
Characterizing Python Method Evolution with
PyMevol: An Essential Step Towards Enabling

Reliable Software Systems
Haowei Quan, Jiawei Wang, Bo Li, Xiaoning Du

Monash University
Melbourne, Australia

{Haowei.Quan, Jiawei.Wang1, Xiaoning.Du}@monash.edu,
limber0117@gmail.com

Kui Liu
Huawei

Hangzhou, China
brucekuiliu@gmail.com

Li Li
Monash University

Melbourne, Australia
Li.Li@monash.edu

Abstract—Understanding the evolution of library methods
is essential for maintaining high-quality and reliable software
systems as those libraries often evolve rapidly in order to
meet new requirements such as adding new features, improving
performance, or fixing vulnerabilities. Failing to incorporate this
evolution may result in compatibility issues that may manifest
themselves as runtime crashes, leading to a poor user experience.
This is not uncommon for the most popular programming
language, Python, for which our community has developed over
380,000 libraries. To help developers better understand their used
libraries, we propose to the community a prototype tool called
PyMevol to model Python libraries’ APIs and their evolution.
Specifically, given a Python library, PyMevol statically examines
its code to extract APIs (including aliases introduced by Python’s
import-flow mechanism) from all its released versions to build a
history-sensitive alias-aware API explorer tree, a tree structure
that allows users to explore the biography of each API so as
to quickly locate where and when a given API is introduced,
changed, or removed. Our experimental results over five popular
real-world Python libraries show that our approach is reliable
in achieving its purpose (i.e., over 90% of accuracy) and helpful
in supporting further API-relevant analyses.

Index Terms—Python, API evolution, static analysis

I. INTRODUCTION

Python has gained increasing popularity in recent years.
According to IEEE Spectrum1, Python has become the most
popular language since 2021 by overtaking Java and C, which
have dominated software production for decades. One reason
that makes Python the most popular programming language
could be the large number of Python libraries made readily
available by the Python community. Indeed, there are over
380,000 libraries in the Python Package Index (PyPI) repos-
itory. Each library further supplies hundreds (or even thou-
sands) of reusable functions (known as Application Program-
ming Interfaces, or APIs in short) that hide implementation
details for facilitating Python application development.

Unfortunately, the software analysis community has not yet
caught up with the popularity of the Python language per se.
Currently, there have not been many works [1], [2] proposed to

⋆ Li Li is the corresponding author.
1https://spectrum.ieee.org/top-programming-languages/

help the community develop reliable Python applications. As
argued by Yang et al. [3], even in 2022, static analysis tooling
for Python is not yet widely developed or used, while such
tooling will undoubtedly benefit Python developers to achieve
reliable software systems.

To fill this gap, as our initial attempt, we propose an auto-
mated approach to characterize the API evolution of Python
libraries. We believe this is essential for enabling reliable
software development. Indeed, Python applications often rely
on third-party libraries to achieve their objectives, and the
libraries will be inevitably evolved for fixing defects, bugs,
vulnerabilities, and adding new features, etc. Such an evolution
may lead to breaking changes (e.g., removed APIs) that subse-
quently will impact the reliability of its client applications. A
comprehensive understanding of method evolution would help
mitigate such impacts.

Actually, our community has acknowledged the merits of
software evolution studies and thereby proposed various ap-
proaches to characterize the evolution of software systems.
For example, Li et al. [4] have presented a tool, CDA,
for characterizing the evolution of Android APIs. Among
various findings reported by the authors, representative ones
include bug issues reported to the Android Open Source
Project (AOSP) team and API usage problems (e.g., accessing
inaccessible or incompatible ones [5], [6]) that have to be
specifically handled by app developers for their apps accessing
those APIs. Their experimental results echo our claim that
understanding the software evolution indeed helps enable the
reliability of software systems, being helpful for not only the
studied object itself but also all its client applications.

Despite the fact that many efforts have been put into
characterizing the evolution of software systems developed
with other program languages, whether these observations
and conclusions apply to Python applications are unknown
until a firsthand exploration is conducted. The majority of
works are primarily designed for studying statically typed
languages, such as Java [5]–[14]. However, as argued by
Yang et al. [3], because Python is a dynamical language,
the existing approaches proposed for handling statically typed



Alias AnalysisExplorer Tree 
Construction

… ŏ … ŏ Explorer Tree 
Aggregation

History-sensitive 
Alias-aware

API Explorer Tree

API Explorer 
Tree

Alias-aware API 
Explorer Tree

Fig. 1: The working process of PyMevol.

languages cannot be effectively applied to analyze Python
code. Furthermore, as argued by Zhang et al. [1], extracting
Python library APIs is non-trivial because Python embraces
many advanced features to ease the development of Python
applications. For example, Python’s import mechanism allows
library developers to create API aliases (mainly to create
shorter names for neat references), and these aliases will
be maintained consistently with the evolution of the directly
defined ones. Referring to outdated API aliases can also cause
compatibility issues in client applications, and such feature
need to be carefully addressed to precisely characterize the
effect of API evolution. In what follows, APIs refers to both
directly defined APIs and their aliases.

In this paper, we propose a prototype tool, namely PyMevol,
to support the characterization of method evolution in Python
libraries. Specifically, PyMevol statically examines the histori-
cal code of a given library and constructs a historical-sensitive
alias-aware API explorer tree, which records the lifecycle of
each method (i.e., when introduced, updated, and removed)
and its aliases (detailed in Section II-B). To demonstrate the
effectiveness of PyMevol, we apply it to five popular Python
libraries and the experimental results show that PyMevol can
accurately capture the changes of library APIs. We further
demonstrate PyMevol’s usefulness by leveraging PyMevol to
conduct API usage analysis.

To summarize, our work makes the following two main
contributions.

• We propose, PyMevol, to characterize method evolution
in Python by statically building a history-sensitive alias-
aware API explorer tree.

• We evaluate the effectiveness and usefulness of PyMevol
based on five popular Python libraries and over 4,000
real-world Python projects.

II. APPROACH

Fig. 1 illustrates the working process of PyMevol, which
takes as input a library and outputs a history-sensitive alias-
aware API explorer tree that dedicatedly records the detailed
evolution information of the input library. The historical
information of the given library is extracted from the PyPI
repository, and the alias information is identified through a
detailed static analysis based on the import-flow relationships
defined in the library code. The output tree is designed to
include comprehensive information about the library. It is
expected to be the default place for users to go for, when
they are interested in understanding the evolution of certain
APIs. The working process of PyMevol is mainly made up of
three modules, i.e., (1) Explorer Tree Construction, (2) Alias

Analysis, and (3) Explorer Tree Aggregation. We now detail
these three modules, respectively.

A. Explorer Tree Construction
As the first module, PyMevol aims at constructing an API

explorer tree for a given library. An API explorer tree is a tree
data structure used to represent the composition structure of
the library and store information of APIs, where each node
is an explorer node, which is used to represent a package, a
sub-package, a module, a class or an API.

There are three different explorer node types, each of which
has different properties and stores different information.
• Package/Module Node: In Python, each source file is

deemed as a module2 and the file name (without extension)
is regarded as the module name. A Python package is like a
directory3 holding sub-packages and modules. For the sake
of simplification, in this work, we present all packages, sub-
packages, and modules as Package/Module nodes.

• Class Node: A directly defined class is represented by a
Class node, which stores the class name, the fully qualified
name of the class, the source code of the class, and the
reference to its alias nodes.

• API Node: A directly defined public method is recorded
as an API Node, which stores the API name, the fully
qualified name of the API, the parameter keywords, the
default values of the parameters, the source code, and the
reference to the aliases of the API. As Python does not
support method overloading, we construct one API Node
for one fully qualified API name. The API Nodes are the
leaf nodes of the explorer tree and do not have child nodes.
The parent of an API Node can be a Class node or a
Package/Module node.
As shown in Fig. 1, given a library, PyMevol first extracts

all its historical versions from the PyPI repository. Then, for
each of the located versions, it statically analyzes the code
to construct an API explorer tree, respectively. Particularly,
PyMevol goes through all the Python files in the given library
to record the overall file structure. For each of the visited
Python files, PyMevol will build an Abstract Syntax Tree
(AST) for it and will traverse the tree to identify all the defined
properties (e.g., classes, methods, etc.).

Fig. 2 presents a simple example of an API explorer tree.
Each path from the root node to a leaf node forms a fully
qualified API name, which is unique for the library. To this
end, we consider the fully qualified name as the signature of

2https://docs.python.org/3/reference/import.html
3It must have a file named init .py in order to be qualified for a Python

package.



Fig. 2: An example of API explorer tree. The grey color indicates
that the API is removed in the latest version of the library.

the given API. As shown in Fig. 2, for each node, we further
connect its associated data (e.g., available versions, method’s
arguments) to increase the usefulness of the API explorer tree.

B. Alias Analysis

Python has an import mechanism called transitive import
[15]. Specifically, if a method/class/module is imported in
a module, such method/class/module will be added to the
namespace of current module at runtime. For this reason, if
Module A is imported in Module B which is imported in
Module C, then Module A is accessible to Module C. It is
very popular for Python libraries to use the transitive import
mechanism to shorten the fully qualified names of required
APIs by importing them in higher level modules. Take the li-
brary Pandas, one of the most popular tools for data scientists,
as an example, the API pandas.core.arrays.categorical.Categorical
is imported in pandas.core.arrays module, and hence forms an
alias as pandas.core.arrays.Categorical.

In Python, a method/class/module can be transitively im-
ported multiple times. Let us take the same API for exam-
ple, pandas.core.arrays.categorical.Categorical has an alias
as pandas.Categorical, which is an API for the Categorical
class in pandas’s official documentation4 and is generated by
importing an alias pandas.core.api.Categorical in the top level
module pandas. The mapping relationships between a directly
defined API and all its aliases form an API alias map.

Python libraries make heavy use of the transitive import
mechanism and have a significant number of aliases of APIs,
which makes API analysis in Python much more complex
than the others. Thus, we introduce into PyMevol a dedicated
alias analysis module to properly model the import flows
(based on the previously generated ASTs) so as to build the
map connecting APIs to their aliases. Specifically, we first
traverse the parsed ASTs of the source files and extract import
information. We iteratively construct and update an import
graph until it converges (the import graph does not change with
more iterations) or reaches a maximum number of iterations.
The maximum number of iterations can be empirically set
to, e.g., 3, to seek a balance between time efficiency and
completeness of PyMevol. Based on the import information
in the import graph, we deduce the alias relationships.

4https://pandas.pydata.org/docs/reference/api/pandas.Categorical.html

TABLE I: A summary of Python libraries used for evaluation
Name LOC commits #stars Used by Category # APIs
TensorFlow 7m 132k 166k 202k deep learning 49k
scikit-learn 455k 29k 51k 361k data analytics 3k
Pandas 783k 30k 35k 731k data analytics 43k
Django 984k 31k 65k 948k web development 25k
Flask 35k 5k 60k 1m web development 1k

To properly record aliases, we improve the aforementioned
API explorer tree to be alias-aware by adding new Class
Nodes and API Nodes for classes’ aliases and APIs’ aliases,
respectively. We further add special edges to connect the
aliases to their original definitions (cf. dashed edges in Fig. 2).

C. Explorer Tree Aggregation

Recall that PyMevol will generate one API explorer tree
for every library version available in the PyPI repository. The
last module hence aims at aggregating those independent trees
into a single model, named the history-sensitive alias-aware
API explorer tree. When merging a new version (represented
by a single API explorer tree) into the aggregated explorer
tree, non-existing nodes (e.g., new APIs) will be added to
the aggregated tree, and existing nodes will be merged. To
record the history of a given API, we add a new attribute
for each node, namely available versions, to maintain the
number of versions the class/API is available. For such APIs
that are eventually removed from the library, we will still
keep them in the explorer tree (represented as grey nodes)
for easy references (the available versions attribute records
when the API is no longer accessible in the history of the
library). When merging an API Node of a new version into
the existing API Node in the tree, we will also compute the
differences between the source code of the API of the new
version and the source code of the descendant version in the
unified format [16] (cf. through the diffs attribute as illustrated
in Fig. 2). Such information will be useful when studying the
compatibility of given APIs.

III. EVALUATION

To evaluate the effectiveness and usefulness of PyMevol,
we aim to experimentally answer the following three research
questions.
• RQ1: How effective is PyMevol in supporting the charac-

terization of API evolution in Python libraries?
• RQ2: How do API aliases evolve in Python libraries?
• RQ3: How useful is PyMevol in facilitating Python library

analyses?
Dataset. To fulfill our experiments, we chose five Python

libraries as our research subject. These five libraries are
among the most popular ones and represent different software
domains. Specifically, TensorFlow is a famous deep learning
library, scikit-learn and Pandas are well-known data analytic
libraries, Django and Flask are popular web development
libraries. Detailed features are summarized in Table I.

A. API Evolution Characterization via PyMevol
To answer RQ1, we first investigate the correctness of

PyMevol and then characterize the API evolution of the five
Python libraries.



2 10 18 26 34 42 50
0

5000

10000

15000

Added APIs
Total APIs
Removed APIs

(a) pandas

2 10 18 26 34 42
0

500

1000

1500

2000 Added APIs
Total APIs
Removed APIs

(b) scikit-learn

1 5 9 13 17 21 25
0

250

500

750

1000
Added APIs
Total APIs
Removed APIs

(c) Flask

3 15 27 39 51 63
0

5000

10000

15000

20000

Added APIs
Total APIs
Removed APIs

(d) TensorFlow

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

0

2000

4000

6000

8000

10000

12000

14000 Added APIs
Total APIs
Removed APIs

(e) Django
Fig. 3: API evolution history. The X axis represents library versions (chronological order) while the Y axis is the amount of APIs.

TABLE II: Correctness of PyMevol
TensorFlow Django Flask scikit-learn Pandas Avg.

Accuracy 90% 92% 93% 93% 84% 90.4%

1) Accuracy of PyMevol: Considering the large number
of APIs detected in those libraries, as shown in Table I,
it is impossible to check if every API is correct manually.
Therefore, given an API profile generated by PyMevol, we
randomly sample 100 APIs and check if those APIs exist in
the corresponding Python library. Specifically, we adopt the
following two methods to check the existence of an API.

• Automated Evaluation. For module level APIs (e.g.
pkg.foo.show), we attempt to import the API via exec(‘from
pkg.foo import show’). If any error occurs, we consider
the corresponding API does not exist. For class level APIs
(e.g., pkg.foo.A.start), we first attempt to import the class
by exec(‘from pkg.foo import A’). Then, we employ hasattr,
getattr, and callable functions via exec(‘check = hasattr(A,
start) and callable(getattr(A, start, None))’) to checks if
start indeed exists in A.

• Manual Confirmation. Unfortunately, we found that the
above automatic validation may fail due to configuration
errors or irrelevant import errors (i.e., dependency not spec-
ified by the library). Here, we further validate the failed
APIs manually to check if they indeed exist in the library.

Table II summarizes the experimental results. We can find
that PyMevol is capable of extracting APIs from Python li-
braries with an average accuracy of 90.4%. This high accuracy
illustrates the practical usability of our approach. We further
investigated those failed APIs and found that they belong to
class methods transformed into 1) Python’s property objects
by “@property” decorator and 2) customized property objects
using customized decorators. Property is a unique feature of
Python used to take the responsibility of getter, setter, and
deleter methods of a class attribute. PyMevol does not check
the decorators of functions and hence has overlooked those
APIs. We plan to improve PyMevol to handle decorators in
our future work.

TABLE III: API statistics of the Python libraries
Library # Versions # APIs # Added APIs % Versions with

New APIs # Removed APIs % Versions with
Removed APIs

TensorFlow 65 49,055 40,981 30/65(46.2%) 26,304 27/65 (41.5%)
Django 241 24,579 14,252 145/241(60.2%) 9,699 70/241 (29.1%)

Flask 27 1,081 708 10/27(37.0%) 118 9/27 (33.3%)
scikit-learn 43 2,742 737 22/44(50.0%) 2,156 14/44 (31.8%)

Pandas 51 42,637 26,739 36/51(70.6%) 25,137 24/51 (47.1%)

2) API Evolution Characterization: We further investigate
the evolution history of the libraries with the help of the
API profiles. As introduced earlier, an API profile records
the lifecycle of each API in the library, it is easy for us to
characterize the API usage and evolution. Table III presents
the API statistics of the five Python libraries based on their
API profiles generated by PyMevol. Specifically, we extract the
statistics with regard to the following questions: How many
APIs have ever existed in the libraries? How many APIs have
been removed/added? How frequent are APIs removed/added
in the libraries? The removed/added APIs are identified by
comparing the API lists of consecutive releases.

It can be observed that the API evolution patterns vary
greatly among different libraries. For example, TensorFlow has
only 65 different versions but has 26,304 removed APIs and
40,981 newly added APIs in total. In contrast, Flask released
27 versions with only 118 APIs removed and 708 APIs added.
This indicates that developers using TensorFlow in their client
applications may need extra efforts to deal with compatibility
and reliability issues brought by the update of TensorFlow.

We can also find that API removals frequently happen in ev-
ery Python library. For example, 41.5% of TensorFlow releases
have API removals while 33.3% of Flask releases have API
removals. This observation aligns with the findings reported
recently by Wang et al [15]. Furthermore, the additions of the
APIs happen more frequently than removals.

Fig. 3 presents the API evolution history of each Python
library. We can find that different library may have very
different evolution patterns. For example, while the total
number of APIs in Django keeps increasing, the amount of
APIs in scikit-learn drops significantly after the 20th update.
We can also observe TensorFlow increases its APIs rapidly in
early stage, and after version 36, the number of APIs starts to
become stable.



2 10 18 26 34 42 50
0

5000

10000

15000

Added APIs
Total APIs
Removed APIs

(a) Pandas

2 10 18 26 34 42
0

100
200
300
400
500

Added APIs
Total APIs
Removed APIs

(b) scikit-learn

1 5 9 13 17 21 25
0

200

400

600
Added APIs
Total APIs
Removed APIs

(c) Flask

3 15 27 39 51 63
0

2000

4000

6000

8000

Added APIs
Total APIs
Removed APIs

(d) Tensorflow

8 40 72 10
4

13
6

16
8

20
0

23
2

0

2000

4000

6000

8000

Added APIs
Total APIs
Removed APIs

(e) Django

Fig. 4: Alias API evolution history. X-axis represents different library versions while Y-axis is the number of alias APIs.

TABLE IV: Alias API statistics of the Python libraries

Library # Alias APIs # Additions % Versions with
New APIs # Removals % Versions

with API Removals
TensorFlow 16,624 (33.9%) 14,355 25/241(10.4%) 9,385 26/65 (40.0%)

Django 14,051 (57.2%) 8,796 128/241(53.1%) 6,153 60/241 (24.9%)
Flask 738 (68.3%) 591 9/27(33.3%) 49 7/27 (25.9%)

scikit-learn 794 (29.0%) 247 15/44(34.1%) 662 12/44 (27.3%)
Pandas 36,150 (84.8%) 22,966 34/51(66.7%) 21,617 22/51 (43.1%)

B. RQ2: Alias API Evolution Characterization
Due to the unique transitive import mechanism in Python,

excessive alias APIs exist in the libraries. Now we investigate
PyMevol’s ability to characterize alias API evolution.

Table IV presents the statistics of alias APIs detected by
PyMevol from the five Python libraries. Firstly, we can find
that the alias APIs exist widely in Python libraries. For
example, 33.9% of APIs in TensorFlow are alias APIs and as
many as 84.8% APIs in Pandas are alias APIs. Secondly, by
comparing Table III to Table IV, we can find that the update of
alias APIs has similar tendency to the update of overall APIs,
which indicates the main cause of the additions/removals of
aliases may be the additions/removals of directly defined APIs.
This observation is further evidenced by Fig. 4 in which the
alias API evolution history of each Python library is displayed
according to different released versions.

Note that given a directly defined API, all its alias APIs are
recorded in its alias map. Through a deep inspection of those
alias maps, we find that the alias API evolution can be divided
into 4 categories as follows.
• Addition Only (AO). In a new version, only new aliases

are added in the alias map or a new alias map is added.
• Removal Only (RO). In a new version, some aliases are

removed in the alias map or the entire alias map is removed.
• Addition and Removal (AR). In a new version, the alias

map not only adds new alias APIs but also removes existing
alias APIs.

• Directly Defined API Change (DC). A directly defined
API is refactored while part or all of its alias APIs remain.
As shown in Table V, AO and RO dominate the alias API

evolution for most of the Python libraries. This conforms to
the finding that main cause of additions/removals may be due
to the additions/removals of directly defined APIs.

TABLE V: Characterizing alias evolution pattern

Library # AO # RO # AR # DC
TensorFlow 13,113 10,987 440 487

Django 7,901 6,559 579 281
Flask 192 46 3 1

scikit-learn 243 484 14 15
Pandas 3,692 3,843 3,681 644

C. RQ3: Ability to Facilitate Library Analysis
In the last research question, we made an initial attempt to

study PyMevol’s potential to facilitate Python library analysis

TABLE VI: Statistical results of client usage analysis
Library # Used APIs # Used Removed APIs # Affected Projects

TensorFlow 2,408/49,055 (4.9%) 879/26,304 (3.3%) 248/922 (26.9%)
Django 1,797/24,579 (7.3%) 408/9,699 (4.2%) 405/957 (25.9%)
Flask 64/1,081 (5.9%) 15/118 (12.7%) 87/952 (9.1%)

scikit-learn 624/2,742 (22.8%) 385/2,156 (17.9%) 217/808 (26.9%)
Pandas 1,358/42,637 (3.2%) 547/25,137 (2.2%) 177/828 (21.4%)
Total 6,251/120,094 (5.2%) 2234/63,414 (3.5%) 977/4,467 (20.9%)

in practice. More usage of PyMevol can be explored by the
community in the future. While Python has excessive number
of libraries available for developers, it would be beneficial to
learn the API usage patterns in the community. The potential
usefulness of such study include, but are not limited to,
API discovery, API recommendation, API composition, API
optimization, etc. Here, we present an exemplar study on API
usage to demonstrate how it contributes to our community.

First, for each of the five Python libraries, we collect a
total number of 1,000 best-match-ranked client applications
returned by the GitHub search: the library name is used as the
query term and Python is used as the development language.
Next, we conduct a further scan to filter out applications
that indeed do not use any of such libraries. This leaves us
4,467 client projects in total for evaluation, including 922
applications using TensorFlow, 957 applications using Django,
952 applications using Flask, 808 applications using scikit-
learn, and 828 applications using Pandas. Finally, we extracted
the API usage information of the five Python libraries from
those client applications.

Table VI shows the statistical results of the analysis. The
first observation is that although each Python library has a
large number of APIs, only a limited portion of them are
actually used by the community. Only 5.2% of APIs, on
average, are used by the top-ranked client applications. This
phenomenon is potentially beneficial to library developers.
For example, given the API popularities in their libraries,
developers can devote more effort to maintaining those popular
APIs. In addition, it can help developers determine the priority
of new APIs, e.g., mutants of popular APIs can be assigned a
high priority in the development plans.

We further find that 20.9% of 4,467 client applications
still use the removed APIs in their latest commit, and 2,234
of 63,414 removed APIs are used. This will inevitably lead
to bugs and undermine the reliability of those applications.
Please note that we only check the usage of removed APIs
in the experiments. If we further include the changes in API
parameters, the percentage of affected applications would be
even higher. The observation also confirms that PyMevol is
useful for enabling reliable software systems.



IV. RELATED WORK

Python Library Studies. Our work is closely related to
Python library studies. Recent researches in this field mainly
focus on library API usage [1], [2] and dependency analysis
[15], [17]–[19]. To name a few, Zhang et al. [1] investi-
gated the evolution patterns of Python libraries and detected
compatibility issues. Wang et al. [2] proposed dlocator to
locate the usage of deprecated APIs in client applications.
The authors further proposed SnifferDog [15] to automatically
restore the execution environment of Jupyter notebooks based
on API usages analysis and pre-build API bank. Different from
existing studies, we proposed PyMevol to characterize method
evolution in Python by statically building a history-sensitive
alias-aware API explorer tree.
Python Code Analysis. The advances in code analysis for
Python are mostly on type inference [20], [21], static call graph
construction [22], and analyzing code quality for Python. For
instance, Wang et al. [23], [24] explore to detect unused vari-
ables, deprecated APIs and dynamically test the reproducibility
of Python code snippets in Jupyter notebooks. Furthermore, He
et al. present the first work on real time API recommendation
for Python developers and Yi et al. [3] report the patterns
of how complex Python language features such as functional
features used by developers.
Framework Evolution Analysis. Our work is also related
to the traditional framework evolution analysis. In this field,
many studies have been conducted to identify the framework
evolution in statically typed languages, such as Java [6]–[14].
However, we do not observe any efforts achieving the same
purpose for Python frameworks.

Empirical studies have also been conducted to study the
framework evolution [4], [5], [25]. Li et al. [4] performed
an empirical study on API deprecation in Android framework
evolution. Xavier et al. [25] presented a large-scale study to an-
alyze the impact of breaking API changes in Java frameworks.

The essential step for framework evolution analysis is API
extraction, which is difficult for Python due to its dynamically
typed nature and advanced features [22].

V. CONCLUSION

This paper presents PyMevol – a static analysis tool to
support the characterization of method evolution in Python. We
evaluate the correctness of PyMevol and demonstrate that it is
effective in supporting evolutionary studies of Python library
APIs. We further illustrate the usefulness of PyMevol by
conducting an empirical investigation of API usage analysis,
which provides interesting insights that can be explored further
in supporting reliable software analyses.

REFERENCES

[1] Z. Zhang, H. Zhu, M. Wen, Y. Tao, Y. Liu, and Y. Xiong, “How
do Python framework APIs evolve? An exploratory study,” in IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2020, pp. 81–92.

[2] J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how deprecated Python
library APIs are (not) handled,” in the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2020, pp. 233–244.

[3] Y. Yang, M. Fazzini, and M. Hirzel, “Complex Python features in
the wild?” in the 19th International Conference on Mining Software
Repositories (MSR 2022), 2022.

[4] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “CDA: Char-
acterising deprecated Android APIs,” Empirical Software Engineering
(EMSE), 2020.

[5] L. Li, T. F. Bissyandé, Y. Le Traon, and J. Klein, “Accessing inaccessible
Android APIs: An empirical study,” in The 32nd International Confer-
ence on Software Maintenance and Evolution (ICSME 2016), 2016.

[6] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “CiD: Automating
the detection of API-related compatibility issues in Android apps,” in
The ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2018), 2018.

[7] L. Li, T. F. Bissyandé, and J. Klein, “Moonlightbox: Mining android api
histories for uncovering release-time inconsistencies,” in The 29th IEEE
International Symposium on Software Reliability Engineering (ISSRE
2018), 2018.

[8] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage changes
from instantiation code,” in the 30th International Conference on Soft-
ware Engineering (ICSE), 2008, pp. 471–480.

[9] H. A. Nguyen, T. T. Nguyen, G. Wilson Jr, A. T. Nguyen, M. Kim, and
T. N. Nguyen, “A graph-based approach to API usage adaptation,” ACM
Sigplan Notices, vol. 45, no. 10, pp. 302–321, 2010.

[10] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “AURA: A hybrid
approach to identify framework evolution,” in the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE), 2010, pp.
325–334.

[11] S. Meng, X. Wang, L. Zhang, and H. Mei, “A history-based matching
approach to identification of framework evolution,” in 2012 34th Inter-
national Conference on Software Engineering (ICSE). IEEE, 2012, pp.
353–363.

[12] D. Silva and M. T. Valente, “RefDiff: Detecting refactorings in version
histories,” in 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). IEEE, 2017, pp. 269–279.

[13] M. Lamothe and W. Shang, “Exploring the use of automated API
migrating techniques in practice: An experience report on Android,”
in the 15th International Conference on Mining Software Repositories,
2018, pp. 503–514.

[14] K. Huang, B. Chen, L. Pan, S. Wu, and X. Peng, “REPFINDER: Finding
replacements for missing APIs in library update,” in 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 266–278.

[15] J. Wang, L. Li, and A. Zeller, “Restoring execution environments of
Jupyter notebooks,” in IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 1622–1633.

[16] GNU Diffutils. Detailed description of unified format. [On-
line]. Available: https://www.gnu.org/software/diffutils/manual/html
node/Detailed-Unified.html

[17] E. Horton and C. Parnin, “Dockerizeme: Automatic inference of envi-
ronment dependencies for python code snippets,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE,
2019, pp. 328–338.

[18] ——, “V2: Fast detection of configuration drift in Python,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 477–488.

[19] H. Ye, W. Chen, W. Dou, G. Wu, and J. Wei, “Knowledge-based
environment dependency inference for Python programs,” in ICSE 2022,
2022, pp. 1245–1256.

[20] A. M. Mir, E. Latoškinas, S. Proksch, and G. Gousios, “Type4Py:
Practical deep similarity learning-based type inference for Python,” in
ICSE 2022. ACM, 2022, p. 2241–2252.

[21] Y. Peng, Z. Li, C. Gao, B. Gao, D. Lo, and M. Lyu, “HiTyper: A hybrid
static type inference framework with neural prediction,” arXiv preprint
arXiv:2105.03595, 2021.

[22] V. Salis, T. Sotiropoulos, P. Louridas, D. Spinellis, and D. Mitropoulos,
“PyCG: Practical call graph generation in Python,” in ICSE 2021. IEEE,
2021, pp. 1646–1657.

[23] J. Wang, L. Li, and A. Zeller, “Better code, better sharing: on the need
of analyzing jupyter notebooks,” in ICSE-NIER 2020, 2020, pp. 53–56.

[24] J. Wang, T.-Y. KUO, L. Li, and A. Zeller, “Assessing and restoring
reproducibility of jupyter notebooks,” in ASE 2020, 2020, pp. 138–149.

[25] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact
analysis of api breaking changes: A large-scale study,” in SANER 2017.
IEEE, 2017, pp. 138–147.


