
ar
X

iv
:2

10
3.

11
66

8v
1

 [
cs

.S
E

]
 2

2
M

ar
 2

02
1

Checking App Behavior Against App Descriptions:
What If There are No App Descriptions?

Md. Shamsujjoha†, John Grundy†, Li Li†, Hourieh Khalajzadeh†, and Qinghua Lu‡
† Department of Software Systems and Cybersecurity, Faculty of Information Technology, Monash University, Australia

‡ Data61, CSIRO, Australia.

Email: {md.shamsujjoha, john.grundy, li.li, hourieh.khalajzadeh}@monash.edu, qinghua.lu@data61.csiro.au

Abstract—Classifying mobile apps based on their description is
beneficial for several purposes. However, many app descriptions
do not reflect app functionalities, whether accidentally or on
purpose. Most importantly, these app classification methods do
not work if the app description is unavailable. This paper
investigates a Reverse Engineering-based Approach to Classify
mobile apps using The data that exists in the app, called
REACT. To validate the proposed REACT method, we use a
large set of Android apps (24,652 apps in total). We also show
REACTs’ extendibility for malware/anomaly detection and prove
its reliability and scalability. However, our analysis shows some
limitations in REACT procedure and implementation, especially
for similar feature based app grouping. We discuss the root
cause of these failures, our key lessons learned, and some
future enhancement ideas. We also share our REACT tools and
reproduced datasets for the app market analyst, mobile app
developers and software engineering research communities for
further research purposes.

Index Terms—Mobile App Classification, Replication, Negative
Results, Reverse Engineering, Topic Modelling

I. INTRODUCTION

The number of smartphone users exceeded 3.8 billion in

2020, increasing by more than 40% in the last four years.

Besides, more than 205 billion mobile apps were downloaded

from the cloud app repositories increasing 7.71% per year on

average since 2018 [1–4]. In the last few years, Android has

become the most popular platform for mobile devices due to

its open-source nature, and Google Play is the official pre-

installed store and portal for Android-powered devices. In the

first quarter of 2018, around 3.8 million Android apps were

available for download on Google Play Store, whereas, in

the second quarter of 2019, this number was reduced to 2.1

million [5]. Primary reasons for the removal of these apps

are (i) they were flagged as malware or contain anomalies,

(ii) did not behave as advertised, (iii) had low quality and

designed inappropriately, or (iv) violated policies and were

miscategorized [6].

Several research efforts have been conducted to address

these problems mentioned above, especially malware/anomaly

detection through classification. In the CHABADA work [7],

more than twenty thousand Android apps were evaluated.

Initially, CHABADA extracts the topic from the app’s human

authored description and builds a related app cluster. Then,

sensitive API usage for each cluster is grouped. Finally, if

an app uses any sensitive APIs that are uncommon for its

corresponding cluster, it is marked as an outlier for further

analysis. A completely different approach than CHABADA to

profile apps based on static information is presented in [8].

Here, potential malicious activity is detected via changes in

intensity level. A semi-supervised approach is presented in [9]

and shows that this method’s performance is comparable with

CHABADA. The main strength of CHABADA over other

approaches is that it processes very lightweight information

– app description and API usage to flag an app as malware

or not. However, if the description of the app changes and/or

unavailable, the information that CHABADA has for that app

is no longer valid.

For example, CHABADA used ‘London Restaurants &

Pubs +’ app as an example app to illustrate the false ad-

vertising and other questionable behavior unfortunately com-

mon to many published mobile apps. They identified that

this Android app is possibly a malware and certainly has

some unexpected behaviors. Finally, they placed it into the

‘TRAVEL AND LOCAL’ category with a false malicious

flag. Currently, this app is unavailable in the Google Play

Store. It means that the description and screenshots for this

app are also unavailable. However, we are interested in re-

classifying ’London Restaurants & Pubs +’ in the current

environment for extended decision making research purposes,

e.g., Why might the assumption about malicious behavior be-

come false? What are its most common characteristic features

that match other malicious apps in the category? What are

patterns in its data or API usages? Why was it categorized as

’TRAVEL AND LOCAL’ rather than a SHOPPING (restau-

rant) or CASUAL (food)? However, meta-data and description

based classification approaches are inferior for such extended

decision making, an intrinsic limitation of the techniques [10].

It is also highly probable that the descriptions for an

app published in 2014 are unavailable or have significantly

changed by 2021. Also, app descriptions suffer all the usual

natural language issues, including ambiguity, incompleteness

and incorrectness, and malicious disguise of true app behaviors

as they are mostly authored by humans. A possible solution

to these problems could be to utilize only the data that exists

inside the app for classification. There are a couple of potential

arguments against this claim e.g., app code and GUI’s also

evolve over time, but as long as we have the app (apk file for

Android app), it will remain valid and is reproducible.

http://arxiv.org/abs/2103.11668v1

TABLE I
PROCESSED DATA AND REACT SIMILARLY SCORE FOR ”London

Restaurants Bars & Pubs +” APP

Method

names

bulk compass rout

GUI text Null
XML

data

accur afghan african albanian alert american apart
argentinian armenian asian australian austrian barbecu
beach belgian bike bistro brazilian breakfast bridg british
build burmes calcul cambodian canadian caribbean casino
center chilean chines cinema club coffe colombian comput
convent cream creperi croatian cuban czech dessert dinner
distanc durat dutch ecuadorian educ egyptian elev english
enhanc ethiopian european failur fast food fountain french
garden german greek health histor hous hungarian imperi
indian indonesian interact intern irish isra italian jamaican
japanes keep korean landmark layer lebanes librari lodg
london malaysian mediterranean metric mexican moment
mongolian monument moroccan museum navig near
neighborhood nepali order organ pakistani park pasta
perform persian philippin pizza poi polish portugues
proxim recommend religi restaurantsamppub romanian
room rout russian satellit scottish seafood site spanish
sport star streetview sushi swedish swiss taiwanes thai
theater theme these tibetan tour tourist traffic transport
tunisian turkish unit vegetarian vietnames walk waterfal

Highest

similarity

Topic: T12 (91.274% out of 100%)
Corresponding category: Restaurant & Non-Malware

2nd Most

similarity

Topic: T3 (6.725% out of 100%)
Corresponding category: Travel & Non-Malware

3rd Most

similarity

Topic: T32 (1.379% out of 100%)
Corresponding category: Entertainment & Non-Malware

To address these issues we tried a novel Reverse

Engineering-based Approach to Classify mobile app based on

The data that exists inside the app, called REACT. Initially,

REACT collects an apps’ apk file from the existing app

repositories and extracts all method names used in the raw

code, XML data values, and GUI strings. These data are then

processed to prepare a clean dataset. The clean dataset is the

final input that is used in topic modeling for final classification

decision. Following example clarifies how REACT will remain

valid and is reproducible in absence of app description.

We found the apk of this ‘London Restaurants & Pubs +’

app in AndroZoo server [11]. Then, REACT extracted the data

as mentioned above and processed it. The raw data extracted

for this app is added in Appendix A. The processed data

and REACT’s most frequent similarly classified scores with

at least 1% contribution for this app is shown in Table I.

From Table I, we found that the extracted and processed data

for this app mostly contribute to Topic No. T12, which our

REACT tool classifies as a Restaurant app and not malware.

In an initial look to the process data, its looks more like a

list of languages what is expected to be found in the XML

for multi-language support app. However, the extracted words,

‘dinner, coffee and vegetarian’ make a combined contribution

to the country names and reveal it is a restaurant apps. In

other words, meta-data based classification approaches1 are not

applicable to ‘London Restaurants & Pubs +’ in the current

environment, whereas REACT is.

1Throughout the paper, we consider the existing works [7], [12] and [13]
as meta-data based approaches.

However, our overall evaluation results show some limita-

tions in our REACT approach and its current implementation

compared to other existing approaches. To this end, this paper

discusses the root cause of these failures, the key lessons

learned, and some enhancement ideas for REACT. The work

makes the following key contributions:

• We identified the point of failure of the existing app

description and meta data-based classification schemes.

We then designed a new approach (REACT) to try

and overcome these limitations. REACT extracts and

processes GUI strings, XML data values and method

names from raw app code and categorise apps based on

the similarity of extracted features using topic modelling

results.

• To evaluate REACT we constructed a clean testing dataset

for 19,766 Android apps that were previously used in the

CHABADA work. We addressed two limitations with the

original dataset. We also made our REACT dataset and

tools publicly available in [14] that are reusable.

• While our final results show REACT is not as promising

as we hoped for similar feature based app grouping, we

learned several lessons that are discussed for the research

community.

• We discuss how our reconstructed testing datasets and

tools can be enhanced in the future to identify potentially

malicious behavior of apps as well as to serve other app

classification purposes.

The rest of the paper is organized as follows: Section II

presents the detailed theory, design and working procedure of

the proposed REACT method. Then, Section III presents the

research questions and corresponding evaluation results. The

threats to validity, the key lessons we learned from developing

REACT and the future works are discussed in Section IV.

Finally, brief related works and a set of conclusions are

presented in Sections V and VI, respectively.

II. OUR REACT APPROACH

Key components of our proposed REACT approach are

shown in Figure 1. The working procedure of the REACT

can be divided into the following four stages: (i) Android

app collection and decompilation, (ii) Feature extraction and

cleaning, (iii) Data preprocessing (iv) Topic Modeling.

APK File

APK File

Apk
C orpus
Local

St orage

Crawler

Decompiled
Folder for APK

Decompiled
Folder for APK

ApkTool

P
Y
T
H
O
N

P
R
O
G
R
A
M

PYTHON
PROGRAM

Mallet Topic
Modeling Tools

All Keywords
M ethod Name

XML Data
Value Text
from GUI

Preprocessed
Keywords
No Java

No Duplicate
No Common
in 10% File

App per
Topic

Results

Fig. 1. REACT Workflow

A. App Collection and Decompilation

We collected packageName (appID) and versionCode for

CHABADA apps2 to search corresponding apk files in ex-

isting cloud repositories. We tried to find the apk files with

exact appID and versionCode first, then appID and nearest

versionCode, and finally only appID without any versionCode.

We found 12,677 apps that exactly matches the versionCode

of CHABADA and 7,089 apps with a different versionCode.

However, we could not find apk files for 6,527 apps in existing

cloud repositories (Play Store, AndroZoo, and third party

cloud stores). The Crawler, python matching tool and dataset

used for this process is available in [14], where Collected

Apks Step 1 Output.xlsx file summarized the results.

Then we decompiled each apk file using the Apktool [15]

because it can decode resources to nearly original form.

Decompilation turns an apk file into a directory that contains

all app codes and metadata. We stored decompiled app data for

further processing. We are not sharing apk files or decompiled

app directories as these uses several hundred GB of disk space.

Algorithm 1: REACT algorithm for method named

extraction
Input : A Decompiled apk directory

Output: Method named from all smali files

1 begin

2 for j ← all *.smali Files in appDirectory do

3 f = open the filej and resolve encoding

4 for k in f do

5 if match regular expression

“(.*)ṁethod(.*)” in k then

6 return characters after opening

parenthesis until closing parenthesis

→ method name

7 for l ← allWord in method name do

8 separate the words based on isUpper function

and return words

9 remove all java keyword and single length

characters sperate by space(s) from words

10 return words as final keywords for method name

B. Feature extraction and cleaning

In the second processing step, REACT parses three types

of information from decompiled app directories: (i) the en-

tire directory of smali files to extract all method names,

(ii) string.xml file to extract all XML data values, (iii) every

image files from entire decompiled app directory to extract the

GUI label text used in the app. The idea is to use these sources

to identify distinct and similar representing phrases (features)

of an app, and a group of apps at large.
While parsing smali files, our supposition is that developers

generally use method names with component text related to

2In this paper, we named all the Android apps that have been examined in
CHABADA approach [7] as CHABADA apps.

its functionalities. For example, suppose a developer uses a

method named ‘getBirthData’. In that case, we naturally

expect that this method would collect the date of birth from the

user, a database, or is elsewhere stored or calculated. Along

similar lines, we expect developers to use words and phrases

in the raw-code, data values or in GUI strings of an app that

appropriately represent the key features/sub-features of apps.

For example, an app asking the user for a birth date will likely

have a GUI data selector with label ‘birthDate:’, and/or

an XML meta-data resource label e.g. ‘birthDateValue’.

Hence, we expect that the extracted XML data values and

GUI text labels will increase our set of distinct keywords

indicative of key app features. Algorithms 1 and 2 show our

data extraction process for method names, and XML data and

GUI text values, respectively.
In Android smali files, method names start with a

‘.method’ and the actual method name is contained inside

parentheses. We match this through a regular expression

‘(.*) _ method(.*)’ for all the smali files available in

the app directory, shown in lines 4 and 5 of Algorithm 1.

We then remove following set of Android keywords as they

rarely contribute to app classification:

$, , -, <clinit>, <init>, , abstract, assert, boolean, break,

bridge, byte, case, catch, char, class, const, constructor,

continue, create, declared, default, do, double, else, enum,

execute, extends, false, final, finally, float, for, get, goto,

has, if, implements, import, instanceof, int, interface, it-

erator, long, native, new, next, null, on, package, private,

protected, public, return, run, set, short, static, super, switch,

synchronized, synthetic, this, throw, throws, to, transient,

true, try, value, void, volatile, while, All, Button, Click,

Down, Drawable, Drop, From, Icon, Item, Layout, Menu,

Next, String, Title, To, Value, View.

Then, we separate the extracted phrases to word as

per CamelCase convention. REACT inherently handle the

snake case coding convention as it removes underscore before

the phrase-to-word extraction step. A similar regular expres-

sion is used to extract XML data values (shown in lines 5 of

Algorithm 2). We also parse the entire app directory to extract

image data and check which files can be opened using the

Python ‘Image.open()’ function. We then extract text from

the images and remove all single length characters, shown in

lines 7-9 of Algorithm 2. The extracted data are stored in

Dataset_1.xlsx excel file that has 5 columns and 19,767

rows, where each row contains the data for an app. The cells

of each row contains app’s SHA256, package name, extracted

method name, XML data value, GUI text data (in that order).

C. Data Preprocessing and Dataset Preparation

Thirdly, REACT sequentially clean and process the data

to remove uninteresting information. For example, initially

REACT sort the data and remove duplicate keywords because

frequency of word add no useful information to REACT clas-

sification in later stage for the similar reason explained in [16].

Then, all keywords that have less than four characters are

Algorithm 2: REACT algorithm for XML data value

and GUI text extractions
Input : A Decompiled apk directory

Output: XML data value and texts for image files

1 begin

2 for j ← all string.xml Files in appDirectory do

3 f = open the filej and resolve encoding

4 for k in f do

5 if match regular expression “>([ˆ>]*)<”

in k then

6 remove all single character from k

7 for l ← all image Files in appDirectory do

8 f = open the filel, extract text and resolve

encoding

9 remove all single character from l

10 return k as final keyword for XML Data Value

and l as final keyword for GUI text

removed because these single, two or three letters keywords

are mostly truncated variable names and XML tags that we

found are not assisting in app classification.

REACT counts the frequency of each individual keyword

and removes all keywords that have more than 10% support

(the occurrence frequency in percentage). This is because these

keywords will not help us to uniquely classify an app or

app group at large as mentioned early. Then, REACT applies

Stemming and Lemmatization to all the remaining keywords

based on the Python library implementation [17]. The reasons

to do the Lemmatization and apply Stemming in REACT Data

are: (i) they help to achieve the root forms of the extracted

keywords, (ii) they can improve the precision by estimating

word similarity during the final outcome, and (iii) sorting

of keywords and removing duplicates from the list makes

our dataset more compact and hence boosts computational

performance. We initially tried both Porter and Lancaster

stemming methods. We decided to use the Porter stemming

algorithm since the Lancaster algorithm sometimes changes

the meaning of our actual keywords. More detailed discussion

on Lemmatization and Stemming is beyond the scope of the

paper, and the interested reader can see [18]. Finally, REACT

removed any duplicate keywords that arise due to stemming.

Algorithm 3 shows these sequential preprocessing steps.

The preprocessing greatly reduces the size of the dataset.

For example, before the preprocessing the average number of

words for method names is 1,915, XML data value is 421 and

words extracted from image files is 85. After preprocessing

these numbers become 61, 70, and 26, respectively. We also

deleted 345 rows from previous dataset (corresponds to 345

apps) because they have (i) less than 10 keywords, (ii) at least

10% non-English words, or (iii) ≥51% encrypted data. All

these together, helps us to prepare an appropriate clean dataset

(Dataset_2.xlsx in our shared replication package [14]).

Algorithm 3: REACT algorithm for data preprocessing

Input : Dataset that contains method name, XML

data value and GUI text

Output: Preprocessed and compact dataset

1 begin

2 for j ← all data in dataset do

3 if j contains upper case character then

4 convert dataj into lower case

5 sort j and remove duplicate from j

6 for j ← words in dataset do

7 if word lengthj ≤ 3 then

8 remove wordj

9 for j ← words in dataset do

10 lemmatize wordj

11 for k ← words in dataset do

12 apply porter stemming wordk

13 sort and remove duplicate words from dataset

14 for j ← words in dataset do

15 if frequencyj ≥ 10% then

16 remove j

17 return data as preprocessed keywords

D. Topic Modelling

REACT uses topic modeling algorithms to discover the

abstract ‘topics’ and identify the hidden semantic structures. It

uses the clean and preprocessed data prepared in the previous

step to form the ‘topics’ from similar keyword clusters. In RE-

ACT, we tried two most popular topic modelling techniques (i)

Latent Dirichlet Allocation (LDA) and (ii) MAchine Learning

for LanguagE Toolkit (MALLET). LDA is a generative sta-

tistical model. It allows sets of observations to be explained

by unobserved groups and explains why some data parts

are similar. MALLET implements LDA but uses the Gibbs

sampling methods. MALLET is a Java-based package put out

by UMASS Amherst for statistical natural language process-

ing, classification, clustering, and information extraction. LDA

uses a Variational Bayes sampling method, whereas MALLET

implements LDA but uses the Gibbs sampling methods. Thus,

LDA is faster but less precise than MALLET’s sampling [19].

The output for REACT LDA model with 31 topic based on

pyLDAvis package’s chart [20] is shown in Figure 2, where

each bubble on the left-hand side plot represents a topic.

The larger the bubble is, the more prevalent is the topic.

In this analysis, we aimed to identify distinct topic from

non-overlapping bubbles scattered throughout the chart and

then evaluate its functionalities. However, as shown in the

Figure 2, we failed to do so appropriately. Therefore, we tried

MALLET that to identify more concrete outcome using our

clean dataset following the Shawn Graham et al. method [21].

This scheme requires a separate text file for each app that

Fig. 2. LDA Outputs for all Topics in REACT

contains all its extracted text keywords, which done through

a VB script (rowAsTxtFile). Then, MALLET is applied

and it produces two output files tutorialKeys.txt and

tutorialComposition.txt. We stored these results in

MALLET Result.xlsx dataset that have two sub-sheets.

The first sheet contains the Topic No, Dirichlet parameter

for the topic, and the most representative keyword for that

topic. In sheet 2, there are 32 columns and 19,442 rows. The

first column represents the app row from the dataset, and the

next 31 columns represent contributions to each topic from

this particular app in percentages. We then identified four

most contributory topics for each row (correspond to each

app). Here, we consider the highest contributory topic as the

‘primary topic’ for an app. If a topic contribution is less than

1%, we discard it from the contributory list. Topic No 1 to

31 are named as shown in the following box and in that order:

Personalization, Cards, Education, Libraries and Demo,

Lifestyle, Tools, Medical, Music and Audio, Sports, Ar-

cade, Transportation, Business, Non-Match (392 Apps),

Communication, Casual, Brain, Health and Fitness, Fi-

nance, Productivity, Books and Reference, Racing, Photog-

raphy, Entertainment, Media and Video, Comics, Weather,

Travel and Local, Sports Games, News and Magazines,

Shopping, Social

Our evaluation also found that more than 67% apps

belong to at most two topics with ≥39% contribution. We

compare the topic similarity based on the most frequent

match in the final step. A more detailed discussion about our

findings and results are presented in the following sections.

III. COMPARATIVE ANALYSIS

This section presents our evaluation results of REACT. We

wanted to answer the following three key Research Questions

(RQ) in these evaluations:

RQ1 How does REACT classify mobile apps without

app descriptions? To evaluate this question, we

present detailed comparative results and analysis in

Sec. III-A. We also discuss with examples why some

of our results were not as promising as we hoped.

Some future research ideas are also introduced here.

RQ2 How can REACT datasets and tools be enhanced

to detect anomalies? In other words, does combin-

ing the keywords extracted from XML data value,

text from the image files and method names from

smali files of Android apps lead to the construction

of a dataset that can be enhanced in the future

for malware and anomaly detection similar to the

existing meta-data based approaches? This question

is evaluated in Section III-B.

RQ3 How reliable and scalable is our proposed REACT

approach? i.e., Do the REACT algorithms and tools

perform equivalently for a new input set? We answer

this research question in Section III-C considering a

new set (not examined previously) of 5,000 Android

apps.

A. RQ1 - App Classification in the Absence of Descriptions

REACT classifies Android apps without using any app

description or screenshot, unlike existing meta-data based ap-

proaches. We discussed in Sec. I that the CHABADA approach

has several advantages over other existing techniques. We

thus wanted to evaluate the REACT tool-set on the same set

of CHABADA apps. We were successful in collecting 75%

CHABADA apps (19,766 Android apps out of 26332 apps).

It is acceptable in the sense that eight years have passed since

CHABADA apps were examined. We also discussed other

possible reasons for the inaccessibility of the remaining 25%

apps at the very beginning of the paper.

1) Classification Result Analysis in App Categorization:

We tried to identify distinct topics in REACT using LDA

topic modeling technique. However, overlapping results cause

difficulties to do this appropriately, and hence we tried MAL-

LET. In Section II-D, we present the topic name and cor-

responding categories for MALLET based classification for

each topic. The similarity result between REACT and the

CHABADA methods are shown in Table II in terms of most

frequent matches. From this table, we find that the Topic 26

has the highest similarity 78.35% in both prototypes that

REACT categorized as ‘WEATHER’. The 78.35% similarity

means that the REACT assigns 78.35% of the apps classi-

fied in ‘WEATHER’ category that were also categorized as

‘WEATHER’ in CHABADA. However, the average classifica-

tion similarity between REACT and CHABADA is not much

high, some possible reasons for this are: (i) CHABADA author

gave custom names to the categories, there is no guarantee

that the topics we deal with are the same. (ii) Overlapping

inputs for different app types that go to topic modeling cause

two completely different apps classified in the same category,

(iii) We only consider the most frequent match during classi-

fication, (iv) The number of topic might be incorrect in both

REACT and CHABADA approaches.

TABLE II
SIMILARITY RESULTS BETWEEN REACT AND CHABADA APPROACHES

FOR APP CATEGORIZATION IN TERMS OF THE MOST FREQUENT MATCH

Topic Similarity Topic Similarity Topic Similarity

T1 8.28% T12 31.19% T23 2.41%
T2 12.19% T13 NA T24 65.12%
T3 10.43% T14 8.80% T25 5.23%
T4 5.76% T15 19.42% T26 78.35%
T5 5.99% T16 19.46% T27 7.75%
T6 6.68% T17 10.41% T28 28.32%
T7 48.70% T18 2.53% T29 13.82%
T8 12.43% T19 9.55% T30 12.80%
T9 3.00% T20 14.10% T31 62.85%
T10 35.98% T21 7.18%

Average 19.48%
T11 24.93% T22 10.78%

TABLE III
PROCESSED DATA, SIMILARLY SCORES AND CORRESPONDING

CATEGORIES FOR FOUR ANDROID APPS

App package ID: com.dipandro.nqlv1
Extracted keywords (Method name; XML data; GUI data): edstart
facebook like question quiz; anatomi basal brain cerebellum cerebr
complimentari cortex disord excerpt ganglia ganglion lite neurolog
neuroquizact okay physiolog question quiz stem volum; null
Top similarity match in REACT: T7 52.23%, T28 28.42%, T31 12.39%
REACT Category: Medical
CHABADA category: Medical
Human-judged category: Medical
App package ID: com.hzwp.mtFlowers
Extracted keywords (Method name; XML data; GUI data):
angl brows coverflow dcard fling fold folder judg messg quit saveto
threadsleep thumb unzip wallpap xmlpar xmlparser; choic collect effect
excel flower follow jjwallpap larg moment nice notic origin path prev
rateapp reach resourc rotat save score softwar veri warn zoom; cocotocti
reaossssssss rrroe
Top similarity match in REACT: T24 50.27% T28 43.72%
REACT category: Media and Video
CHABADA category: Media and Video
Human-judged category: Media and Video
App package ID: com.gregorbrett.sapsearcher
Extracted keywords (Method name; XML data; GUI data): desc
exampl favorit modul tcode; favorit saptcodesact searcher; brows descript
favorit modul name sapsearch search transact
Top similarity match in REACT: T31 71.31% T9 11.86% T7 6.11%
T11 5.97%
REACT category: Social
CHABADA category: Business
Human-judged category: Tools
App package ID:com.holfeld.germanwordsfree
Extracted keywords (Method name; XML data; GUI data): actual
assign declar exclud exclus execut expos owner pring serial; aecddaf
german germanwordsfre marketdetailsidcomholfeldgermanword word;
bcplyst calendar german lama parri shee speak word wwwholfeldappscom
Top similarity match in REACT: T6 42.53% T14 30.88% T20 15.57%
T3 7.77%
REACT category: Tools
CHABADA category: Business
Human-judged category: Education
App package ID: com.brainvision.foodchecklist
Extracted keywords (Method name; XML data; GUI data): blacklist
food whitelist; carboh checklist food occur protein restart; null
Top similarity match in REACT: T7 45.96%, T24 37.44%, T28 9.98%
REACT category: Medical
CHABADA category: Health and Fitness
Human-judged category: Health and Fitness
App package ID: com.CPGSGoalieStats
Extracted keywords (Method name; XML data; GUI data): ppon
pass season shot side singleton spinner team; addit comment contain
exampleemailcom goaliestat goaliestatsact letter; heme keema undo
Top similarity match in REACT: T31 63.79% T28 32.14%
REACT category: Social
CHABADA category: Sports
Human-judged category: Sports

To further evaluate the classification results, we com-

pare REACT similarity unitedly with human-judge categories

and CHABADA prototype for a random set of 250 apps.

An example comparison for six apps is presented in Ta-

ble III. The first two rows of Table III show that the

classification results are identical in REACT, CHABADA,

and Human-judged approaches. However, the third and

fourth rows show that the ‘com.gregorbrett.sapsearcher’ and

‘com.holfeld.germanwordsfree’ apps are dissimilar in all three

schemes. This result implies that we might need more data

from the app itself for proper classification. We also find that

the identical results for the former case were possible because

(i) extracted and processed features are distinct from other app

groups by a good margin, (ii) very few overlapping keywords

are extracted, (iii) final input that goes to topic modeling does

not include any encrypted or obfuscated data. Moreover, the

last two rows of Table III shows that the similarity results for

the com.brainvision.foodchecklist and com.CPGSGoalieStats

apps are different in REACT compared to CHABADA but are

identical to human judged categories. This result justifies our

claims about custom names of categories for CHABADA apps

discussed at the beginning of this section.

In this manual evaluation, we also found (i) 37.2% app is in

the same category in all three approaches, (ii) additional 26.4%

are same in REACT and Human-judge category but different

in CHABADA, (iii) remaining apps are different in all three

evaluation. In the second result, 40.65% apps (37 out of 91) are

of a different version than what was evaluate in CHABADA.

Hence, we believe the issue of ‘how does app functionality

change with version change?’ could be an interesting future

research question to investigate.

2) Classification Result Analysis for Historical Apps: We

define “historical app” as a mobile app whose description is

either unavailable or changes substantially over time. Since

meta-data based approaches begin classification from mod-

elling the topic or training the data from app descriptions, these

are either completely inapplicable or will produce incorrect

results for historical apps. Consider a historical app that was

previously classified as malware or assigned to a specific

topic by a meta-data based approach. Now, we are interested

to evaluate its current state. The meta-data based prototypes

rarely help in this case, because the app description might

be unavailable or substantially changed. However, REACT

is reliable and scalable in such scenarios as it analyzes the

extracted data (static) that is available inside the app, i.e., as

long as we have an apk file of an app, REACT can extract

data and process it appropriately.

B. RQ2 - Extendability and Reproducibility

1) Tool Reuse: The python, R and bash scripts based

CHABADA tools are currently inaccessible. However, re-

implemented CHABADA techniques have been open-sourced

since 2016 but not adequately publicized3, especially not under

the name of CHABADA. Even then, it requires considerable

effort and time to reproduce this work, which is also true for

other meta-data based approaches. To counter such argument

in REACT, we make REACT tool-sets publicly available for

reuse, reproduction, comparison, and extension in [14].

2) Data-set Reuse: The authors of CHABADA mentioned

that they prepared a dataset ‘with the exact data used in

CHABADA, including app names, descriptions, permissions,

API usage and other metadata’. We have found that these

data are mostly represented as flagged, i.e., true(1) or false(0).

3Available in Git-based source code repository (Bitbucket) as Untitled
project in https://bitbucket.org/gorla/smapper-imdea-anomalydetection

Similarly, the publicly available dataset from other meta-data

based prototypes also contains processed data and final results.

Hence, it is tough to reuse these datasets to enhance the works

themselves, e.g., modifying the analysis approaches for other

decision-making research except what was examined.

To address the reuse issues REACT, we make all datasets

publicly available in [14]. For example, ‘Dataset_1.xlsx’

file contains the initial extracted data, i.e., method names,

XML data value, and text data pulled from image files. This

file also contains the app’s package name and SHA256 at

the beginning of each row to identify an app uniquely. The

‘Dataset_2.xlsx’ file contains preprocessed and clean

data, whereas ‘Dataset_3.xlsx’ contains a summary of

topic modeling results and final data that goes to the process-

ing. The detail of topic modeling results is accessible from

‘Dataset_4.xlsx’ file. Researchers, developers, and app

market analysts can use these resources for possible research

enhancement, replication, and reproduction.

3) Enhancement to Detect Anomalies: The REACT

datasets can be used to detect anomalies or malicious app

behavior. Overall, if the extracted keywords contain obfuscated

data, encrypted data and contribute to multiple topics by ≥ 8%

in each, REACT considers this app as a high potential can-

didate for being malicious. One could argue that, obfuscation

is nowadays very widespread and developers are encourages

to obfuscate app code by simply checking a flag in the build

process. We counter this as ‘Our claim for anomaly detection

will be true only when obfuscation is noticed along with

encrypted data and it contribute to multiple topics (more than

8% in each topic in the final modeling result)’.

To further explain this, we manually checked the first 25%

apps that were marked as malicious in the CHABADA. We

only found apk files for six apps. The corresponding analysis

results are shown in Table IV. From this table, we find

that four apps (row 1, 2, 3, and 6) can also be marked

as malicious as per REACT analysis. For example, the app

‘net.bible.android.activity’ was marked as malicious by the

CHABADA prototype. In REACT, it contributes to multiple

topics where the four most frequent contributory topics are

T12(30.95%), T24(23.15%), T22(16.77%) and T4(10.99%).

It also contains obfuscated data in its method names and

XML data values. Some encrypted data was also found in

its raw data. Hence, we indicate that it is highly possible that

it functions maliciously. The app shown in rows 4 and 5 of

Table IV cannot be identified as malicious thorough REACT,

because there is no encryption or obfuscation. However, the

apk files of these two apps that are evaluated in REACT are

different versions than what was evaluated in the CHABADA

prototype. Therefore, its malicious behavior may have been

changed (removed) in the new versions. Moreover, it was not

our primary aim to detect the anomalies or malicious apps in

REACT, rather, we argue that the proposed REACT dataset

can also be used (enhanced) to serve a similar purpose to the

previous meta-data based approaches.

https://bitbucket.org/gorla/smapper-imdea-anomalydetection

TABLE IV
REACT RESULTS FOR FIRST 25% APP THAT WERE MARKED AS

MALICIOUS IN CHABADA

App package name: net.bible.android.activity
App ID, Row no in CHABADA: 38, 37
Results in REACT: T12(30.95%), T24(23.15%), T22(16.77%) and
T4(10.99%); Contains obfuscated data in method name and XML data
value, encryption found in raw data.
App package name: com.nubee.coinpirates
App ID, Row no in CHABADA: 48, 45
Results in REACT: T9(55.84%), T31(20.44%), T23(12.14%),
T28(10.73%); Contains obfuscated data in XML data value, encryption
found in raw data.
App package name: com.lonelycatgames.Xplore
App ID, Row no in CHABADA: 62, 59
Results in REACT: T24(70.26%), T27(11.85%), T8(8.99%),
T28(5.35%); Contains obfuscated data in XML data value, encryption
found in raw data.
App package name: com.electricsheep.dj
App ID, Row no in CHABADA: 66, 63
Results in REACT: T15(71.08%), T28(9.44%), T24(6.64%),
T10(6.59%); Doesn’t contain any obfuscated or encrypted data
App package name: com.reverie.game.toiletpaper
App ID, Row no in CHABADA: 70, 66
Results in REACT: T16(31.68%), T28(26.50%), T24(21.25%),
T22(14.10%); Doesn’t contain any obfuscated or encrypted data
App package name: org.openintents.filemanager
App ID, Row no in CHABADA: 71, 67
Results in REACT: T24(87.80%), T12(8.51%); Contains obfuscated
data in XML data value, encryption found in raw data.

C. RQ3 - Scalability and Reliability

RQ3 asks about our REACT tool performance for extract-

ing, processing and outcome evaluation. To answer this ques-

tion, we applied REACT to a new set of 5,000 Android apps

that were not previously analyzed. We collected these apps

from our previously collected corpus of 1 million Android

apps. Due to the blind review process, server IP address and

identification information is kept hidden. It is also impossible

to share the apk files in our shared replication packages

because they take over 200 GB storage. However, these do

not hinder the understandably RQ3 analysis presented below.

The new 5000 apps were chosen as per the first alphabetic

order of SHA256. Thus, app selection becomes random as

per app ID (package name). We removed 130 poor quality

apps from this list and then added 16 validated eHealth apps.

The low-quality apps are so marked if their extracted data

are thoroughly encrypted or not readable. The good eHealth

apps are defined as per the MARS scale [22] with an average

score over 3.0. The extracted data without duplicates for these

4,886 new apps are stored in ‘Dataset_5.xlsx’ file for

further investigation. To assess the scalability of REACT, we

tried to modify our python programs to extract the app name

(title) rather than app package name from the apk file. Here,

we found that we only need to modify the input file location

and corresponding conditions, only four lines of python codes

need changes. The final and processed data for these apps

are stored in ‘Dataset_6.xslx’. From this new dataset,

REACT inherently identifies 2,128 apps as uninteresting apps

(with obfuscated and encrypted data) that justify our claims

on reliability.

We ran this part of our experiments using the same RE-

ACT tool on a workstation with ‘Intel(R) Xeon(R) W-2175

CPU @ 2.50GHz, 32GiB System memory, and Ubuntu SMP

GNU/Linux kernel’. On average, each app extracted data from

this new set requires 1,8884.50 bytes storage and 3.1863

seconds processing time compare to 4509.10 bytes and 5.8311

seconds in the previously examined dataset (19,766 apps

dataset). Additional possible threats related to these analysis

are discussed in the following section.

IV. DISCUSSION

In REACT, we reproduced an Android app classification

scheme similar to existing meta-data based approaches, but

without using human-authored app descriptions or dynamic

data that changes over time and may be unavailable. Moreover,

we prepared new clean datasets that are extendable to identify

anomalies and malicious activity in mobile apps. We have

made all of our datasets and tools publicly available in [14].

Detailed documentation for these datasets and tools are pro-

vided for future enhancement. In the following sections, we

discuss several threats related to REACT evaluation results,

some of which need further investigation.

A. Threats to Validity

In REACT, we extract data from currently available

CHABADA apps. We tried our best to collect the full set

of apps but were only partially successful. We explained the

reasons for accepting the partial collection at this stage in

Sec. III-A. We also used a new set of 5000 apps to show that

the computational resource requirement in REACT changes

linearly, requires one-fourth of resources for one-fourth input

size. In this regard, a potential future work could be evaluating

REACT performance over larger app input size.

Our proposed REACT approach is also subject to an ad-

ditional construct and internal validity threats. For example,

we removed a set of “uninteresting” apps (345) before the

Stemming and Lemmatization steps. It helps us to prepare

a clean dataset, which is explained in Sec. II-C. How-

ever, it is an intrinsic limitation of REACT, and it should

perform equivalently even in the presence of uninteresting

apps. Moreover, identifying patterns from extracted raw data

(Dataset_1.xsls), including the unrelated and uninterest-

ing apps without app removal, is another interesting future

research. We also present three research questions and explain

our answers to these questions with examples. However, we

were unable to avoid partial non-promising results for the first

research question (classification).

In addition to the above threats, there are two additional

limitations in REACT. First, REACT has the same threats as

existing static data analysis based decision making research

tools i.e., ignoring run-time generated data. The dynamic

analysis was not used in part so that replication can be carried

out without concern about historical app behavior. Secondly,

all REACT experiments, dataset preparation and result analysis

were primarily based on examination by a single person, who

is a co-author of this paper. Then, three renowned software

engineering researchers cross-checked partial results. Hence,

it still has a risk of producing bias results addressing the

examiner and these expert needs only. To counter this issue,

we made all extracted, preprocessed and final datasets publicly

available along with our toolkit for others to examine, use and

extend.

B. Key Lessons Learned

In REACT, we were only able to compare results currently

available CHABADA apps. Apps no longer available in any

public forum could not be compared with previous analysis

approaches and tools. Similarly, apps which have evolved but

the earlier versions are no longer available could only be

analyzed using their later versions. This highlights that to

do comparative app analysis with often highly evolving apps,

careful curation of historical app data is needed. Below we

summarized additional findings and lesson we learned.

Obfuscation: In Android apps, data obfuscation and

encryption is mostly done on method names and XML data

values rather than GUI strings. For example, in our REACT

dataset more than 95% obfuscated and encrypted data lies in

methods names and XML data values. Hence, appropriate

data cleaning is required for any decision-making research

that plans to use raw code and XML data.

Data Value Sharing: Two quite different types of Android

apps can share substantially similar set of XML data values.

For example, two different types of apps ‘com.gaiaonline.mge’

(row 668 in REACT dataset) and ‘com.livewall.Galaxy’ (row

1070 in REACT dataset) share more than half of their

extracted data. Even then REACT classifies the first one

MUSIC AND AUDIO apps, whereas the second one as

LIFESTYLE app. The different classification was possible

due to the use of stemming and lemmatization, explained in

Sec. II-C. The data similarity is also observed for other data

type in REACT app sets. Therefore, we think that additional

data type other these two will produce better classification

results. In this regard, we collect all image files from the

apps’ decompiled apk and extracts all available strings (text)

from these files. However, it turns out that the data pulled

from image files is mostly uninteresting and rarely helps in

decision making but requires more resources.

Combining App Source and Human Data: Combining new

app analysis data with manually extracted data could improve

the classification of app groups. However, in such case the

method would not be suitable for historical apps (defined

earlier) as well as for more larger input set.

Analysis tasks: REACT analysis largely depends on

the outcomes from LDA and its implementation in MALLET,

both of which are probabilistic. Therefore they returns

different topics when performing repetitions on the same

dataset i.e., stochastic in nature and is a limitation of REACT.

However, REACT tools and datasets could be applied to

other app analysis tasks. An interesting future work is to

identify outliers from each data type and then classify. In

such case its performance can be evaluated over existing

results. Another interesting work could be collecting a good

number of authentic apps from Google play store and apply

REACT tools to see how it performs.

V. RELATED WORK

Mobile app classification is a well-studied area in the

literature [23–26]. Some of the main reasons to automatically

classify apps or to validate app classifications include: (i)

Malicious activity detection or malware identification – re-

searchers compare an apps’ expected behaviour to observed

behaviour based on the app’s classification [7, 9, 27–29]. (ii)

Pattern recognition and to distinguish app relationships from

a particular domain – to help users for finding their favorite

app based on retrieve pattern and compare similarities among

different version of an app or repackaged apps to provide

recommendation [30]. (iii) Design and working procedure

specification based on extracted features – new features are

recommended to help app developers discuss methodological

approaches to app studies. These can be for different app

settings and for drawing out common aspects, trends and

directions to address open problems and challenges in app

development [31] (iv) More accurate classification to over-

come the app store categorisation problems – where problems

with human-authored classifications are addressed by auto-

matic scheme [6, 32], (v) Automate app verification – where

classifications assist in the verification processes used [7] etc.

A few of these existing approaches have challenges in terms

of being reusable or reproducible, especially to deliberate app

behaviors for a variety of classification purposes. The primary

reason for this challenge is some of these data might be

unavailable or changed, as we have already discussed in the

previous sections.

VI. CONCLUSION

In this paper, we instanced the point of failure for the

existing app description and meta-data based mobile app clas-

sification methods. We then investigated a reverse engineering-

based approach called REACT to avoid such failure and

reproduce results using the data that exists inside the apps.

To achieve these goals, we collected 19,766 Android apps

that were examined in the well-known CHABADA prototype.

We then reverse engineered these apps (apk files) to extract

keywords from (i) method names used in the raw app code,

(ii) XML data value, and (iii) text from image files. The

extracted data were then preprocessed, and a clean dataset

was prepared. However, comparative analysis shows that the

proposed scheme is not as accurate as we hoped, we discussed

(i) REACT’s enhancement for mobile app anomaly detection

analogous to the existing approaches, (ii) REACT’s scalability

and reliability, evaluated through a new set (not examined

previously) of 5,000 Android apps, (iii) key lessons learned for

future app analysis tasks, replicating prior work, and handling

rapidly evolving app versions for analysis, and (iv) REACT’s

threats to validity with a set of recommendations. Moreover,

we share the REACT tool-set and all datasets for further

research purposes in [14].

ACKNOWLEDGEMENTS

Shamsujjoha is supported by Monash International Tuition

Scholarship, RTP Stipend, and CSIRO Data61 Top-up Scholar-

ship for his Ph.D. study at Monash University, Australia. This

work was also supported by the Australian Research Council

(ARC) under a Laureate Fellowship project FL190100035, a

Discovery Early Career Researcher Award (DECRA) project

DE200100016, and a Discovery project DP200100020.

APPENDIX A

INITIAL DATA EXTRACTED FOR‘LONDON RESTAURANTS

BARS & PUBS +’ APP IN REACT‘

Method Name: create Parcel create Parcel Array create Parcel Array
close flush write describe Contents write To Parcel describe Contents
write To Parcel create Parcel Array describe Contents write To Parcel
dump Activity Result Back Pressed Configuration Changed Create
Create Panel Create Destroy Key Low Memory Selected Panel Closed
Pause Post Resume Prepare Panel Resume Retain Non Configuration
Instance Save Instance State Start Stop start Activity For Result create
Parcel Array Animation End Animation Repeat Animation Start
dispatch Restore Instance State dispatch Save Instance State create
Parcel Array create Parcel Array describe Contents write To Parcel
equals Code Configuration Changed Create Context Low Memory
Interpolation Scroll State Scrolling Cache Enabled add Focusables
add Touchables add check Params compute Scroll dispatch Key Event
dispatch Populate Accessibility Event draw drawable State Changed
generate Default Params generate Params generate Params Adapter
Current Offscreen Page Limit Page Margin Attached To Winw
Draw Intercept Touch Event Measure Request Focus In Descendants
Restore Instance State Save Instance State Size Changed Touch
Event Adapter Current Offscreen Page Limit On Adapter Change
Listener On Page Change Listener Page Margin Page Margin Page
Margin very Changed Invalidated compare write To Parcel varargs In
Background Cancelled Pre Execute varargs In Background Cancelled
Pre Execute accept Post Execute uncaught Exception Bind Destroy
Low Memory Start Unbind process Content Content Length Page
Finished should Override Url Loading Configuration Changed Create
Key Pause Receive Location Changed Provider Disabled Provider
Enabled Status Changed should Override Url Loading process varargs
In Background Post Execute varargs In Background Post Execute
Configuration Changed Create Key User Leave Scale Scale Begin
Scale End Create Measure Create Upgrade varargs varargs In Back-
ground Of varargs varargs In Background draw Compass draw My
Location Location Changed Of bulk Insert delete Type insert Create
query update Checked Changed Checked Changed Create Count Id is
Enabled is Route Displayed Back Pressed Create Create Dialog Key
New Intent Pause Prepare Dialog Resume Save Instance State Search
Requested User Leave Post Execute Pre Execute varargs varargs In
Background Post Execute Pre Execute Count Id Of Count Id Type
Type Count is Enabled Fling Long Press Scroll Show Press Single
Tap Up Touch Event Create Create Cancel draw Of available close
mark mark Supported read read read re skip Double Tap Double Tap
Event Single Tap Confirmed Cancel Create Dismiss Create draw Tap
Post Execute Pre Execute Of Create

GUI Text: ii Th ia ii mM AN Bg ae iil Th Be fi OW fil sa be bad
Mi Fabs fil lis

XML Data Value: Settings Find your location Name Elevation
Distance Address Duration Layers Satellite Traffic Settings Current
location not yet available Please wait Nearest POIs Not available
Please wait Computing distances NA Im in car Im on bike Im
walking New proximity alert created Proximity alert removed Could
not create proximity alert Map POIs Screen interaction Keep screen
on Distance calculation Fast Accurate OK Cancel Download failed
Please check your internet connection Google Navigation is not
installed Google Streetview is not installed Streetview Navigation
Route Route distance is too big Loading data Please wait This
application requires working data connection Exit Network failure
Navigation mode These options are not available in the current
version Tap here to install this app Google Play Store is not installed
You might need There are no recommended apps for you at this
moment Tap to install in order to view enhanced results To view
more results tap here to install this app More options To have full
layers access tap here to install this app Distance units Metric
Imperial Others Art Galleries Beaches Bridges Buildings Casinos
Cinemas Convention Centers Educational Sites Fountains Game
Centers Gardens Health Clubs Historic Sites Landmarks Libraries
Monuments Museums Neighborhoods Parks Performances Religious
Sites SPA Sports Theaters Theme Parks Tours Tourist Centers
Transportation Waterfalls Others Star Stars Stars Stars Stars Stars
Stars Stars Stars Others Bed amp Breakfast Lodging Apartments
Houses Rooms Others Afghan African Albanian American
Argentinian Armenian Asian Australian Austrian Bar Barbecue
Belgian Bistro Brazilian British Burmese Cambodian Canadian
Caribbean Chilean Chinese Coffee Colombian Creperie Croatian
Cuban Czech Dessert Dinner Dutch Ecuadorian Egyptian English
Ethiopian European Fast Food French German Greek Hungarian
Ice Cream Indian Indonesian International Irish Israeli Italian
Jamaican Japanese Korean Lebanese Malaysian Mediterranean
Mexican Mongolian Moroccan Nepali Organic Others Pakistani
Pasta Persian Philippine Pizza Polish Portuguese Pub Romanian
Russian Scottish Seafood Spanish Sushi Swedish Swiss Taiwanese
Thai Tibetan Tunisian Turkish Vegetarian Vietnamese London
RestaurantsampPubs London RestaurantsampPubs

REFERENCES

[1] M. Shamsujjoha, J. Grundy, L. Li, H. Khalajzadeh, and Q. Lu,
“Human-centric issues in ehealth app development and us-
age: A preliminary assessment,” in Proceedings of the 28th
International Conference on Software Analysis, Evolution and
Reengineering, ser. SANER ’21. IEEE, 2021, pp. 506–510.

[2] J. Grundy, M. Abdelrazek, and M. K. Curumsing, “Vision:
Improved development of mobile ehealth applications,” in Pro-
ceedings of the 5th International Conference on Mobile Soft-
ware Engineering and Systems, ser. MOBILESoft ’18. ACM,
2018, pp. 219–223.

[3] A. Holst, “Smartphone users worldwide 2016-2021,” Statista,
Tech. Rep., 2019, Available at https://www.statista.com/
statistics/330695, Accessed: Feb-2021.

[4] S. Felgoise, “App economy stats you should know,” ironSourrce,
Tech. Rep., 2019, Available at https://www.ironsrc.com/blog/
app-economy-stats-you-should-know, Accessed: Feb-2021.

[5] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are an-
droid apps removed from google play?: A large-scale empirical
study,” in Proceedings of the 15th International Conference on
Mining Software Repositories, ser. MSR ’18. ACM, 2018, pp.
231–242.

[6] D. Surian, S. Seneviratne, A. Seneviratne, and S. Chawla, “App
miscategorization detection: A case study on google play,” IEEE
Transactions on Knowledge and Data Engineering, vol. 29,
no. 8, pp. 1591–1604, 2017.

[7] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app
behavior against app descriptions,” in Proceedings of the 36th

https://www.statista.com/statistics/330695
https://www.statista.com/statistics/330695
https://www.ironsrc.com/blog/app-economy-stats-you-should-know
https://www.ironsrc.com/blog/app-economy-stats-you-should-know

International Conference on Software Engineering, ser. ICSE
2014. ACM, 2014, pp. 1025–1035.

[8] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profiledroid:
Multi-layer profiling of android applications,” in Proceedings of
the 18th Annual International Conference on Mobile Computing
and Networking, ser. Mobicom ’12. ACM, 2012, pp. 137–148.

[9] S. Ma, S. Wang, D. Lo, R. H. Deng, and C. Sun, “Active
semi-supervised approach for checking app behavior against its
description,” in Proceedings of the 39th Annual Computer Soft-
ware and Applications Conference - Volume 02, ser. COMPSAC
’15. IEEE, 2015, p. 179–184.

[10] M. Pandey, R. Litoriya, and P. Pandey, “Perception-based clas-
sification of mobile apps: A critical review,” in Smart computa-
tional strategies: Theoretical and practical aspects. Springer,
2019, pp. 121–133.

[11] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research commu-
nity,” in Proceedings of the 13th International conference on
Mining Software Repositories, ser. MSR ’16. ACM, 2016, pp.
468–471.

[12] G. Berardi, A. Esuli, T. Fagni, and F. Sebastiani, “Multi-
store metadata-based supervised mobile app classification,” in
Proceedings of the 30th Annual ACM Symposium on Applied
Computing, 2015, pp. 585–588.

[13] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, M. Harman,
Y. Jia, and Y. Zhang, “Clustering mobile apps based on mined
textual features,” in Proceedings of the 10th International Sym-

posium on Empirical Software Engineering and Measurement,
ser. ESEM ’16. ACM, 2016.

[14] M. Shamsujjoha, J. Grundy, L. Li, H. Khalajzadeh, and Q. Lu,
“Tools and dataset of REACT approach (replication package),”
2021, Available at https://github.com/dishacse/Publication-
Resources/tree/main/2021%20ICPC, Accessed: Mar-2021.

[15] R. Wiśniewski and C. Tumbleson, “Apktool: A tool for re-
verse engineering android apk files,” 2019, Available at https://
ibotpeaches.github.io/Apktool/, Accessed: Jan-2021.

[16] W. J. Wilbur and W. Kim, “The ineffectiveness of within-
document term frequency in text classification,” Information
Retrieval, vol. 12, no. 5, p. 509–525, 2009.

[17] H. Jabeen, “Stemming and lemmatization in python,” 2018,
Available at https://www.datacamp.com/community/tutorials/
stemming-lemmatization-python, Accessed: Jan-2021.

[18] C. D. Manning, P. Raghavan, and H. Schütze, Introduction
to Information Retrieval. Cambridge University Press, 2009,
ch. 2, pp. 32–46.

[19] B. V. Barde and A. M. Bainwad, “An overview of topic mod-
eling methods and tools,” in Proceedings of the International
Conference on Intelligent Computing and Control Systems, ser.
ICICCS’ 17, 2017, pp. 745–750.

[20] S. Prabhakaran, “Machine learning plus - Topic modeling
with Gensim (Python),” 2019, Available at https://www.

machinelearningplus.com/nlp/topic-modeling-gensim-python/#
4whatdoesldado Accessed: Jan-2021.

[21] A. K. McCallum, “Mallet: A machine learning for language
toolkit,” 2002, Available at http://mallet.cs.umass.edu Accessed:
Jan-2021.

[22] S. R. Stoyanov, L. Hides, D. J. Kavanagh, O. Zelenko, D. Tjon-
dronegoro, and M. Mani, “Mobile app rating scale: A new tool
for assessing the quality of health mobile apps,” JMIR mHealth
and uHealth, vol. 3, no. 1, p. e27, 2015.

[23] L. Li, T. F. Bissyandé, and J. Klein, “Rebooting research
on detecting repackaged android apps: Literature review and
benchmark,” IEEE Transactions on Software Engineering, 2019.

[24] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein,
“Automated testing of android apps: A systematic literature
review,” IEEE Transactions on Reliability, vol. 68, no. 1, pp.
45–66, 2018.

[25] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel,
D. Octeau, J. Klein, and L. Traon, “Static analysis of android
apps: A systematic literature review,” Information and Software
Technology, vol. 88, pp. 67 – 95, 2017.

[26] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A
survey of app store analysis for software engineering,” IEEE
transactions on software engineering, vol. 43, no. 9, pp. 817–
847, 2016.

[27] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab,
“A review on feature selection in mobile malware detection,”
Digital Investigation, vol. 13, pp. 22 – 37, 2015.

[28] X. Yang, D. Lo, L. Li, X. Xia, T. F. Bissyandé, and J. Klein,
“Characterizing malicious android apps by mining topic-specific
data flow signatures,” Information and Software Technology,
vol. 90, pp. 27–39, 2017.

[29] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo,
and L. Cavallaro, “Understanding android app piggybacking: A
systematic study of malicious code grafting,” IEEE Transactions
on Information Forensics and Security, vol. 12, no. 6, pp. 1269–
1284, 2017.

[30] L. Li, T. F. Bissyandé, H.-Y. Wang, and J. Klein, “On identi-
fying and explaining similarities in android apps,” Journal of
Computer Science and Technology, vol. 34, no. 2, pp. 437–455,
2019.

[31] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A
survey of app store analysis for software engineering,” IEEE
Transactions on Software Engineering, vol. 43, no. 9, pp. 817–
847, Sep. 2017.

[32] S. Vakulenko, O. Müller, and J. v. Brocke, “Enriching itunes
app store categories via topic modeling,” Proceedings of the
35th International Conference on Information Systems, pp. 1–
11, 2014.

https://github.com/dishacse/Publication-Resources/tree/main/2021%20ICPC
https://github.com/dishacse/Publication-Resources/tree/main/2021%20ICPC
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://www.datacamp.com/community/tutorials/stemming-lemmatization-python
https://www.datacamp.com/community/tutorials/stemming-lemmatization-python
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/#4whatdoesldado
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/#4whatdoesldado
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/#4whatdoesldado
http://mallet.cs.umass.edu

	I Introduction
	II Our REACT Approach
	II-A App Collection and Decompilation
	II-B Feature extraction and cleaning
	II-C Data Preprocessing and Dataset Preparation
	II-D Topic Modelling

	III Comparative Analysis
	III-A RQ1 - App Classification in the Absence of Descriptions
	III-A1 Classification Result Analysis in App Categorization
	III-A2 Classification Result Analysis for Historical Apps

	III-B RQ2 - Extendability and Reproducibility
	III-B1 Tool Reuse
	III-B2 Data-set Reuse
	III-B3 Enhancement to Detect Anomalies

	III-C RQ3 - Scalability and Reliability

	IV Discussion
	IV-A Threats to Validity
	IV-B Key Lessons Learned

	V Related Work
	VI Conclusion
	Appendix A: Initial data extracted for`London Restaurants Bars & Pubs +' app in REACT`

