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ABSTRACT

One prominent tactic used to keep malicious behavior from being

detected during dynamic test campaigns is logic bombs, where ma-

licious operations are triggered only when specific conditions are

satisfied. Defusing logic bombs remains an unsolved problem in

the literature. In this work, we propose to investigate Suspicious

Hidden Sensitive Operations (SHSOs) as a step towards triaging

logic bombs. To that end, we develop a novel hybrid approach that

combines static analysis and anomaly detection techniques to un-

cover SHSOs, which we predict as likely implementations of logic

bombs. Concretely, Difuzer identifies SHSO entry-points using an

instrumentation engine and an inter-procedural data-flow analysis.

Then, it extracts trigger-specific features to characterize SHSOs and

leverages One-Class SVM to implement an unsupervised learning

model for detecting abnormal triggers.

We evaluate our prototype and show that it yields a precision

of 99.02% to detect SHSOs among which 29.7% are logic bombs.

Difuzer outperforms the state-of-the-art in revealing more logic

bombs while yielding less false positives in about one order of

magnitude less time. All our artifacts are released to the community.

1 INTRODUCTION

Security and privacy in Android have become paramount given its

pervasive use in a wide range of user devices, be it handheld, at

home, or in the office [34]. Yet, regularly, new threats are discovered,

even in the official Google Play app store [18]. Typically, thousands

of apps are regularly flagged by antivirus engines: for the year 2020

alone, the AndroZoo [4] repository has collected over 228 000

apps, among which over 10 000 apps are flagged by at least five

antivirus engines hosted by VirusTotal. Addressing the spread of

malware in appmarkets is therefore a prime concern for researchers

and practitioners. In the last decade, several approaches have been

proposed in the literature to automatemalware identification. These

approaches explore static analysis techniques [24, 25, 37, 58, 85],

dynamic execution [60, 77, 86], or a combination of both [11, 17, 81],

as well as the use of machine-learning [59, 65].

While the aforementioned techniques have been proven effective

on benchmarks, attacks evolve rapidly with increasingly sophisti-

cated evasion techniques. Typically, malware writers rely on code

obfuscation [20] to bypass static analyses. To evade detection dur-

ing dynamic analysis, attackers seek to hide malicious code behind

triggering conditions. These are known as logic bombs, the trigger-
ing conditions of which being varied. For example, a logic bomb

could execute malicious instructions only at a specific time that

is not likely to be reached when market maintainers dynamically

analyze the software before it is distributed.

Logic bombs can be used for any malicious activity such as

adware [22], trojan [61], ransomware [83], spyware [64], etc. [89].

Furthermore, as the trigger and the malicious code are generally

independent of the core application code, logic bombs can easily

be added in legitimate apps and repackaged for distribution [27,

42, 44, 88]. Therefore, detecting logic bombs is of great importance,

especially in mobile devices that carry much personal information.

However, due to the undecidable nature of this detection problem

in general [63], and the fact that dynamic analyses will likely fail

to detect such behaviors [1], analysts explore static-analysis based

heuristic or machine learning approaches to detect logic bombs.

A logic bomb is characterized by the fact that it implements

a hidden sensitive operation. Therefore, recent works addressing

logic bombs have focused on the identification of Hidden Sensitive

Operations (HSOs) as a target [57]. However, not all HSOs are logic

bombs. Indeed, an HSOmay be neither intentional normalicious,

while logic bombs always are. In this work, we propose to identify

Suspicious HSOs (SHSO) towards triaging logic bombs among

HSOs. Indeed, we consider that an SHSO is an HSO that is likely

implementing a logic bomb. Further note that, in this study, we do

not attempt to address a binary classification problem of discrimi-

nating malware from benign apps (e.g., by using logic bombs as a

key criteria of maliciousness). Instead, our ambition is to improve

the detection of logic bombs, which are considered sweet spots

for targeting the understanding of malware’s malicious behaviors.

Indeed, while the literature proposes a variety of approaches for

predicting Android apps’ maliciousness (i.e., malware detection),

the community still seeks to make significant breakthroughs in

the location of malicious code parts. Detecting logic bombs thus

provides an opportunity to locate and characterize malicious code

implemented as hidden sensitive operations.

Recent literature on Android has already approached the prob-

lem of detecting sensitive behavior triggered only when certain

conditions are met. Such triggers are referred hereafter as sensitive
triggers. TriggerScope [26] was proposed as a static analysis tool to
detect logic bombs: its analyses are based on heuristics and are thus

limited to certain trigger types (i.e., time-related, location-related,

and SMS-related triggers). TriggerScope further relies on symbolic

execution, which reduces its capacity to scale to massive datasets.

Unlike TriggerScope,HsoMiner [57] leverages a supervised learn-

ing approach with engineered features to reveal sensitive triggers.

HsoMiner, however, does not specifically target malicious triggers:

it flags up to 20% of apps, which makes it inefficient for isolating

dangerous triggers in the wild; it also takes on average 13 min/app,

which makes it challenging to exploit for large-scale experiments.

HSO triggering conditions are typically implemented by if state-
ments. A given app code, however, may contain from hundreds

to thousands of such conditional statements. Therefore, a major

challenge in the research around HSO is to reduce the search space

for accurately spotting suspicious sensitive triggers. Our core idea
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towards achieving this ambition is to model specific trigger charac-

teristics to spot SHSOs.

In this work, we propose a novel approach to identify suspicious

hidden sensitive operations where we rely on an unsupervised

learning technique to perform anomaly detection. We intend to

detect suspicious triggers deviating from the normality of the myr-

iads of conditional checks performed in typical apps. To do so, we

explore specific trigger/behavior features to guide our detection

system towards enumerating truly suspicious triggers and thus

refine the search space for uncovering logic bombs. We propose

Difuzer, a novel hybrid approach that combines ❶ code instrumen-

tation to insert particular statements required for taint analysis,

❷ inter-procedural static taint analysis to find suspicious sensi-

tive triggers, and ❸ anomaly detection to reveal Suspicious Hidden
Sensitive Operations in Android apps.

While the literature includes work [57] that proposed supervised

learning techniques for detecting HSOs, Difuzer relies on unsu-

pervised learning to spot “abnormal” triggers. Moreover, towards

ensuring that the model is accurate in the detection of suspicious

HSOs, Difuzer leverages features that are specifically-engineered

to capture semantic properties of maliciousness.

The main contributions of our work are as follows:

• We propose Difuzer, a novel approach to detect SHSOs in An-

droid apps. Difuzer combines code instrumentation, static inter-

procedural taint tracking and anomaly detection techniques.

• We evaluate Difuzer and show its ability to reveal SHSOs with

a 99.02% precision in less than 35 seconds on average per app,

outperforming previous approaches.

• We demonstrate that the trigger- and behavior-specific features

of Difuzer are relevant for triaging logic bombs among HSOs:

29.7% of detected SHSOs are indeed confirmed as logic bombs.

• We compare Difuzer against a state of the art logic bomb de-

tector, TriggerScope: Difuzer reveals more logic bombs than

TriggerScope while yielding less false positives.

• We further applied Difuzer on a dataset of “benign” apps from

Google Play. By analysing the yielded SHSOs, Difuzer con-

tributed to suspect 8 adware apps, which Google removed from

Google Play after we have pointed them out.

• We release the Difuzer prototype in open-source and further

make available to the research community the first Android logic

bomb dataset, calledDataBomb: https://github.com/Trustworthy-

Software/Difuzer

2 BACKGROUND AND DEFINITIONS

In this section, we first introduce Taint Analysis and Anomaly De-
tection, two techniques used in our approach. Then, we carefully

define important concepts and finally succinctly give the context

for our study.

Taint analysis: Taint analysis is a dataflow analysis that follows

the flow of specific values within a program. A variable𝑉 is tainted

when it gets a value from specific functions called sources. The taint
is propagated to other variables if they receive a derivation of the

value in 𝑉 . If a tainted variable is used as a parameter of specific

functions called sinks, it means that during execution, the value

derived from a source can be used as a parameter of a sink. In this

paper’s context, we rely on taint analysis to check if the conditional

expression involves sensitive data value(s).

Anomaly detection: When analyzing data of the same class,

several items can significantly differ from the majority. They are

called outliers and can be viewed as abnormal. There are numerous

techniques in the state-of-the-art for achieving this outlier detection

in sets of data [13]. This paper relies on One-Class Support Vector
Machine (OC-SVM) [69], an unsupervised learning algorithm that

learns common behavior based on features extracted in an initial

dataset. Once the model is learned, a prediction is performed by

checking whether a new sample features make it more or less abnor-

mal w.r.t. the common model. In this paper’s context, an anomaly

is computed by considering distances among vectors representing

triggers, i.e., a condition along with the behavior triggered.

Definitions:We define terms that will be used and referred to

throughout the paper. Figure 1 visually depicts our definitions.

(a) Trigger

Definitions 1, 2, 3
(b) Hidden Sensitive Operation

Definition 4, 5
(c) Logic Bomb

Definition 6

if(𝜋 )𝑐 ∈ Σ

Γ =

𝑇𝑐 ∪ Φ𝑐

𝜏

𝑇𝑐 Φ𝑐

if(𝜋 )

[

𝑆 ⊆ 𝑇𝑐 ∨ 𝑆 ⊆ Φ𝑐
Sensitive

Behavior

if(𝜋 )

_

𝑀 ⊆ 𝑆
Malicious

Behavior

Figure 1: Definitions illustrations. The graphs represent the

Control-Flow Graph of the same function.

Definition 1 (Trigger). A trigger is a piece of code that activates

operations under certain conditions. In Figure 1a, the trigger 𝜏

(dashed rectangle) is represented by the condition 𝑐 (rounded rec-

tangle node), the true branch 𝑇𝑐 and the false branch Φ𝑐 . The true
branch𝑇𝑐 represents all the statements (nodes) for which each path

from the entry-point must go through 𝑐 and are executed if and

only if 𝜋 is true. Note that every path from the entry-point to the

hatched node must go through 𝑐 . In other words, 𝑐 strictly domi-

nates the hatched node. However, the hatched node can be executed

if 𝜋 is true or false. Therefore it is not part of 𝑇𝑐 nor Φ𝑐 . The false
branch Φ𝑐 represents all the statements for which each path from

the entry-point must go through 𝑐 and are executed if and only if

𝜋 is false.

More formally, let Σ be the set of statements of a function (nodes

in Fig. 1). Let 𝑐 ∈ Σ be a conditional statement (i.e., an if statement,

rectangle nodes in Fig. 1). Let 𝜋 be 𝑐’s predicate. Let Y be the condi-

tional execution function such as Y (𝜋, 𝜎) is true if 𝜎 ∈ Σ is executed

if and only if 𝜋 is true. Let 𝛿 be the dominator function such as

𝛿 (𝑑, 𝜎) is true if 𝑑 ∈ Σ strictly dominates 𝜎 ∈ Σ, false otherwise.
Let 𝑇𝑐 and Φ𝑐 be the true and the false branch 1

of 𝑐 such as:

𝑇𝑐 = {𝜎 | 𝜎 ∈ Σ ∧ 𝛿 (𝑐, 𝜎) ∧ Y (𝜋, 𝜎)}
Φ𝑐 = {𝜎 | 𝜎 ∈ Σ ∧ 𝛿 (𝑐, 𝜎) ∧ Y (¬𝜋, 𝜎)}

Then, a trigger 𝜏 is defined as a triplet: 𝜏 = (𝑐,𝑇𝑐 ,Φ𝑐 ).

1
Note that in case there is no false branch, Φ𝑐 = ∅.

https://github.com/Trustworthy-Software/Difuzer
https://github.com/Trustworthy-Software/Difuzer
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Definition 2 (Guarded code). Let𝜏 be a trigger such as:𝜏 = (𝑐,𝑇𝑐 ,Φ𝑐 ).
Then, the code guarded by 𝑐 is: Γ = 𝑇𝑐 ∪ Φ𝑐 .
Definition 3 (Trigger entry-point). We define a trigger entry-point

as the condition triggering the guarded code. More formally, given

a trigger 𝜏 = (𝑐,𝑇𝑐 ,Φ𝑐 ), 𝑐 is defined as its entry-point.

Definition 4 (Hidden Sensitive Operation (HSO)). An HSO is a

piece of code that represents a set of instructions, which (1) im-

plement a security-sensitive operation and (2) are only executed

when specific criteria are met (cf. Figure 1b). More formally, let

[ = (𝑐,𝑇𝑐 ,Φ𝑐 ) be a trigger and 𝑆 a piece of sensitive behavior such

as 𝑆 ⊂ Σ. Then, [ is a hidden sensitive operation if 𝑆 ⊆ 𝑇𝑐 ∨ 𝑆 ⊆ Φ𝑐 .
Definition 5 (Suspicious Hidden Sensitive Operation (SHSO)). An

SHSO refers to an HSO that implements a sensitive operation that

appears to be suspicious given the context of the app. For example, a

navigation app may legitimately retrieve user location information

(which is a sensitive operation), while a calculator is suspicious if

it attempts to retrieve such sensitive data.

Definition 6 (Logic bomb). A logic bomb is a piece of malicious

code triggered under specific circumstances. More formally, let

_ = (𝑐,𝑇𝑐 ,Φ𝑐 ) be an SHSO, 𝑆 its sensitive behavior, and𝑀 a piece

of malicious code such as𝑀 ⊂ Σ. Then, _ is a logic bomb if𝑀 ⊆ 𝑆

(cf. Figure 1c). In other words, a logic bomb is an SHSO which

suspicious sensitive behaviour is malicious.

1 // Example simplified for reading, with renamed methods
2 public static void m() {
3 m1();
4 performMaliciousActivity();
5 }
6 public static void m1() {
7 if (m2()){System.exit(0);}
8 }
9 public static boolean m2() {
10 String str1 = Build.MODEL;
11 String str2 = encryptedString(); // str2 = "Emulator"
12 return str1.contains(str2);
13 }
14 public static String encryptedString() {
15 String s1 = "cb6624dec24f889f4fcdf6c8cda99d4a";
16 return BYDecoder.decode(s1, "0ec47edd8db3a02b");
17 }

Listing 1: Logic bomb identified by Difuzer in

"com.flyingbees.BrasilTvEnvivo" with emulator evasion.

In Listing 1, we summarize the general behavior of a concrete

example of a logic bomb extracted from a real-world app. This logic

bomb was detected by Difuzer. In this example, the different parts

of the SHSO (including the triggering condition checks) are split

across several methods (𝑚1,𝑚2,𝑚). The actual triggering condition

check is done in line 3:𝑚2 will return true if the device runs in

an emulator and the app execution will be halted. Otherwise, the

malicious behavior (line 2) will be triggered.

The challenge in detecting the aforementioned logic bomb is

that analysts cannot rely on rules or models to detect it due to

the lack of a formal definition of malicious behavior. Therefore,

we note that, with little coding effort, malware authors could push

malicious code that will bemissed inmost dynamic analyses. Indeed,

sandboxes and testing environments usually return default values

for environment variables [60]. Besides the device’s model, different

environment values (e.g., sensors, settings, GPS, remote values, etc.)

can be used to trigger malicious code.

Comparing to previous works, we note that the presented simple

example of logic bomb detected by Difuzer would constitute

a challenge to the existing state of the art. TriggerScope [26]

cannot identify this logic bomb. Indeed, since its heuristics are

limited to time-, location-, and SMS-related triggers, logic bombs

with a new trigger (e.g., environment variable such as Build
class fields) are missed. HsoMiner [57] could detect this logic

bomb if its training set includes similar examples. Unfortunately,

HsoMiner flags too many HSOs (e.g., ∼20% of apps), making the

manual check a cumbersome task. In contrast, Difuzer offers a

reasonable number of warnings to be checked manually.

3 APPROACH

Goal: With Difuzer, we do not aim at detecting any HSOs, but

only suspicious HSOs (SHSOs) for which the likelihood of being

logic bombs is high.

Intuition: As shown in previous studies [57], the number of HSOs

per app can be large, even in benign apps. This suggests that al-

though HSOs are "sensitive" operations, most of them are legitimate,

i.e., they are used to implement common behavior. In contrast, logic

bombs are rare, especially in benign apps. The idea behind Difuzer

is to use an anomaly detection approach, with specifically designed

features, to triage logic bombs among SHSOs.

Overview: In Figure 2, we present an overview of our approach,

which consists of two main modules: (1) identification of SHSO

entry-point candidates via control flow analysis, instrumentation,

and taint tracking (left dotted block); (2) From these entry-points,

triggers are extracted, and the second module (right dotted block)

extracts specifically designed features fed into an outliers predictor.

This predictor is previously trained on a set of reference apps (i.e.,

apps considered benign) to learn legitimate usages of triggers.

3.1 Identifying SHSO candidate entry-points

Previous works [3, 19, 55, 60, 73] have shown that specific values,

such as system inputs and environments variables, are often used

to trigger HSOs. State-of-the-art approaches have thus proposed

to check whether the conditions of if statements contain these

sensitive data. To that end, they rely on symbolic execution [26]

or backward data-dependency graphs [57] that could suffer from

scalability problems.WithDifuzer, we propose to use taint analysis

to track sensitive data values and check if they are involved in

conditional expressions.

Taint analysis tools generally track data from sources to sinks.

The implementation of FlowDroid, a popular taint analysis frame-

work for tracking sensitive information, considers sources and sinks

at the method level. In our case however, sinks are fine-grained

code locations, which are conditional expressions of if statements.
This requires for Difuzer to instrument apps in order to insert

dummy method calls that will make the apps ready for analysis by

FlowDroid (cf. Section 3.1.2). Moreover, sources can be method

calls or data field accesses. To build the set of source and sinks we

propose to make a systematic mapping (cf. Section 3.1.1) that ex-

plores internal and external system properties and their associated

APIs as well as environment variables.

3.1.1 Systematic mapping toward defining sources. As already ex-

plained, a first step is to track sensitive values. In this work, these
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Figure 2: Overview of the Difuzer approach.

values are derived from particular source methods. Then, if a sensi-

tive value falls into an if statement, we consider the condition as

a potential SHSO entry-point. This section will describe how we

gathered a comprehensive list of source methods used for the taint

tracking phase. Note that we did not rely on the reference sources

list produced by SuSi [5] since it has been shown that most of the

methods are inappropriate for tracking sensitive data, and lead to a

high amount of false-positives (e.g., >80%) [36, 51, 56].

In general, decisions on whether to trigger SHSOs or not are

taken on system properties [19, 57, 71, 73]. Hence, we performed a

systematic mapping of the Android framework from SDK version 3

to 30 (versions 1 and 2 were unavailable) to gather a comprehensive

list of source methods. In particular, since in the case of Android

apps, system properties can be derived from the device’s internal
and external properties, we inspect the successive versions of the
framework to identify various means to access these properties.

Device

Internal External

System Content Build SIM Internet GPS

Examples

Sensors, Call Logs, Model, Phone call, Parameters, Latitude,

Camera Contacts Hardware SMS Content Longitude

Table 1: Examples of sensitive sources

In Table 1, we enumerate the different property types (with ex-

amples) on which we reasoned to retrieve sensitive sources, which

are classically focused on in the literature [19, 57, 71, 73]. We fol-

low a systematic process to perform the retrieval of sources from

the given property types: we first extracted patterns from the dif-

ferent ways to access the aforementioned properties. Then, we

used those patterns to automatically discover the sensitive sources

that we make available to the research community in the Difuzer

project’s repository. In the following, we further detail the internal

and external properties that we consider.

Internal: In the case of internal properties, a developer can get

sensitive information of the device from three main channels: 1)

System properties, 2) Content in internal databases, and 3) Informa-

tion from BUILD class (see Table 1). In the following, we describe

how we obtain a list of sources for those three channels:

❶ System properties: While developing an Android app, developers

have access to several useful APIs. In this case, the most interesting

is android.content.Context.getSystemService(java.lang.-
String) [30] which returns the system-level handler for a given

service. The service is described by a string given as parameter to

getSystemService method. The Context class gives developers

access to pre-defined constants (e.g., SENSOR_SERVICE).
In fact, every constant contains the name of the service with

"_SERVICE" appended to it. The return value type of the getSystem-
Servicemethod call is derived from the constant name (e.g., SENSOR-
SERVICEwill give a SensorManager [33]) which in turn can be used
to get a object whose type is also derived from the constant name

(e.g., a SensorManager object can be used to obtain a Sensor ob-

ject [32]). We used this pattern to compile our list of sensitive

sources for the System properties. More specifically, we verify if

the class exists in at least one SDK version for each class obtained.

If this is the case, we list the methods of the class and keep only the

"getter methods", i.e., those starting by "get" or "is" (e.g., methods

such as getId() or isWifiEnabled()).
❷ Content in internal databases: To access databases fields, one has

to perform a querywhich returns a android.database.Cursor [31]
object. This object is then used to iterate over the result of the query.

Hence, to get sensitive source methods related to content in internal

databases, we applied the same process as for system properties

(i.e., to retrieve the "getter" methods) but on the Cursor class.

❸ Build class: The Build class [29] allows developers to access

information about the current build of the device from its fields.

For instance, one can get the brand associated with the device by

accessing Build.BRAND. Note that our objective is to retrieve a list

of source methods. However, the information a developer can get

from the Build class can only be retrieved from class fields, not

method calls. Consequently, in Section 3.1.2, we will explain how

we instrument the app under analysis to add method call statements

representing Build field accesses.

We gathered a list of 618 unique methods for internal values.

External: In the case of external properties, a developer can get

sensitive information from three channels: 1) SIM card, 2) Internet

Connection, and 3) GPS chip. The process to collect the source

methods is similar to the one followed with Cursor class, except
we do not know in advance the name of the classes to inspect.

Therefore we relied on a heuristic to identify such classes: for each

SDK version, we listed all the classes and kept only those with class

names containing the following words: "Sms, Telephony, Location,

Gps, Internet, and Http". Once the classes were retrieved, we listed

the methods for each class and kept those starting by "get" or "is".

The intuition is the same as in the case of internal sources.
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We gathered a list of 794 unique methods for external values.

Finally, after combining sensitive sources from internal and external

values, our list contains 1285 unique methods (127 duplicates).

3.1.2 Instrumentation. Performing taint tracking, as briefly de-

scribed in Section 2, consists of a data-flow algorithm that propa-

gates the taint from a source method to a sink method.

Sinks related challenge: We remind that one objective of Di-

fuzer is to identify SHSOs’ trigger entry-points. Consequently,

the taints that Difuzer tracks are supposed to fall into if state-
ments. However, being not a method call, an if statement cannot be
considered as a sink when using state-of-the-art static taint analyz-

ers [6, 28, 79]. A concrete example of what Difuzer tracks is given

in Listing 2. On line 7, countryCode variable is tainted from getNet-
workCountryIso() source. This value is then used (line 9) to perform

a test and trigger malicious activity (line 9). As an if statement is
not considered a sink, a flow cannot be found.

1 public void method() {
2 String b = Build.BRAND;
3 + b = BuildClass.getBRAND(); // dummy method call for field access
4 String p = Context.TELEPHONY_SERVICE;
5 Object o = this.getSystemService(p);
6 TelephonyManager tm = (TelephonyManager) o;
7 String countryCode = tm.getNetworkCountryIso();
8 + IfClass.ifMethod(countryCode, "RU"); // dummy method call for if statement
9 if(countryCode.equals("RU")){ performMaliciousActivity(); }
10 }

Listing 2: Example of app instrumentation performed byDi-

fuzer (Lines with ”+” represent added lines).

Our approach overcomes this limitation by instrumenting apps.

To accomplish this, the app code is first transformed into Jimple [76],

the internal representation of Soot [75]. Then,Difuzer iterates over

every condition of the app, and for each condition, Difuzer inserts

a dummy method ifMethod with the variables involved in the

condition as parameters. This ifMethod() is static and declared in

a dummy class IfClass that contains all instrumented methods

related to conditions. See line 8 in Listing 2.

Once the instrumentation is over, we dynamically register every

newly generated method calls as sinks to FlowDroid.

Sources related challenge: As described in Section 3.1.1, we con-

sider, in this study, Build class’ fields as sources. Since field ac-

cesses are not method calls, we follow the same process as for if
statements to insert dummy methods. More specifically, Difuzer

generates a static method call on-the-fly representing a field access

from the Build class. Listing 2 depicts an example of this instru-

mentation process, where the dummy method getBRAND() of the
dummy class BuildClass is inserted in line 3. Furthermore, newly

generated method calls are registered as sources for taint tracking.

3.2 Anomaly detection

This section presents Difuzer’s second module, which relies on

anomaly detection. In particular, we detail the unsupervised ma-

chine learning technique used to detect abnormal triggers.

3.2.1 Why a One-Class SVM?. A classical classification problem re-

quires samples from positive and negative classes to build a model,

which is then used to assign labels to test instances [39]. This in-

duces possessing a reasonable amount of samples from two classes,

which is not the case in our study. Indeed, the SHSO detection

problem is challenging, and to the best of our knowledge, there is

no ground truth made publicly available. Thus, using supervised

learning in our study is not practical and present limited feasibility.

Therefore, we decided to rely on an unsupervised learning tech-

nique to detect SHSOs, particularly on a One-Class Support Vector

Machine (OC-SVM)machine learning technique. An SVM algorithm

was chosen due to its ability to generalize [78] and its resistance

to over-fitting [80]. The general idea of OC-SVM is to identify the

smallest hyper-sphere to include most of the samples of the positive

samples [84]. A sample considered as an outlier by the model means

the data-point is not in the hyper-sphere.

3.2.2 Features extraction. As already said, the second Difuzer

module’s objective is to detect abnormal triggers with the intuition

that these triggers are HSOs for which the likelihood to be a logic

bomb is high, namely SHSOs. This module implements an OC-SVM

algorithm which takes as input feature vectors computed from the

triggers previously extracted from the entry-points yielded by the

first module of Difuzer (cf. Figure 2).

To engineer anomaly detection features, we reviewed surveys [47,

89] and related-papers [2, 57, 62, 87] discussing Android malware

and investigated the techniques used by malware writers to hide

malicious code within apps. Eventually, we identified nine unique

trigger/behavior features that are described in the following.

In the remainder of this section, we consider a trigger 𝜏 =

(𝑐,𝑇𝑐 ,Φ𝑐 ) and its guarded code Γ = 𝑇𝑐 ∪ Φ𝑐 (cf. Section 2).

Difuzer builds a feature vector 𝑣 =< 𝑆, 𝑁 , 𝐷, 𝑅, 𝐵, 𝑃,𝑀1, 𝑆1, 𝐽 >

for a given trigger where:

S: Number of sensitive methods used in guarded code. In-

tuitively, this feature represents how much a trigger controls the

execution of sensitivemethods. Indeed, while HSOs guard the execu-

tion of sensitive operations for performing sensitive activities [25],

benign triggers, in the general case, perform benign activities, i.e.,

invoke few sensitive methods, or not at all. To retrieve this value,

Difuzer iterates over every statement of Γ and recursively checks

whether a sensitive method is called or not. For this purpose, we

gathered a list of sensitive APIs constructed in previous work [7].

N: Is native code used in guarded code? Since analyzing native

code is more challenging than Java bytecode [46], Android malware

developers tend to hide malicious code from automated analyses

in native code [2, 62]. Hence, this feature is a boolean value that,

when set to 1, means native code is used in Γ, 0 otherwise.
D: Is dynamic loading used in guarded code? Dynamic class

loading is not exclusively used in malware. However, as malware is

becoming increasingly sophisticated, they use built-in capabilities

like dynamic loading to hide from automated analyses [87]. Conse-

quently, likewise native code, this feature is a boolean value set to

1 if dynamic loading is used in Γ, 0 otherwise.
R: Is reflection used in guarded code? Android malware writers

tend to use more and more reflection-based code [87] since most of

the state-of-the-art techniques overlook this property due to the

challenging task of resolving it. Therefore, this feature is set to 1 if

reflection is used in Γ, 0 otherwise.
B:Does guarded code trigger background tasks? Android apps

rely on the Service component to run background tasks. Hence,

with this feature, we aim at capturing the fact that the app under

analysis performs stealthy operations without user knowledge. The

intuition here is that SHSOs’ role is to hide code both from security
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analysts and end-users (e.g., in the case of a logic bomb). This feature

is set to 1 if background services are triggered in Γ, 0 otherwise.
P: Are parameters of condition used in guarded code? This

feature captures the dependency of a condition to its guarded code.

The hypothesis is that, in the case of SHSOs, the guarded code does

not use values used in the condition since they represent different

behaviors. To achieve this, Difuzer performs a def-use analysis

of the guarded code to verify if any variable used in the condition

is used before being assigned a new value. If this is the case, the

feature is set to 1, 0 otherwise.

M1: Number of app methods called only in guarded code.

With this attribute, we attempt to uncover the number of methods

defined in the app called only in the guarded code of a trigger. The

rationale is that app methods that are only used under a specific

circumstance are likely to be defined only for this specific circum-

stance, representing hidden behavior [26]. To retrieve this number,

Difuzer queries the call-graph (built using SPARK [40] algorithm)

for each method call in the guarded code to verify if it has only one

incoming edge (i.e., it is only called within the current method).

S1: Number of sensitivemethods called only in guarded code.

In the same way as M1, we aim to capture the number of sensitive

methods only used in the guarded code of a given trigger.

J: Behavior difference between branches. Intuitively, two bran-

ches of an SHSO should be noticeably different. Indeed, of the

two branches, one is considered the normal behavior (no or few

sensitive operations) if the condition is not satisfied and the other

as the sensitive behavior (sensitive operations) if the condition

is satisfied [57]. Therefore, to compute this difference, Difuzer

first inter-procedurally retrieves sensitive method calls in both

branches of a given trigger. Let𝑋𝑇𝑐 and𝑋Φ𝑐
respectively be the sets

of sensitive methods in the true and the false branch of a trigger.

Therefore, to compute this difference of the two branches, Difuzer

relies on the Jaccard distance: 𝐷 𝑗 (𝑋𝑇𝑐 , 𝑋Φ𝑐
) = 1− |𝑋𝑇𝑐 ∩𝑋Φ𝑐 |

|𝑋𝑇𝑐 ∪𝑋Φ𝑐 |
, which

characterizes the behavior difference of the two branches. A value

close to 1 means that both branches are dissimilar.

3.2.3 Training phase. To train our OC-SVM model, we need sam-

ples of a positive set, i.e., triggers considered normal. Therefore,

we randomly chose 10 000 goodware (i.e., VirusToal [74] score =

0) from AndroZoo [4]. Then, for each of these apps, we applied

Difuzer to extract a feature vector for each app’s condition.

Afterward, we randomly chose 10 000 feature vectors
2
from

those yielded by Difuzer, which we labeled as positive (i.e., part of

the normal behavior). We then trained our One-Class Classification

based anomaly detector, leveraging LibSVM [14]. To ensure that

the selected training set does not bias the trained model’s perfor-

mance, we split it and compute Accuracy in 10-fold cross-validation.

Overall, we achieve a stable Accuracy of 99.91% on average.

4 EVALUATION

To evaluate Difuzer, we address the following research questions:

RQ1:What is the performance of Difuzer for detecting Suspicious

Hidden Sensitive Operations (SHSOs) in Android apps?

2
The number of extracted vectors is orders of magnitude higher. However, for efficiency,

we validated that a random set of 10 000 vectors yields an acceptable performance.

RQ2: Can Difuzer be used to detect logic bombs? We address this

question by considering three sub-questions:

• RQ2.a: Are SHSOs detected by Difuzer likely logic bombs?

• RQ2.b: How does Difuzer compare against TriggerScope,

a state of the art logic bomb detector?

• RQ2.c: From a qualitative point of view, does Difuzer lead

to the detection of non-trivial triggers/logic bombs?

RQ3: Can SHSO detection in goodware reveal suspicious behavior?

4.1 RQ1: Suspicious Hidden Sensitive

Operations in the wild

In this section, we assess the efficiency of Difuzer to find SHSOs

on a dataset of malicious applications.

Dataset. To the best of our knowledge, there is no SHSO ground-

truth available in the literature. Consequently, in this study, we

considered 10 000 malicious Android apps as our malicious dataset.

These apps were released in 2020, collected from the AndroZoo [4]

repository, and have been flagged as malware by at least five an-

tivirus scanners in VirusTotal.

We contacted the authors of state of the art approaches (e.g.,

HsoMiner [57], and TriggerScope [26]) to get their artifacts (data-

sets and tools) for comparative assessment. Unfortunately, no arti-

fact was made available to us.

Libraries. It has been shown in the literature [15, 45] that library

code can affect analyses performed over Android apps since it often

accounts for a larger part than the app’s core code. Consequently,

in this study, we considered two cases: (1) with-lib analysis (i.e., we

consider the entire app code including library code); (2) without-lib

analysis (i.e., we consider only developer code). To rule out libraries,

we rely on the state-of-the-art list available in [45].

Post-Filter. As a precaution, before analyzing the results without

libs, we listed the classes in whichDifuzer found potential sensitive

triggers to search for redundant classes that could indicate libraries.

We were able to filter out 19 additional libraries that were not listed

in the list we used and provided by [45].

In the following, when referring to the analysis without libraries,

we consider the 19 libraries previously presented as well as the

libraries of the list in [45] as filtered. It accounts for a total of 5982

library classes and packages filtered.

4.1.1 Efficiency of Detecting SHSOs. We recall that Difuzer is

targeted at detecting SHSOs. While in RQ2 we investigate the like-

lihood for these SHSOs to be logic bombs, we first investigate the

efficiency (with RQ1) of Difuzer in the detection of SHSOs. We

further perform an ablation study to highlight the performance of

the anomaly detection module.

In Table 2, we report the results of applying Difuzer (with the

anomaly detection step activated) on our 10 000 malware dataset.

When analyzing the entire apps, Difuzer detects at least one SHSO

in 339 apps (3.39%). Overall, Difuzer detects 5575 SHSOs in these

339 apps leading to an average number of 16.4 SHSOs per app. In

comparison, when only the app developers’ code is considered,

Difuzer detects at least one SHSO in 259 apps (2.59%), with a total

number of 2435 SHSOs detected and an average number of 8.2

SHSOs per app. We note that the 3437 (5575-2435) SHSOs that are

not in the app developer code, are actually detected in 68 libraries
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suggesting that only a few libraries contain SHSOs . Figure 3 further

details the distribution of detected SHSOs per apps.

0 10 20 30 40 50 60

With 
libraries

Without 
libraries

Figure 3: Distribution of the number of SHSO(s) per app in

analyses with and without libraries (only apps with at least

one SHSO are considered).

These first results show that SHSOs indeed exist in malicious apps,
but in relatively low number (in around 3% of the apps). However,
when SHSOs are present in an app, they are not rare (on average,
about 8 SHSOs per app in the developer code). Finally, SHSOs are more
prevalent in library code than in app developer code, but only a few
libraries contain SHSOs.

Table 2 also reports the average numbers of triggers before and

after applying the anomaly detection step (i.e., the second module

of Difuzer). Interestingly, we can see that this anomaly detection

drastically reduces the number of triggers that are considered as

SHSOs. Indeed, when considering the 10 000 apps, there are on

average 174336/10000 ≈ 17.43 and 146018/10000 ≈ 14.60 triggers

per apps (with or without libraries respectively) generated by the

first module of Difuzer, i.e., by the taint analysis step. After the

anomaly detection step, these numbers drop to 5575/10000 ≈ 0.56

and 2435/10000 ≈ 0.24 respectively, corresponding to a decrease of

96% and 98% respectively.

These results show that the anomaly detection step has a significant
impact on the number of detected SHSOs by significantly reducing the
search space of triggers by up to 98%. This search space reduction is
key when the ultimate goal is to detect malicious code and to support
security analysts manual inspection (cf. Section 4.2).

Table 2: Results of the experiments executed on 10 000 mal-

ware with and without taking into account libraries.

Analysis with libs Analysis without libs

Number of apps with SHSO(s) 339 259

Number of SHSOs 5575 2435

Number of SHSOs/app 16.4 8.2

Average # triggers (i.e., before Anomaly detection) 17.43 14.60

Average # SHSOs (i.e., after Anomaly detection) 0.56 0.24

Mean analysis time 35.63 s 33.54 s

We further inspect the SHSOs detected by Difuzer by focusing

on the app developer code only (we do not consider library code).

Table 3 lists the top 10 types of trigger that Difuzer was able to

discover. The second column gives some examples of methods con-

sidered sources for the taint tracking to uncover SHSO entry-points.

We note the diversity of types of triggers that developers use. For

instance, a developer can decide to trigger (or not) the sensitive code

if: (Database trigger type) specific values are present in databases

(e.g., contacts, messages); (Internet trigger type) external orders say

so; (Build, Telephony, and Camera trigger types) the device is not

an emulator; (Connectivity, and Wi-Fi trigger types) the device has

Internet access; (Location rigger type) the user is in a pre-defined

location; Note that the methods in Row 3 have been dynamically

generated by Difuzer during instrumentation to track the Build

class’s field values.

Table 3: Top ten trigger types discovered by Difuzer in the

developer code. (T. = Triggers)

Trigger Type Examples of methods # T. Trigger Type Examples of methods # T.

Database getString, getInt, getCount 785 Location getLastKnownLocation, getLongitude 84

Internet getResponseCode, getResponseMessage 715 Wi-Fi isWifiEnabled, getConnectionInfo 76

Build getMODEL, getMANUFACTURER 374 Power isScreenOn, isInteractive 47

Telephony getDeviceId, getNetworkOperatorName 97 Audio getStreamVolume, isMusicActive 37

Connectivity getActiveNetworkInfo, getNetworkInfo 88 Camera getCameraIdList 28

Regarding the component types in which Difuzer found SHSOs,

90% of SHSOs are in methods of "normal" classes, i.e., not An-

droid components. SHSOs are found in Activities in 9% of the

cases. However, they are rarely found in Services and Broadcast
Receivers (less than 1%).

4.1.2 Manual Analyses. Since static analysis approaches often suf-

fer from false alarm issues, i.e., they report a large proportion of

false-positive results, we decided to verify the detection capabili-

ties of Difuzer manually. To that end, the authors of this paper

randomly selected a statistically significant sample of 102 apps out

of the 259 apps in which SHSOs exist in developer code, with a

confidence level of 99% and a confidence interval of ± 10%. Only one

sample was found to be a false-positive result. Indeed this app veri-

fies if it is running in an emulator by comparing Build.PRODUCT,
Build.MODEL, Build.MANUFACTURER, and Build.HARDWARE against
well-known strings such as "generic", "Emulator", "google_sdk", etc.

This test seems sensitive, but the guarded code displays the fol-

lowing message to the user: "Scooper Warning: App is running

on emulator.". Therefore, Difuzer achieves a precision of 99.02 %

to find Suspicious Hidden Sensitive Operations on this dataset. We

release the annotated list of 102 apps that were manually checked

for transparency in the project’s repository.

4.1.3 Analysis Time. The last row in Table 2 reports Difuzer anal-

ysis time. Difuzer outperforms state-of-the-art trigger detectors

with an average of 33.54 s per app (35.63 s for the analysis with

libraries, with an average DEX size of 7.03 MB per app), making

Difuzer suitable for large-scale analyses. In comparison, state-

of-the-art tools such as TriggerScope [25] and HsoMiner [57])

require 219.21 s and 765.3 s per app respectively. Note that 85.42%

(i.e., 28.65 seconds on average) of this time is reserved for the taint

analysis. Also, 24 apps (0.24%) reached the timeout (i.e., 1 hour)

before the end of the analysis.

RQ1 answer: Difuzer detects SHSOs in Android malware with

high precision, i.e., 99.02 % in less than 35 seconds on average.

Among the average 14.6 HSOs identified in an app based on trig-

gers spotted by static taint analysis, only 2% are suspicious accord-

ing to anomaly detection, which shows that Difuzer is effective

in reducing the search space for manual analysis.

4.2 RQ2: Can Difuzer detect logic bombs?

In this section, we ❶ evaluate Difuzer’s efficiency in detecting

logic bombs (RQ2.a), ❷ compare it against TriggerScope (RQ2.b),

and ❸ discuss logic bomb use cases in real-world apps (RQ2.c).

4.2.1 RQ2.a: Are SHSOs detected likely to be logic bombs? x

Until now, we have shown that Difuzer is effective in detecting

SHSOs. From a security perspective, however, wemust further show

that these SHSOs are actually malicious. In other words, are these

SHSOs likely to be logic bombs. Unfortunately, such assessment is
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challenged by the lack of ground truth in the literature.We therefore

require extra manual analysis effort of reported results.

Initial Manual Analysis: In previous Section 4.1.2, we present

our manual analysis of SHSOs detected in 102 apps. During this

analysis, we further checked if the detected SHSOs contain mali-

cious code. In particular, for each app under analysis, we gathered

information about the reason it was flagged by antiviruses (e.g.,

on VirusTotal). Then, in the guarded code of the potential SHSO

found by Difuzer, we looked for malicious behavior matching

our information previously gathered. For instance, if: (1) an app

is labeled as being a trojan stealing the device’s information; (2)

the potential SHSO is performing emulator detection (e.g., calling

System.exit() method if the device is running in an emulator);

and (3) the behavior exhibited in the code guarded by the condition

detected by Difuzer is gathering the device’s information (e.g.,

unique identifier, current location, etc.) and sending it outside the

device, the SHSO is considered a logic bomb.

Eventually, 30 apps (i.e., 29.7%) were manually confirmed to be

logic bombs, i.e., the SHSOs were triggering malicious code.

Semi-Automated further Analysis: Manual investigation is

time-consuming. This is the reason why we inspected 102 apps

and not all 259 apps reported to having at least one SHSOs within

the developer code parts. To quickly enlarge the set of identified

logic bombs, we decided to follow a simple but efficient process. It

is known that malicious developers often reuse the same piece of

code in different apps [47]. Therefore, for each already identified

logic bomb, we search for similarities (i.e., SHSOs found in the same

class name, same method name, and the same type of trigger used)

in SHSOs contained in the 157 (259 − 102) remaining apps. Our

analysis yielded 16 additional apps containing logic bombs that

were manually verified and confirmed. Eventually, our logic bomb

dataset, called DataBomb, contains 46 Android apps, each with an

identified logic bomb. We believe this dataset to be useful to the

community to further improve logic bomb detection in Android

apps. We made it publicly available in the project’s repository.

Discussion about HSO, SHSO and Logic Bomb: In the liter-

ature [26, 57], HSO is consistently defined as a sensitive operation

that is hidden by specific triggering conditions. Nevertheless, the

notion of “sensitive operation” is not clearly delineated, which chal-

lenges comparison across approaches. In our work, we postulate

that while detecting HSOs is an important first step, it is not enough

to help security analysts. Indeed, as shown by our manual analysis,

a large proportion of HSOs are indeed sensitive but not necessarily

suspicious. As a result, most of the detected HSOs are legitimate

and do not require any inspection effort from security analysts.

In this context, if the goal is to detect real security issues and re-

duce the burden of security analysts, a tool such as HsoMiner [57]

which detects HSOs in 18.7% of apps within a set of over 300 000

apps (including malicious and benign apps) appears to be unprac-

tical. In contrast, Difuzer detects suspicious HSOs in 3.39% of the

analyzed apps (when libraries are considered), and our manual anal-

yses confirm that in about 30% of the apps, these SHSOs are logic

bombs, making the work of security analysts easier. Though both

HsoMiner dataset and our dataset are different (we were not able

to get the HsoMiner’s authors dataset), if we compare the 18.7% of

apps with HSOs reported byHsoMiner, with the 3.39% reported by

Difuzer, we can say that Difuzer reduces the search space by up

to 81.9% ((18.7− 3.39) × 100

18.7 = 81.9) to accelerate the identification

of logic bombs.

RQ2.a answer: By triaging HSOs to focus on suspicious ones

based on anomaly detection, Difuzer was able to reveal 30 logic

bomb instances in a sampled subset of malware apps having

SHSOs. Besides, we release DataBomb, an annotated dataset of

46 Android apps confirmed to be using logic bombs.

4.2.2 RQ2.b: How does Difuzer compare against TriggerScope, a

state of the art logic bomb detector? x

In the absence of a public ground-truth for Android logic bomb

instances, we perform experimental comparisons against the Trig-

gerScope state-of-the-art detector in the literature that relies on

static analysis. Although TriggerScope is not publicly available,

we are able to build on a replication based on technical details

provided in TriggerScope paper [26].

Overall, our approach differs from TriggerScope’s by three

major differences: ❶ Technique: TriggerScope uses symbolic ex-

ecution to tag variables with a limited number of values, we use

static data flow analysis; ❷ Target: TriggerScope detects hidden

sensitive operations (i.e., whether at least one sensitive method is

called within the guarded code of a trigger), whereas Difuzer ’s

goal is to detect suspicious hidden sensitive operations (i.e., the

guarded code is sensitive and implements an abnormal behavior);

and ❸ Approach: TriggerScopemaintains a list of sensitive meth-

ods and uses the occurrence of any of them as the sole criterion,

Difuzer implements an anomaly detection scheme where the pres-

ence of sensitive methods is one feature among many others. While

TriggerScope and Difuzer both rely on list of sources to find

triggers of interest, TriggerScope handpicks a limited set of meth-

ods, whereas Difuzer ’s list is based on a systematic mapping (cf.

Section 3.1.1 - we leverage patterns to systematically search for

sources).

DoesTriggerScope identify as logic bombs the SHSOs flagged

by Difuzer?

We applied TriggerScope on the subset of 102 apps where Di-

fuzer identified a SHSO (cf. Section 4.2.1). The objective is to check

whether TriggerScope is more or less accurate than Difuzer. Typ-

ically, among the 30 logic bombs that have been manually verified

as true positives, how many are detected by TriggerScope. Sim-

ilarly, does TriggerScope detect logic bombs (manually verified

as true positives) that Difuzer could not. Figure 4 illustrates the

differences in logic bomb detection (left figure). Overall:

• TriggerScope did not flag any logic bomb that Difuzer did not.

• TriggerScope could only detect 2 logic bombs among the 30

logic bombs that Difuzer correctly identified.

• As reported in the literature [67], TriggerScope exhibits a very

high false positive rate at 94.6%: 35 among its 37 detections are

false positives (the rate for Difuzer is 70.6%, 72/102).

Does Difuzer fail to flag as SHSOs the logic bombs detected

by TriggerScope?

We recall that, contrary to Difuzer, which builds on anomaly

detection, TriggerScope is restricted to detect only logic bombs

where the trigger involves location-, time-, and SMS-related prop-

erties. Aligning with the assessment of Difuzer, we applied Trig-

gerScope on our set of 10 000 malware. TriggerScope reported
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591 logic bombs in 149 apps (∼4/app): 98.6% of the reported cases

are time-related. In the absence of ground truth, we again propose

to manually verify a random sample set of reported logic bombs. To

facilitate comparison with Difuzer, we sample 102 apps (we simply

considered the same number of apps as in the previous question),

and manually confirmed that for 97 (95.1%) apps, the reported logic

bombs are false positives. In 5 (4.9%) apps, we found at least one

reported logic bomb to be a true positive.

We further check whether on these 102 apps where Trigger-

Scope reported a logic bomb, Difuzer also flags any case of SHSO:

Difuzer flagged 68 apps as containing SHSOs, among which 7 are

manually confirmed to be logic bombs. The details of the compari-

son between TriggerScope and Difuzer are presented in the Venn

Diagram in Figure 4 (right figure). We note that:

• 2 logic bombs are detected by both Difuzer and TriggerScope.

• 5 SHSOs detected by Difuzer are actual logic bombs, but not

detected by TriggerScope. Indeed, TriggerScope is limited by

its focus on time, location and SMS-related triggers.

• 3 logic bombs are detected by TriggerScope, but not detected

by Difuzer. Our prototype implementation considers a limited

list of sources, which do not cover those 3 logic bomb cases.

Although we do not have a complete ground truth (with infor-

mation about all cases of logic bombs), confirming and comparing

detection reports by Difuzer and TriggerScope offers an alter-

native to assess to what extent each may be missing some logic

bombs. The results described above suggest that Difuzer suffers

significantly less from false-negative results than TriggerScope.
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Figure 4: Venn Diagram representing results of Trigger-

Scope and Difuzer on 102 apps originally detected by Di-

fuzer on the left, andTriggerScope on the right. (FP = False

Positive, TP = True Positive)

RQ2.b answer: Overall, Difuzer outperforms TriggerScope by

detecting more logic bombs more accurately (wrt. false positives),

and by missing less logic bombs (wrt. false negatives).

4.2.3 RQ2.c: From a qualitative point of view, does Difuzer lead to

the detection of non-trivial triggers/logic bombs? x

In this section, we discuss two real-world apps in which Difuzer

revealed logic bombs that cannot be detected by TriggerScope.

Advertisement Triggering.Difuzer revealed an interesting logic

bomb in "com.walkthrough.knife.assassin.hunter.baoer" app which

is an adware app of theHiddenAd family. The app uses the android.-
app.job.JobService class of the Android framework to schedule

the execution of jobs (the developer can handle the code of the

job in onStartJob method). In the onStartJob method, the app

takes advantage of the PowerManager of the Android framework to

check if the device is in an interactive state (i.e., the user is probably

using the device) with method isScreenOn(). If this is the case,
the app displays advertisements to the user and schedules the same

class’s execution after a certain time.

Data Stealer. Logic bombs can also be used to trigger data theft

under the condition that the data is available. For instance, in app

"com.magic.clmanager", which is a Trojan (hidden behind a clean-

ing app) capable of stealing data on the device, Difuzer found a

logic bomb related to the device unique identifier. Indeed, in method

d(Context c) of the class c.gdf, a check is performed against the

value returned by method getDeviceId() to verify if the value

matches specific values (emulator detection) in a given file named

"invalid-imei.idx". In the case the app considers that the device is

not an emulator, it triggers the stealing of sensitive information

about the device such as the current location, phone number, in-

formation on the camera, information about the Bluetooth, disk

space left, whether the device is rooted or not, the current country,

the brand, the model, information about the Wi-Fi, etc. Afterward,

this information is written in a file and sent to a native method for

further processing.

4.3 RQ3: SHSOs in benign apps

Until now, we have focused on malware. However, SHSOs are not

exclusively found in malicious apps [57]. Therefore, in this section,

we intend to conduct a study on benign applications.

Results. As confirmed in Section 4.1.1 and in previous stud-

ies [26, 57], benign libraries and benign Android apps implement

HSOs. Our study confirms this finding. Even more, 354 benign apps

(3.54%) were flagged by Difuzer to contain suspicious HSOs. We

further manually analyzed 20 apps randomly selected from our re-

sults and confirmed that they all contain at least one SHSO. Table 4

shows the different trigger types used in benign apps to trigger

SHSOs. A significant result here is that benign apps use consid-

erably less the "Build" trigger type (see Table 3 for comparison)

than malicious apps. Similarly, the "Telephony" trigger type is less

used in benign apps than in malicious apps. This induces that, in

benign apps, decisions are less taken depending on values derived

from methods like: getDeviceId(), getNetworkOperatorName(),
getPhoneType(), getMODEL(), getMANUFACTURER(), or get-
FINGERPRINT(). A hypothesis would be that benign apps are less

prone to recognize an emulator environment (and use this informa-

tion to set triggering conditions).

Table 4: Top ten trigger types used by benign Android apps.

Database Internet Location Connectivity Audio Telephony Wi-Fi View Activity Build

897 283 264 74 63 58 25 21 19 19

Besides, we can see in Figure 5 that, in comparisonwithmalicious

apps, benign apps tend to have significantly fewer triggers per app.

0 5 10 15 20 25

Malware

Goodware

Figure 5: Distribution of the number of SHSO(s)/app in good-

ware and malware (apps with at least 1 SHSO are considered).
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4.3.1 Case Study. This section presents an SHSO of a benign app.

Benign App. The app we consider in this case study is "no.apps.dn-

bnor".Difuzer detected an SHSO inmethod <bom.
∮
: java.lang.-

String · · ··()> which tests if the value of Build.CPU_ABI or

Build.CPU_ABI2 is equal to pre-defined values stored in a file. In

the case a match is found, it triggers the copy of a native code file

into a second file. The native code file name is in the form: "lib/"

+ str + "/lib" + f9 + ".so". The str variable represents a CPU_ABI
value and the f9 variable represents a string to designate the file.
This file is then opened and eventually copied in the user data

directory of the running app.

Although not malicious in this case, this behavior is suspicious,

and Difuzer was able to reveal it.

4.3.2 Malicious activities in Google Play. We now illustrate how

Difuzer contributed to removing 8 apps whose behavior was po-

tentially harmful to users (in the form of aggressive, unsolicited,

and intrusive ads) in Google Play. Developers of such adware apps
managed to evade classical checks performed in Google Play.

During our manual analyses of benign apps, we stumbled upon

an app with an SHSO flagged by Difuzer. Our inspection of the

code suggested that the SHSO is not a logic bomb per se since it

does not trigger the malicious code. However, during this manual

analysis, we noticed that the app was apparently mainly designed to

display advertising content aggressively. To confirm our hypothesis,

we downloaded the sample and executed it in an emulator. First,

we noticed poor app design, poor quality, and low content. Then

in nearly every screen (i.e., Activity component), we received

embedded ads and full-screen ads. This behavior is characteristic

of adware apps. After verification, we found that the app was still

in Google Play with a relatively high number of downloads (a few

thousands) but with negative comments. In fact, the app pretended

to provide users with a "walkthrough" version of an existing game

to display a profusion of ads on each screen.

We then search in our analyzed apps if Difuzer detected similar

SHSOs. Eventually, Difuzer detected three apps with the exact

same SHSO and the exact same service proposed to the user (walk-

through games). We tested these apps to confirm they were adware.

They were also still in Google Play.

We then checked if similar "walkthrough games" were also still

in Google Play and not in our initial dataset. Therefore, we searched

for apps made by the same developers of the three previous apps

detected by Difuzer. We also searched for "walkthrough games"

in Google Play and browsed the resulting apps. We inspected the

newly collected apps and confirmed they were adware apps. Even-

tually, we identified 8 apps with the same adware behavior.

We contacted Google to report these 8 apps. They were removed

in less than two weeks from Google Play. We make available the

samples in the project’s repository.

RQ3 answer: Our experiments show that SHSOs are present in

benign apps and in widely-used libraries. We have seen through

real-world examples that Difuzer can reveal potentially harmful

applications (PHA) and raise alarms concerning some apps’ po-

tential maliciousness. Overall, Difuzer contributed to removing

8 adware apps from Google Play.

5 LIMITATIONS AND THREATS TO VALIDITY

An essential step in our approach is the identification of SHSOs

entry-points. To do so, Difuzer relies on state-of-the-art tool Flow-

Droid [6]. Therefore, it carries the analysis limitations of Flow-

Droid, i.e., unsoundness regarding reflective calls [43], dynamic

loading [82], multi-threading [53] and native calls [48].

Although our approach proved to be efficient to detect SHSOs

and logic bombs, feature selection can impact the performances.

Indeed, feature engineering is a challenging task and can be prone

to unsatisfactory selection since it does not capture everything.
Besides, our approach is based on SHSO entry-points detection

using taint analysis, which relies on sources and sinks methods.

Sinks are not an issue in our approach since they always represent

if conditions. However, sources selection is at risk since they have

been selected systematically, using heuristics and human intuitions.

Therefore, our list of sources might not be complete.

Although, we have implemented TriggerScope by strictly fol-

lowing the description in the original paper, our implementation

might not be exempt from errors.

In the absence of a-priori ground truth, some of our assessment

activities rely onmanual analysis based on our own expertise.While

we follow a consistent process (e.g., we carefully verify the hidden

behaviour implementation against the antivirus report), our con-

clusions remain affected by human subjectivity. Nevertheless, we

mitigate the threat to validity by sharing all our artefacts to the

research community for further exploitation and verification.

6 RELATEDWORK

Logic bombs in general. Hidden code triggered under specific

conditions is a concern in many programming environments. The

literature includes studies of the logic bomb phenomenon in pro-

gramming prior to the Android era [11, 16] and targeting the Win-

dows platform for example. Since then, various approaches have

been proposed to tackle the challenging task of trigger-based be-

havior detection [9, 35, 38, 49, 70]. State-of-the-art techniques for

the detection of trigger-based behaviour are varied and leverage

fully-static analyses [26, 58, 85], dynamic analyses [86], hybrid

analyses [10, 11], and machine-learning-based analyses [57].

Trigger-based behavior detection for Android Difuzer com-

bines static taint analysis and unsupervised machine learning tech-

niques. Our closest related work is thus HsoMiner [57], which

relies on static analysis and automatic classification to detect HSOs.
Contrary to our work, however, HsoMiner is not targeting suspi-

cious HSOs and therefore does not focus on logic bombs.

Fratantonio et al. [26] proposed TriggerScope, an automated

static-analysis tool that can detect logic bombs in Android apps.

TriggerScope leverages a symbolic execution engine to model

specific values (i.e., SMS-, time-, location-related variables). Trig-

gerScope models conditions using predicate recovery. It combines

symbolic execution results and path predicate recovery results to in-

fer suspicious triggers. Finally, potential suspicious triggers undergo

a control dependency step to verify if it guards sensitive operations.

Nevertheless, the whole approach relies on static analysis to check

defined properties of suspiciousness. In contrast, Difuzer takes

advantage of unsupervised learning to discover abnormal (hence

suspicious) trigger-based behavior.
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Anomaly detection for security.We note that the idea of using

anomaly detection to detect malware has been presented in the

Avdiienko et al.’s paper [8]. Indeed, they present MudFlow that

relies on anomaly detection to spot malware for which sensitive

data flows deviate from benign data flows. It proved to be efficient

by detecting more than 86% malware. While our approach is also

based on anomaly detection to triage abnormal triggers (i.e., suspi-
cious sensitive behavior) that deviate from normality (i.e., normal

triggers/conditions), the end goal of both approaches is different.

Indeed, MudFlow addresses a binary classification problem to dis-

criminate malware from goodware. In contrast, Difuzer addresses

the problem of detecting and locating Suspicious Hidden Sensitive
Operations that are likely to be logic bombs in Android apps.

Malicious behavior detection in Android apps. Malware de-

tection does not only focus on trigger-based malicious behavior.

Indeed, the Android security research community worked on tack-

ling general security aspects [12, 50, 52, 72, 89]. In the literature,

numerous approaches have been proposed to detect Android hostile

activities. Among which, machine-learning techniques [66], deep-

learning techniques [54], static analyses through semantic-based

detection [23], privacy leaks detection [6, 41, 68], as well as dynamic

analyses[21, 60, 77]. Each of these approaches tackles a particular

aspect of Android security. Therefore, analysts could combine our

approach with the aforementioned techniques to detect a wide

variety of Android malicious behavior more efficiently.

7 CONCLUSION

We proposed Difuzer, a novel approach for detecting Suspicious
Hidden Sensitive Operations in Android apps. Difuzer combines

bytecode instrumentation, static inter-procedural taint tracking,

and anomaly detection for addressing the challenge of accurately

spotting relevant SHSOs, which are likely logic bombs. After empiri-

cally showing that our prototype implementation can detect SHSOs

with high precision (i.e., 99.02 %) in less than 35 seconds per app,

we assessed its capabilities to reveal logic bombs and demonstrate

that up to 30% of detected SHSOs were logic bombs. We there-

fore improve over the performance of the current state of the art,

notably TriggerScope, which yields significantly more false posi-

tives, while detecting less logic bombs. Finally, we apply Difuzer

on goodware to investigate potential SHSOs: Difuzer eventually

contributed to removing 8 new adware apps from Google Play.

8 DATA AVAILABILITY

For the sake of Open Science, we provide to the community all

the artifacts used in our study. In particular, we make available the

datasets used during our experimentations, the source code of our

prototype, the executable used for our experiments, the annotated

list of our manual analyses, and a dataset of logic bombs.

The project’s repository including all artefacts (tool, datasets,

etc.) is available at:

https://github.com/Trustworthy-Software/Difuzer
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