 4.5 2.9 8.0 6.6 5.6 4.9 4.1

Static Bu�er Underrun (26) 3.5 8.5 6.3 5.7 5.0 5.0 3.3 8.3 6.7 5.5 4.9 4.3

Stack Over�ow (14) 3.2 8.6 6.4 5.8 4.8 5.3 3.3 8.7 6.5 5.6 4.6 69.8

Stack Underrun (14) 3.6 8.8 6.5 5.9 4.9 68.7 3.4 8.5 6.6 5.8 4.6 5.3

Invalid Memory Access to
Already Freed Area (34)

3.1 8.7 6.7 5.7 5.2 8.8 3.1 8.2 6.5 5.8 4.7 8.6

Cross Thread Stack Access (12) 3.1 8.9 6.6 6.1 5.1 7.2 3.1 8.4 6.3 5.9 4.9 7.4

Double Release (12) 2.8 8.6 6.8 6.2 5.0 7.6 3.0 8.1 6.1 5.5 4.8 7.3

Double Free (24) 2.8 8.7 6.7 5.8 5.4 8.4 2.8 8.2 6.1 5.5 5.0 8.1

Free Non-Dynamically
Allocated Memory (32)

2.9 8.7 6.6 5.9 5.3 5.8 2.8 8.2 6.2 5.6 5.1 5.3

Free Null Pointer (28) 2.8 8.7 6.5 6.0 5.1 7.8 2.7 8.4 6.5 5.9 4.7 7.2

Data Over�ow (50) 2.6 8.6 6.6 6.0 4.9 4.8 2.5 8.2 6.4 5.5 4.6 4.0

Data Under�ow (24) 2.5 8.5 6.6 5.8 4.8 4.7 2.5 8.1 6.4 5.7 4.6 4.0

All (520) 2.9 8.8 6.7 5.9 5.1 8.7 2.9 8.2 6.4 5.6 4.8 8.3

Overall, the two purely dynamic detectors incurred
higher overhead than the other three across all vul-
nerability categories. The only static detector saw
higher overhead with more complex control flow.
In all, these detectors were generally extremely fast

against the samples used in terms of the (small) absolute
cost measures—taking about one second per sample in
most cases. Yet the overheads incurred by dynamic tools
were substantial in terms of run-time slowdown. Also,
there were no significant differences in efficiency between
positive and negative samples for any of these detectors.
This indicated that the time efficiency was not affected
much by whether the programs had vulnerabilities or not.

The detectors were generally fast in absolute terms,
mostly taking just about one second per sample. For
any detector, the time cost was not much affected by
whether or not the sample is vulnerable.

Memory Usage. Table 6 lists the per-sample average peak
memory usage incurred by each of the studied detectors, for

each vulnerability category. Similarly to how the time costs
are presented, we also show the peak memory usage for
positive and negative samples separately, and list the
corresponding memory usage of running the original
sample directly as a contrast to show the memory overhead
of vulnerability detection with these tools.

The numbers show that, in absolute terms, these
detectors mostly used very little memory (less than 10 MB)
against each of the samples in
Software-Analysis-Benchmark. In terms of the memory
overhead, the four dynamic tools (VALGRIND,
DRMEMORY, ADDRESSSANITIZER, and
MEMORYSANITIZER) consumed 1.5-3x of the memory
consumed by running the samples directly. Specifically,
VALGRIND used the most memory because of its bit-to-bit
shadow memory mapping, more than DRMEMORY and
ADDRESSSANITIZER which adopted 1-byte-to-2-bit and
8-byte-to-1-byte shadow memory mapping, respectively.
MEMORYSANITIZER also used bit-to-bit shadow memory
mapping, but it only mapped user-defined memory. Thus, it
used less memory than VALGRIND. The variations in
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vidual samples in the Software-Analysis-Benchmark dataset in
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memory usage across the vulnerability categories and the
two outlier cases (highlighted in boldface) as seen by
CBMC can be explained by the same reasons that explain
these variations and outliers in the time costs (Table 5).

We also found no significant difference in the memory
usage of any of these detectors between negative and positive
samples within any vulnerability category.

The detectors generally used very little memory (less
than 10 MB) for each sample. The differences in
memory usage among the detectors are justified by
their different shadowmemory mapping granularity.

Scalability. Figures 8 and 9 show the scalability of the
studied detectors in terms of time costs and memory usage
(y axis, in log scale), respectively, against individual
samples (sorted by code sizes non-descendingly as listed on
the x axis) in the Software-Analysis-Benchmark dataset.
Overall, the results show that, despite a few outliers, these
detectors had very good scalability against this dataset—as
the program sizes increased, the time costs and peak
memory usage kept almost constant, except for CBMC had
a linear increase in time costs yet the slope was very small.

Among the five detectors, we found that the scalability
of the four dynamic detectors (VALGRIND, DRMEMORY,
ADDRESSSANITIZER, and MEMORYSANITIZER) was
slightly better than the static detector CBMC. This is
evidenced by the observation that the dynamic detectors
had even smaller efficiency variations across samples of
different sizes than the static detector, and that the outliers
were mostly seen by the static detector also. This can be
explained by the sensitivity of CBMC to the characteristics

of program structures and code constructs (e.g., branches,
control flow complexity) that do vary with code sizes, with
respect to the internals of this detector.

All the five detectors showed generally
high scalability against the samples in the
Software-Analysis-Benchmark dataset. The
four dynamic detectors appeared to be even more
scalable than the static detector CBMC due to the
nature of the detection technique in the latter.

4.3.2. SV-Benchmark
Time Costs. Figure 10 shows the violin plots of the time
costs for the five detectors against the 6 vulnerability
categories in the SV-Benchmark dataset. In each of the
subfigures, the first violin plot shows the distribution of the
time costs of running the samples directly, as a baseline
(noted as Directly), and each of the other four violin plots
associated with a detector shows the distribution of the time
costs of that detector against the vulnerability category
associated with the subfigure. For example, against
MemSafety_MemCleanup, the median of the time costs with
VALGRIND was 11 minutes and the maximum was 20
minutes—the outlier costs were up to over 50 minutes.

The time costs of the five detectors against the 6
categories varied widely. For instance, for MemSafety_Arrays
and MemSafety_Heap samples, CBMC spent over 200
minutes in the worst case (for one sample) while
MEMORYSANITIZER finished checking any sample in no
more than 1 minute. Against MemSafety_MemCleanup

samples, VALGRIND and DRMEMORY spent relatively
longer time in both average (4 and 3 minutes, respectively)
and maximum (20 and 13 minutes, respectively) cases than
other detectors. The results revealed that some detectors
had noticeably higher efficiency against certain
vulnerability categories than others.

Specifically, when compared to other detectors, CBMC
took more time on the MemSafety_Arrays, MemSafety_Heap,
MemSafety_LinkedList, and Systems_BusyBox_MemSafety

categories, but noticeably less on the other two categories.
This was because the key steps for vulnerability detection
in CBMC, inserting assertions and solving constraints,
were expensive for complex control flows (e.g., due to the
presence of more branching structures), which were
common in these four categories. Among the four dynamic
detectors, VALGRIND spent the most time against any
vulnerability category, while DRMEMORY and
ADDRESSSANITIZER spent less and MEMORYSANITIZER
spent the least. The reason was that, VALGRIND ran the
programs on its guest (virtual) CPU, which significantly
impacted the efficiency, while the others ran the programs
on the real CPU. MEMORYSANITIZER was faster than both
DRMEMORY and ADDRESSSANITIZER mainly because
MEMORYSANITIZER is dedicated to checking only against
uninitialized memory while the other two aim to check a
much broader range of memory error vulnerabilities hence
need more extensive/complex instrumentations and
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Figure 10: Distribution of the time costs (y axis, in minute) of the �ve compared memory error vulnerability detectors against
individual samples in the SV-Benchmark dataset, shown separately per vulnerability category (as shown as the chart title).

dynamic analysis. Lastly, ADDRESSSANITIZER was still
faster than DRMEMORY because the former statically
instruments the programs, inherently more efficient than
dynamic instrumentation with DRMEMORY.

The efficiency of the static detector CBMC appeared
to be more sensitive to control flow complexity,
due to its vulnerability detection strategy relying on
control flow analysis (for assertion insertions).
As for RQ1, the efficiency results discussed above did

not include timeout cases. We list the numbers of timeout
cases in Table 7 per detector and vulnerability
category—there were no such cases in the
Software-Analysis-Benchmark dataset. We found that the
numbers of such cases were particularly high against
MemSafety_LinkedLists and MemSafety_Other samples for any
of the detectors. For instance, the number was 13 for
CBMC and 14 for other detectors against
MemSafety_LinkedLists samples, while the numbers were
greater than 10 against MemSafety_Other samples. Against
any other categories, the number was less than 5.

To understand the causes, we conducted manual
inspections and found that there were some samples in the
MemSafety_LinkedLists and MemSafety_Other categories
dealing with very deep (over 10,000 in some samples) or

Table 7
Number of timeout cases

Vulnerability Category (Size) Valgrind DrMemory
Address
Sanitizer

Memory
Sanitizer

CBMC

MemSafety_Arrays (71) 0 0 0 0 3

MemSafety_Heap (180) 1 1 1 1 4

MemSafety_LinkedLists (103) 14 14 14 14 13

MemSafety_MemCleanup (32) 0 0 0 0 0

MemSafety_Other (48) 13 13 10 10 12

System_Busybox_MemSafety (40) 1 1 1 1 0

All (474) 29 29 26 26 32

even unbounded nested iterations or recursions, which led
to particularly high resource consumption for both static
and dynamic detection hence the timeouts. The dominating
timeout cases in the two categories were largely attributed
to those samples, which we confirmed were all real-world
applications. Note that compared to the other categories,
MemSafety_Other is a mixed category (which is noted by the
name of this category)—the other (i.e., non-timeout)
samples caused very little time (see Figure 10).
Memory Usage. Figure 11 depicts the distributions of
memory usage by the five detectors in the same format as
Figure 10, except for that the y axes show the peak memory
usage instead of time costs.

The results show that the peak memory usage of these
detectors was generally moderate and in a reasonably small
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Figure 11: Distribution of the peak memory usage (y axis, in MB) of the �ve compared memory error vulnerability detectors
against individual samples in the SV-Benchmark dataset, shown separately per vulnerability category (as shown as the chart title).

range—checking most of the samples needed no more than
2.5GB memory, despite a few outliers (taking up to 16GB
memory). On the other hand, comparing to the memory
usage of running the original samples directly revealed that
the memory overhead of these detectors was generally
moderate too (below 1.5x)—albeit quite high (about 4x)
with the outlier cases.

The peak memory usage of these detectors was gen-
erally moderate and in a reasonably small range, de-
spite a few outlier cases. The differences in memory
usage among the detectors were justified by their
different levels of shadow memory granularity.

Scalability. Figures 12 and 13 show the scalability of the
five detectors against individual samples in SV-Benchmark
in terms of time costs and peak memory usage, in the same
format as Figures 8 and 9, respectively.

The results show that neither the time cost nor peak
memory consumption increased continuously as the sample
code size grows. Meanwhile, the time cost and memory
usage were reasonably practical for the majority of the
samples, and the peaks were in small numbers. These
observations suggest that the detectors generally scaled
well to the samples in this dataset. We also noticed that the
scalability of all of these detectors, especially the two
heavy-weight dynamic detectors VALGRIND and

DRMEMORY, are generally quite sublinear, suggesting
opportunities for improving precision and recall at the cost
of more computing resources.

All five detectors scaled well to the SV-Benchmark
dataset, with the heavy-weight dynamic detectors
providing the best scalability.

4.3.3. Summary
Our results revealed that all the samples in the

Software-Analysis-Benchmark dataset cost little time to be
checked because of their simple code and data structures.
Yet there were more than 25 samples in the SV-Benchmark
dataset costing more than 24 hours to be checked by any of
the detectors. The average time cost per sample in the
SV-Benchmark dataset was also higher than the average
time cost per sample in the Software-Analysis-Benchmark
dataset. These contrasts indicated that the data and code
structure complexity had considerable impact on the
efficiency of these detectors.

Contextualizing our efficiency results, we found that
earlier efficiency evaluations of the four dynamic
detectors [27, 9, 35, 40] against the SPEC 2006
benchmark [17] had results consistent with ours in terms of
the relative ranking of these tools in efficiency. Generally,
the common conclusion is that VALGRIND is a

Yu et al.: Preprint submitted to Elsevier Page 15 of 24



Evaluating and Comparing Memory Error Vulnerability Detectors

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

20
1

20
6

21
1

21
6

22
1

22
6

23
1

23
6

24
1

24
6

25
1

25
6

26
1

26
6

27
1

27
6

28
1

28
6

29
1

29
6

30
1

30
6

31
1

31
6

32
1

32
6

33
1

33
6

34
1

34
6

35
1

35
6

36
1

36
6

37
1

37
6

38
1

38
6

39
1

39
6

40
1

40
6

41
1

41
6

42
1

42
6

43
1

43
6

44
1

44
6

45
1

45
6

46
1

46
6

47
1

Ti
m

e 
(m

in
)

Sample ID (ordered by program size)

Time Cost: SV-Benchmark

Valgrind DrMemory AddressSanitizer MemorySanitizer CBMC

50 LoC 100 LoC 500 LoC 1000 LoC 5000 LoC

Figure 12: Scalability of the time costs (y axis) of the �ve compared memory error detectors against individual samples in the
SV-Benchmark dataset
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Figure 13: Scalability of the memory usage (y axis) of the �ve compared memory error detectors against individual samples in
the SV-Benchmark dataset

heavy-weight framework while ADDRESSSANITIZER and
MEMORYSANITIZER are faster memory checkers by design.

4.4. RQ4: Failure Cause Analyses (Case Studies)
We extracted 9 samples in the two benchmark datasets

as example cases. For each case, we show how well some
of the detectors performed against it, and discuss the
reasons behind the successes and failures. Then, we
provide actionable insights and/or recommendations based
on the results and discussions.
1 void first ()

2 {

3 char buf [5];

4 buf[5] = 1; /*Tool should detect this line as error*/

5 ......

6 }

7 void second ()

8 {

9 int buf [5];

10 int index;

11 index = rand ();

12 buf[index] = 1; /*Tool should detect this line as error*/

13 ......

14 }

Listing 1: In-depth inspection: Case 1.

Case 1. Listing 1 shows the excerpt of two static buffer

overrun samples. Both VALGRIND and DRMEMORY
detected the vulnerability in the second sample but not in
the first, although the first seems easier to detect.

The reason was because both tools are purely dynamic
detectors, thus they did not check the static buffer size in
the source code. Instead, they only checked whether the
address (in stack or heap) being accessed was valid. In the
first sample, buf[5] was still found as a valid memory block
within the stack of the program, thus the vulnerability was
missed. In the second, however, rand() returned a large
number far beyond the size of the valid stack region of the
program, thus the vulnerability was captured at runtime.

This suggested that it would have merits for dynamic
detectors to analyze the source code if possible. We noticed
that the two purely dynamic detectors were able to report

the vulnerable lines when we enabled debugging while
compiling the programs. If the dynamic detectors were able
to utilize the debugging information in the executable
programs, this kind of false negatives could be reduced.

VALGRIND and DRMEMORY failed to detect static
buffer overruns induced by statically set buffer sizes,
because as purely dynamic detectors they did not
check such sizes. This issue can be mitigated by uti-
lizing the debugging information in the executable
programs when available.

1 void first()

2 {

3 char buf [5];

4 buf[5] = 1; /*Tool should detect this line as error*/

5 /*ERROR: buffer overrun */

6 ...

7 }

8 void second ()

9 {

10 int buf [5][6];

11 buf [5][5] = 1; /*Tool should detect this line as error*/

12 /*ERROR: buffer overrun */

13 ...

14 }

15 void third()

16 {

17 int buf [5][6][7];

18 buf [5][5][6] = 1;/*Tool should detect this line as error*/

19 /*ERROR: buffer overrun */

20 ...

21 }

Listing 2: In-depth inspection: Case 2.

Case 2. Listing 2 shows three static buffer overrun

samples. ADDRESSSANITIZER detected the vulnerability in
the first two samples but did not in the third.

The reason was that the instrumentation module of this
detector, which is used to check the shadow state for each
memory access to the stack or global variables, did not
check overrun errors for arrays of 3 or higher dimensions.
Instead, as a lightweight detector aiming at high efficiency,
ADDRESSSANITIZER only checked arrays of up to 2
dimensions, since arrays of deep dimensions are not as
common in real-world software systems.
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This indicated that hybrid analysis, as is this detector,
did not necessarily outperform purely static or dynamic
analysis in detecting memory error vulnerabilities when
dealing with complex data structures—besides
high-dimension arrays, another example is a deeply
embedded linked list as seen in a similar case. A more
thorough run-time checking could overcome this challenge.

ADDRESSSANITIZER, a lightweight hybrid detector,
did not detect static buffer overrun vulnerabilities in
arrays of 3 or higher dimensions, which could be
overcome by a more thorough run-time checking.

1 void stackoverflow ()

2 {

3 double buf [1048576]; /*Tool should detect this line as error*/

4 /*ERROR:Stack overflow */

5 buf[0] = 1.0;

6 ...

7 }

Listing 3: In-depth inspection: Case 3.

Case 3. Listing 3 shows a stack overflow sample, for which
CBMC did not detect the stack overflow vulnerability.

The reason was that this type of vulnerabilities was
closely related to the maximum stack size dynamically
configured at the operating system level, which cannot be
determined purely statically by CBMC. All the other
(dynamic) detectors were able to detect stack overflows that
are associated with dynamically configured run-time
environment parameters as they can readily check such
run-time configurations.

For a static detector like CBMC to overcome this
challenge, one way would be to retrieve relevant
environment configurations and make conservative
assumptions about possible bounds of the configurations
(e.g., maximal stack size possible) in the detection
algorithm (e.g., during the assertion generation step of
CBMC). Alternatively, such bounds can be explicitly
specified by users.

CBMC as a static detector did not capture stack
overflow vulnerabilities due to the dynamically set
maximum stack size, which may be overcome by
carefully checking such environment parameters.

1 void printEven(int i){ __VERIFIER_assert ((i%2)==0);}

2 void printOdd(int i){ __VERIFIER_assert ((i%2)!=0);}

3 int main()

4 {

5 int array [100000];

6 int i;

7 int num =100001;

8 for(i=0;i<num;i++)

9 if(array[i]%2==0) printEven(array[i]);// Invalid dereference

10 for(i=0;i<num;i++)

11 if(array[i]%2==0) printOdd(array[i]); // Invalid dereference

12 return 0;

13 }

Listing 4: In-depth inspection: Case 4.

Case 4. Listing 4 shows part of a positive sample with array
related memory safety violations. All of the five detectors
but CBMC identified these vulnerabilities (at Lines 9 and
11).

This failure with CBMC was caused by the large depth
of the loop (100,001), greater than the deepest iteration this
detector unrolled the loop up to, which was set to 300 due
to time and memory cost concerns. It did not check up to
the iteration where the vulnerabilities occurred hence failed
to detect them. In contrast, the other detectors contained a
dynamic analysis that checked all the iterations in this case,
thus they were all able to capture the vulnerabilities. For
a similar reason, CBMC would miss vulnerabilities in deep
recursions too, where a dynamic detector would have a better
chance to succeed.

A static detector like CBMC could mitigate such
limitations by increasing the loop unwinding depth, at the
cost of greater time and memory overhead. While the
actual loop bounds are hard to predict statically, a limit that
accommodates most situations as per empirical evidence
may still work reasonably well in practice. Another way to
overcome the challenge would be to precede the static
vulnerability detection algorithm with a constant
propagation to derive loop bounds at compile time if
possible—in the sample here, this would work well.

CBMC failed to detect vulnerabilities in deep loop
iterations or recursions due to the limited depth the
static analysis was set to unwind up to. On-demand
setting of this limit and/or constant propagation may
help overcome this challenge to purely static vulner-
ability detectors like CBMC.

1 int main()

2 {

3 int *myPointerA =(( void*) 0);

4 int *myPointerB =(( void*) 0);

5 {

6 int myNumberA =7;

7 myPointerA =& myNumberA;

8 // scope of myNumberA ends here

9 }

10 int myNumberB =3;

11 myPointerB =& myNumberB;

12 // Invalid dereference for myPointerA

13 int sumOfMyNumbers =* myPointerA +* myPointerB;

14 printf("%d",sumOfMyNumbers );

15 return 0;

16 }

Listing 5: In-depth inspection: Case 5.
Case 5. Listing 5 shows part of a positive sample where
the dereference of the pointer myPointerA is invalid at Line
13 because its valid definition (Line 7) is out of the scope
of the dereference. While this vulnerability was correctly
detected by ADDRESSSANITIZER and CBMC, it was not by
other detectors.

We found that the failure with these other detectors
occurred because they tracked all definitions,
initializations, assignments, and (de)allocations via shadow
memory, thereby accesses to deallocated memory could be
detected. However, they did not check source code nor
were aware of the language semantics that the variable
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address (of myNumberA) becomes invalid beyond Line 9—in
other languages (e.g., Shell) the address would not become
invalid. In contrast, CBMC captured this in its semantic
check phase which examines the code in a semantics-aware
manner, and ADDRESSSANITIZER detected the invalid
access during its compilation process in which the analysis
is aware of the language semantics as well.

Apparently, awareness of language semantics would be
an effective mitigation of this limitation to dynamic
detectors—adding a semantic check at compile time could
have helped the other detectors succeed in this case.

Purely dynamic detectors (VALGRIND, DRMEM-
ORY and MEMORYSANITIZER) did not capture
out-of-scope dereference vulnerabilities due to their
ignorance of language semantics. Incorporating a
compile-time semantic check would help mitigate
this challenge to purely dynamic detectors.

1 // Original sample

2 void entry_point(void){

3 int *p=(int *) ldv_malloc(sizeof(int));// ldv_malloc = malloc

4 }

5 void main(void){ entry_point ();}

6
7 // ====================================================

8 // Modified sample

9 void entry_point(void){

10 int *p=(int *) ldv_malloc(sizeof(int));

11 int *q=(int *) ldv_malloc(sizeof(int));

12 }

13 void main(void){ entry_point ();}

Listing 6: In-depth inspection: Case 6.

Case 6. Listing 6 shows a positive sample (Lines 1-5),
where a memory-leak vulnerability occurred when the
memory allocated at Line 3 did not get freed afterwards.
All detectors but DRMEMORY captured this vulnerability.

We found that the failure with DRMEMORY was due to
its special detection strategy: It only checks memory leaks
in the middle (as opposed to the boundaries) of the
heap [9], in order to avoid false positives with C++
programs that allocate memory via the new[] operator and
std::string objects, or with pointers pointing to an instance
of a class with multiple inheritance. In both kinds of
situations, extra heap memory is justifiably reserved to
accommodate the particular memory model of C++. To
verify this explanation, we modified the original sample
source code (Lines 1-5) and created a modified version,
which is shown in Lines 9-13. This corroborated that
DRMEMORY indeed only checks memory in the middle of
the heap, causing its failure with the original sample here.

This failure was essentially caused by the
soundness-precision tradeoff adopted by DRMEMORY. A
mitigating strategy would be to bring users in the loop of
decision making regarding the tradeoff, by offering options
to users that determine whether particular language features
should or should not be conservatively considered.

DRMEMORY adopted a special detection strategy
that helps it reduce false positives with particular
(C++) language features but caused false negatives.
An user option for or against such conservative
strategies would help deal with this issue.

1 static int ldv_m88ts2022_re_reg(

2 struct ldv_m88ts2022_priv *priv ,

3 char reg , char *val){

4 ...

5 memcpy(val ,buf ,1);

6 ...

7 }

8 //A function that will be called when running

9 int alloc_fix_12(struct ldv_i2c_client *client ){

10 unsigned char chip_id;

11 //char chip_id;

12 // change "unsigned char" to "char", false positive disappears

13 int ret;

14 ...

15 ret=ldv_m88ts2022_re_reg(priv ,0x00 ,& chip_id );

16 ...

17 // chip_id is initialized , but the tools still report errors

18 switch(chip_id ){

19 ...

20 }

21 }

Listing 7: In-depth inspection: Case 7.
Case 7. Listing 7 shows part of a negative sample. Three
of the dynamic detectors, VALGRIND, MEMORYSANITIZER
and DRMEMORY, falsely reported the use of uninitialized
variable (chip_id) at Line 18 as a vulnerability. In fact, this
variable is initialized at Line 15 through the function call
there. We tried changing the data type from unsigned char

to char at Line 10, then this false positive disappeared with
any of these detectors.

The underlying cause had to do with type casting. At
Line 3, the function ldv_m88ts2022_re_reg accepted a
pointer type char* for its third parameter while the type of
the argument &chip_id provided at Line 15 was unsigned

char*. The three dynamic detectors instrumented the
program so as to update the status of chip_id in the shadow
memory when the mapped original memory was
initialized. However, in the presence of type casting here
and given that an unsigned value could be the start address
of a memory region of any length, it is difficult to assure
that the memcpy would just copy one byte. Thus, these
detectors took a conservative approach of not updating the
status of the associated shadow memory addresses in this
situation. Consequently, when the variable chip_id was
actually initialized through the casted pointer, the shadow
memory of chip_id was still marked as uninitialized,
causing the false positive.

To mitigate false positives caused so, these detectors
may lift up or at least relax the conservative consideration
(i.e., updating the status of the address &chip_id in the
shadow memory after the call at Line 15). Generally this
could possibly bring about false negatives (e.g., memory
region after the address pointed to by val, at Line 5, which
should not be marked as uninitialized but mistakenly done
so hence the missed uninitialization vulnerabilities). Yet
the risk may be practically acceptable—in this case, since
exactly just one byte was specified to be copied (at Line 5),

Yu et al.: Preprint submitted to Elsevier Page 18 of 24



Evaluating and Comparing Memory Error Vulnerability Detectors

it would not cause any false negatives if the status of
&chip_id gets updated (to “initialized") at Line 15.

The three purely dynamic detectors (VALGRIND,
MEMORYSANITIZER and DRMEMORY) reported
false vulnerabilities because they failed to deal with
memory initializations through casted pointers, a
challenge that can be mitigated through a less con-
servative memory status updating strategy.

1 typedef unsigned int __u32;

2 struct compstat {

3 __u32 unc_bytes ;

4 __u32 unc_packets ;

5 __u32 comp_bytes ;

6 __u32 comp_packets ;

7 __u32 inc_bytes ;

8 __u32 inc_packets ;

9 __u32 in_count ;

10 __u32 bytes_out ;

11 char ratio ;

12 };

13 int main() {

14 struct compstat cstats ;

15 cstats.ratio |=(1<<0);

16 if(cstats.ratio)

17 printf("%d\n",cstats.ratio);

18 return 0;

19 }

Listing 8: In-depth inspection: Case 8.

Case 8. Listing 8 shows a positive sample, where a use

of uninitialized variable error occurred at Line 16 since
Line 15 only initialized the first bit of cstats.ratio. Only
VALGRIND and MEMORYSANITIZER detected the error.

The reason was that the shadow memory mappings in
the other two dynamic detectors DRMEMORY and
ADDRESSSANITIZER were only byte-precise, compared to
VALGRIND and MEMORYSANITIZER adopting bit-precise
mapping. In CBMC, the assertion generation module
treated the variable cstats.ratio as a whole rather than
separately considering individual bits in the variable. Thus,
no assertion for bit-precise checking was inserted during
the static analysis, hence the false negative.

Intuitively, the coarse-precision memory checking may
miss some memory errors that occur at higher-granularity
locations. In practice, this byte-level precision may well
suffice to find most of the relevant memory errors.
Nevertheless, it is worth considering to raise the granularity
level (to byte-precision checking), in light of our empirical
findings (Section 4.3.2) indicating that a higher-precision
detector (e.g.,VALGRIND) may still be well scalable.

Only VALGRIND and MEMORYSANITIZER correctly
reported the bit-precise use of uninitialized vari-
able error, since they adopted bit-precise memory
shadowing while others adopted a coarser-grained
shadowmemory mapping. A higher precision mem-
ory checking model can still be considered for better
accuracy, without sacrificing efficiency much.

1 typedef unsigned char __u8;

2 typedef unsigned int __u32;

3 struct compstat {

4 __u8 unc_bytes ;

5 __u8 unc_packets ;

6 __u8 comp_bytes ;

7 __u8 comp_packets ;

8 __u8 inc_bytes ;

9 __u8 inc_packets ;

10 __u8 in_count ;

11 __u8 bytes_out ;

12 };

13 int main() {

14 struct compstat *cstats=malloc(sizeof(struct compstat ));

15 __u32 *p=&(cstats ->in_count );

16 *p=20;

17 free(cstats );

18 }

Listing 9: In-depth inspection: Case 9.

Case 9. Listing 9 shows a positive sample where an
out-of-bounds error occurs at Line 16. The pointer p points
to the start of in_count, a 8-bit field followed by another
8-bit field bytes_out of the compstat struct pointed to by
cstats. Thus, starting at p is a 16-bit memory region. Yet
Lines 15-16 attempt to write 20 to a 32-bit region that starts
at p, hence an illegal access. All of the five detectors found
this error but ADDRESSSANITIZER.

The reason was that ADDRESSSANITIZER only
instrumented to check the starting byte of a variable of a
built-in type, causing the false negative here with the
partially out-of-bounds error. This issue was also
mentioned in the original ADDRESSSANITIZER paper [35]
where the authors clarified that they currently ignored such
errors for better efficiency. In contrast, the other detectors
checked every bit/byte for each memory access.

While this type of error is rare, byte-to-byte (or
bit-to-bit) memory status mapping and checking would be
helpful in avoiding the false negatives here. Meanwhile, as
expected and pointed out in [35], this fine-grained analysis
would compromise the efficiency of the detector.

ADDRESSSANITIZER did not capture partially
out-of-bounds errors, since it only checked the
starting byte of a built-in-type variable. A more
fine-grained checking would mitigate this issue at
the cost of lower efficiency.

4.5. RQ5: Impact of Benchmark Selection
We found that the source of program samples, as well

as their code traits (e.g., loops and recursions) and data
structures (e.g., arrays and embedded linked lists), had
appreciable effects on the accuracy measures against the
chosen detectors.

To understand the effects, let us first summarize how
the two used datasets themselves differ. Notably, the entire
Software-Analysis-Benchmark dataset was generated
artificially. Most samples in this dataset are simple
programs that just contain the vulnerability spot along with
minimally necessary code contexts (e.g., variable
declarations). In contrast, samples in the SV-Benchmark
dataset were collected from diverse sources. Some samples
in this dataset have complex data structures (e.g., samples
of the MemSafety_LinkedLists category) or include complex
code structures that are close to those seen in real-world
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software systems (e.g., samples of the
System_Busybox_MemSafety category).

Given these differences, ADDRESSSANITIZER, a hybrid
analysis detector, had better F1 score (77.86%) than the two
purely dynamic analysis detectors, VALGRIND (62.43%)
and DRMEMORY (61.70%), against the
Software-Analysis-Benchmark dataset. In comparison,
ADDRESSSANITIZER had lower F1 score (57.14%) than
VALGRIND (72.05%) and DRMEMORY (64.05%) against
the SV-Benchmark dataset. For another example, CBMC, a
purely static detector, had the best F1 score (87.31%)
against the Software-Analysis-Benchmark dataset, while it
had only 59.89% F1 score against the SV-Benchmark
dataset, lower than VALGRIND and DRMEMORY.

The impact of the benchmark selection can be also seen
between different categories in SV-Benchmark dataset. We
found that the overall F1 score of these detectors against
MemSafety_LinkedLists and System_Busybox_MemSafety was
lower than other categories. Against
System_Busybox_memsafety samples, three of these detectors
had 0% F1 score, much lower than the accuracy they
achieved against any other category. Note that the
MemSafety_LinkedLists category is a sub-suite that includes
samples that deal with complex data structures on stack or
heap. The System_Busybox_MemSafety category includes
samples that are parts of real software systems with
memory safety issues, while most samples from other
categories are relatively simple programs without complex
logic and data structures. This reveals that detectors that
had good performance against vulnerabilities in simple
programs may still suffer relatively low performance
against complex (e.g., real-world) software systems.

Beyond the impact of benchmark selection on the
results of accuracy evaluation, the detectors also have seen
that impact on efficiency results. With
Software-Analysis-Benchmark, the dynamic detectors
caused up to 1,000x runtime overhead. In comparison, with
SV-Benchmark, the overhead was up to 50x. The reason
was that the samples in Software-Analysis-Benchmark are
very simple, thus the original program running time was
commonly quite short—as a result, the total cost of
checking a sample was easily many times of the original
program running time. For another example, all of the five
detectors finished detecting a single sample in
Software-Analysis-Benchmark in less than 30 seconds on
overall average, without any timeout cases. However, with
the SV-Benchmark dataset, there were at most 32 timeout
cases for a single detector and the maximum time cost of a
single sample was greater than 200 minutes. In all, both the
size and code complexity of the program samples
considerably affected the efficiency of these detectors.

Finally, we note that the overall design intention of
benchmark datasets naturally contributes to the impact of
benchmark selection as well. One evidence in this regard in
our study is the performance contrast between CBMC and
the other four detectors. Intuitively, due to its underlying
technique being a purely static analysis, CBMC was not

expected to be more effective. Yet it had the best overall
accuracy against the Software-Analysis-Benchmark dataset.
The reason, as mentioned earlier, was because this
benchmark was designed for testing static vulnerability
analysis techniques—more specifically, the samples were
curated to include vulnerabilities that are relatively more
detectable via static analysis.

Benchmark selection had clear impact on the effi-
ciency and accuracy evaluation results of the studied
detectors, and contributing to the impact are factors
including code size, characteristics of code and data
structures, code complexity, and design intention of
the benchmark dataset overall.

5. Threats to Validity
Throughout our result analysis and discussion, we

essentially referred to exchangeably a detector (e.g.,
AddressSanitizer) and the detection technique on which the
detector is based (e.g., hybrid code analysis). A relevant
threat is that the comparative evaluation results on the
detection techniques covered by the chosen detectors may
be different from what we reported, if different tool
implementations of the same techniques were used. Our
current study essentially treated each of the chosen
detectors as a good representative of the respective
underlying detection technique, which may have caused
biases in our results.

In addition, our current categorization of detection
techniques was relatively coarse-grained. We simply
classified the five detectors into three high-level categories
(static analysis, dynamic analysis, and hybrid analysis).
Basically, our current categorization was not really based
on the particular detection techniques (algorithms), but
based on the high-level classes of the techniques (in terms
of the types of program analysis on which the techniques
are based). We did not differentiate specific detection
algorithms within each category (e.g., different kinds of
static-analysis-based detection techniques). For this reason,
the evaluation in this study was indeed on the classes of
detection techniques, rather than on different specific
techniques in terms of detection algorithms.

Another threat lies in the representativeness of the
chosen samples among actual C/C++ programs that users
may use the chosen detectors against. It is commonly
difficult to find samples that would represent all real-world
programs. For this reason, we do not claim that our results
and findings necessarily generalize to other programs.
Thus, users who run the studied detectors against other
real-world software applications may experience different
performance results from what we presented.

To mitigate this threat, we made our best effort to
account for the quality of the benchmark datasets used in
our study, by using the datasets that have been used in prior
peer studies and/or by other researchers and practitioners.
For example, the chosen samples in the SV-Benchmark
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dataset are used for a well-known annual competition
event. These samples are not trivial. In fact, we found that
many of these samples are complete real-world applications
and many others are adapted from or part of real-world
code. This at least provides confidence that the vulnerable
code patterns are reasonably retained with respect to
real-world software. We also purposely chose to use two
quite different benchmark datasets, instead of one as in
most prior peer studies, to further reduce possible biases.
For a more comprehensive evaluation and comparison with
our study, we need to use samples for which vulnerability
ground truth is available, which is difficult to obtain for a
sizable set of real-world applications. This is a key reason
behind our choice of the samples that we chose.

Nevertheless, the reported results are best interpreted
with respect to the samples we actually used in our study.
The size and complexity of these samples may not have the
same impact on the performance of the chosen detectors as
would real-world applications. We also note that our results
are mainly applicable to detectors focusing on memory
error vulnerabilities that are based on static and/or dynamic
code analysis. Relevant insights may not apply to
code-analysis-based detectors targeting other classes of
vulnerabilities, nor to detectors that are based on other
techniques (e.g., data-driven approaches).

The distribution of positive/negative samples may also
be a threat to the validity of the evaluation results [13]. In
this study, the numbers of positive samples and those of
negative samples used were almost balanced, which may
not necessarily be consistent with the distribution in
real-world applications. Ideally, the vulnerability
distribution of each benchmark dataset should be as similar
to the real-world vulnerability distribution as possible.
However, it is unknown how vulnerable applications versus
clean applications are actually distributed in the real world.

The vulnerabilities in the program samples were
considered so based on the nature of the operation of the
code, rather than their practical security consequences.
Usually, people consider vulnerabilities based on the
security consequences a software defect may cause. For
example, the buffer overflow issue we discussed in Case 1
could have been treated as a functionality bug instead of a
vulnerability. In this study, we treated all types of bugs
(e.g., buffer overflow, use after free) that may potentially be
used for malicious purposes as vulnerabilities, without
considering the practical security consequences. One of the
reasons is that our program samples are not all real-world
software applications, and the reason we still chose to use
these samples was again because of the availability of
vulnerability ground truth with them.

Lastly, we used F1 score as an accuracy metric to
evaluate and compare the detectors, which assumed
precision and recall were equally important. This may not
always be true in practice, where precision or recall might
be valued more than the other. Thus, the accuracy in terms
of the F1 score we reported may be different from what a
user would actually experience with the studied detectors

(e.g., if the user emphasizes more on precision or recall).

6. Discussion
Based on our empirical findings, we derive insights and

make recommendations on improving memory error
vulnerability detection techniques based on code analysis.
Key lessons learned. Concerning detection accuracy, it
turned out that none of the chosen detectors won over
others against any kinds of vulnerabilities. As expected,
each technique has its own strengths and weakness, related
to not only the different focuses of the underlying technical
design (e.g., performing a static check before run-time
detection versus purely dynamic detection) but also to the
varying complexity of the samples (e.g., containing deep
loops or recursions versus using complicated data
structures) the technique deals with.

In fact, it appears that precision and recall were
competing goals for almost all of the techniques studied
(see Figures 6 and 5)—it is generally difficult to achieve
precision and recall that are both high. Instead, it was more
of a tradeoff between the two. One example is that
DRMEMORY suffered from false negatives (i.e., towards
lower recall) due to the same strategy as that would help it
reduce false positives (i.e., towards higher precision).

Intuitively, hybrid techniques would generally
outperform purely static or dynamic techniques since the
hybrid ones combine the merits of both static and dynamic
analysis. This did not seem to be true for memory error
vulnerability detection, as our results suggested.
Meanwhile, dynamic techniques did not necessarily have
higher precision than static ones, nor did static techniques
necessarily have higher recall than dynamic ones. One
main underlying factor is the specific detection strategy a
technique actually chooses to adopt. For instance, this was
demonstrated in Case 8 in our case studies.

Static techniques have both accuracy and efficiency
advantages against simple programs, where all the control
flow paths and assertions can be quickly traversed. Yet the
resource usage would be substantial for large and complex
programs. This was why CBMC consistently outperformed
other detectors against the Software-Analysis-Benchmark
dataset, while it did not and even had more timeout cases
against the SV-Benchmark dataset.

The code traits of the samples themselves were clearly
another factor that impacts the evaluation results. In fact,
for RQ5, we have discussed the impact of benchmark
selection on the evaluation results of the chosen detectors.
If a benchmark dataset (e.g.,
Software-Analysis-Benchmark) was originally curated with
a particular purpose in mind (e.g., for testing static analysis
techniques), it would be intuitively biased in favor of tools
that well fit the purpose (e.g., a static detector like CBMC
that is purely based on static analysis). Considering such
biases is necessary in interpreting evaluation results
obtained from using such datasets.
Recommendations. Since no single particular techniques
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consistently won and each demonstrated its specific merits
and limitations, it is natural to consider integrating different
techniques. However, a caveat here is that integration does
not mean simple combinations of different types of code
analysis—hybrid analyses may not be surely better than
purely static or dynamic ones. For example, preceding
dynamic detection with static, semantic code check that is
aware of language semantics could bring higher accuracy
than otherwise.

Meanwhile, developing a generally optimal
code-analysis-based solution to vulnerability detection
seems to be intractable. Thus, making tradeoffs may be
inevitable, such as trading precision for recall or the other
way around. Also, code features used in subject programs
seem to have played a notable role in the accuracy of a
technique. Thus, one may need to well understand the
targeted kinds of programs in order to develop a more
cost-effective technique. And given the challenge of
making a technique work well for all programs, it would be
rewarding to prioritize by targeting particular kinds of
programs (e.g., those of particular code traits).

With respect to the common design of the studied
dynamic detectors, a major concern regarding the
vulnerability detection algorithm consists in the granularity
of shadow memory. Intuitively, a finer granularity means
more detailed monitoring of memory states hence more
precise detection results. Meanwhile, finer-grained
memory shadowing comes with the cost of higher memory
consumption. Nevertheless, our empirical results suggested
that even with the most fine-grained (i.e., bit-precise)
mapping, the peak memory usage was still acceptable with
respect to today’s memory capacity at a commodity
machine. Thus, a viable recommendation for designing a
precise dynamic detector would be to adopt a fine-grained
shadow memory mapping mechanism for which the
memory cost can be afforded on platforms where the
detector is supposed to work.

7. Related Work
Prior works have addressed the comparisons of

software vulnerability analysis techniques. For instance,
several studies [3, 14, 4] have compared detection
techniques that are based on different static code analysis
approaches but all targeted SQL injection and XSS attack
vulnerabilities in web services. In [23, 32, 39], the authors
compared buffer-overflow vulnerability detectors. These
earlier studies generally address a narrow scope of
vulnerabilities and/or a specific application domains. Also,
the evaluations and comparisons involved relatively small
numbers of samples, and the vulnerability cases examined
were limited to those detected by the studied tools—cases
missed by the tools were not considered.

Austin et al. [7, 6] compared vulnerability detection
techniques based on penetration testing and static analysis.
Also, as in a few other studies [32, 3], the comparisons
were done by counting the number of vulnerabilities found,

without referring to any ground truth. Thus, precision and
recall were not rigorously computed in the comparisons.
In [5], metrics for vulnerability detector benchmarking
were provided without empirical experiments actually
performed. Similarly, in [1, 39], capabilities of chosen
vulnerability detectors were discussed comparatively, but
only from technical perspectives and in an analytical
fashion—no empirical comparisons were conducted. Thus,
the actual detection performance of the compared tools
were not assessed.

A few comparative studies [4, 14] performed empirical
experiments, used vulnerability ground truth, and
computed precision and recall, which differentiates them,
just like our study separates itself, from all the prior peer
work mentioned above. Yet in these two studies only
commercial tools were addressed, as opposed to our study
targeting open-source tools.

We recently conducted a preliminary study [30] of the
same five open-source memory error vulnerability detectors
against the Software-Analysis-Benchmark suite [37],
addressing research questions corresponding to the first
three in this paper. Since the benchmarks used were all
manually crafted, which did not demonstrate statistically
significant and large differences for most of the tool pairs
compared (see Table 3). This paper subsumes that
preliminary work and extends it in multiple ways. First, the
scale of the study is doubled, with an entire new benchmark
suite (i.e., the SV-Benchmark) considered additionally. This
new benchmark suite is different from the originally used
one in many aspects, including size, negative/postive
sample distribution, complexity, and closeness to
real-world applications, etc. Second, the scope of the study
is largely expanded, by including two additional research
questions beyond the original three. Also, for the original
questions, results of larger amounts and discussions of
greater depths are presented in this paper. Third, new
content on background concepts and techniques along with
more details on study design and justification have been
added. Fourth, we now have dedicated, extensive
discussion on validity threats and more insights as well as
learned lessons and recommendations, which were not
included in the prior work.

8. Conclusion
We conducted an extensive study on memory error

vulnerability detection techniques through five
state-of-the-art open-source tools in this domain against
two different, carefully chosen sets of C/C++ program
samples that cover 14 and 6 categories of memory error
vulnerabilities, respectively. We assessed the performance
of these memory error vulnerability detectors in terms of
accuracy and efficiency metrics, and compared them
through extensive statistical analyses. We also conducted a
set of in-depth case studies to dissect the underlying causes
of failures encountered by some of the detectors against
certain samples. Our study revealed a number of new
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findings on the status quo of code-analysis-based memory
error vulnerability detection. These findings further
enabled us to derive novel insights into the performance
differences among the studied techniques, as well as to
make actionable recommendations on future tool
development for more effective vulnerability detection in
terms of technical design choices and tradeoffs.
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