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Abstract
Static analysis has been successfully used in many areas, from
verifying mission-critical software to malware detection. Unfortu-
nately, static analysis often produces false positives, which require
significant manual effort to resolve. In this paper, we show how
to overlay a probabilistic model, trained using domain knowledge,
on top of static analysis results, in order to triage static analysis
results. We apply this idea to analyzing mobile applications. An-
droid application components can communicate with each other,
both within single applications and between different applications.
Unfortunately, techniques to statically infer Inter-Component Com-
munication (ICC) yield many potential inter-component and inter-
application links, most of which are false positives. At large scales,
scrutinizing all potential links is simply not feasible. We therefore
overlay a probabilistic model of ICC on top of static analysis re-
sults. Since computing the inter-component links is a prerequisite
to inter-component analysis, we introduce a formalism for inferring
ICC links based on set constraints. We design an efficient algorithm
for performing link resolution. We compute all potential links in a
corpus of 11,267 applications in 30 minutes and triage them us-
ing our probabilistic approach. We find that over 95.1% of all 636
million potential links are associated with probability values be-
low 0.01 and are thus likely unfeasible links. Thus, it is possible to
consider only a small subset of all links without significant loss of
information. This work is the first significant step in making static
inter-application analysis more tractable, even at large scales.

Categories and Subject Descriptors D.2.8 [Software/Program
Verification]: Statistical methods; F.3.2 [Semantics of Program-
ming Languages]: Program analysis

General Terms

Keywords Inter-component communication, Android ICC, static
analysis, probabilistic program analysis

1. Introduction
Static analysis is a widely used technique for analyzing software,
particularly in the context of security [11, 31]. Static analysis is of-
ten followed by a manual confirmation of any issues found in code
under scrutiny. If the analysis produces many false positives, then
the subsequent manual effort can become prohibitive [25]. This
problem is particularly severe in analysis of mobile applications.
In Android, applications can reuse other applications’ functionality
through the use of Inter-Component Communication (ICC), a so-
phisticated, platform-specific message-passing system. For exam-
ple, if an application requires dialing a phone number, it can send a
completely generic message requesting that an application handle
the dialing process. The message need not be targeted at a specific
application. In addition, the same communication mechanisms are
used to send messages within an application, for example to transi-
tion between different user screens.

Misuse of ICC has proven problematic, causing privilege-
escalation attacks [8, 10, 14, 15, 22, 32, 48], malicious data ac-
cess [51] and sensitive data theft [10, 14]. Unfortunately, applica-
tion markets have many applications, making it hard to have a com-
prehensive understanding of the ICC ecosystem. Inter-component
analysis [24, 26, 28, 42, 46, 49] begins by computing ICC links
between message-passing locations and potential message targets.
It is important to avoid considering links that may never occur
during an execution, since link imprecision propagates to analysis
results that are based on ICC. Imprecise results have very limited
usefulness, as they increase the amount of manual analysis needed
to confirm any potential threat.

Unfortunately, no current analysis technique can infer links in a
precise and scalable manner. A variety of tools [16, 37, 38, 46]
can statically infer the possible values of Intents, which are the
main inter-component messages [10]. However, static ICC analysis
has inherent limitations that restrict its precision. In particular,
Intents are composed of strings of characters that are sometimes
impossible to infer precisely and efficiently. Even few imprecisions
can result in an explosion of the number of potential ICC links at
large scales. This is due to the fact that a conservative matching
process has to consider all potential targets for an Intent when one
of its field values is not known. For example, ICC inference tools
yield millions of potential links at the scale of a single device.

Several techniques aim to associate probabilistic measures with
static analysis results. It is possible to propagate probabilistic infor-
mation about program inputs [12, 34, 35, 41] or to perform prob-



abilistic symbolic execution [19] in order to generate quantitative
analysis results. However, these techniques do not address the prob-
lem of assigning probabilities to existing, imprecise static analysis
results. They are also not concerned with performing analysis at
market scale. On the other hand, supervised learning techniques
have been used to help classify analysis results [43], but they re-
quire manual labeling of a training data set. In our example of ICC
analysis, this type of approach would require manual inference of
ICC values. The cost of this is too high, since imprecise ICC val-
ues are often generated in complex ways. Additionally, source code
is almost never available for real-world mobile applications, which
further complicates any manual intervention.

In this paper, we show how to overlay a probabilistic model,
which is trained using domain knowledge of ICC, on top of static
analysis results. We introduce PRIMO (PRobabilistic ICC MOd-
eling), the first system to triage ICC links based on estimating
the probability that they are true positives. The PRIMO system
requires no manual labeling of analysis results. Our probabilistic
model takes into account many aspects of Intents and predicts the
expected value of imprecise Intent fields. The model is guided by
the insight that Intents are used by developers in predictable ways.
More specifically, the patterns of Intent fields and expected targets
are similar across message-passing code locations. Some fields may
be ambiguously inferred by the static analysis, leading to unfeasi-
ble links. However, by utilizing the predictability of ICC patterns,
we estimate the probability that ICC links may actually occur.

Since computing ICC links is required for any inter-application
analysis, we introduce a formalization of the Intent resolution pro-
cess that is based on solving set constraints. Our formalism ac-
counts for the case where Intent fields are arbitrary regular ex-
pressions, since imprecisely-inferred Intent values are expressed as
such. We design an efficient algorithm to compute all ICC links in
a large set of applications and analyze its average-case complexity.

By providing an efficient ICC linking process associated with
a triage system, we allow market providers to focus their program
analysis efforts on the most likely inter-component links. This is
especially valuable, since Android application markets have very
large numbers of applications. As of October 2015, the Google
Play store had over 1.7 million applications [5] and in March 2015
the Amazon Appstore had almost 400,000 applications [40]. In
combination with recent efforts to gather large application sets [13,
45], we expect that these techniques will be relevant to security and
privacy researchers. Our PRIMO system makes large scale inter-
application analyses significantly more tractable. Finally, while this
work was motivated by and applied to the problem of ICC analysis
in Android, we believe that the approach can generalize to other
areas where imprecise analysis results have underlying patterns.

Our paper makes the following contributions:
• We formalize the Intent resolution process by reducing it to

a set constraint problem. We design an efficient algorithm to
solve the constraints corresponding to ICC links, thereby com-
puting all potential ICC links in an application corpus.

• We present a probabilistic model of ICC message values and
show how it can be used to rank ICC links based on the likeli-
hood that they are actual links.

• We implement our techniques in the PRIMO tool and make its
source code and documentation available at:

http://siis.cse.psu.edu/primo/

• We evaluate the ICC link creation algorithm on a corpus of
11,267 applications composed of randomly-selected real world
applications, system applications and known malware. We find
over 636 million potential links in 30 minutes.
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Figure 1. Representation of an Android application.
• We validate our probabilistic model with 10-fold cross-validation

and Goodman-Kruskal’s � rank correlation measure1. The
ground truth is given by the links obtained using precisely
known Intent values. Our triage process is applied after in-
troducing imprecisions in these precise values, allowing com-
parison with the ground truth while simulating real-world im-
precision. Our methods yield a ranking of links that is strongly
correlated with the ground truth (� > 0.97).

• We utilize our model to rank ICC links and find that over 95.1%
of all links are likely unfeasible. This shows that our model can
be used as a triage system for ICC links.

2. Background
2.1 Android ICC
Figure 1 shows a conceptual representation of an Android ap-
plication. Android applications are built in components, which
perform specific tasks. In practice, implementing a component is
done by subclassing one of four classes from the Android frame-
work. Activities are the most common component. They represent
a user screen. Services perform long-running background process-
ing. Broadcast Receivers receive system-wide notifications, such
as the one that is sent by the operating system when a text message
is received. Finally, Content Providers provide a way of sharing
structured data between applications.

Almost all components are declared in the manifest file that
is part of all application packages. The only exception is that
Broadcast Receivers can be created and registered dynamically
in the application code at runtime. Application components can
communicate with one another using two mechanisms, Uniform
Resource Identifiers (URIs) and Intents. URIs are used to address
Content Providers. Intents, on the other hand, are messages that are
sent between the three other component types2. An Intent can be
explicit, which means that its target is explicitly named. In other
words, the Intent specifies the application and the class name for its
target. Intents can also be implicit, in which case they only specify
the functionality that they desire for their target. In this case, the
desired functionality is described using three items:
• An action string specifies the action to be performed with the

Intent. A common action is the VIEW action, which is utilized
when some data needs to be displayed (e.g., web page).

• A set of category strings describes additional information about
what should be done with the Intent. For example, BROWSABLE
indicates that the target can be safely invoked from a browser.

• A set of data fields specifies data to be acted upon. This can for
instance be a web address or a phone number.

Data can be described by a URI (e.g., file paths or web addresses).
A MIME type can also be specified to describe the data to be acted

1 Goodman-Kruskal’s � [20] measures the similarity of the orderings of two
ordinal variables. It is well-suited for our problem because of its resilience
to ties in the orderings of the variables.
2 Since URIs are a small minority of ICC addressing as we discuss in
Section 5.2, we omit URIs from Figure 1 and from the remainder of this
paper. However, the ideas presented for Intents apply to URIs as well.



1 public void sendExplicitIntent() {
2 Intent intent = new Intent();
3 intent.setComponentName("my.second.app", "Dialer");
4 startActivity(intent); }
5 public void sendImplicitIntent() {
6 Intent intent = new Intent();
7 intent.setAction("DIAL");
8 Uri phoneNumber = Uri.parse("tel:1234567890");
9 intent.setData(phoneNumber);

10 startActivity(intent); }

(a) Explicit and implicit Intents.
1 <activity android:name="Dialer" android:exported="true">
2 <intent-filter>
3 <action android:name="DIAL"/>
4 <action android:name="VIEW"/>
5 <data android:scheme="tel"/>
6 <category android:name="DEFAULT"/>
7 </intent-filter> </activity >

(b) Intent Filter for a dialer component.

Figure 2. Intents to start a dialer and the associated Intent Filter.
upon. For ease of exposition, in the remainder of this paper we do
not describe all data fields separately.

Components that wish to receive implicit Intents have to declare
Intent Filters, which describe the attributes of the Intents that they
are willing to receive. They can include actions, categories and data
descriptors. Components have an exported attribute, which when
set to true makes the components accessible to other applications
through ICC. Components that are not exported are only accessible
to other components in the same application. Component access
can also be protected by a permission. When a component declares
a permission, applications need to request the permission at install
time in order to be able to send Intents to the component. This
is done using the uses-permissions attribute in the manifest file.
Intents that target Broadcast Receivers can also be protected by
a permission, in which case the application containing the target
component needs to request the permission.

Matching Intents with their target is done by the operating sys-
tem during an Intent resolution process. For implicit Intents, it in-
volves matching the action, category and data fields with compati-
ble Intent Filters. In this paper, we statically perform this matching
process, without executing the applications. Note that in Figure 1
some fields can be undefined. For example in an explicit Intent the
action, categories and data fields are usually null.

2.2 Android ICC Analysis
Figure 2(a) shows examples of Intents. The first method creates
an explicit Intent targeted at component Dialer in application
my.second.app. The startActivity() call causes the Intent to be
sent to the recipient. The second method creates an implicit Intent
and sets its action to DIAL. It then sets a phone number as the Intent
data. The startActivity() method call causes the Intent resolution
process to find a dialer component from which the user can call
the phone number. Figure 2(b) presents an example component
declaration for a dialer Activity. Its Intent Filter declares handling
the DIAL and VIEW actions and data with a tel scheme. The default
category declaration at Line 6 is required, since this category string
is automatically added to all Intents targeted at Activities. This
Intent Filter enables the component to receive the Intent declared
in method sendImplicitIntent() of Figure 2(a).

A prerequisite for statically matching Intents with their pos-
sible targets is to determine the values of Intents, Intent Filters
and URIs [37, 38]. Most Intent Filter values are obtained with a
straightforward parsing process of the manifest file. URIs, Intents
and dynamically registered Intent Filters, on the other hand, are in-
ferred using a complex static data flow analysis. The Epicc [38] and
IC3 [37] tools perform this analysis. IC3 is more precise than Epicc,
which is due to a more sophisticated analysis of the strings used for
actions, categories and data. Further, IC3 can handle URIs, whereas
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Figure 3. Running example. Fields values in red indicate the val-
ues inferred by the ICC inference process, with .* being a regular
expression that matches any string. See details in Section 2.3.
Epicc cannot. This results in more precise Intent values, since URIs
are used to specify the data field of Intents. In our experiments, we
use ICC values computed by IC3 [37].

A limitation of statically inferring ICC values is that some
of these values are either too computationally expensive to infer
statically or they are determined by runtime context. For example,
it may not be possible to infer the action field of an Intent because it
is generated in a way that cannot be efficiently modeled with static
analysis, such as when it flows through a container type. In this
case, the action field cannot be used for matching with potential
target Intent Filters. This can result in matching Intents with many
Filters, even though such links are not possible in practice.

Throughout this paper, we say that a link L
i,f

between an
Intent i and an Intent Filter f is a true positive if the real value
of the Intent matches the Intent Filter. On the other hand, L

i,f

is a false positive if the value of i inferred with static analysis
matches f , even though the real value of i does not.

2.3 Running Example
Figure 3 shows a running example that will be used throughout the
paper. We consider an application rest.app that allows users to
find restaurants near their current location. It is composed of two
Activity components (i.e., two user screens). The ListActivity
component displays a list of nearby restaurants. It may send im-
plicit Intent (1) to display a map with all nearby restaurants. It can
also send explicit Intent (2) to display details about a particular
restaurant. The DescActivity component displays descriptions of
specific restaurants. It can display a map centered on a restaurant
by sending implicit Intent (3), or it may trigger a phone call to the
restaurant by emitting implicit Intent (4). Finally, it can start the
ListActivity component by sending explicit Intent (5) to it.



1 public void onClick(View v) {
2 Location loc =

LocationManager.getLastKnownLocation("gps");
3 Uri query = Uri.parse("geo:" + loc.getLatitude() + ","

+ loc.getLongitude() + "?q=restaurants");
4 Intent intent = new Intent("VIEW", query);
5 startActivity(intent); }

(a) Click handler sending Intent (1) from Figure 3.
1 public class MapActivity extends Activity {
2 public void onCreate(Bundle b) {
3 Uri location = getIntent().getData();
4 SmsManager.getDefault().sendTextMessage("12345",

null, location.toString(), null, null); }}

(b) Code leaking location data in the spy application from Figure 3.

Figure 4. Inter-application leak of location data to text message.
On the same theoretical device, there are four other applications

with exported components. The map application renders a map with
given coordinates. Its MapActivity component declares an Intent
Filter that accepts URI data with a geo scheme, which is meant
to indicate geographic coordinates. The spy application declares
accepting Intents with geographic data. It then leaks the data to an
unauthorized third-party. The phone application declares a dialer
component that receives Intents with a tel scheme, which contain
telephone numbers. Finally, another application has a component
that declares a custom action and a custom data scheme. This can
be useful if an application performs an action that is not described
by the default actions strings.

For each Intent, we first indicate the real field values (that is, as
declared by the application developer). We also indicate in red font
the field values that are inferred by the static analysis. For example,
the real value of the categories field of Intent (3) is accurately
inferred as DEFAULT. On the other hand, the action field, which
is declared to be VIEW, is observed by the static analysis process as
.*. Similarly, the geo data scheme is imprecisely inferred as .*.

We have represented ICC links that may occur with black ar-
rows. These links are all inferred by the static analysis since it is a
conservative process. However, because of the limited precision of
static analysis, unfeasible links are also inferred. They are shown
in Figure 3 with red dashed arrows. For example, let us consider
Intent (3). Since its action and data scheme fields are not inferred
as constants, they are matched with Intent Filters that have DIAL
and CUSTOM actions, and tel and custom data schemes. Similarly,
the fields of explicit Intent (5) are all inferred as the .* regular
expression, which matches all the components in all applications.

Figure 4(a) shows the code that sends Intent (1). It uses a VIEW
action and a URI query that contains the user’s location data. The
Intent is sent at Line 5. The system may then deliver it to Activity
MapActivity of the spy application from Figure 3. When the spy
application is started, it executes the code shown in Figure 4(b).
This code extracts the URI data containing the user location and
sends it to an attacker using an SMS message. Note that Intent (3)
is sent using code similar to Figure 4(a).

Existing work on information flow analysis [6, 26, 28] can
detect that sensitive location information is sent using ICC in the
restaurant search application. It can also detect that information
from an incoming Intent in the spy application can flow to the SMS
manager. However, it is currently not possible to infer the end-to-
end inter-application leak, due to the large number of statically-
computed ICC links when a non-trivial number of applications
are analyzed. In this paper, we aim to perform triage on these
links, with the goal of prioritizing the true positives over the false
positives. The expected outcome is to associate a priority value
with each link such that the priority values of real links are greater
than the priority values of false positives. In particular, real links
to the spy or map applications should have a high priority. In
Section 4, we show how to approximate the likelihood that a given
link is a true positive by utilizing a probabilistic model of Intents.
We subsequently use this approximation to rank the links based

on the probability that they are true positives. Links with high
priority may be benign or malicious and our techniques are not
meant to discriminate between benign and malicious links. Existing
work [26, 28] can perform such analysis on the high-priority links.

3. Intent Resolution through Set Constraints
Let us assume that we are given a set of Intents I and a set of
Intent Filters F . We would like to find all tuples (i, f) 2 I ⇥ F
such that there is a potential ICC link between Intent i and Filter
f . In this section, we formalize the Intent resolution process as set
constraints. That is because Intent and Filter fields can be expressed
as sets and solving set constraints has been widely studied [2, 3].
For ease of exposition, we only show the Intent resolution process.
Resolving URIs to Content Providers uses similar techniques.

3.1 Insights and Challenges Related to Set Constraints
Problems in program analysis can often be represented as set con-
straints [3], which can be solved with existing algorithms [1]. How-
ever, our problem has several key differences with the traditional
formalism. First, even though most of our sets only include con-
stants, our sets can also contain regular expressions because the
static analysis does not always yield constant strings. Second, a ma-
jority of the set constraints that model our problem are p(i) ✓ q(f),
where p(i) is an Intent field and q(f) is a Filter field. That is, In-
tents only appear on the left-hand side of almost all our constraints.

We take advantage of the structure of the problem to solve our
constraints. Our algorithm performs regular expression matching
as necessary, while also performing fast matching for the common
case of constant fields. Further, solving constraints in a traditional
way would require performing the constraint solution algorithm for
all tuples in I ⇥ F . This is inefficient, particularly at large scales.
However, by exploiting the fact that Intents only appear at the
left-hand side of most constraints, we perform matching through
a series of set intersections, taking on average O(e

min

· |I|), with
e
min

< |F | a constant that will be defined in Section 3.5.

3.2 Set Constraints
A set constraint is a constraint of the form E1 ✓ E2, where E1

and E2 are set expressions that can be constructed for example by
using set constants, set variables, and the union operator. Let V be
a set of set variables and R a set of regular expressions. The set
expressions in our problem have the following form:

E ::= ↵ | 0 | E1 [ E2 | E1 \ E2 | r,
with ↵ 2 V , r 2 R and 0 is the empty set expression.

For a regular expression r, L(r) denotes the language described
by r. For example, L(.*a) is the set of strings ending with a. In
order to account for the possible presence of regular expressions
in E1 and E2, we extend the ✓ relation by saying that E1 ✓ E2

if for each element s1 2 E1, there is an element s2 2 E2 such
that L(s1) \ L(s2) 6= ?. For example, with this extension of ✓
we have {ab.*} ✓ {.*bc, def}, since L(ab.*) \ L(.*bc) 6=
?. Note that this definition does not imply anything about the
inclusion of languages described by regular expressions, but instead
it only considers intersection. In our example, this ensures that we
consider Intent field value {abc} to match Filter field value {abc,
def}. Thus our process ensures that individual fields are matched
in a conservative manner. In most cases the static ICC analysis can
find precise values [37], and in these cases the regular expressions
reduce to simple constants. That is, they are strings c such that
L(c) = {c}. A system S of set constraints is a conjunction of
set constraints: S =

V
i

E
i,1 ✓ E

i,2. Solving S consists in finding
all possible assignments of set variables such that S is satisfied.
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3.3 Formalizing Intent Resolution
In order to make the resolution process as generic as possible, we
assume that each Intent and each Intent Filter contains all attributes
necessary for the linking process. For example, in addition to the
attributes that are set in the code by an application developer (e.g.,
action, categories), an Intent is assumed to contain the name of
the application sending the Intent and the permissions that the
application requests at install time. Figure 5 shows a description
of Intents and Intent Filters used for matching. This representation
is trivially obtained from the application representation shown in
Figure 1. In order to handle explicit Intents in a generic way, we
introduce Intent Filters for all components. Every component has at
least one Filter with an Application Name and a Component Name
attribute. The alternative would consist in using a resolution process
between Intents and components for explicit Intents. Instead, we
use a single Intent-to-Filter matching process for all Intents.

We represent each attribute of Intents and Intent Filters as a
set. For example, an Intent may have no action or a single action.
We represent the case with no action with an empty set 0. In the
case of a single action string a, we use set {a}. In the case of a
Boolean attribute such as the Exported flag, we use sets {true}
or {false}. This uniform representation allows us to represent the
entire resolution process as a system of set constraints.

We denote the action of Intent i by i
action

. We use similar nota-
tions for other Intent and Intent Filter fields. Traditional constraint
systems translate set equality to inequalities using the fact that for
sets A and B, A = B is equivalent to A ✓ B ^ B ✓ A. We addi-
tionally use the fact that A = B is equivalent to A ✓ B ^ |A| =
|B|, since several constraints involve sets that we know to be of
the same size. For example, one constraint is that the component
type targeted by an Intent i

type

is the same as the type of com-
ponent associated with a Filter f

type

. Since there is only a single
type associated with each Intent and each Filter, we use constraint
i
type

✓ f
type

. This allows us to use the generic constraint solving
process from Section 3.4 to solve set equality constraints.

Given an Intent i and an Intent Filter f , we say that i matches
f if match(i, f) is satisfied, where match(i, f) is true if the
following boolean expression evaluates to true:
match(i, f) = type(i, f) ^ visibility(i, f) ^ perm(i, f) (1)

^ (explicit(i, f) _ implicit(i, f)).
This expression is a formalization of the Intent resolution process
as described in online documentation [21] and in source code.

As mentioned above, type(i, f) = i
type

✓ f
type

. Also,
visibility(i, f) evaluates to true if Filter f is visible from Intent
i. Predicate perm(i, f) is true if Intent i has permission to access
Filter f and f is allowed to receive i. Finally, explicit(i, f) (re-
spectively, implicit(i, f)) is true if fields of i specific to explicit
(respectively, implicit) Intents match the fields of f .

The visibility criterion states that i can access f if i and f are in
the same application or f is exported. This is expressed as:
visibility(i, f) = i

app name

✓ f
app name

_ f
exported

✓ {true}
The permission condition stipulates that if a Filter is protected by
a permission, then the application sending an Intent to it needs
to request that permission at install time. Also, if the Intent is
protected by a permission, then the receiving Filter must belong

to an application that declares the permission. This is expressed as:
perm(i, f) = i

perm

✓ f
uses perm

^ f
perm

✓ i
uses perm

An Intent explicitly matches a Filter if explicit(i, f) is verified:
explicit(i, f) = i

target comp

6= ? ^ i
target app

✓ f
app name

^ i
target comp

✓ f
comp name

On the other hand, the expression is more complex in the case of
implicit Intents:

implicit(i, f) = i
target comp

= ? ^ i
action

✓ f
actions

^ i
category

✓ f
categories

^ data(i, f),
where data(i, f) represents the data test for Intent i and Filter f .
It consists in checking that the data types, schemes, and other URI
data parts are compatible. We do not give its expression for ease of
exposition but it is also expressed using similar set constraints.

For example, let us assume that application rest app from
Figure 3 requests permissions for Internet and location access.
Then the value statically inferred for explicit Intent (5) (denoted
by x) is such that:

x
app name

= {rest app} x
target app

= {.*}
x
uses perm

= {INTERNET, x
target comp

= {.*}
ACCESS FINE LOCATION} x

type

= {activity}
x
action

= x
data

= x
categories

= ? x
perm

= ?
Recall from Section 2.3 that the .* values are string values that are
imprecisely inferred by static analysis. Implicit Intent (4) (denoted
by i) is such that:

i
app name

= {rest app} i
target app

= i
target comp

= ?
i
uses perm

= {INTERNET, i
type

= {activity}
ACCESS FINE LOCATION} i

perm

= ?
i
action

= {DIAL} i
categories

= {DEFAULT}
i
data

= {tel}
Note that the DEFAULT category is added by the operating system to
all Intents targeting Activities. For simplification, we have reduced
the data field to a URI scheme. As mentioned above, in reality data
is described by several fields. Intent Filter (3) (denoted by f ) from
Figure 3 is modeled by:
f
app name

= {phone app} f
comp name

= {DialerActivity}
f
uses perm

= f
perm

= ? f
type

= {activity}
f
action

= {DIAL, VIEW} f
categories

= {DEFAULT}
f
data

= {tel} f
exported

= {true}
It is possible to verify that match(x, f) and match(i, f) hold true
using the above description.

3.4 Solution of Set Constraints with Regular Expressions
In this section, we present an algorithm that can be utilized to find
all ICC links between Intents in I and Filters in F . It is more
efficient than solving constraints for all tuples in I ⇥ F . Further, it
takes regular expressions into account, which is necessary to handle
field values that are not precisely inferred using static analysis.

For each Intent value, the match set is initialized to be all Intent
Filters. For each Intent field value, it finds the compatible Filters in
the match set, effectively reducing the size of the match set for each
field value. The key idea behind this algorithm is that for a constant
Intent field value, we can immediately obtain all Intent Filters with
a compatible constant field value. Regular expression matching is
subsequently performed for the minority of non-constant values.

It is useful to separate Equation (1) into two cases. First, if i 2 I
is an explicit Intent, we have:

match(i, f) = type(i, f) ^ visibility(i, f) ^ perm(i, f)

^ i
target comp

✓ f
comp name

(2)
^ i

target app

✓ f
app name



Input:
•
intents: set of all Intents

•
filters: set of all Filters that should be matched with Intents

•
attribute maps: maps between field values and the Intent Filters
that include them

1 procedure FINDALLLINKS(intents, filters, attribute maps)
2 links := empty set
3 for all Intents i in intents

4 matches := filters

5 for all fields field in i.fields

6 maps := attribute maps[field]
7 matches :=

FINDFILTERSWITHATTRIBUTES(i.field, matches,
maps.constant map, maps.regex map)

8 Add (i, current matches) to links

9 return links

Algorithm 1: Intent resolution procedure.
On the other hand, for an implicit Intent we use:
match(i, f) = type(i, f) ^ visibility(i, f) ^ perm(i, f)

^ i
action

✓ f
actions

^ i
category

✓ f
categories

(3)
^ data(i, f)

Algorithm 1 presents the procedure for finding all links between
Intents in I and Filters in F . For each attribute type (e.g., action
and categories), we maintain a map between each attribute value
and the set of Filters that declare it. For example, we maintain a
map of actions, where keys are action strings and values are the
Filters that declare each action key. For each field, we maintain a
map where keys are constants and another one where keys are reg-
ular expressions. All the resulting maps are contained in a variable
attribute maps. For example, in Figure 3, we have 4 Intent Fil-
ters. The category constant map would contain a single DEFAULT
key mapping to all Filters. On the other hand, the action constant
map would contain 3 entries. Key VIEW maps to Filters (1), (2) and
(3), key DIAL maps to Filter (3) and CUSTOM maps to Filter (4).
Since all Filters have constant field values, all regular expression
maps are empty. Procedure FINDALLLINKS is called with argu-
ments I , F and attribute maps. The set of potential recipients is
initialized to be F and it is reduced by every field test at Line 7.
Note that for ease of exposition we do not show particular cases
such as the disjunction in predicate visibility(i, f).

Algorithm 2 shows the FINDFILTERSWITHATTRIBUTES pro-
cedure for finding all Filters with a set of attributes. In other words,
for any set A, it finds all sets B such that A ✓ B. It performs two
important functions. First, it matches constant Intent field values
with constant Filter field values in an efficient manner. Second, it
handles cases where either Intent or Filter field values are regular
expressions. Since attributes may be regular expressions, FINDFIL-
TERSWITHATTRIBUTES takes as inputs both a map between string
constants and Filters and another map between regular expressions
and Filters. Finally, it takes as input the set of Filters currently being
considered. This procedure computes the intersection of all Filters
that have each one of the input attributes. It uses procedure FIND-
FILTERSWITHATTRIBUTE, which finds all Filters that have a given
attribute, taking into account regular expressions.

In procedure FINDFILTERSWITHATTRIBUTE, if the input at-
tribute is a string constant, then we start by adding all Filters that
declare the attribute to the set of Filters to be returned (Line 10). If
the input attribute is not a constant, then we need to match it with all
constant Filter attributes by iterating through the map of constant
Filter attributes (Lines 12-14). For example, if the input attribute is
.*, then all Filters with a constant attribute will match. Then, we
proceed to match attr with all Filters that declare regular expres-

Input:
•
attrs: set of Intent attributes to match to Filters

•
filters: set of Filters under consideration

•
constant map: map between Filter attributes that are simple
constants and the Filters that contain them

•
regex map: map between Filter attributes that are regular
expressions and the Filters that contain them

1 procedure FINDFILTERSWITHATTRIBUTES(attrs, filters,
constant map, regex map)

2 result := filters

3 for all attributes attr in attrs

4 found := FINDFILTERSWITHATTRIBUTE(attr,
constant map, regex map)

5 result := result \ found

6 return result

// Procedure to find all Filters that include a given attribute. .
7 procedure FINDFILTERSWITHATTRIBUTE(attr, constant map,
regex map)

8 result := empty set
9 if attr is a constant then

10 Add constant map[attr] to result

11 else
12 for all pairs (attribute, filters) in constant map

13 if L(attr) \ L(attribute) 6= ? then
14 Add filters to result

15 for all pairs (attribute, filters) in regex map

16 if L(attr) \ L(attribute) 6= ? then
17 Add filters to result

18 return result

Algorithm 2: Procedures to efficiently find all Filters that
include a given set of attributes.

sions (Lines 15-17). For example, if a Filter is found to declare .*
by the static analysis, then all input attributes will match it.

Returning to our running example from Figure 3, let us consider
the matching process for the DEFAULT category field of Intent (1).
Since it is a constant, Line 10 would immediately yield all 4 Intent
Filters. Also, no Filter has non-constant categories, so Lines 15-17
would not be executed. On the other hand, let us consider the .*
action value of Intent (3). Lines 12-14 would match with the Filters
with DIAL, VIEW and CUSTOM action strings.

The only constraint that requires different treatment is:
perm(i, f) = i

perm

✓ f
uses perm

^ f
perm

✓ i
uses perm

The first clause is solved by using the method above. The second
clause needs special treatment since the Intent attribute set is on the
right-hand side of the inequality and the method above is designed
to solve constraints with the Filter attribute on the right-hand side.
We verify the second clause after all other clauses have been veri-
fied by iterating through all candidate Filters as they are added to
the final result set. This does not impact performance, since the fi-
nal set of candidate Filters is typically small. Further, this iteration
occurs in any case due to the need to store the resulting links be-
tween the Intent being considered and the possible target Filters.

The procedure described in Algorithm 1 performs a sound
matching for the set of Intents provided as input. Informally, for
each Intent, we start at Line 4 with the set of all targets. At each
iteration of the loop at Line 5, we only exclude targets that do not
match a particular Intent field. At the end of the loop, after all fields
are processed, the set of potential matches includes all targets that
verify all clauses of the conjunctions given by Equation (2) (for
explicit Intents) or (3) (for implicit Intents).



3.5 Average Complexity Analysis
The key insight behind the complexity analysis of procedure FIND-
ALLLINKS is that most Intent and Filter field values are constants.
That is because almost all Filters are known through parsing of
the application manifest file. Thus, the cost of the regular expres-
sion matching at Lines 15-17 of FINDFILTERSWITHATTRIBUTE
is negligible. The Filter attribute maps can be implemented with a
hash table, allowing constant-time access to all Filters with a given
attribute at Line 10. Since most Intent attributes are also simple
constants, the iteration at Lines 12-14 has negligible cost on av-
erage. Additionally, we consider the time complexity of deciding
if two regular expressions have a non-empty intersection (i.e., if
L(a) \ L(b) 6= ?) to be bounded by a constant, since all regular
expressions in our problem have length bounded by a constant [18].

The cost of Lines 4-8 of procedure FINDALLLINKS is there-
fore dominated by the set intersection at Line 5 of FINDFILTER-
SWITHATTRIBUTES. For each Intent, across all calls to FIND-
FILTERSWITHATTRIBUTES this line is computing F \

T
m

i=1 Ai

,
where F is the set of all Intent Filters, m is the number of Intent
field elements and A

i

are the sets of Filters matching each Intent
field element. The time complexity of the set intersection operation
F \

T
m

i=1 Ai

is bounded by m ·min
i

(|A
i

|). Let A
min

be the set
such that min

i

(|A
i

|) = |A
min

|. In our case m is bounded by a
small constant because the number of fields is low and for fields
that are sets the number of elements is low (typically 0 or 1), thus
the time complexity of Line 5 is O(|A

min

|). Note that in order
to achieve the m · |A

min

| complexity, the first intersection that is
computed must have A

min

as one of its operands.
For any field field, let e

field

be the expected number of Intent
Filters matching a single element of field. That is, e

field

is the
weighted average number of Intent Filters that have matches for
elements of field. For example, in our running example from Fig-
ure 3, the expected number of matches of the fields of the implicit
Intents (i.e., Intents (1), (3) and (4)) is:

e
action

=
1
3
· 3 + 1

3
· 4 + 1

3
· 1 ⇡ 2.67

e
categories

= 1 · 4 = 4

e
scheme

=
1
3
· 2 + 1

3
· 1 + 1

3
· 4 ⇡ 2.33

Let e
min

denote the minimum of all e
field

values. The aver-
age complexity of Line 5 of FINDFILTERSWITHATTRIBUTES is
O(e

min

). To achieve this complexity, we must ensure that the fields
at Line 5 of procedure FINDALLLINKS are ordered such that the
first field field is the one for which e

min

= e
field

. For example,
this can be done by first sampling the data to estimate e

min

. We can
summarize our complexity analysis with the following theorem.

Theorem 1. The average running time of procedure FINDAL-
LLINKS is O(e

min

· |I|).

4. A Probabilistic Model of Intents
4.1 Overview
Recall from the previous sections that our observations of ICC
values using static analysis may be noisy. For a given string value
st, we may either observe its actual value, or a regular expression
r such that st 2 L(r). When the latter is inferred, our Intent
resolution process infers links that may not occur at runtime. Given
a link between an Intent and a Filter, we would like to estimate
the likelihood that the link is a true positive. This is challenging,
because whether a string value st is inferred as st or as a regular
expression does not depend on the value itself. It depends on how
the application programmer generates it and on the specific static
analysis technique. Thus we cannot model the mapping between st
and its observed value with a specific probability distribution.

For example, in Figure 3 the action field of Intent (3) is inferred
by static analysis as .* instead of the actual value VIEW. The
fact that the VIEW value is inferred as .* does not depend on
the VIEW value itself, but instead it depends on the code of the
DescActivity component. In other words, we cannot model the
process that maps real fields values to statically-inferred values.

Thus, we model Intent usage patterns, observing that applica-
tion developers often use similar ICC patterns across different ap-
plications. For example, in order to dial a telephone number, devel-
opers send an implicit Intent with field values as shown in method
sendImplicitIntent() in Figure 2(a). The corresponding Intent
has a DIAL action, a DEFAULT category and a tel scheme. The in-
tuition is to measure the relative frequency of known field patterns
to infer the likelihood that unknown fields values match a given Fil-
ter. For example, in Figure 3, consider link L3,1 between Intent (3)
and Filter (1). We would like to compute the likelihood that the In-
tent action matches VIEW and the scheme matches geo, given that
the category is inferred as DEFAULT.

In the next sections, for any link L
i,f

between an Intent i and an
Intent Filter f , we express the likelihood that L

i,f

is a true positive
as a probability P

i,f

, which is formally defined in Section 4.2. If all
fields of Intent i are unambiguously known, then trivially P

i,f

= 1.
In Figure 3, this is the case for link L1,1, since all fields of Intent
(1) are inferred precisely. On the other hand, for a link L

i,f

that is
deemed unfeasible, P

i,f

= 0. For any other link for which some
or all fields are not precisely known, P

i,f

is estimated by using a
probabilistic model. The model is trained with data collected for
Intents for which all fields are completely known. The training data
provides us with empirical probabilities of occurrence of various
Intent field patterns. For example in Figure 3, let us estimate the
probability P3,1 that link L3,1 is a true positive. The only implicit
Intents for which all fields are unambiguously known (i.e., our
training set) are Intents (1) and (4). Both Intents are considered
for our probability computation because they have category value
DEFAULT like Intent (3). However, only one of these two Intents
(i.e., Intent (1)) also matches Intent Filter (1) because it has action
value VIEW and scheme value geo. Thus the likelihood P3,1 is one
out of two ( 12 = 0.5). A rigorous computation of P3,1 is shown
at the last paragraph of Section 4.3. On the other hand, for link
L3,4 we have P3,4 = 0

2 = 0, because none of the two Intents (1)
or (4) has action value CUSTOM and scheme value custom. Thus,
our triage would prioritize L1,1 over L3,1, which itself would be
prioritized over L3,4. Section 4.3 formalizes this intuition.

The explicit Intent model is built on similar ideas. It is based
on the observation that most explicit Intents are used for intra-
application communication. In our running example intra-application
links L2,6 and L5,5 would be prioritized over inter-application links
L5,1, L5,2, L5,3 and L5,4, since explicit inter-application links are
likely false positives. Link L2,6 would itself be prioritized over
link L5,5 because it is a known true positive, since Intent (2) has a
precise value. Section 4.4 describes the formalism for this idea.

We will restrict our study to the n fields that are subject to
static analysis imprecision, including the action and the categories
fields among others. On the other hand, other fields are always
precisely known (e.g., the target component type). As described in
Section 3.3, the fields of an Intent i = (i1, . . . , in) and a matching
Filter f = (f1, . . . , fn) have a set inclusion relationship:

i1 ✓ f1, . . . , in ✓ f
n

.

4.2 Modeling ICC Links
Let random variables I1, . . . , In represent the true field values of
a given Intent and let random variables Î1, . . . , În represent the
values inferred using static analysis (the observed values).



Definition 1. The probability that a link between Intent i =
(i1, . . . , in) and a matching Filter f = (f1, . . . , fn) is a true
positive is:

P
i,f

= P

 
n^

k=1

I
k

✓ f
k

|
n^

k=1

Î
k

= i
k

!
, (4)

where I
i

✓ f
i

denotes the event that I
i

takes a value matching f
i

.

Informally, P
i,f

is the probability that the true field values of i
match the field values of f , given the observed values for the fields
of i. Note that we only calculate these probabilities for links that are
computed by using the matching process described in Section 3.4.

Let us consider the example of link L3,1. The probability that it
is a true positive is:

P3,1 = P (I
action

✓ {VIEW} ^ I
categories

✓ {DEFAULT}
^ I

scheme

✓ {geo}
|Î

action

= {.*} ^ Î
categories

= {DEFAULT}
^ Î

scheme

= {.*}).
This is the probability that the fields of Intent (3) match the fields of
Intent Filter (1), given that the static analysis infers value .* for the
action and scheme of Intent (3) and value DEFAULT for its category.

Let C be the set of constant strings in the programs being ana-
lyzed. Inferred field values may either be in C, or they may be de-
scribed by a non-constant regular expression. We assume without
loss of generality that the fields with constant values have consecu-
tive indices 1, . . . , l, for some l. In order to obtain a tractable model
of ICC objects, we make the following assumption.

(A1) For a given l such that 1 < l < n, the distribution of field

values inferred by static analysis Î
l+1, . . . , În and the distribu-

tion of actual values I
l+1, . . . , In are conditionally independent

given inferred field values Î1, . . . , Îl. In other words, given the
static analysis results for fields 1 through l, there is no correlation
between the observed values of fields l + 1 through n and their
actual values. This is because, as we mentioned in Section 4.1, the
fact that a given value is inferred imprecisely or not is not depen-
dent on the value itself but instead it is related to other parts of the
application code and the static analysis technique.

4.3 Implicit Intents
We begin by stating a theorem that will be used to estimate the
probability that links caused by implicit Intents are true positives.
The proof for this theorem is presented in Appendix A.1. The intu-
ition behind this theorem is that because of Assumption (A1), we
can ignore the inferred values for imprecise fields in Equation (4).

Theorem 2. Let i = (i1, . . . , in) be an Intent value as inferred
using static analysis and f = (f1, . . . , fn) an Intent Filter value.
Assume that observed values i1, . . . , il are in C and that all other
observed values i

l+1, . . . , in are not. Then:
1. If l = n (all fields are constant strings), then P

i,f

= 1.
2. If l = 0 (that is, all field values are non-constant regular

expressions), then we have:

P
i,f

= P

 
n^

k=1

I
k

✓ f
k

!
.

3. For any l 2 {2, . . . , n� 1}, we have:

P
i,f

= P

 
n^

k=l+1

I
k

✓ f
k

|
l^

k=1

Î
k

= i
k

!
.

Let K be the set of Intents for which all field values are known,
i.e. our training data set. For any Intent in K, P

i,f

trivially evalu-
ates to 1. For other cases, we essentially estimate the probabilities
over the corpus of Intents in K. That is, for 1 < l < n, we make

the following approximation:

P
i,f

⇡ P̃

 
n^

k=l+1

I
k

✓ f
k

|
l^

k=1

Î
k

= i
k

!
,

where P̃ denote an empirical probability, computed over the set K
of precise Intents. For any precise Intent in K, the real values I

k

and the observed values Î
k

are the same, for any k in {1, . . . , n},
which gives us:

P
i,f

⇡ P̃

 
n^

k=l+1

Î
k

✓ f
k

|
l^

k=1

Î
k

= i
k

!
. (5)

This is the relative frequency of precise Intents with fields matching
f
l+1, . . . , fn among all precise Intents with field values i1, . . . , il.

When no field is known (l = 0), we use the marginal empirical
probability that a precise Intent in K matches Intent Filter f :

P
i,f

⇡ P̃

 
n^

k=1

Î
k

✓ f
k

!
,

Let us return to link L3,1 from Figure 3. Set K consists of
precise Intents (1), (2) and (4). Equation (5) yields:

P3,1 ⇡ P̃ (Î
action

✓ {VIEW} ^ Î
scheme

✓ {geo}

|Î
categories

= {DEFAULT}) = 1
2
= 0.5, (6)

since there are two precise Intents ((1) and (4)) with category
{DEFAULT}, but one of these two Intents (i.e., Intent (1)) has an
action compatible with {VIEW} and a scheme included in {geo}.

4.4 Explicit Intents
In order to accurately infer the behavior of explicit Intents, we need
to utilize domain-specific knowledge of their typical usage. Ex-
plicit Intents are mostly used as a way to transition between screens
within the same application. In other words they are used to switch
between Activity components. Since an explicit Intent requires by
definition that the target component name and application package
be known, they cannot easily be used to start components across
applications. This is because developers do not know the structure
of other applications on a given device. For example, in Figure 3,
the developer of the restaurant search application uses implicit In-
tents to address the map application because she cannot anticipate
that the map application contains activity MapActivity. Addition-
ally, except for a few system applications, developers cannot safely
assume that a given application is available on a device. Finally, the
names of application components are highly specific to each appli-
cation, therefore we cannot get empirical data that can be reused
across applications. For example, the map application has a com-
ponent named MapActivity, which is very specific to this single
application. It cannot be used as training data to estimate the poten-
tial targets of explicit Intents in other applications. Thus, we cannot
simply apply Theorem 2 for explicit Intents.

In order to model explicit Intents, we introduce random vari-
ables I

p

and I
c

to be the real application package and component
targeted by an explicit Intent. We model the name of the applica-
tion that is sending a given Intent by I

a

. We use random variables
Î
p

and Î
c

to model the corresponding observed values. Finally, we
denote by f

p

and f
c

the application package and component name
of the receiving Filter3.

Definition 2. The probability that a link between an explicit Intent
i and a matching Filter f is a true positive is:

P
i,f

= P
⇣
I
p

✓ f
p

^ I
c

✓ f
c

|Î
p

= i
p

^ Î
c

= i
c

^ I
a

= i
a

⌘
.

3 Recall from Section 3.3 that for simplicity we consider all components
to be protected by an Intent Filter, even when such a Filter is not actually
declared by the application.



In other words, this is the probability that the target package
and component of i match f given that the statically inferred target
package and application of i are i

p

and i
c

and that the application
sending i is i

a

. This definition is the same as Equation (4), except
that we have explicitly added the condition that the application that
is sending Intent i is i

a

. Note that i
a

is always precisely known. In
our model, we make the following two simplifying assumptions.

(A2) All applications have the same likelihood of being targeted

by or sending explicit inter-application ICC. Overall, we expect
explicit inter-application ICC to be a very rare edge case, therefore
the probability of explicit inter-application ICC is always very close
to 0. This is confirmed by experimental results in Section 5.4.

(A3) When several components within a single application may

receive an explicit Intent, we assume that they may receive it with

equal probability. All declared components are usually used in
a given application. There may obviously be components that are
called more often than others, but in most cases we do not expect
a significant difference between any two components. Thus this
yields a reasonable first approximation.

In order to model the likelihood of intra-application ICC, we let
I
n

denote the event that an Intent has an intra-application target.
The following theorem will be used to infer P

i,f

in the case of
explicit Intents. Recall from Section 4.3 that C denotes the set of
constant string fields. The intuition behind the theorem is that if the
target package is unambiguously known, then P

i,f

is determined by
the fact that by Assumption (A3) components of a given application
are equally likely to be targeted. On the other hand, if the target
package is not known, then we use both Assumption (A2) and (A3)
to estimate P

i,f

by considering that all matching components of all
applications are equally likely to be targeted. Additionally, P

i,f

is
weighted by the probability that I

n

is true.

Theorem 3. Let i = (i
p

, i
c

, i
a

) be an explicit Intent value as in-
ferred using static analysis and f = (f

p

, f
c

) a matching Intent
Filter. Let ⇡ be the number of components that have a type compat-
ible with i in application i

a

. We also assume that there are E ap-
plications {i

a1 , . . . , iaE} other than i
a

, with components that may
receive i. Let {⇡1, . . . ,⇡E

} be the number of components compat-
ible with i for each of these applications. Then:
1. If i

p

2 C (the target package is known), then:

P
i,f

=

8
><

>:

1
⇡

if f
p

= i
a

(i and f are in the same application)
1
⇡
k

if f
p

= i
ak for any k 2 {1, . . . , E}

2. If i
p

62 C (the target package is not known), then:

P
i,f

=

8
>>><

>>>:

1
⇡
P (I

n

) if f
p

= i
a

(i and f are in the same

application)
1

E⇡
k

P (Ī
n

) if f
p

= i
ak for any k 2 {1, . . . , E}

Interested readers may refer to Appendix A.2 for the proof
of this theorem. In order to tackle case 2, we simply estimate
P (I

n

) using the set K of precise Intents by counting the relative
frequency of inter-application and intra-application explicit ICC.
An interesting particular case is when i

c

2 C. Then we have ⇡ = 1
for the case f

p

= i
a

and ⇡
k

= 1 for the case f
p

= i
ak . Thus in the

first case P
i,f

= 1 and in the second case we have:

P
i,f

=

(
P (I

n

) if f
p

= i
a

1
E
P (Ī

n

) otherwise
Let us consider links L5,1, L5,2, L5,3, L5,4 and L5,5 from Fig-

ure 3. They all have explicit Intent (5) as a source, for which i
p

62 C
and i

c

62 C. Using the notations from Theorem 3, we have E = 4
because there are 4 applications (excluding rest app) that may

Links L
i,f

Probabilities P
i,f

L1,1, L1,2, L4,1, L2,6 1
L3,1, L3,2, L3,3, L5,5 0.5
L3,4, L5,1, L5,2, L5,3, L5,4 0

Table 1. Values of P
i,f

obtained for the links in Figure 3.
receive Intent (5). For each of these applications, ⇡

k

= 1, since
they all have a single compatible component. On the other hand,
⇡ = 2. The set of precise explicit Intents is reduced to Intent
(2), which has an intra-application target. As a result, the empir-
ical probability P̃ (I

n

) of having intra-application explicit ICC is 1
and P̃ (Ī

n

) = 04. This allows us to calculate:

P5,1 = P5,2 = P5,3 = P5,4 =
1

E⇡
k

P̃ (Ī
n

) =
1

4 · 2 · 0 = 0 (7)

P5,5 =
1
⇡
P̃ (I

n

) =
1
2
· 1 = 0.5 (8)

4.5 Triage of ICC Links
When P

i,f

has been computed for all Intents i and matching Filters
f , we perform triage of all links by prioritizing links with the
largest values of P

i,f

. That is because P
i,f

represents the likelihood
of a link being a true positive.

Table 1 shows the final ranking with the values of P
i,f

for
the links from Figure 3. Links L1,2, L1,2, L4,1 and L2,6 have
the highest priority. Their P

i,f

values are computed trivially since
the fields of the corresponding source Intents are unambiguously
known. Links L3,1, L3,2 and L3,3 have lower priority, as the cor-
responding Intent fields are imprecise. Probability values P3,2 and
P3,3 are computed in a way similar to P3,1 (see Equation (6)). Re-
call that P5,5 was computed in Equation (8). Finally, the lowest
priority is assigned to links L3,4, L5,1, L5,2, L5,3 and L5,4, since
they are very likely false positives. Probability P3,4 is computed in
a way similar to Equation (6) and probabilities P5,1, P5,2, P5,3 and
P5,4 were calculated in Equation (7). Note that since they are very
likely false positives, simply discarding them would be a reasonable
strategy. It is worth noting that the real links to the spy application
have a high probability value (P1,2 = 1 and P3,2 = 0.5), thus
in our analysis scenario they would be analyzed with high priority,
quickly leading to the detection of the information leak shown in
Figure 4.

5. Evaluation
We have implemented the concepts introduced in this paper in a
tool called PRIMO (PRobabilistic ICC MOdeling). Our experimen-
tal data set initially included 10,500 applications selected at random
from a corpus of over 453,525 applications downloaded from the
Google Play store between January and September 20135 [13]. Ad-
ditionally, we used 1,247 known malicious applications [50] and
162 applications preinstalled on a Samsung Galaxy Note. The lat-
ter is useful, as many applications send ICC messages that are han-
dled by preinstalled applications such as the browser or the camera
application. All applications were converted to Java bytecode using
Dare [36] before being analyzed with IC3 [37]. Since IC3 could not
process a number of applications for several reasons (mainly errors
caused by timeout and insufficient memory), the final number of
applications considered for matching was 11,267. In a preprocess-
ing step, we discarded 1.8% of the Intent values that we knew were
artifacts of the static analysis process (e.g., empty values).

4 While it may seem like our toy example is not representative, we show in
Section 5.4 with a large data set that in real-world applications P̃ (Ī

n

) is
very close to 0.
5 More recent applications utilize the same ICC primitives and would not
yield different results.
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Figure 7. Study of ICC connectivity.

The experiments described in this section attempt to answer four
central questions:
1. Are the computational costs of performing Intent resolution and

computing probability values feasible in practice and does the
resolution time grow according to our theoretical prediction?

2. How prevalent are ICC links?
3. How accurately does PRIMO rank ICC links? In other words,

does PRIMO rank false positives lower than real links?
4. What proportion of links are likely false positives?

The answers to these questions determine how useful our tech-
niques are for performing triage of ICC links at large scale. High-
lights of our study include:
• Performing Intent resolution took about 30 minutes for all

11,267 applications. Runtime grew in time O(e
min

· |I|), in
accordance with theoretical predictions.

• Intent resolution yielded over 636 million ICC links, 80% of
which were originating in only 6% of Intents.

• The ranking computed by PRIMO is strongly correlated with
the ground truth, with Goodman-Kruskal � values consistently
over 0.9721 (a value of 1 indicates perfect correlation).

• Ranking using PRIMO showed that over 95.1% of all links
were likely false positives, with P

i,f

values under 0.01. Most
low-rank links were potential explicit inter-application links.

5.1 Intent Matching Performance
We first evaluated the performance of the Intent resolution process
described in Section 3.4. The performance of our algorithm deter-
mines to what extent the resolution process can scale to large num-
bers of applications to enable analysis of inter-application flows.

Figure 6(a) plots the Intent resolution computation time as a
function of the product e

min

·|I| of the expected number of matches
for the first clause in our matching algorithm and the number of In-
tents. In order to compute these data points, we randomly selected
subsets of our corpus of various sizes and we performed Intent res-
olution on these subsets. Linear fitting shows that the average run-
ning time was indeed proportional to this product (r2 = 0.9885),

which validates our average time complexity analysis from Sec-
tion 3.5. On Figure 6(a), we also show that the computation of P

i,f

values also grew with e
min

· |I|. As a result, our Intent resolution
process can be used even for large numbers of applications. For all
11, 267 applications in our corpus, the entire process took 2, 566
seconds, or 43 minutes, which included 30 minutes for the Intent
resolution and 13 minutes for the computation of the probability
values.

We then compared our algorithm with the naı̈ve one (consider-
ing each Filter for each Intent). With a randomly selected corpus
of 342 applications from the Play store, it took 696 seconds. On
the other hand, our algorithm took only 29 seconds, which is a de-
crease of over 95%. In Figure 6(b) we plot the running time of our
algorithm as a function of the number of applications considered.
The running time is a quadratic function of the number of appli-
cations. Since the naı̈ve algorithm scales very poorly we did not
run it for larger data sets. However, since we trivially know that its
average time complexity grows with the |I| · |F | product whereas
our algorithm grows with e

min

· |I|, in Figure 6(c) we show how
these two products grow as the number of applications grows. As
we would expect, both show quadratic growth, however e

min

· |I|
grows significantly more slowly than |I| · |F |. The benefit of using
our matching algorithm rather than the naı̈ve one is clear.

5.2 ICC Connectivity
In Figure 7(a), we show how the number of potential Intent links
grows with the number of applications. With all 11,267 applications
in our sample, there were 636,493,285 ICC links. The fact that the
number of links explodes as the number of applications increases is
the motivation for the triage work presented in this paper. Indeed,
it would be very difficult to consider all these links at the scale of
an application market. Therefore it is necessary when performing
any inter-application analysis to only consider the links that are the
most likely to actually be feasible.

In the remainder of this section, we report the results of per-
forming Intent resolution and link triage in our entire data set
of 11,267 applications. There were a total of 126,981 compo-
nents, which declared 81,787 Intent Filters for receiving implicit



Field Action Categories Scheme Host Path Port Type Package (implicit) Class Package (explicit)

Imprecise 26% 1% 85% 96% 95% 0% 88% 98% 98% 61%
Partially precise 5% 0% 0% 1% 2% 0% 0% 0% 1% 0%

Table 2. Ratio of imprecision in Intent fields. Statistics only include Intent values where at least one field is not precise. They only take into
account cases where the fields are defined (in other words, a null field is not counted). For the package field, we distinguish between implicit
and explicit Intents, since both types may contain it. We also distinguish between the case where a field is completely unknown (that is, it is
.*) in the second row and the case where the field is partially known (it is .* concatenated with a constant string) in the third row.

Intents. There were 546,073 different Intent values, 336,645 (62%)
of which were explicit and 209,428 (38%) of which were implicit.
There were 40,275 URI values and only 872 Content Providers. Of
all Intent values, 20% had at least one field that was not precise.
Looking more closely at the distribution of the 636 million links,
in Figure 7(b) we plot the cumulative distribution function (CDF)
of Intents as a function of the number of links in which each In-
tent is involved. Most Intents in our sample had a low number of
potential links, with 66% having only one potential recipient and
77% having less than 100 potential targets. The maximum num-
ber of potential targets for a single Intent was 52,079. On the other
hand, a small portion of Intents had over 1,000 links. Figure 7(c)
shows the CDF of the links as a function of the number of Intents
considered. As expected from the previous figure, most links were
caused by a small number of Intents. In fact, only 6% of all Intents
accounted for 80% of all ICC links.

5.3 Validation of the Probabilistic Model
In order to verify that our probabilistic model yields expected
results, we started by verifying the computed probabilities for 40
links. We confirmed that the results were consistent with manually-
inferred values. We then performed k-fold cross-validation of our
probabilistic approach. More specifically, we first separated Intents
that only had precise fields (set K in Section 4) from imprecise
ones. We then extracted the distribution D

imp

of field imprecisions
in the latter set. That is, we measured the empirical frequencies
of imprecisions for each field. Next, we divided set K into k
parts K1, . . . ,Kk

and proceeded to k iterations of the validation
procedure. At each iteration i, we selected K

i

to be our validation
set and [

j 6=i

K
j

to be our training set. We used the training set to
extract empirical probabilities of Intent field patterns as needed for
the ranking procedure described in Section 4.

To get a basis for comparison, links computed from the pre-
cise Intents in our validation set gave us the ground truth. We then
altered these Intents in order to obtain imprecise ones. The impre-
cisions we introduced were based on imprecision frequencies ob-
served in the wild, in order to realistically simulate real data. Then
we computed links again with the altered Intents in our validation
set and compared the result with the ground truth. Through this
procedure, we obtained a sound comparison between our computed
links and the ground truth, while simulating a realistic distribution
of imprecisions. Table 2 shows the ratios of imprecise fields in In-
tents for which at least one field is not completely known, exclud-
ing null field values. The imprecisions introduced in the validation
sample were based on this distribution. For example, for implicit
Intents in which the action field is defined (i.e., almost all of them),
we replaced it in 26% of cases with .* and we replaced part of it
with .* in 5% of cases. For partially replaced strings, the replaced
part was randomly chosen. We note that in imprecise Intents where
data fields are defined, they are commonly a source of imprecision.
This is because URI data is known to be more challenging to infer
with static analysis [37].

More formally, at iteration i we first computed the feasible
links LG from Intents in K

i

to the Filters in our data set. These
links were known to be feasible since they were computed using

precise Intents. Then we introduced imprecisions in the fields of
the Intents in K

i

according to distribution D
imp

. Repeating the
link computation then yielded a new set of ICC links LV such
that LG ⇢ LV . That is, in addition to the feasible links, LV
also comprised unfeasible links that were computed because of
the imprecisions introduced in the fields of the Intents in K

i

.
Computing the probability values V

L

= P
i,f

as described in
Section 4 gave us a ranking V

L1  V
L2  . . . of the links in

LV . We also had the corresponding ground truth values G
L

, such
that for any link L in LV , G

L

= 1 if L 2 LG and 0 otherwise. This
gave us a ground truth ranking of the links such that any feasible
link had higher priority than any unfeasible link.

The accuracy of our probabilistic model is measured by the ex-
tent to which the computed ranking of the V

L

values agrees with the
ground truth ranking of the G

L

values. In order to measure this rank
correlation, we computed the Goodman-Kruskal � statistic [20]. A
� value of 1 implies complete correlation, while values of 0 and -1
indicate no correlation and inverse correlation, respectively. Since
this coefficient is designed for ordinal categorical variables, we dis-
cretized the interval [0, 1] of probabilities into segments of width
0.01. A value of � that is close to 1 indicates that our model can ac-
curately predict the ranking of link priorities with only limited In-
tent field information. We chose this statistic because it is resilient
to ties in the rankings (values in the ground truth are all 0 or 1).

We performed k-fold cross validation for even values of k be-
tween 6 and 24. Since we obtained k values of � during cross-
validation, we computed the average � value for each k. We ob-
served that our system had very high accuracy, with all average
values of � in the [0.9721, 0.9724] interval.

Looking more closely at the validation results, we realized that
the high value of � is mostly caused by the fact that our model
correctly infers that a vast majority of P

i,f

values are very low
(equal to or below 0.01). Most of the cases where the ranks of
the ground truth were different from our inferred ranking were
in probability values different from 0 or 1. That is because, since
our model is based on statistical data, the difference between close
probability values is not always meaningful. For example, consider
a set l of potential links with probability value 0.2 and another set
of links h with probability value 0.3. Even though values in h are
more likely to occur, out of a large data set, some links from set l
will be real links. This implies that ranks between the ground truth
and our model can be different. This problem is inherent to our
statistical modeling although it may be alleviated by increasing the
complexity of the model (e.g., to consider additional features).

We also observed a relatively small number of links (about 0.1%
of the total number of links) for which a probability of 0 was incor-
rectly inferred for real links. These were mostly caused by the case
where an Intent Filter field value is specific to a given application.
This is common when application developers dynamically regis-
ter Broadcast Receivers that only receive Intents from within the
same application. Tackling this problem would require improving
the model to include smoothing techniques to avoid a P

i,f

value
of 0 in the case of unseen data. There were also a small number of
cases where we did not have training data for a given combination
of Intent field values and thus Equation (5) was undefined. In this
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(a) Overall distribution of all probability values.
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(b) Explicit inter-application links.

0.0 0.2 0.4 0.6 0.8 1.0
ProbabLlLty Pi,f

100

102

104

106

108

LL
nk

 c
ou

nt
 (l

og
 sc

al
e)

(d) Implicit inter-application links.
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(c) Explicit intra-application links.
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(e) Implicit intra-application links.

Figure 8. Distribution of link probabilities.

case, our implementation defaulted to a value of 0 (see Section 5.4
for more details). In this case, we could improve our results by
considering additional features other than field values to compute
probability values. Finally, about 0.005% of links were incorrectly
inferred as true links (P

i,f

= 1), even though they are not in reality
possible. Looking at some examples, we realized that these errors
occurred when an imprecise explicit Intent was matched with a sin-
gle compatible Service component within the same application. In
accordance with Theorem 3, our model yielded P

i,f

= P (I
n

) with
P (I

n

) rounded to 1 for the given training sample (recall that we
discretized probability values with a 0.01 step size). The real Intent
value was in fact one of the rare cases of inter-application explicit
ICC. In future work, we will improve our model to better handle
these corner cases.

5.4 Link Probabilities
Figure 8(a) shows the distribution of the computed probabilities.
We can observe that a large majority of links have a low P

i,f

value
and are thus likely false positives. Note that this includes 25,641
links in which Equation (5) is not defined because the combina-
tion of precise Intent fields that is considered to compute their P

i,f

value does not exist in the training data (and thus a conditional
probability does not exist for these values). In these cases, our cur-
rent implementation defaults to a value of 0. We can observe that
95.11% of links have a P

i,f

value under a conservative threshold of
0.01. Looking more closely at the characteristics of these links, Fig-
ures 8(b) through (e) shows the distribution of P

i,f

for explicit, im-
plicit, inter-application and intra-application links. We can see that
a large majority of links (67.41%) is caused by inter-application
explicit links. As we studied in detail in Section 4.4, such links are
likely false positives. In our sample of precise Intents, the empiri-
cal probability of having an explicit inter-application link (P̃ (Ī

n

) in
Section 4.4) was 0.01. Manually checking a small sample of these
links confirms that they are caused by explicit Intents for which

Field Action Categories Type Scheme Host Path Port

Range 3,519 57 150 69 2,913 2,990 390

Table 3. Number of different values for each implicit Intent field.

both the target package and component are statically inferred as a
.* regular expression (that is, an unknown value).

Figures 8(d) and (e) show that P
i,f

values for implicit Intents
are homogeneously spread. This is expected, as Theorem 2 takes
into account the likelihood of all Intent field patterns, which is
highly variable. Notice how most implicit links (32.33% of all links
or more than 99.70% of implicit links) are inter-application ICC.
Most of them are likely false positives as well. This indicates that
the significant growth of potential links is due to the fact that many
inter-application links that may not occur at runtime are created
whenever an Intent value is imprecise.

6. Discussion
PRIMO is based on Intent values computed using an ICC inference
tool and as such it inherits the same limitations. More specifically, it
cannot tackle links created by using native code or Java reflection.
Additionally, it does not estimate the probability that a message-
sending code location is reached at runtime.

Fragments of the set-constraint formalism are equivalent to
other formalisms (e.g., tree automata can represent a fragment of
set constraints). We found that modeling the Intent-resolution logic
as set constraints was very natural. However, after the formulation,
we could use other techniques, based on other formalisms, to solve
the resulting set constraints. We will investigate this avenue in the
future.

The probabilistic model is also limited by several factors. We
note that the model of implicit Intents is useful because Intent
patterns are relatively predictable. Table 3 shows the range of field
values as seen in all 209,428 implicit Intents. We notice that the
number of possible field values is very low in comparison to the
number of Intents considered. The values for the action field appear
to have the largest range. However, looking more closely at the
distribution of these values, we notice that most individual values
are application-specific and thus are very rarely found overall.
When dealing with these values, our model does not perform well,
due to the lack of training data. On the other hand, the top 5
values for the action field were found in 67% of Intents where it
is precisely defined. This implies that our model is in general able
to recognize patterns seen in training data. A particularly common
pattern involves the VIEW action, the DEFAULT category and some
data type. Thus, when one of these three fields is missing from this
common pattern, our model can particularly effectively infer the
missing value. A number of other patterns are common, notably
involving the DIAL and CALL actions, which are usually associated
with the DEFAULT category and the tel data scheme.

In general, insufficient training data implies that some feasible
implicit Intent patterns are not known and therefore are inferred
as less likely than they actually are. Some other patterns may be
inferred as more likely than they actually are depending on biases
in the training data. However, we expect that the prevalence of this
issue will decrease as the number of applications studied increases.
Note that the model presented in this paper is not meant to be the
final word on estimating Intent values. Rather, we aim to form a
framework for probabilistic inference of Intent values. That is why
we put the emphasis on clearly articulating all of our assumptions
in Section 4. We expect that this will enable others to refine this
model by relaxing some of these assumptions to potentially achieve
greater accuracy. Also, additional features of the problem may be
helpful in order to infer a more accurate ranking of the links.



The ideas developed in this paper are applied to Android ICC
inference, but we believe that they can apply to other contexts as
well. Once fields of interest are defined, other models can take
both field values and relationships between fields into account.
Indeed, the case of explicit Intents can generalize to the inference
of relationships (e.g., equality) between fields. On the other hand,
the ideas used for implicit Intents can generalize to the inference
of patterns between actual field values. The assumptions we made
on the distribution of values (i.e., assumptions (A2) and (A3))
may be relaxed. Instead of assuming a uniform distribution, we
could also obtain probability values that are parameterized by other
distributions. Similarly, our approach can apply to other contexts
where distributions are more complex.

Finally, we note that alternative approaches are worth exploring
in future work. In our opinion, ranking allows for resource alloca-
tion: an analyst may consider links in decreasing order of priority
until resources (such as, for example, time) are exhausted. How-
ever, classification may also be performed.

7. Related Work
Probabilistic approaches have been used to assign probability
values to static analysis results. They include probabilistic sym-
bolic execution [19], abstract interpretation [12] and model check-
ing [23]. However, these techniques do not attempt to rank existing
analysis results. They could complement our analysis, since in this
paper we have considered a link to be a true positive if the real value
i
r

of the source Intent matches the destination Filter. However, the
Intent-sending location might send different possible Intent values
depending on the execution path, and i

r

could be the most un-
likely value (even though it is precisely inferred). Several related
techniques [17, 41] could help estimate the probability that each
precise Intent value is sent at a given location.

Machine learning has been used to classify static analysis results
in Aletheia [43], but it requires manual labeling of static analysis
results, whereas our approach does not. Z-Ranking [27] also aims
to help sort through analysis results by ranking them. It builds a sta-
tistical model on the hypothesis that errors in programs are sparse.
It has some similarity with the way that we design our model for
explicit Intents, since we assume that explicit inter-application ICC
is also very scarce. However, in general ICC links are common and
thus the model in Z-Ranking would not be appropriate for Intents.
Both Merlin [30] and PRIMO are based on the idea of leverag-
ing probabilities for getting more accurate results from imprecise
inputs. However, the goal of Merlin is to infer information flow
specifications to avoid incorrect user specifications. On the other
hand, our goal is to augment static-analysis results in which im-
precision is not caused by the user but by the analysis itself. In
addition, the probability distributions in Merlin model analyst ex-
pectations, whereas in our work the distributions are trained with
and determined by the analysis results that are known to be precise.

JSNice [39] also uses statistical methods to model program
properties. More specifically, it infers variable types and names in
JavaScript code. The methods developed for JSNice may be useful
for inferring likely ICC values. However, in its current form it
makes no attempt at estimating the values of variables. Our work
is different in several ways. JSNice uses conditional random fields
in an attempt to maximize the joint probability of the computed
properties, which ensures that the correlations between properties
to be inferred are accurately captured. On the other hand, the way
our model is defined makes the implicit assumption that imprecise
Intent values at different program points are not correlated with one
another (since all P

i,f

values for imprecise Intents are computed
independently of each other). While the model in JSNice captures
a more comprehensive picture of the program by maximizing joint
probabilities, we believe our model to be more scalable for our

particular problem. JSNice produces 4,114 type annotations in 396
programs in at least 36 ms per program on average (depending on
experimental parameters). This implies that a type annotation is
inferred on average in at least 3 ms (excluding the time needed
to train the model). On the other hand, we are able to assign P

i,f

values on average in slightly over 0.001 ms per link.
The idea of performing triage in Android is not new [7, 44].

MAST [7] uses Multiple Correspondence Analysis (MCA) to rank
applications based on metadata features. Our approach is different
and complementary in several ways. Chiefly, our approach utilizes
code analysis, which MAST does not. Thus, a possible workflow
could consist in using MAST first to select a number of potentially
problematic applications, followed by a deeper analysis that uses
the high priority ICC links computed using IC3 [37] and PRIMO.

ICC has received a lot of attention in recent years. Fuzz test-
ing was used to investigate the robustness of Android ICC [33].
ECVDetector [47] and PCLeaks [29] were proposed to detect po-
tential component vulnerabilities. ComDroid [10] infers properties
of ICC objects and Epicc [38] and IC3 [37] compute ICC values.
However, these have not addressed the problem of computing ICC
links. Recent works [26, 29, 46] detect inter-component leaks in
Android applications, extending intra-component information flow
analysis [6]. They build ICC links for their analysis, but they use a
naive matching algorithm to build the links, which prevents them
from being scalable. For example, we note that [26] only involves
three applications. This paper complements these tools by provid-
ing principled and efficient Intent resolution; it is a significant step
in enabling them to perform market-scale ICC leak detection.

Set constraints have been widely studied [2–4, 9]. Although our
problem is expressed using set constraints, these existing works
do not address the problem where regular expression matching is
needed. Further, since our constraints have a very specific structure
(namely, the Filter attributes are on the right-hand side of almost all
constraints), we are able to use a more efficient solution algorithm.

8. Conclusion
We have shown how to overlay a probabilistic model on top of static
analysis results to help sift through them. We have applied this idea
to static ICC analysis in mobile applications. As a prerequisite, in
order to enable the principled generation of ICC links, we have
introduced a formalism for ICC links based on set constraints. We
have designed an efficient link resolution process, which enables
ICC link generation with large sets of applications. Generating over
636 millions ICC links in a corpus of 11,267 applications took 30
minutes. Since there are typically many links due to imprecisely
inferred static analysis values, we used our probabilistic model to
triage ICC links. The model is easy to train, requiring no manual
labeling of the static analysis results. We have shown that our triage
system is effective at ranking Intent values, with over 95.1% of 636
million ICC links being likely false positives. In future work, we
will apply PRIMO in large scale ICC analyses. We will also refine
our probabilistic model in order to improve ranking accuracy. In
particular, we will study the influence of each field on the accuracy
of Intent matching. By doing so, we hope to help the community’s
efforts in understanding the implications of ICC. Finally, we will
apply the concepts developed in this paper to areas outside ICC
link triage.
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A. Proofs
A.1 Proof of Theorem 2
In order to prove this theorem, we need the following lemma.

Lemma 1. Let i = (i1, . . . , in) be an Intent value and define
a matching Intent Filter as f = (f1, . . . , fn). For any m 2
{1, . . . , n}, if Î

m
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Î
k

= i
k

^
n^

k=m+1

I
k

✓ i
k

!
= 1.

Proof (Lemma 1). Given a field value for which the actual value
(that is, as intended by the application developer) is st, we may
only observe either st or a regular expression regex such that
st 2 L(regex) as a result of the static analysis. As a result, if we
observe st, then it implies that the actual value is also st. Thus,
Î
m

= i
m

2 C implies that I
m

= i
m

and since the Intent matches
the Filter, I

m

✓ f
m

.
For any events A,B,C, if B ) A (that is, the occurrence of B

implies that A is occurring as well) , then P (A|B ^ C) = 1. This
can be seen by considering that P (B ^ C) = P (A ^ B ^ C) +
P (Ā ^ B ^ C) = P (A ^ B ^ C), since Ā and B cannot occur
simultaneously. Then we have

P (A|B ^ C) =
P (A ^B ^ C)
P (B ^ C)

=
P (B ^ C)
P (B ^ C)

= 1.

Using this and the fact that Î
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, we have:
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Proof (Theorem 2). The case where all fields are known trivially
results in P

i,f

= 1. For 1 < l < n, we have:
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by using the chain rule. Since we assume that for m 2 {1, . . . , l},
Î
m

2 C, using Lemma 1 we have:
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Let us assume that the observed values for fields l + 1 through n
and the corresponding actual values are conditionally independent
given the observed values of fields 1 through l (Assumption (A1)).
As a result, we have:
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When all fields are non-constant, we consider that the actual
field values are independent of the observed regular expressions
(given that as a hypothesis, we restrict ourselves to matching val-
ues). That is because whether a field value is inferred as a regular
expression instead of the real value does not depend on the value
itself but on how the program generates and processes it, as well as
the specific static analysis technique. Thus:
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A.2 Proof of Theorem 3
Proof (Theorem 3). Since we have assumed that all components
of a given application compatible with i

c

are equally likely to be
targeted by an explicit Intent (Assumption (A3)), the first case of
the theorem is immediate. Let us now consider the cases where
i
p

is not known. In this proof, for any events A and B, we use
P (A,B) = P (A ^B).
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by conditional independence as in Theorem 2.
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Further, since we have assumed that all applications are equally
likely to utilize explicit inter-application ICC (Assumption (A2)),
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We assume that when explicit inter-application occurs, all ap-
plications i

a1 , . . . , iaE have the same probability of being targeted
(Assumption (A2)). Thus P
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|Ī
n

, Î
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The rest is similar to Case A. Therefore:
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