
Information and Software Technology 140 (2021) 106693

A
0

D
A
M
a

b

A

K
S
M
M
T

1

a
a
m
7
b
r
i
a
d
u
d

h

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

eveloping Mobile Applications Via Model Driven Development:
Systematic Literature Review
d. Shamsujjoha a,∗, John Grundy a, Li Li a, Hourieh Khalajzadeh a, Qinghua Lu b

Department of Software Systems and Cybersecurity, Faculty of Information Technology, Monash University, Melbourne, Australia
Data61, CSIRO, Sydney, Australia

R T I C L E I N F O

eywords:
ystematic Literature Review
odel Driven Development
obile App
ools and Techniques

A B S T R A C T

Context: Mobile applications (known as ‘‘apps’’) usage continues to rapidly increase, with many new apps
being developed and deployed. However, developing a mobile app is challenging due to its dependencies on
devices, technologies, platforms, and deadlines to reach the market. One potential approach is to use Model
Driven Development (MDD) techniques that simplify the app development process, reduce complexity, increase
abstraction level, help achieve scalable solutions and maximize cost-effectiveness and productivity.
Objective: This paper systematically investigates what MDD techniques and methodologies have been used
to date to support mobile app development and how these techniques have been employed, to identify key
benefits, limitations, gaps and future research potential.
Method: A Systematic Literature Review approach was used for this study based on a formal protocol. The
rigorous search protocol identified a total of 1,042 peer-reviewed academic research papers from four major
software engineering databases. These papers were subsequently filtered, and 55 high quality relevant studies
were selected for analysis, synthesis, and reporting.
Results: We identified the popularity of different applied MDD approaches, supporting tools, artifacts, and
evaluation techniques. Our analysis found that architecture, domain model, and code generation are the most
crucial purposes in MDD-based app development. Three qualities – productivity, scalability and reliability –
can benefit from these modeling strategies. We then summarize the key collective strengths, limitations, gaps
from the studies and made several future recommendations.
Conclusion: There has been a steady interest in MDD approaches applied to mobile app development
over the years. This paper guides future researchers, developers, and stakeholders to improve app develop-
ment techniques, ultimately that will help end-users in having more effective apps, especially when some
recommendations are addressed, e.g., taking into account more human-centric aspects in app development.
. Introduction

In 2021, the number of smartphone users exceeded 3.8 billion, and
pproximately 66% of the world population had a mobile device such
s cell phone, tablet, or a cellular-enabled IoT device [1,2]. In addition,
obile phone usage for different purposes had an average increase of
.71% per year over the last three years [3]. In 2018, more than 205
illion mobile apps were downloaded from the app repositories [4]. The
evenue earned by the mobile apps is expected to reach $935 billion
n 2023, compared to $365 billion earned in 2018 [5]. Developing

modern mobile app is not a trivial exercise [6]. Key steps in app
evelopment include requirements gathering, platform selection, target
sers identification, constraint mapping, and problem modeling. During
esign, app developers draw approximate User Interface (UI) sketches

∗ Corresponding author.
E-mail addresses: md.shamsujjoha@monash.edu, dishacse@yahoo.com (M. Shamsujjoha), john.grundy@monash.edu (J. Grundy), li.li@monash.edu (L. Li),

ourieh.khalajzadeh@monash.edu (H. Khalajzadeh), qinghua.lu@data61.csiro.au (Q. Lu).

and may use a prototyping tool to create the model aspects of the visual
design and the navigation flow. The architecture of the app is designed
based on needed functionality and user interface mockups. Finally,
the app is coded and the clients download, use and provide feedback
on it. This is a highly iterative process and continues throughout the
development lifecycle.

Model Driven Development (MDD) techniques can help developers
build an app more efficiently, as they enable code synthesis through a
model transformation process. MDD has shown to be successful in many
Software Engineering (SE) domains to improve productivity, increase
the quality of the outcome, provide tools for formal analysis, minimize
manual implementation effort, provide more reliability, flexibility, and
vailable online 31 July 2021
950-5849/© 2021 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2021.106693
eceived 27 March 2021; Received in revised form 14 July 2021; Accepted 19 July
 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:md.shamsujjoha@monash.edu
mailto:dishacse@yahoo.com
mailto:john.grundy@monash.edu
mailto:li.li@monash.edu
mailto:hourieh.khalajzadeh@monash.edu
mailto:qinghua.lu@data61.csiro.au
https://doi.org/10.1016/j.infsof.2021.106693
https://doi.org/10.1016/j.infsof.2021.106693
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106693&domain=pdf

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.

L
l
m
t
w
g
M

m
i
r
s
f
A
l
t
c
p
s
(
a
c
r
f
b
u

s
t
l
n
t
s
2
a
W
d
p
a
p
p

d
m
p
f
f

2

l
t
i
c
M
t
r
p

2

e

a
a
(

easy maintenance [7,8]. However, some researchers have shown that
while many MDD-based mobile app development approaches offer
useful domain patterns and tools, many of the models they use are
relatively low-level. This can be a problem because they can then
become very large and cumbersome to work with, require a lot of
modeling effort, and do not abstract away from code-level details.
Additionally, while many are sufficient to describe information for
basic app generation, often only user interface or basic data aspects
can be modeled and generated, and they do not contain adequate
information to realize the full implementation while still require very
detailed modeling [9,10]. Thus, these approaches are often hard to
reuse, need expert app developer input, do not leverage similarities
across platforms, and require extensive post-generation app testing and
tuning.

We conducted a detailed investigation into existing research ap-
proaches used for mobile app development based on model-driven
development, to identify strengths, limitations, and key directions for
future work in the area. To do this, we chose to use a Systematic
iterature Review (SLR), locating and synthesizing relevant academic
iterature. This SLR will benefit the readers interested in app develop-
ent in three key ways: (i) to understand existing MDD methodologies,

echniques, and tools for app development; (ii) to compare different
ays of app modeling and generation; and (iii) to identify key research
aps, potential future work, and enhancement possibilities for existing
DD based mobile app development approaches.

Based on our findings, 20 out of 55 selected studies aimed to
ake the app development process more flexible and faster, primar-

ly to manage models, data, and services. We also found that the
eusable code generation components in 8 of the selected studies was
hown to reduce product development time and consequently costs
or cross-platform, multi-platform or multi-version app development.
dditionally, 18 studies proposed a new method, framework, tool, or

anguages to increase development efficiency. Our analysis also found
hat architecture, domain model and code generation are the most
rucial purposes in MDD based app development, and three qualities,
roductivity, scalability and reliability can benefit from these modeling
trategies. We found that a substantial proportion of the selected studies
25.45%) focus mainly on interface development instead of full mobile
pp features. Most approaches have been applied to examples and use-
ases from academia (80%) and only a few from industry. One potential
eason is that MDD approaches are not sufficiently mature and flexible
or industrial app development. Another is that many industry apps can
e built sufficiently well without using MDD approaches, or by only
sing basic MDD approaches e.g. generate skeleton code only [10].

Guided by our findings, we listed ten significant limitations in the
elected studies, discussed in Section 4.3.2. We found that eleven out of
he fifty-five selected studies are not suitable for use at the professional
evel either because they (i) are not extendable to other than very
arrow app usage domains; (ii) only partial apps can be generated and
heir code cannot be modified; or (iii) the generator creates code with
ignificant performance and security issues. We also found that another
0 studies need to describe the development processes proposed and
nalyze their work more thoroughly to be applicable in the real world.
e also found that three studies are not suitable for large-scale app

evelopment, two developed GUIs separately from the other app com-
onents, and two do not specify how the tool and model get their target
pp requirements. From these analyses, we recommended seven high-
riority potential future research areas. The key contributions of the
aper include:

• We defined an SLR protocol following Kitchenham’s guideline [11]
and found 1042 papers potentially related to this topic. Subse-
quent filtering resulted in 55 primary studies selected for analysis,
synthesis, and reporting.

• We extracted information from selected primary studies, carried
out a meta-analysis, and present key strengths and limitations
2

with the corresponding discussion.
• We provide guidance for mobile app developers, stakeholders,
and researchers who want to better understand what MDD tech-
niques and methodologies have been used to date to support
mobile app development, and how these techniques have been
employed.

• We identify a set of key recommended research directions to
address the limitations of MDD based mobile app development
schemes and discuss their impacts.

The rest of this paper is organized as follows. Section 2 briefly
iscusses key related work. We then present our SLR-based research
ethodology and data synthesis in Sections Section 3. In Section 4, we
rovide detailed answers to our key research questions as evidenced
rom the selected primary studies. Section 5 discusses threats to validity
or this SLR. Finally, Section 6 concludes the paper.

. Background and related work

Although MDD approaches for mobile app development have a
ong history, this review study is the first large-scale systematic review
hat accesses existing approaches to provide their classification for
dentifying gaps, limitations and discussing current trends and future
hallenges. In this review, we were interested in evaluating existing
DD-based approaches that have investigated mobile app development

o date. This section presents some necessary background and key
elated works required to understand our review and the analysis
resented in the following sections.

.1. Model-driven development and related surveys

The terms Model Driven Development (MDD), Model Driven Softwar
Development (MDSD), and Model Driven Engineering (MDE) are often
used interchangeably in the literature. The MDD takes a high-level
model and successively refines it down to lower-level models, even-
tually to executable code and/or configurations to produce software.
A wide variety of MDD approaches, techniques and tools exist. All
of them share a common approach of abstracting aspects of software
into high-level models and using tools to synthesize code from these
models, rather than writing code by hand. MDD tools have been
developed for a great range of application domains, including web
applications, user interfaces, test case generation, embedded systems,
different domain-specific applications, and mobile app generation [10].

The Object Management Group has developed a standard and de-
fined a Model Driven Architecture (MDA) for MDD, used by many MDD
pproaches. MDA contains a set of rules and tools for problem modeling
nd defining the solutions. There are three types of models in MDA:
i) Computation Independent Model (CIM) for the business require-

ments; (ii) Platform Independent Model (PIM) for system architecture;
and (iii) Platform Specific Model (PSM) for model transformations.

Software Product Lines (SPL), Software Factories (SF) and Domain
Specific Languages (DSL) are sometimes considered to be kinds of
MDD/MDSD approaches. SPL reuses pre-built software artifacts for
development, whereas SF draws parallel models with traditional man-
ufacturing processes where software is assembled from pre-made parts.
These techniques have also been used to create mobile apps, where
features are identified in the domain analysis [10].

A detailed survey on MDSD is presented [12] that illustrates MDSD
essential elements and relationships between them, e.g., modeling lan-
guages, domain knowledge, meta-models, formal methods, model trans-
formations, and standards. In [13], Liddle et al. discuss how MDD
approaches work in practice with examples and use cases. An inter-
esting architecture-centric MDSD (AC-MDSD) approach is presented
in [14]. The authors discuss the economic advantages of AC-MDSD over
other approaches. Recently, Brambilla et al. [15] discuss the impact
of MDD approaches in practice, especially for software professionals.

This book is a good read for novice software engineers since it explains

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.

m
d
E
c
e
a
u
a
e
c
F
c
a
r
i
c
t
a
r
o
i

3

c
p
i
o
a
s
i
a
s
m
A

3

‘
r
R
i
(
a
t
t

T
P

MDD’s basic principles and techniques. It also discusses how MDD can
provide an agile and flexible tool, and how to select the right set
of MDSD instruments for a specific project. In [16], two companies
who are willing to adopt the principles of MDD are examined. This
case study analysis results explain the differences in requirements for
MDD in these organizations. It also discusses the factors that influence
decision upon adoption, the potentially suitable modeling notation for
each of the companies, and the conditions that should be fulfilled
to increase the chances of success, i.e., in adopting MDD in current
industries.

2.2. State of the art approaches for mobile app development and related
surveys

There exist many tools and frameworks for mobile app develop-
ment. Surveys from Heitkötter et al. [17] and Willocx et al. [18]
present two detailed and excellent reviews on this topic. However,
Barnett et al. [10] demonstrate that most mobile app development
approaches reviewed in these survey papers (i) do not consider or only
partially consider the technical domain model of the app, (ii) most
model analysis is absent, and (iii) provide little guidance on how to
construct the underlying meta-model used, if present at all. Some key
examples of leading edge approaches for mobile app development are
summarized below.

• Nitrogen: Nitrogen is a codeless and cloud-based development
platform for enterprises. Due to the codeless environment, it
provides limited flexibility and does not support all concepts of
mobile app development for its users.

• App Inventor: App Inventor is a tool that helps children to build
mobile apps based on visual programming languages. It simplifies
mobile app development by hiding all implementation details. It
consists of a meta-model for the concepts exposed to the devel-
opers but does not consider the technical domain’s conceptual
concerns, such as hardware constraints, event handling, network
connection, etc.

• Appcelerator: Appcelerator is a widely used framework for mo-
bile app development. It uses a model-based tool and uses
JavaScript to build apps that run on multiple platforms, but does
not specify an underlying meta-model.

• Xamarin: Xamarin is a cross-platform framework for mobile app
development based on the C# programming language. It wraps
the underlying mobile platform API so that developers can build
the functionality that they desire.

• Smart Maker Authoring Tool: Smart Maker Authoring Tool
enables non-developers to develop mobile apps and webs for their
work via basic concepts. The user of this tool does not require
any prior knowledge in programming or coding. The tool also
follows the no-code/low-code development principles and tries to
improve the application structure and operation mechanism for
implementing the desired app/web functions.

• Cordova: Cordova is a widely used hybrid app development
framework that hides platform-specific details. Ionic is built on
top of Cordova and includes core UI components for building
hybrid mobile apps that look like native apps. There are several
third-party generators used for generating parts of the mobile app.

• WebRatio: WebRatio is a commercial tool that uses MDD for
mobile app development based on the Object Management Group
(OMG) extended standard Interaction Flow Modeling Language
(IFML). The main strength of WebRatio is that it can generate
cross-platform hybrid mobile apps using the Cordova framework.

• MobiA: MobiA is a graphical tool for health monitoring applica-
tion development. This tool’s target user is health professionals,
3

and hence, technical details of app development are hidden.
There also exist several reverse engineering-based tools to support
obile app testing, UI artifacts modeling and tools for code recommen-
ation [10]. In [19], Wasserman et al. point out many key Software
ngineering (SE) issues for mobile app development. Some real-world
hallenges for mobile app development are illustrated in [20]. Barnett
t al. showed Domain Specific Languages (DSLs) can be used to gener-
te useful mobile apps in industry [10]. One significant advantage of
sing a DSL is that the solutions can be expressed in the idiom and
t the level of abstraction of the problem domain [21]. In [22], an
valuation framework is presented to analyze the current no-code/low-
ode app development platforms such as AppArchitect, EachScape,
orm.com, iBuildApp, OutSystems, PhoneGap, RhoMobile, and Sen-
haTouch. The authors also showed the impact of some platforms
t different app development life-cycle stages. A review of current
epresentative low-code/no-code development platforms is presented
n [23] that showed the required classification on the existing low-
ode platforms. The analysis results claim to help end-users selecting
he most appropriate platforms based on their requirements. A survey
nd a SLR on MDD for mobile apps were presented in [24] and [25],
espectively. However, these two review studies used a limited subset
f existing works, and we decided that a more detailed and rigorous
nvestigation was needed.

. Research methodology

This section defines our Systematic Literature Review (SLR) proto-
ol based on the guidelines provided by Kitchenham et al. [11] and our
revious experiences [26–29]. A high level workflow diagram is shown
n Fig. 1. The review protocol development for this study was carried
ut by the first author under the close supervision of the remaining
uthors, who are experienced in performing and supervising SLRs in
oftware engineering. The first author was also responsible for the
nitial study selection, i.e., searching and study accumulation, quality
nd quantitative assessment, study filtration, data extraction with the
upervision of other authors. The extracted data were synthesized using
eta-analysis techniques from the 55 original articles (summarized in
ppendix A).

.1. Research questions

Our objective was to analyze the existing research on ‘‘why’’ and
‘how’’ MDD techniques influence mobile app development, and what
esearch gaps exist in these domains. Thus, we formulated three key
Qs to answer this. Petticrew at el. [30] show that five elements,

.e., Population, Interventions, Comparison, Outcomes, and Context
PICOC), can be used to direct the formation of RQs for a search-
ble study. The PICOC for this SLR is shown in Table 1, following
he guidelines of Petticrew et al. modified for software engineering
axonomies [11].

able 1
ICOC for this SLR.
Population The literature on model driven development (MDD)

Intervention Mobile apps development techniques, method, process and
tools

Comparison Comparison among interventions for analysis

Outcomes The consequence of MDD for mobile apps development

Context Include: MDD techniques, process, language for mobile app
and tool development
Exclude: IoT, threats, privacy, malware, hardware and
communication

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Fig. 1. Architectural block diagram for this SLR.
RQ1 What are the main goals and objectives for generating mo-
bile apps using model driven approaches?

RQ1-SubRQ𝐴 What are the goals and objectives for each research
paper reviewed?

RQ1-SubRQ𝐵 Who are the target end-users of the tools and gen-
erated apps?

RQ1-SubRQ𝐶 Is the study applied to academic or industrial prob-
lems or both?

RQ2 What model-driven approaches have been applied to date to
generate mobile apps?

RQ2-SubRQ𝐴 What are the main domain model(s) used by the
researchers?

RQ2-SubRQ𝐵 What are the code generation steps? How is it ac-
complished?

RQ3 Which empirical methods are used in the selected studies
to evaluate MDD based app development approaches, and
what are the results obtained?

RQ3-SubRQ𝐴 How were the studies evaluated?
RQ3-SubRQ𝐵 What are the strengths and limitations of the se-

lected studies?
RQ3-SubRQ𝐶 What are our recommendations for future work in

this area?

3.2. Search strategy

We developed a strategy to search for papers that target mobile app
development using MDD. The goal was to find as many primary study
papers as possible. Our strategy consisted of three parts: search string
identification (Section 3.2.1), automatic search in electronic database
(Section 3.2.2) and snowballing using google scholar (Section 3.2.3).
4

Table 2
Concepts and search terms explanation.

Main terms Supportive search terms

Concept 1 (Co1):
MDD

Model Driven Development, Model Driven Software
Development, Model Driven Engineering, Domain
Specific Language, Domain Specific Modeling
Language, Domain Specific Visual Language, Platform
Independent Model, Computation Independent Model,
Platform Specific Model, Code, Transformation, Rule
Based Transformation, Unified Modeling Language,
Model Driven Architecture, Generate, Generator.

Concept 2 (Co2):
Mobile

Platforms: Android, iOS, Windows, BlackBerry,
Symbian, webOS, Ubuntu Touch, Tizen.
Device: Mobile, Smartphone, Tablet, Cellphone,
Cellular telephone.

Concept 3 (Co3):
App Development

Generated Applications, Developed Tools, Used Tools,
Improvement, Outcomes, Framework.

3.2.1. Search string formulation
Relevant primary studies for this SLR were identified based on

the RQs defined in Section 3.1. With the assistance of the PICOC
approach (Table 1), our search terms were divided into three primary
concepts, as shown in Table 2. These concepts helped us to set a
well-formulated search string. We also used synonyms, abbreviations,
and alternative spellings of search terms to increase the number of
relevant research papers. We used truncation and wildcard operators to
save time and effort in finding these alternative keywords. Moreover,
different supplementary key terms or phrases discovered during search
iterations were added to the supportive search terms list to enhance our
search strategy. For example, the supportive search terms ‘Code’ and
‘Transformation’ are applied with wildcard operator ‘*’ and database
search operators NEAR, respectively. Our supposition is that they will
collect all relevant articles that contains no-code/low-code and product
line related articles. When constructing the final search query, the
identified keywords, their alternatives and related terms were linked
with Boolean AND (&&), OR (∥) and NOT (¬) operators. The OR

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Table 3
Inclusion criteria.

ID Detail criterion

IC1 Full text of Conference papers, Journal articles and
Book chapters that comply with three concepts
defined in Table 2.

IC2 Entire papers are written in English and use
academic literature references.

IC3 Studies that propose a solution or partial solution
for Mobile apps development using an abstract
model, languages, code generation and tools.

IC4 Papers available in an electronic format i.e., doc,
docx, pdf, HTML, ps.

operator was used to concatenate the synonyms; AND to concatenate
the major concepts; and NOT to reduce the unwanted contents (UC) as
follows:

[{(𝐶11‖𝐶12‖... ∥ 𝐶1𝑛)𝐀𝐍𝐃(𝐶21‖𝐶22‖... ∥ 𝐶2𝑛)𝐀𝐍𝐃(𝐶31‖𝐶32‖... ∥ 𝐶3𝑛)}

𝐍𝐎𝐓(𝑈𝐶1‖𝑈𝐶2‖... ∥ 𝑈𝐶𝑛)] (1)

where 𝐶11…1𝑛, 𝐶21…2𝑛, and 𝐶31…3𝑛 𝜀 Co1, Co2 and Co3 of Table 2,
respectively; and 𝑈𝐶1. . . 𝑈𝐶𝑛 refers the Exclude Context as define
in Table 1. During search we exclude following terms: ‘Malware, Clas-
sification, Clustering, Cloud, Wearable, Network, Test, IoT, Energy and
Bug’.

3.2.2. Automatic search in electronic databases for scientific literature
We performed searches using four electronic databases for pub-

lications without any time range: ACM Digital Library, IEEE Xplore,
Science Direct, and Springer Link. We chose these databases because they
contain most high quality, peer-reviewed papers in Computer Science
and Software Engineering including MDD and Mobile app development.
We chose to ignore some of the secondary indexing search engines
like SCOPUS and INSPEC because they contain a large number of
duplicate studies. However, we also used snowballing from located
study references via Google Scholar to find additional studies and make
our review more comprehensive. We ignored the terms related to IoT,
Malware, Energy, and Testing from the search query using Boolean
NOT operator due to the following reasons:

• We were exclusively interested in MDD for Mobile apps develop-
ment domain

• We were interested in app modeling and generation rather than
test case generation and bug fixing. Test case generation might be
an interesting topic to look in the future.

• IoT requires extra hardware and is beyond the scope of this study.
• Energy issues and malware detection are not related to the con-

cepts defined in Table 2.

3.2.3. Snowballing using Google scholar
Our database searches yielded a large set of primary papers. We also

manually searched Google Scholar using the primary and supportive
terms defined in Table 2 as we did not want to miss any relevant
existing study and wanted to make sure that the final set of papers is
complete. We analyzed the references from the finally selected studies
to also check for any potentially missed primary studies.

3.2.4. Selection of papers: Inclusion and exclusion criterion
Tables 3 and 4 present the Inclusion Criteria (IC) and Exclusion

Criteria (EC) that have been used to identify the studies of this SLR,
5

respectively. w
Table 4
Exclusion criteria.

ID Detail criterion

EC1 Gray literature, Workshop articles, posters, books,
work in-progress proposals, key notes, editorial,
secondary or review studies.

EC2 Discussions papers and opinion papers, as well as
Surveys that do not include any solution defined is
IC3

EC3 Short papers less than three pages, irrelevant and
low quality studies that do not contain
considerable amount of information to extract

EC4 Papers discussing on MDD or similar terms but not
regarding Mobile apps development e.g., mobile
Malware, Testing or IoT focused

EC5 Mobile app development without MDD, beyond
the scope, no real work or implementation

EC6 Conference papers and book chapters if an
extended or recent journal version is available
(from same authors), and when full version is
unavailable.

3.2.5. Collection and filtering of the studies
Our filtration process is summarized in Fig. 2. Initially we ran

the formatted query on four major databases that returned 1031 re-
search papers. We then applied filtering and classified the studies
found [11]. In our initial filtration process, we removed 44 papers
due to being duplicated articles, editorial or key notes. After reading
the title, abstract, conclusion and skimming through the introduction,
methodology and results, we applied our exclusion criterion defined in
Table 4, and 873 further papers were removed. During the third step of
filtration, we applied inclusion criteria and removed 63 papers as these
studies did not meet any ICs shown in Table 3. In parallel, we did a
manual search and found only 11 papers that meet all three concepts
defined in Table 2 but not contain any unwanted content (UC) defined
in Eq. (1). After applying ICs and ECs, three out of eleven papers were
selected. Finally, we did a cross-check and ended up with 55 papers
as our primary set of studies for analysis after completing the filtration
process.

3.2.6. Quality assessment
We used 1 to 5 numeric score – Very Poor, Inadequate, Moderate,

Good and Excellent – Quality Checking (QC) applied to each study
using following six questions (QC1 to QC6). We label a paper as a poor
quality paper if its average value for all QCs is ≤2.00, otherwise we use
the qualitative information (discussed in Section 3.2.7) to decide this.1

QC1: Is the study highly relevant to the research and concepts defined
in Tables 1 and 2, i.e. clearly uses an MDD based technique to
generate mobile apps?

QC2: Does the study clearly explain the methodology that accom-
plishes its goals?

QC3: Does the study provide sufficient information on data collection,
prototyping and/or algorithms used?

QC4: Is there a clear outcome and results analysis reported?

QC5: Are study limitations and possible future work adequately de-
scribed?

QC6: What is the citation count and quality of the venue where the
study was published?

1 These poor quality papers were dropped from our set of primary studies
ithout further investigation.

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Fig. 2. Primary study selection process steps.
3.2.7. Qualitative information to be extracted from each paper
We extracted the following fifteen key information items from each

primary selected paper, forming its Qualitative Information (QI):

QI1: Publication details — authors, title, date, venue, citation count,
publisher.

QI2: What are the main goals and objectives of this study?

QI3: Is the user/case study from Academia or Industry?

QI4: What domain(s) are the generated apps targeting e.g. retail,
travel, entertainment.?

QI5: Who are the target end-users of the tool e.g. business analysts,
app developers, end users, etc?

QI6: What are the underlying model(s) (domain models and architec-
ture) used?

QI7: How are the target app requirements specified?

QI8: How is the code generator implemented?

QI9: Does it produce complete or partial output (generates a full app
or only generates a part of an app)?

QI10: Can the generated apps be hand-modified?

QI11: How was the study evaluated?

QI12: Is the tool scalable to large apps?

QI13: Does the study (tool) generate a quality output (app)? How is
this measured?

QI14: What are the main strengths and limitations of the presented
work?

QI15: What are the identified research gaps and future work ideas?

3.2.8. Reference management and screening tool
We used EndNote X9 tool for reference management and screening

the studies because it facilitates easy removal of double entries and
keeps track of papers by summarizing essential facts, e.g., title, authors,
abstract, keywords, venue, date, and page numbers.
6

3.3. Data extraction and synthesis

During data extraction, we downloaded all primary studies and
grouped the papers as per the theme, contribution, authors, and
Electronic Database (ED) name in this order. An identity code was
formulated and assigned to every individual study. The list of papers
with their identity code is available in Appendix A. We followed the
following steps to counter the biases during data extraction:

• Initially, the first author of this paper extracted data for two
papers from each selected ED and stored the results in a google
sheet. The remaining authors of this report cross-checked these
data, and the necessary correction was applied.

• Then the first author extracted data for another twenty selected
studies, and similar cross-checking was performed until all of the
authors reached agreement and the outcome did not vary more
than 5% for anyone. At the end of this step, the review protocol
was finalized to incorporate the changes.

• In the third step, the first author re-extracted the data from
previously examined studies as well as the remaining twenty-
seven studies as per the revised protocol. The extracted data were
sequentially cross-checked by the remaining authors (once each)
to minimize extraction bias and omissions.

• Finally, all data was stored in a google sheet for analysis and
synthesis.

4. Evaluation results and analysis

We extracted qualitative, quantitative and mixed data from the
selected 55 primary studies. We also used visualization tools and meta-
analysis techniques to present our analysis, especially to answer the
research questions defined in Section 3.1. Fig. 3 show the year of
publication for all selected studies. Appendix A contains the full list
of references for the selected studies. We found, there were 6 journal
papers, 1 book chapter, 4 symposium papers, 3 workshop articles
and 41 conference papers. All of the selected primary studies were
published between 2005 and 2019. We collected the paper list in 2020.
Hence, there may be papers published after our search. For example,
two very new relevant papers [31,32] have now been published in
2021. The first paper [31] describes mobile app synthesis from UML
models applying the UML toolset to generate native apps for Android

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Fig. 3. Number of publications per year.
Fig. 4. Distribution of quality assessment score.

or iOS platforms. The second article [32] developed an excellent frame-
work called MAndroid to generate Android-based classic multiplayer
2D board games. Overall, we found at least one study in each year since
2005, and in 2014, we found the highest number of studies. Although
there is a considerable increase in the number of studies from 2013 to
2014, after 2014, it has now leveled off or decreased slightly.

We defined six quality assessment criteria for the primary studies
(described in Section 3.2.6). Their distribution is shown in Fig. 4 and
individual scores for each question are attached in Appendix B. We
scored more than 60% of the selected studies as ≥3 for all the questions
except 𝑄𝐶5 – Future work summary. This suggests many studies poorly
identify and define the appropriate future scope for MDD-based ap-
proaches to mobile app development. However, 81.82% of the selected
studies clearly answer 𝑄𝐶1 with score ≥3, with clear motivation and
objectives. 𝑄𝐶3 – data collection and algorithms clearly described and
𝑄𝐶4 – outcome and analysis also score well overall. 𝑄𝐶2 – methodology
and chosen approach are good to excellent in most studies. Most studies
have good citations and appear in good to excellent venues – 𝑄𝐶6.

As an example, ED52 proposes a model for conducting early usabil-
ity evaluation for mobile apps generated with an MDE tool. Although
the goal is clear, it does not align well with the methodology presented
later in the paper. More specifically, it defines the usability metrics
and corresponding sub-characteristics, but the method contains only
applicability discussion of the proposal for a ‘Car Rental System’. We
thus scored it 2 for 𝑄𝐶1. We also scored 2 for questions 𝑄𝐶2 to 𝑄𝐶6 for
this study, since the paper lacks details about its data collection, does
not discuss the used algorithm, presents few findings that do not match
with the goal, and future work is not explained but the summary with
study limitations is provided.
7

In contrast, ED30 presents JustModeling, which is a MDD based
approach for business app development. This research has a clear-
cut objective that well-aligns with the goal of MDD. It also presents
a novel model/methodology, excellent implementation and currently
is in use and therefore, we scored it 5 for 𝑄𝐶1. The methodology
and goal align (≥90%) highly (score 5 for 𝑄𝐶2); it describes clear
and appropriate data collection procedures and algorithms (score 5
for 𝑄𝐶3); has clear findings and explanation for analysis (score 4 for
𝑄𝐶4); discusses summaries but its limitations and future works are not
illustrated appropriately, for example, it does not take into account
coding the class methods, e.g., method codes need to be inserted
manually by the developers after automatic code generation steps, and
it misses structural component (score 3 for 𝑄𝐶5); and the work is
published in Brazilian Symposium on Computing Systems Engineering
which is a moderate venue in software engineering (score 3 for 𝑄𝐶6).

4.1. RQ1: What are the main goals and objectives for generating mobile
apps using model driven approaches?

The first research question in our SLR tried to identify the motiva-
tion behind each selected study. Overall, the studies aimed to add more
flexibility in mobile app development through high-level modeling,
consequently increasing productivity. We also tried to find the target
end-users and applications areas. We found that most approaches were
applied to examples and use cases from academia and only a few from
industry or in collaboration. We present our analysis and finding on
these in the following subsections, answering three related sub-research
questions.

4.1.1. RQ1-SubRQ𝐴 What are the goals and objectives for each research
paper reviewed?

Mobile app development steps are similar to traditional software
development steps that begin with platform selection, target user iden-
tification, constraint mapping, data collection, implementation and
testing. However, the data collection may not be required for some
trivial apps, e.g., a calculator or photo viewer apps. Model Driven
Development methods enable the synthesis of a mobile app through
a model transformation process ending up with code generation [10].
The objective is ultimately to raise the abstraction level and increase
the level of automation. Thus, it improves productivity, increases the
quality of the apps, reduces the risks, and provides tools for formal
analysis. Several works [17,33] present novel frameworks and tools for
mobile app development but not all are based on MDD techniques. To
better understand limitations with current mobile app development ap-
proaches using MDD, this SLR identifies the main goals and objectives
for generating mobile apps using MDD approaches.

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Fig. 5. Selected studies (a) Word Cloud from objective and title (b) Frequently used words to describe goals and objectives.
Table 5
Identified common objectives and goals in the selected studies.

Attributes: Goal and objectives Studies %

Flexibility: Provide more flexibility through executable models
as an integral part and for app evolution.

ED1 ED2 ED3 ED4 ED5 ED6 ED16 ED18 ED22 ED30
ED32 ED33 ED34 ED35 ED38 ED46 ED54

30.90%

Efficiency: Reduce app development time and cost and hence
increase productivity.

ED2 ED4 ED5 ED7 ED16 ED31 ED33 ED34 ED37 ED38 18.18%

Reliability: Integrating design models and approaches to
support reliability and corresponding analysis.

ED2 ED3 ED5 ED10 ED13 ED15 ED20 ED23 ED25 ED29
ED32 ED34 ED52

23.63%

Reuse: Ensure reusable methods to generate the apps or a
proportion of apps using DSL, DSVL, framework or templates.

ED8 ED10 ED11 ED12 ED17 ED18 ED19 ED21 ED23
ED28 ED30 ED31 ED45

23.63%

Quality: Increase the quality of the developed app. ED1 ED14 ED36 ED42 ED47 9.09%
We extracted the main goals and objectives from the text of the
55 selected studies. We then performed thematic coding analysis and
found that the primary studies use in total around five hundred words
to illustrate the goals of their studies. A word cloud illustrating the key
phrases from the extracted text is shown in Fig. 5(a), and distribution of
the most frequent words with frequency≥5 for this word cloud is shown
in Fig. 5(b). Phrases such as ‘Application, Develop, Mobile, Model and
Use’ are very commonly used by the researchers, as to be expected in
the sense that these works try to address concerns in this domain. ‘Code,
Generate and Platform’ are also used frequently which highlights key
issues to address in code generation and platform selection. However,
the frequencies of words ‘Architecture, Data, Language, Native, Multi-
ple and Software’ are much lower. We also found that 72.72% of the
selected studies map to a set of five common goals, shown in Table 5.

One-third of the primarily selected studies try to increase the flex-
ibility of app development process through use of MDD techniques.
However, we found only one of the project development principles
is flexible in most cases (selected studies), while others are rigid.
For example, study ED5 aims to accelerate Android app development
following the Create, Read, Update and Delete (CRUD) pattern. Here,
Query View Transformation (QVT) is used, transforming the UML class
diagram (PIM) to the Android model (PSM) at the metamodel level.
Then Acceleo tool generates the code from the PSM through an MVC
pattern implementation. However, it is limited to a particular kind
of variability and does not support modeling and variant generation
for mobile domain-specific hardware and software features. Thirteen
studies have explored improving reusability in app development. Ini-
tially, most of these studies build a library of app components or
templates. Then, this library is used to help in generating a complete
app. For example, ED19 proposes the RUMO framework for UI design.
It creates different versions of pre-built template files to address the
8

issue of different versions of a platform or multiple reusable templates
for multiple platforms. Each template file is responsible for creating the
source code for the desired platform.

We found only five selected studies aimed to increase product
quality exclusively. This is a small number compared to other param-
eters presented in Table 5, in the sense that all the quality attribute
parameters are very hard to achieve due to the laborious synthesis
process in a single project. We also identified that maintainability
among the software product quality attributes was implicitly addressed,
but compatibility, functionality, and effectiveness still need further
attention. For example, ED42 investigates a model-based approach to
support non-technical users creating data collection tools according to
their actual needs. Here, task models are described in constraints on
task execution as temporal relations between sub-tasks to increase the
quality. However, the effect of integrating the data collection method
with the tool is not shown.

We also found that a sub-set of studies address more than one
common goal summarized in Table 5. Graphical distribution of these
studies in terms of common goal attainments using a Venn diagram is
shown in Fig. 6. In addition, we found 27.27% of studies did not address
any of these five common goals. The main objectives and goals of these
15 papers are shown in Table 6.

The first study ED9 combines aspect-oriented development tech-
niques with MDD for app development. It provides a set of tech-
niques to modularize crosscutting behavior. The main aim is to man-
age the complexity of contexts, e.g., environmental factors, device
limitations, and connectivity. The study ED24 keeps the Domain-
Specific Visual Languages (DSVL) and Domain-Specific Transformation
Languages (DSTL) in sync for the app development and code genera-
tion. Though this is an improvement on previous code generators, it
aims to help the experienced developers, whereas the studies ED26

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Fig. 6. Venn diagram represents the overlapping studies in common goals attainments.
Table 6
Identified uncommon objectives and goals in the selected studies.

Study Primary objectives Study Primary objectives

ED9 Better manage complexity ED24 Scaffolding for a mobile app generation
ED26 Evaluate app feasibility to an archetypal case ED27 Utilize independent language to generate code
ED39 Streamline prototyping process ED40 Ease computing for Hybrid app development
ED41 Enable single code base usages for all platforms ED43 Support collaborative design
ED44 Specifying behavior of data collection process ED48 Generate synthetic emulation code
ED49 Enable users to create their own DSL ED50 Specify domain and user interaction models
ED51 Integration of different modeling environments ED53 Create inter-operable apps
ED55 Experimental development
and ED39 target inexperienced developers to start producing mobile
apps. The main goal of study ED27 is to use an independent modeling
language to generate native app code. However, there is no standard
procedure for confirming the completeness of GUI specified by the lan-
guage shown. Hence, we did not consider this as a potential candidate
for the productivity of Table 5. Similarly, study ED55 aims to easy
model process, but the prototype is far from productive usage.

4.1.2. RQ1-SubRQ𝐵 Who are the target end-users of the tools and generated
apps?

Fig. 7(a) summarizes the primary tool user groups we identified
for each selected study. We identified the target tool user by two
methods (i) Directly from the paper (23.6%) or (ii) Inferred by eval-
uations described in the papers (76.4%). We tried to distinguish the
tools for different types of developers by (i) Existing facilities such as
programming language, frameworks and SDK and (ii) Work procedure
and functionalities that are shown in the examples and evaluations in
the studies.

We found that the tool design choices of the researchers mostly
focus on app development or the GUI aspect of part of the app de-
velopment. Interestingly only study ED24 focuses solely on supporting
professional mobile app developers and they explicitly mention that
their tools are not for general users or novice app engineers. Three stud-
ies (ED10 ED38 ED49) explicitly target non-technical app developers.
In our analysis we were also able to identify the 12 types of users in
terms of generated apps. All these types are extracted from the selected
studies evaluation and use cases. We could not identify any specific
9

target user of the app development tool for three studies (ED28 ED34
ED50) because there is no example or evaluation.

Fig. 7(b) summarizes the primary target domain end users we
identified for each selected study. We determined this by reviewing
each study’s objectives, any case studies they used, and the evaluations
described in the studies. While sub-categorizing the target end-user
of the generated app we tried to match the evaluation results with
the example so that the main goal of the paper remains addressed
i.e., not consider the concerns of the developer, but rather focused on
the final app user. Most apps produced by MDD tools in the studies
focus on some form of business domain e.g. business app generation, e-
commerce, human resource management and ERP solutions (ED5 ED11
ED12 ED14 ED22 ED23 ED27 ED29 ED30 ED32 ED35 ED36 ED40
ED41 ED45 ED46 ED47 ED48 ED51 ED52 ED53 ED54). A small number
of studies target health and medical(ED10 ED17 ED37 ED38 ED49),
security (ED2 ED3 ED20), entertainment and games (ED13 ED16 ED24
ED31 ED55) and social media domains (ED15 ED19 ED26 ED39 ED33).
A few studies target mapping and data management (ED42 ED43
ED44). Two studies claim to be suitable for multi-domain (ED7 ED8),
one for map and GIS (ED1). We could not tell in which domain the
tools aim to produce app for remaining three apps (ED28 ED34 ED50).

4.1.3. RQ1-SubRQ𝐶 Is the study applied to academic or industrial problems
or both?

There is no clear difference in MDD approaches as to being applied
in academia vs industry. In industry, approaches are driven by the
goal to develop new products and services and improve quality and
productivity, rather than solving a problem theoretically. In academia,

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Fig. 7. Identified (a) Target end-users of the tool for app modeling and code generation (b) Target domain of app usage -for selected primary studies.
Table 7
Distribution of the selected studies as per academia or industry.

Domain Selected Studies %

Industry ED39 ED50 3.6%

Academia ED1 ED2 ED5 ED7 ED9 ED10 ED13 ED14 ED15 ED16
ED17 ED18 ED19 ED20 ED21 ED22 ED23 ED24 ED25
ED26 ED27 ED28 ED30 ED31 ED32 ED33 ED34 ED35
ED36 ED37 ED38 ED42 ED43 ED44 ED45 ED46 ED47
ED48 ED49 ED51 ED52 ED53 ED54 ED55

80.0%

Industry academia
collaboration

ED3 ED4 ED6 ED8 ED11 ED29 ED40 ED41 14.5%

Unresolved ED12 1.8%
10
researchers might be more focused on exploring new theories, concepts,
models, platforms, techniques and code generation approaches. We
tried to distinguish whether each selected study – in terms of the carried
out case studies, examples presented, and claimed end users of the tools
– was done on problems in academia or in industry.

Table 7 summarizes the results of our findings. Most applications
of MDD to date appear to have only been used in academia, with a
few to support academic/industry collaborations. We found only two
reporting purely industry-based case studies, and for one it was not
possible to identify. Further studies are needed to apply MDD-based
techniques for mobile app generation to industry-scale problems and
determine their strengths and weaknesses for industrial practice. We
also note that the use cases, evaluation results, detailed examples and
tools are often not available from the industrial and collaboration cases.
For the academic domain many are available either in the paper itself
or through publicly accessible downloads.

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.

c

4
g

u
c
O
u
p
r
d
g
r
o
p

4
r

m
l
a
i
d
l
m
i
a
i
M
t
a
e

m

Table 8
Summarized context of MDD for mobile apps.

Study
No

Platform Programming
Language

Model and
Architecture

Business

Logic

UI/GUI/
App
Screen

Data Behavior Model
Completeness

Study
No

Platform Programming
Language

Model and
Architecture

Business

Logic

UI/GUI/
App
Screen

Data Behavior Model
Completeness

ED1 WE H F ED29 MP H ✓ ✓ ✓ P

ED2 MP H ✓ P ED30 AN N ✓ ✓ F

ED3 MT H ✓ ✓ ✓ F ED31 AN N ✓ ✓ ✓ P

ED4 MP H ✓ F ED32 MP H ✓ ✓ F

ED5 MP H ✓ ✓ F ED33 MP H ✓ P

ED6 MP H ✓ ✓ ✓ F ED34 MT N ✓ P

ED7 AN N ✓ ✓ F ED35 WE N ✓ P

ED8 MT N ✓ ✓ P ED36 MP H ✓ ✓ ✓ P

ED9 CX H ✓ ✓ P ED37 MT N ✓ ✓ P

ED10 MT N ✓ F ED38 MT N ✓ ✓ P

ED11 MT N ✓ ✓ ✓ P ED39 iO N ✓ ✓ F

ED12 MT N ✓ ✓ P ED40 H H ✓ ✓ P

ED13 MP H ✓ ✓ ✓ P ED41 MP H ✓ F

ED14 AN N P ED42 MT N ✓ ✓ P

ED15 H H ✓ ✓ F ED43 MP H ✓ F

ED16 AN N ✓ ✓ P ED44 MT N ✓ ✓ P

ED17 AN N ✓ ✓ P ED45 MT N ✓ ✓ P

ED18 CX H ✓ ✓ ✓ P ED46 MP H ✓ ✓ ✓ F

ED19 iO N ✓ P ED47 WE N ✓ ✓ ✓ P

ED20 MP H ✓ ✓ P ED48 MT N ✓ ✓ ✓ P

ED21 AN N ✓ ✓ P ED49 MT N ✓ ✓ ✓ F

ED22 AN N ✓ F ED50 MP H ✓ P

ED23 AN N ✓ ✓ P ED51 MP H ✓ ✓ P

ED24 AN N ✓ F ED52 MT N ✓ ✓ P

ED25 CX H ✓ ✓ P ED53 MP N ✓ ✓ F

ED26 MT N ✓ ✓ P ED54 MP H ✓ ✓ ✓ P

ED27 iO N ✓ P ED55 AN N ✓ ✓ ✓ F
ED28 AN N ✓ ✓ ✓ P

*Note: In this table we consider following Acronym: AN as Android platform, iO as iOS platform, WE as Wed/Cloud platform, MP as Multi/Cross-platform, MT as Mobile telephony system (non-samrt), H as Hybrid (for
olumn two it represent Web and MT), CX as Context aware for MT, N as Native, F and P as Full or Partial completeness of the model, respectively.
T
P

%

%

%

%

.2. RQ2. What model-driven approaches have been applied to date to
enerate mobile apps?

This research question tries to identify the model-driven techniques
sed by the selected studies to generate mobile apps, e.g., modeling,
ode generation, run-time configuration, and model transformations.
verall, we found that the UML, DSLs, and template frameworks are
sed to describe an app. We also found that most studies use tem-
lates, transformation rules, compilers, parsers, synthesizers, and Java
esources for code generation. However, for 29.09% studies, could not
etermine how this was done. Either detailed information on code
eneration steps were absent or model interpretation to execute the
unning apps is not illustrated. An overall summary of context of MDD
f mobile apps generation is presented in Table 8. More discussion is
resented below, answering two related sub-research questions.

.2.1. RQ2-SubRQ𝐴 What are the main domain model(s) used by the
esearchers?

To answer this sub-research question, initially, we identified domain
odel(s), framework(s) and tool(s) used by the researchers in the se-

ected primary studies to model the app. We then identified the primary
spects of the apps described in the models, which is summarized
n Table 9. We found that the app structure/behavior and front-end
evelopment are two main aspects, whereas the data modeling is the
east. We also tried to identify how complete the model is, and how
uch of the app can be generated. We found that the entire system

s modeled in 34.55% (19 out of 55) studies where a fully working
pp is generated. In contrast, in the remaining 36 studies, the model
s partially complete and can only generate a part of the app. The
odel Completeness column of Table 8 (9th and 18th columns) presents

his result for each individual study. Finally, we tried to find out how
re the app requirements modeled/designed; and which studies used
xecutable UML or OMG’s MDA approaches.

In the selected studies we found there are mainly three types of com-
11

on domain models — the UML, textual Domain-Specific Languages,
able 9
rimary aspects of the apps described in the models in the selected studies.

Aspects of the Apps
Described in the Models

Selected Studies %

Requirement modeling ED7 ED10 ED24 ED34 ED41 ED44
ED50 ED52

14.54

Front-end development
(UI/GUI/Screen/Resources/
Transition)

ED8 ED11 ED13 ED17 ED19 ED21
ED26 ED27 ED28 ED31 ED36 ED37
ED39 ED45 ED47 ED49 ED53 ED54

32.72

Back-end development
(client/server/cloud
components)

ED1 ED14 ED15 ED22 ED35 ED40 10.90

App structure/behavior ED2 ED3 ED4 ED5 ED9 ED12 ED16
ED18 ED20 ED23 ED25 ED29 ED30
ED32 ED46 ED48 ED51 ED55

32.72

Data (modeling/binding) ED6 ED33 ED38 ED42 ED43 9.09%

and Domain-Specific Visual Languages. These three approaches were
used by the researchers to model an app in 70.90% of our selected
studies. The rest of the research works either present a new prototype,
framework or tool to model an app. Fig. 8 summarizes the distribution
of this finding in the four areas, and details of these categories are
presented next.

A. Use of UML for system modeling and app generation: We iden-
tified 13 studies that used UML or a similar standardized modeling
languages (UML 2.0, Ecore) for specifying, visualizing, constructing,
business modeling and documenting the artifacts of mobile apps. More
detail on modeling process of these studies are as follows:

In ED4, the authors identify a subset of UML that fits the need
of the mobile app development domain that applies use-cases for
requirements gathering, class diagrams for structural modeling, and
state machines for behavioral modeling. The authors also develop a tool

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Fig. 8. Distribution of key model types used by researchers for system modeling and app generation.
named Mobile Application Generator (MAG) that takes UML models
as input and generates application for the specified target mobile
platforms. Therefore, we marked this study as ‘F’ in the 9th column of
Table 8, which means it can model the entire system and can generate
a fully working app. Study ED9 uses UML, PSM and composition model
for Aspect-Oriented MDD for Context-Aware applications. Here, an app
designer begins by modeling the pervasive application in ‘Theme UML’.
Then, app code is generated from this high-level model. In ED11, the
authors propose an approach where mobile business process models
are extended with UI models using UML2 class and activity models.
The model guides the generation of user interfaces and adds specific
platform requirements to the end-user device.

B. Domain-Specific Language (DSL) for system modeling and app
generation: Fig. 8 shows that 25.45% (14 out of 55) selected studies
use some form of textual domain-specific language (DSL) to describe
an app. These studies can be grouped into two subcategories (i) Intro-
ducing a new DSL or using a set of new DSLs to model and generate an
app (nine studies), and (ii) Extending or use existing DSLs along with
tools to model and generate a mobile app (five studies). More details
on the modeling process of these studies are discussed below:

In ED2 and ED20, the Agile Model-Driven Approach for develop-
ing cross-platform mobile applications is proposed based on AXIOM.
AXIOM provides a modeling DSL written in a dynamic language and
it defines an app as the platform-independent intent models. In ED7,
authors develop a high-level modeling language called MoDroid to ease
the development of Android applications. MoDroid implements a meta-
Model and its supported tools for the app development e.g., model
composition, permission detection, testing and code generation. The
authors of MoDroid implement a visitor pattern that traverses the tree
structure of an Android model. The pattern takes interface input that
declares methods to be executed depending on the node that was local-
ized. In ED8, authors propose a DSL named Menu-Navigation Viewpoint
(MNV) for modeling the UI architecture of embedded telephony apps.
In MNV, the developers can describe the UI architecture using the
fundamental domain concepts.

The first study (ED39) of our second subgroup (extending or using
existing DSLs and tools for modeling app) details the criterion that
a DSL should have to produce real-world mobile applications. The
presented DSL can be used to write the corresponding reference model
based on the existing Xtext framework. In ED40, a modeling strategy
for cloud-mobile hybrids apps is shown. The DSL shown here is based
on the MVC modeling techniques used for web development. The tool is
named MobiCloud that produces Android and Blackberry applications
as frontends, and Google App Engine and Amazon EC2 applications as
back-ends.

C. Domain-Specific Visual Languages (DSVLs) for system modeling
and app generation: Twelve out of fifty-five selected studies employ
DSVL to describe an app, where the primary app modeling is done
through visual platforms. More detail on these modeling techniques are
illustrated below:

In ED3, The Event Model (TEM) diagram describes the event causal-
ity dependencies for event processing mobile applications. It also illus-
trates the structure of the logic by TEM Diagrams. Logic concepts are
12
implemented by TEM policy tables, TEM computation tables and TEM
event derivation tables. Similar to ED3, authors of ED13 used screen
flow diagrams to define screens and describing transitions between
screens with events in a mobile application based on an Eclipse plug-in.

In ED10, the authors propose a novel prototype for visually mod-
eling healthcare plans and mobile device code generation using two
DSVLs. The first DSVL is named VCPML, which allows healthcare
providers to model complex care plans, health activities, performance
measurements, sub-care plans, etc. It can also be saved as templates.
The second DSVL is named VPAM, which describes a mobile device
interface to the user (patients) for the care plan. Both DSVLs are devel-
oped using Marama meta tools. The care plan DSVL is incorporated
as an Eclipse plug-in. In ED24, the authors develop a tool named
RAPPT for generating mobile apps. The tool consists of three major
components, the parser, code generator and interface. The interface
consists of three screens, that a designer can use to design layout of
the app (i) DSVL (ii) Code editor for DSTL (App Modeling Language)
and (iii) Code Browser for viewing the generated app.

The authors of ED25 developed a visual tool for visual modeling of
contextual rules and contextual information. The name of the tools is
CRITiCAL which is designed as an Eclipse IDE plugin. Initially, a model
was created by a developer using the tool. Then, Java classes are built
from this model and turn it into a Java code. The final product is an
Android project integrated with LoCCAM. In ED26, the author presents
a GUI modeling language named MIM for mobile applications. Here,
The design of the screens were done through MIM Diagram that then
checks XML interoperability, and then class diagram is generated.

The authors of ED46 and ED53 use the MAML framework where
data, views, business logic, and user interactions are jointly modeled
from a process perspective using a graphical DSL. In ED54, the authors
develop a tool that allows the use of models and provides a way
to support transformations for different target device families. The
graphical editor component was built using the JGraph3 library for
originating MOF compliant architecture and UI Specification. In ED55,
MVC pattern is used to the model business logic which is separated from
the UI and the control use class diagrams for Android app development.

D. Uses of frameworks, prototypes and tools for system modeling
and app generation: The rest of the sixteen studies either utilize an
existing framework or propose a new prototype based on existing tools
for generating mobile apps. More detail on domain model for these
studies are as follows:

The authors of ED1 use Styled Layer Descriptor (SLD) for the
dynamic generation of context-adaptive mobile maps. A tool named
ArcMap2SLD-generator is developed. This tool allows designing a ESRI
ArcMap and converting it into a valid SLD-file. In ED6, a modeling
language and an infrastructure is shown that supports specifying differ-
ent app variants according to the user roles for MDD of Android apps.
Here, users may continuously configure and modify custom content
with one app variant, whereas end users are supposed to use provided
content in their variant. Models are separated into three sub-models (i)
Data model (ii) Process model and (iii) GUI model. Data modeling is
supported by the EMF. The language is also designed using EMF and

has the possibility to add a textual syntax.

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Fig. 9. Distribution of key code generation techniques.
Study ED34 contributes to the Drools rule-based transformation ap-
proach to automate the mobile application development process based
on the Umple model. Umple is a model-oriented programming language
that supports modeling using a textual notation. The presented archi-
tecture is divided into three major parts: (i) Parser: Receives an input
model, written in Umple language, tokenizes it and passes it to the next
component transform; (ii) Transformer: Processes the tokens previously
obtained and transforms them into internal representation consistent
with target source code model using a predefined set of Drools mapping
rules. It also deploys the knowledge base rule engine; and (iii) Code
generator: Translates the internal representation into target artifacts;
source code as Java, XML and android activity class. Each component
is tested independently to ensure that the input is processed correctly
and the produced output is valid.

In ED47, the authors introduced the BAMOS platform that supports
the specification of a mobile app using XML files to generate XForms
screens i.e., it can only partially model the system and can generate a
part of an app. Therefore, we marked this study as ‘P’ in the 18th col-
umn of Table 8. ED48 shows R & D efforts to answer (i) How models of
mobile software architecture can be built?, (ii) How instrumented em-
ulation code can be generated to run on the target mobile device?, and
(iii) How the emulation code can be used to glean important estimates
of software power consumption and performance? The authors develop
a System Power Optimization Tool (SPOT) for optimizing performance
and power consumption of mobile applications at design time based on
the Generic Eclipse Modeling System. It allows developers to rapidly
model potential app architectures and obtain automatic feedback on
the architecture performance and power consumption.

The authors of ED49 propose MobiaModeler tool and framework
that enables non-technical people to create their own domain-specific
mobile apps. The MobiaModeler tool generates an app by first creating
a model and later on transforming the model to platform-specific code
through transformation tool component named Mobia processor. Study
ED50 uses a tool suite called WebRatio for MDD of web and mobile
applications. It supports developers in specifying domain model and
user interaction model for the applications according to the extended
versions of the OMG standard language called IFML. Finally, study
ED52 attempts to review existing usability studies and subsequently
proposes a usability model for conducting early usability evaluation for
generated mobile apps.

4.2.2. RQ2-SubRQ𝐵 What are the code generation steps? How is it accom-
plished?

Model Driven Development (MDD) for mobile apps uses models for
an abstract representation of a system, and then uses suitable chains
of transformations to refine the models into a final application, or part
of it. This code generation step is thus used to generate code from a
higher level model to create a working application. Most of the selected
13
studies use forward engineering approaches for code generation. Fig. 9
summarizes our findings and more discussion on it is presented below.

A. Templates and filtering generation patterns: We found eight
selected studies (ED1 ED6 ED10 ED21 ED27 ED30 ED34 ED37) cre-
ate a subset of models from the source model. Then, templates are
instantiated based on filtered source model values to generate the code.
For example, study ED1 converts a map (ESRI ArcMap) into an XML
file (SLD-file) for model validation, where code is generated based
on XSL transformation scripts and using ArcGIS-Map to SLD converter
tool. In the tool, ArcObjects performs this transformation (of an SLD
document), acting as an input base for further modifications according
to the user and context models. Study ED6 developed separate code
generators for Android and iOS platforms based on the Xtend language.
The Android code generation process produces two projects: (i) an
Android project containing the Android app and (ii) an Android library
project containing the data layer code. The Android library project is
created by reusing an existing EMF generator that generates code for
the EMF runtime. The EMF generator becomes a sub-generator of the
complete code generator and processes an Ecore data model separately.
Then, the process and GUI models are translated by sub-generators
written in Xtend. The iOS code generator’s workflow is nearly the
same as for Android, except it creates one project, and it cannot reuse
the EMF generator due to inapplicability on the iOS platform. The
generated project must also be exported from Eclipse and imported into
the XCode IDE. Similarly, ED21 used the Xtend expressions of multi-line
models to write the platform-specific code generator.

The Xtext framework and Xtend2 have also been used in ED27 and
ED37 for transformations and projections in templates, along with map-
ping rules to generate the app source codes. In ED30, developers need
to model the business classes and their relationships using a graphical
modeling tool named JBModel. JBModel transforms the application
class diagram into Java classes augmented with annotations provided
by the framework named JustBusiness, which generates persistence
code, interfaces and Android app resources.

B. Templates and meta-model generation patterns: We found
14.55% of our selected studies (ED2 ED13 ED19 ED20 ED24 ED39
ED40 ED54) parsed source model to create instance of meta model for
code generation using templates. The basic difference we found in this
category compare to the previous category one is that these studies
instantiated the templates using instance values from the original meta
model not the filtered source model. For example, studies ED2 and
ED20 convert AXIOM source models into code (Java for Android and
Objective-C for iOs) based on a set of platform-specific templates. The
Android app AXIOM model contains nodes that were mapped to specific
items during implementation, such as project files, class files and
resource files. It also includes information needed to populate each item
to be generated. The task is to serialize the information stored in the

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
abstract model trees (AMTs) into linear text files in the implementation.
AXIOM’s code generation algorithm accepts an AMT and produces
native code. The generator is template-based and templates capture
knowledge and information about both the programming language
used and the API of the native SDK. Each code template contains a
parametric code fragment and an injection point, the location where
the code fragment can be inserted. This information, along with the
injection descriptors from the implementation model, drives the code
generation process. In contrast, ED19 proposed RUMO framework
that provides a platform-independent definition of a UI backed by
constraints in the form of rules. The final model is transformed into
a platform-specific UI code that uses predefined distinct template files
for each component to create source code for the desired platform.
Similarly ED13, ED39, ED40 and ED54 takes the models, either PSM
or Xpand reference implementation as input and uses statically typed
templates to translate the model into source code.

C. API based generators: One-fifth of the selected studies (ED4 ED5
ED16 ED17 ED22 ED32 ED41 ED44 ED45 ED46 ED55) uses Grammar-
based APIs and client programs to generate the code. In ED4, source
code is generated from the AFL-based state diagram as follows: (i)
Class diagram to structural Java code generation using the UJECTOR
tool and (ii) UML state machine(s) to their equivalent behavioral code
generation using the well-known state pattern. In state pattern, each
state is transformed into a class inherited from the base state class.
The events in the states are included as the methods in the specific
classes. These methods are implemented in derived classes with their
corresponding actions. All ALF actions are transformed according to the
mobile platform-specific language (currently Android and Windows),
where the controller design pattern is implemented on top of the
generated codes. The controller pattern also allows the integration of
the business logic with the user interface. Studies ED5, ED22, ED32
and ED55 all used a similar approach to automatically generate app
source code from a class diagram model using Java, JUSE4Android,
Eclipse, and Acceleo tools, respectively. The authors ED22 used the
DB4O object-oriented database management system to avoid unneces-
sary transformations into the host language. Study ED45 follows the
same approach to include gesture-based interaction in the UI.

Study ED16 extends the GenCode tool to generate Android code
based on class and sequence diagrams. ED17 works similarly to ED16,
where XMI code for a PIM is generated from an object diagram based on
JDOM API. Then, this code is transformed into platform-specific code.

D. Inline code generation: We found six selected studies (ED3 ED7
ED9 ED15 ED31 ED49) that use inline code generation through a
precompiler that modifies the program, which is then compiled or
interpreted. Study ED3 generate code directly from a PIM using Java
compiler. Here, PROTON’s runtime engine accesses the input JSON
file, loads and parses all the definitions, creates a thread for each
input and output adapters, starts listening for events, and generates
code for incoming events from the input adapters and forwards the
events to output adapters. Similarly, in ED31, code generator was
implemented in Java for transforming model instances into executable
JS code. The generator makes use of the javax.xml parser package to
create an object from the XMI file. The object is then parsed using
the org.w3c.dom package. The result of the generation process is a
JavaScript application.

E. Synthesizers, tools and framework: We found six studies (ED14
ED18 ED23 ED25 ED43 ED47) that use distinct but similar code gen-
eration techniques. For example, study ED14 implements code gener-
ator using the openArchitectureWare (oAW) generator framework and
workflow file. An Apache Ant script triggers the oAW workflow. After
generating the code, it builds and signs the application package. The
example applications in ED14 used XML-RPC and WSDL described ser-
vices. For the realization of the stub for accessing the WSDL described
services via SOAP, kSOAP 2 has been used. For invoking XML-RPC
14
operations, the android library has been utilized. ED18 also uses ANTR
parser technology to translate their DSL into target app code.

F. Unknown: We could not find descriptions of the code generation
techniques for sixteen studies (ED8 ED11 ED12 ED26 ED28 ED29 ED33
ED35 ED36 ED38 ED42 ED48 ED50 ED51 ED52 ED53), either because
it was considered their future work or a detailed design and work-
ing procedures remain absent from the papers. For example, in ED8,
the platform-specific code is generated based on an MNV description
transformation. However, how it is achieved is not explained, and
hence we categorize this to unresolved/unknown group. In contrast, the
authors of ED26 considered supporting tools using their MIM diagram
to generate app code as potential future work.

4.3. RQ3 : Which empirical methods are used in the selected studies to
evaluate MDD based app development approaches, and what are the results
obtained?

We expected that all selected studies would use empirical methods
to evaluate their work and provide appropriate explanations. However,
in seventeen of the selected studies, we did not find an empirical com-
parative analysis and related discussion. These studies present some
experiential data/results, but how the results are measured/evaluated
is not well explained, or is unclear i.e., unclear steps about how the ex-
perience results were obtained. Therefore, we grouped these seventeen
studies under the ‘experience results’ subsection. Overall, analyzing the
extracted data, we found several strengths and gaps in the selected
studies, based on which we recommend future works in this domain
to address the emerging trends.

4.3.1. RQ3-SubRQ𝐴 How were the studies evaluated?
We identified how the main results in each primary study are

evaluated. Fig. 10 summarizes the results of the four main themes that
we identified during our analysis.

Fig. 10. Distribution of studies in terms of evaluation approaches.

A. Academic case study: We identified 27.27% of the selected pri-
mary studies evaluated their work with an academic case study. These
studies demonstrate evaluation by developing ‘‘toy’’ apps or partial
components of an app, and then explain their results applied to a
specific platform, mostly Android. Table 10 presents the summarized
evaluation strategy for these studies using three Evaluation Questions
(EvQu): (i) Is the presented work scalable — considering modification
possibility, development time, and required knowledge both for user
and developer? (ii) Does the presented work generate a complete
output, or is a partial output generated? (iii) How is the work evaluated
and how is the quality measured or compared? We use these three
questions for the discussion of other groups shown in Fig. 10 in the
following subsections. Table 10 shows that only one study (ED16)
uses a reverse engineering approach to prove the efficiency of their
approach. Two studies (ED4 and ED45) validate their work with quality
criteria, three studies (ED6 ED25 ED45) include a user-study, and only
one study considers the development of industry best-practice code

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.

s
T

Table 10
Summarized evaluation results for the fifteen selected studies that use academic case studies.

Study Eval Question 1 Eval Question 2 Eval Question 3
– is it scalable? – complete output app? – how is it evaluated / quality compared?

ED4 Yes: Supports multi-platform,
generated output is modifiable.

Complete: Toy app for English
words’ learning game.

Validates approach, integrating with business logic, use-case
is explained, quality of produced output measured through
testing.

ED6 Yes: Designed full app variant,
generated output is modifiable.

Complete: Toy apps for guiding
conference participants and
reminding TV show broadcast times.

Comprises a detailed domain analysis, illustrates how the
given input model automatically fills data, layout, style,
behavior, and service, presents a good user study.

ED7 Partially Yes: Same app is generated
with native JAVA and ED7 method,
incomplete GUI model.

Complete: Several toy apps are
developed targeting game,
personalization, education and
analysis.

Showed how it reduces the development efforts, requires a
smaller number of Lines Of Code (LoC), results are compared
with Robolectric, Robotium, and Espresso benchmarks.

ED13 No: Toy game app. Partial : Developer needs to
implement logic and algorithms.

Complete: Use-case comparison with and without tools are
shown in terms of development time measurement,
animation performance measurement.

ED15 Yes: Generate products for different
platform from the same model.

Partial: DSL to Code. Compares performance with the existing tools in terms of
LoC and features description, quality depends on the
specified requirement.

ED16 Yes: Generates the same outputs as
for existing app.

Complete: Popular snake game. Proved efficiency, present reverse engineered case study for
process and comparison.

ED19 Yes: Able to transform defined UI
into a destination UI of any
platform.

Partial: Only UI for a personal app. Test set comprises a defined UI consisting of a view for
different components and transformation is shown for iOS
from Android.

ED20 Partially Yes: Supports
multiplatform, but explanations and
references are missing for use-cases.

Complete: Complete set of apps
generated.

More than a hundred test apps are generated and evaluated
in terms of LoC, produce industry best practice code.

ED21 Yes: Multiplatform extension is
possible

Partial: Only GUI generated Showed GUI of an E_Exam MCQ app code conversion, not
compared with existing works.

ED23 No: Only GUI and it is incomplete. Partial: Android scaffolding for
producing flexible GUIs

Compare performance for GUI views, analyzed prototype
production from GUI requirement.

ED25 Yes: Model transforms to Android
app code and is modifiable.

Complete: Toy app for reading
brightness and color changing based
on sensor data.

Comparative result in terms of LoC, Number Of Attributes
(NOA), Complexity, Weighted Methods for Class (WMC),
Depth of Inheritance Tree (DIT), Lack of Cohesion of
Methods (LCOM), coupling etc., include user study results.

ED36 No: Only considers UI and
non-convertible.

Partial: Only UI for restaurant
delivery application

Evaluate efficiency of network operations handling in the
app UI.

ED42 Yes: Runtime modification is
possible

Complete: Data collection tool for a
field trip of biology students

Analyze development tool processing considering
presentation models and dialog models.

ED45 No: Output is not modifiable Partial: Only Gesture UI generated Validated the method and supporting tools in two different
types of applications.

ED54 Yes: Translatse abstract models into
implementation artifacts for web,
hybrid and desktop.

Complete: Field Force Automation
toy app

Analyzed Skeleton is independent of any platform domain,
having its central core based on model transformations.
(ED20) for performance measurement, evaluation, and analysis. The
table also summarizes evaluation processes carried out in these studies.
For example, we marked study ED4 as scalable since it produces a
complete output (a working app) that can be modified, and the pre-
sented tool produces a quality output and the use cases for development
stages are explained in detail. In addition, the ‘Scramble’ toy app it
uses is an easily understandable and accessible example for the reader.
The author also validates their approach by integrating this app with
existing Business logic and applications. The scalability assumption is
also valid for other studies shown in this table. Similarly, we consider
the study ED20 as partially scalable because the presented framework
can transform native code for cross-platform development. However,
analysis and explanation remain absent for several use cases mentioned
in it. In contrast, we marked study ED30 as unscalable because the UI is
non-convertible and comparisons with other approaches are not shown.

B. Industry case study: We found that eight out of the fifty-five
elected studies use an industry case study to evaluate their work.
hese studies demonstrate evaluation by developing a real-world app
15
through a pilot project and analyzing the performance of the tool-set
using different day to day development scenarios. Table 11 presents the
summarized evaluation strategy for these studies using the same three
questions used for Academic case study evaluation. Table 11 shows that
only one study (ED3) validates their used model service, one study
(ED8) compares the approach’s performance with existing industry
practices, and one study (ED17) evaluates the transformation process
from GUI model to code for a real-world app. The remaining five studies
assess their method and showed its scalability and reliability via various
example uses cases.

In addition, a real-world industry project for essential functions of
mobile telephony applications, including messages and top screens,
are considered as an industry case-study (in ED8), which is easy to
follow and understand. Study ED17 we considered as partially scalable
since it only offers a graphical way to design GUIs in UML but the
generated code is not modifiable. The study ED51 enables desktop and
mobile environments integration in graphical modeling along with the
architecture and necessary tools. Study ED51 also analyzed dynamic

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Table 11
Summarized evaluation results for the eight selected studies that use industry case studies.

Study Eval Question 1 Eval Question 2 Eval Question 3
– is it scalable? – complete output app? – how is it evaluated / quality compared?

ED3 Yes: Suitable for business users, supports
top-down goal-oriented modifications.

Complete: Pilot app deployed in industry
for mobile network fraud user detection.

Validate Used model services, analyses pilot
project, quality is measured with produced
outputs.

ED8 Yes: Stakeholders track requirements
throughout the project life cycle.

Partial: UI architecture of a pilot industry
project for mobile telephony app, MNV
based layout.

Compares with UML state-charts and analyzes
backtracking support.

ED17 Partially Yes: Offers an easy graphical GUI
design.

Partial: GUI of a real-world app for mental
health.

Not much detail, only evaluates transformation
and case study.

ED27 Partially Yes: Abstract low-level boilerplate
code generation for iOS app.

Partial: Registration page of an
e-commerce app that contains a collection
of elements, but incomplete.

Analyze iOS project model consistency, shows
effectiveness over UML based modeling
approaches.

ED29 Yes: Existing code integration, reference
architecture for MD2.

Partial: Architecture of a commercial
product app that takes geo-data and
map-based technologies.

Showed applicability in data-driven app
development, equivalence analysis for reference
architectures and meta models.

ED37 Yes: Supports multiple platforms, generated
output is modifiable.

Partial: GUI of a health app that used for
posting queries anytime and qualified
doctors answer it.

Analyzed platform independency.

ED51 Yes: Supports integration of desktop and
mobile graphical modeling environments.

Complete: Parallel development of a
factory app to control machinery, uses
token for operation

Analyzes dynamic settings in architecture,
evaluates real-world scenarios, assesses
token-based collaboration.

ED55 Yes: Memory efficient for multiplatform
development.

Partial: UI and functional core of a
real-world Sudoku game app.

Analyzes implementation decisions, evaluates
performance on real-world problems.
settings in the architecture and present several real-world scenarios
for their tool evaluation. ED55 in contrast only evaluates performance
problems and analyzes implementation decisions.

C. Evaluation based on user studies: We found that only 10.91% of
the selected studies evaluate their work through user studies, i.e., stu-
dents or practitioner usage, survey, interview and comments. Table 12
presents the summarized evaluation strategy for these six studies using
the same three questions as above. From Table 12, we found that one
study (ED10) carries out a Cognitive dimensions analysis, and one study
(ED26) validates the reliability of the evaluation results. In this table,
we mark all the studies as scalable except for ED26, because there
is no supporting tool available for the used modeling construct. Like
ED26, study ED49 also produces a partial output, but we marked this
one as scalable since it enables non-technical developers to create their
app. Interestingly, study ED53 performs a user study on 23 students.
Although the participants have little experience in app development, at
the end, more than half of the assigned tasks were completed in time
bound assignments that showed the usability of their approach.

D. Comparative analysis for evaluation: We identified nine selected
studies that evaluate their works through comparative analysis. These
studies demonstrate evaluation by developing apps or components of an
app and then compare the performance of the approach proposed. The
comparison shown in these studies is similar to that of the academic
case studies, however they differ in discussing the analysis results in
their evaluation. Table 13 presents the summarized evaluation strate-
gies for these nine studies. From Table 13, we see that two studies
(ED2 and ED38) used a controlled user study mainly for performance
analysis and comparison among technologies, hence we grouped here
rather than in the user study section. We also found that two studies,
ED38 and ED46, enable non-technical end-users to develop a real-world
app. Study ED34 uses a set of eighteen apps for performance analysis,
and ED48 discusses detailed SPOT evaluation results.

E. Experience results: We were unable to find evaluation techniques
or analysis results for seventeen of the selected studies. These studies
claimed that they use various use cases, but no proof is provided
16
and some share only the author experiences. For example, in ED5,
evaluation is missing; rather, it analyzes the code generation in differ-
ent stages. However, how it is evaluated/analyzed is not shown, and
hence we grouped it in the ‘experience results’ cluster. In contrast, the
authors of ED39 and ED50 shared only their own experiences using
their approach, but no comparison or evaluation is carried out.

4.3.2. RQ3-SubRQ𝐵 What are the strengths and limitations of the selected
studies?

This SLR tries to reveal strengths and limitations for the mobile
apps development approaches that exclusively utilize Model-Driven
Development (MDD) which are presented below.

Primary strengths of the selected studies: We found several advantages
claimed in the selected studies, which we group into the following
six categories, shown in Fig. 11(a): (A) Increase the abstraction level
and enable model manipulation; (B) Productivity gains; (C) Raise Flex-
ibility; (D) Support multi-platform, or different versions of the same
platform development; (E) Increase automation in code generation; and
(F) Contribute to efficiency increases. Moreover, we found some studies
have multiple strengths and hence we present a Venn diagram in Fig. 12
to show their overlaps. We did not found any additional strength for the
30.91% studies (ED8 ED9 ED11 ED12 ED15 ED18 ED21 ED23 ED26
ED27 ED34 ED43 ED44 ED47 ED50 ED52 ED55) except their primary
strength.

However, many of these claimed strengths are the authors’ opinions
based on incomplete evidence rather than proof that can be measured
based on application to real-world scenarios, since 80% of the studies
are evaluated in academic environments and not tested in industrial
cases. Further studies of the techniques on industrial-scale mobile app
development problems would need to be carried out to substanti-
ate these claimed strengths translate to real-world scenarios. A more
detailed discussion is presented below.

A. Increase abstraction level: We identified six selected studies (ED2
ED3 ED8 ED34 ED46 ED51) that claimed to increase the abstraction
level for target users with various methodologies and models. This
abstraction aims to make the app development easier and faster. For

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Fig. 11. Identified areas of (a) Primary strength and (b) Common limitations in the primary selected studies.
Table 12
Summarized evaluation results for the six selected studies that use user study.

Study Eval Question 1 Eval Question 2 Eval Question 3
– is it scalable? – complete output app? – how is it evaluated / quality compared?

ED10 Yes: Visual modeling and synthesis in code
generation.

Complete: Health app for obesity treatment
plan and interfaces.

Cognitive dimensions analysis to assess
languages and environment, user evaluation
of entire approach.

ED24 Yes: Scaffolding mobile app, generated
output is modifiable.

Partial: Commercial Prompa app and a
data-driven app that displays movie data
from API. Some generated code modification

Collect feedback from developers about
use-cases, carried out a feasibility study.

ED26 No: No supporting tool for its modeling
constructs.

Partial: Only GUI of the Gmail app generated. Validated reliability, analyzed survey results,
prove effectiveness through T-Test.

ED44 Yes: Output UIs are device and
platform-independent.

Complete: Interactive survey questionnaires
for the public transportation network.

User study for preferences, analyzed different
data collection forms common in performing
questionnaire surveys.

ED49 Yes: Enables non-technical people to
create their own domain-specific app.

Partial: UIs and configurable components of
the app.

Qualitative user study for performance
evaluation, but verification or validation is
missing.

ED53 Yes: Supports various stakeholders,
Inter-operable apps from a common PIM.

Complete: General app for smartphones and
smartwatches.

Training-based user study among IT students,
analyzed usability score based on the System
Usability Scale.
example, the authors of ED2 provide a DSL to express the model of
the applications independently of platforms. Based on AXIOM and agile
methods, they retain key elements of UML state-charts to represent the
app behavior. The use of Groovy in ED2 for the modeling language
facilitates the transformation of AXIOM PIM into PSM. These models
are claimed by the authors to be fast to develop and easy to verify,
making them compatible with agile. Their intent was to provide a suf-
ficient cross-section of functionality in terms of the modeling notation
and transformation tools to increase abstraction with good code quality.
A similar abstraction is achieved in ED3 and ED8. The transformation of
the event model to an event-driven app is considered in ED3, and ED8
manages complex functional requirement combinations in embedded
software and improves app functionality.

B. Increase productivity: We found that 10.91% of the selected studies
(ED9 ED10 ED29 ED39 ED40 ED48) contribute to productivity gains
through supporting crosscutting behavior and minimizing development
time. For example, authors of ED40 introduce a new approach to utiliz-
ing cloud resources for mobile users. Here heavyweight components of
CMH app are developed on cloud-side, whereas lightweight or native
17
code is developed in devices for execution. CMH applications execution
does not need profiling, partitioning, and offloading processes, hence
producing the least computation overhead on the target mobile de-
vices. Study ED48 reduces production costs and time by enabling the
app developers to understand the consequences of architectural deci-
sions long before implementation. Similarly, the paradigm provided in
ED9 modularizes crosscutting behavior by integrating aspect-oriented
development techniques with MDD.

C. Increase flexibility: We identified eight out of fifty-five selected
studies (ED12 ED14 ED18 ED25 ED35 ED38 ED43 ED44) that claim
to make the app development process more flexible, or target different
domain stakeholders, especially to manage model, data, and services.
For example, ED12 presents a meta-model for defining context-aware
applications which is different from the other selected studies in the
sense that (i) It does not only model Web service descriptions, but
also considers the faults in these descriptions, and (ii) It considers
the inefficiencies of different Web services development techniques in
generating data-type descriptions.

Study ED38 applies end-user programming techniques to ease the
process of modeling data collection instruments. It offers an intuitive

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Fig. 12. Venn diagram representing additional strengths of the selected studies with corresponding overlap.
Table 13
Summarized evaluation results for the nine selected studies that use comparative analysis.

Study Eval Question 1 Eval Question 2 Eval Question 3
– is it scalable? – complete output app? – how is it evaluated / quality compared?

ED2 Yes: Customizable model transformation,
code is consistent with industry
best-practice.

Complete: Toy app for broader security
component that supports and manages
associations of users to roles.

Feasibility study, proof-of-concept app using performance
analysis for a set of apps, productivity measurement i.e.,
lines-of-code per person-hour.

ED30 Partially Yes: Product completion needs
developer inputs.

Complete: HR management app for employee’s
overtime request and approval system.

Performance analysis between traditional and proposed
approaches in terms of time, LoC, Number of Files (NoF),
etc.

ED34 Yes: More consistent and transformable
model.

Partial: Model to code for a set eighteen apps,
mostly data-driven.

Object-oriented metrics based comparative study comprise
measures for size and complexity, coupling, cohesion, and
inheritance.

ED35 Yes: Supports business model
transformation, rapid development by
cloud service integration.

Partial: Business scenarios from a sales
management system to avoid conflict for service
usages and follow constraints.

Comparison between Data-, Role- and Process-driven
patterns, performance analysis with other SaaS methods,
feasibility study considering usability and adaptability.

ED38 Yes: Enables healthcare professionals to
create data collection and sensing apps.

Partial: Process modeling using the framework. Controlled study for performance comparison, inferential
tests, evaluate associations between the performance
measures and subjective complexity, correlations analysis.

ED40 Partially Yes: Hybrid, abstractions over
cloud and mobile features.

Complete: Jobs tracking, Fetching and displaying
time values, Contact list extraction apps.

Comparative analysis based on code metrics e.g., LoC and
MVC.

ED41 Yes: Supports cross-platform development. Complete: Real-world industry apps for insurance
tariff calculation and library management.

Comparative analysis in terms of LoC, performance
analysis in real-world scenarios.

ED46 Yes: Enables non-technical users to
develop multi-platform apps.

Complete: Personalized app for research paper
and profile update.

Comparative analysis in SUS ratings, controlled
qualitative study.

ED48 Yes: Reduce power consumption, increase
performance.

Complete: Car accident detection app. SPOT performance analysis and discussion.
configurator component that allows researchers to create their instru-

ments in a flexible, graphical manner. Similarly, ED25 includes a DSL

for modeling contextual information and adaptation rules, transforming

them into executable code. The middleware (DSL) provides the code

required to deal with sensors and react and execute functionality ac-

cording to contextual rules to improve the user experience. In ED35, the
18
authors combined MDA ideas to promote SaaS application development
based on semantic reasoning mechanisms.

D. Support cross-platform, multi-platform or multi-version app
development: We identified 14.55% (eight out of fifty-five) selected
studies (ED6 ED13 ED19 ED21 ED27 ED37 ED47 ED53) that aim to
support either cross-platform, multi-platform or different versions of
the same mobile app platform development. Most of these studies

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
focused on reusable code component development to reduce product
development time and cost. For example, ED13 describes MVC patterns
to assist the agile development of a multi-platform mobile app. It uses
a set of rules for each target platform to transform the UI to meet
customer requirements quickly and adequately. Similarly, in ED19,
UI is generated using the RUMO framework. ED6 also considers the
generation of mobile app variants.

Study ED21 designs UIs for mobile and web applications based
on components, for which a DSL is defined to generate native code
for several platforms based on a textual model for the generation of
graphic interfaces based on components. ED53 also considers similar
cross-platform development, whereas ED27, ED37 and ED47 consider
UI/GUI development and code generation. In ED27, the authors defined
a platform-independent language as the base for generating native
code for iOS apps. ED37 showed that the presented DSL defines GUI
independently of the target mobile platforms and allows developers to
generate native code to these several platforms automatically.

E. More automation for the app development: We identified nine out
of fifty-five primary selected studies (ED5 ED17 ED20 ED22 ED23 ED28
ED31 ED32 ED36) aim to raise the use of automation in the app devel-
opment process. For example, ED17 generates GUI source code in three
steps: (i) The system GUI is modeled in class and object diagrams, (ii)
The models are transformed into platform-independent XMI files using
JDOM API4, and (iii) They adopt an MDA approach to transform the
models into platform specific GUI code. Here, transformation rules are
defined using ATL and the MDA based approach. Similarly, studies ED5,
ED23 and ED30 automatically generate codes from UML class diagrams.

ED20 produces an app by transforming PIM to an implementation
model, and finally to code. It uses AXIOM Abstract Model Tree for
model representation to be the basis for all model transformations
and code generation. ED31 intends to facilitate the development of
the ‘‘Virtual Worlds’’ app, such as games, by visualizing scenes and
characters construction. It directly uses Java to create DSL tools. Code
is directly generated from this high-level language with a sound and
maintainable architecture alike ED22, ED28 and ED32. The method of
ED28 allows android application prototyping from WND, where certain
portions of the GUI code are generated without providing a mechanism
to exploit native capabilities of a smartphone.

F. Increase efficiency in app development: The remaining 32.73%
studies claim to increase app development efficiency by proposing a
new method, framework, tool or languages. For example, in ED1, the
authors introduce a publicly available tool named ArcMap2SLDGe-
nerator for efficient map designing for Web Map-Servers and mobile
apps. Authors of ED7 develop MoDroid, a high-level modeling language
that implements the Meta-Model and its supported tools for Android
app development. In ED11, requirements for adaptable and user-centric
mobile business processes have been studied. The advantage of this
method is that the code generator does not generate just any generic
code but instead generates code based on the user’s specifications.

Model transformations of ED30 help developers focus on the app
design rather than implementation issues. ED16 and ED49 present two
similar modeling tools for app development using UML and UML 2.0
models. Study ED45 proposes gestUI for multi-stroke gesture-based
UI development that defines multi-strokes gestures. The gestUI can
create a gesture catalog model and support model transformations
to obtain the source code, including gesture-based interaction. ED26
presents a method for modeling mobile interfaces based on MIM, as
part of the future mobile development project. ED42 generates data
collection applications using CAMELEON reference framework, where
task models typically describe constraints on task execution as temporal
relations between sub-tasks and decentralizes the development process.
ED33 provides a modeling facility that generates code in JSON format
on the IFML model. The approach of ED50 supports developers in
domain model specification and the user interaction model for apps
19

according to IFML discussed in ED33.
Limitations of the Selected Studies: We identified ten common kinds
of limitations in the selected studies, summarized in Fig. 11(b).

A. No GUI development: Two studies ED4 and ED7 fall in this cat-
egory. The proposed tool of ED4 (MAG) allows the developer to au-
tomatically generate the business logic code of the app from the app
models, but the GUI of the app is developed separately. In ED7, input
interfaces are declared using the methods for execution that depend on
the localized nodes, but the GUI-based model is not implemented.

B. Unsupported requirements: We consider two studies ED34 and
ED37 fall into this group. For example, study ED34 allows automatic
model manipulation, but how the tool gets the target app require-
ments is not specified, whereas, in the ED37 approach, behavioral
requirements are unsupported.

C. Large scale development: Three studies ED13, ED19, and ED42
face obvious scalability problems. For example, the templates and rules
used in ED13 and ED19 for a platform are not extendable to other
platforms. The data collection apps of ED42 produced by using the
CAMELEON reference framework cannot be enhanced by developers.

D. Variant generation: We consider four studies ED5, ED6, ED18 and
ED48 fall into this group. ED5 generates structural codes for a mobile
application, but it restricts the mobile app generation for a specific
platform (Android). Moreover, it does not support variant generation
during modeling, i.e., domain-specific hardware and software features
transformation are not substantiated and not reusable. Similarly, vari-
ants considered in studies ED6 and Ed18 have deficiencies in modeling
both platform-specific and platform-independent features. Study ED6
also excludes the mechanisms for exploiting smartphone native capa-
bilities, such as cameras and embedded sensors. The developed tool
in ED48 (SPOT) automates power consumption emulation code gen-
eration, but does not process the proposed templates as intermediate
representations of the platform variants. In addition, power consump-
tion due to network access is too low-level consideration. These studies
can easily specify automatic variants processing by formalizing and
solving the integrated constraint sets to derive valid platforms.

E. Integration and interoperability: Four of the selected studies
(ED11 ED30 ED40 ED47) have deficiencies in supporting physical
elements integration or require manual interpretation. For example,
ED11 does not provide mechanisms for integrating physical elements
in the model or the following stages. Similarly, tools used in ED47
are not yet integrated, tailored towards J2ME and do not exploit the
interoperability benefits of Web Services. Study ED30 needs a method
code to be inserted manually. Cloud components of ED40 are not
transferable due to their underlying heterogeneity. Moreover, isolating
the development of mobile and cloud components like ED40 creates
further versioning and integration challenges.

F. Development process completeness: We identified that the app
development process in four selected studies (ED3 ED24 ED28 ED52)
is partially complete. For example, ED24 uses rules to build models of
native GUI code. These rules are stored in the system beforehand, but
the rules database is not extendable. Hence, the approach of ED24 will
fail when some models that have not been inside the system occur. The
code generator also does not generate a ready-to-ship application as its
primary features is to generate the database and then some higher-level
code. This means that the user still needs to piece the code together
to make it work as a full application. However, once the developer
modifies the generated code, it cannot return back to the system/tool.
Similar problems exist in ED28 and ED51 for the GUI code and app
model, respectively. In ED3, the work is generally a model-driven
development based on a spreadsheet. However, it does not generate
analysis logic and app codes.

G. Low abstraction: We found four selected studies (ED9 ED21 ED27
ED43) need abstraction increases through proper use of MDD tech-

niques. For example, the paradigm in ED9 provides a set of techniques

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
to modularize aspect-oriented development techniques. The main dis-
advantage of this approach is the lack of support for high-level ab-
straction elements to express conceptual characteristics. Similarly, the
patterns modeling languages of ED21, ED27 and refined mobile-specific
interactions of ED43 do not provide much abstraction for tool users.

G. Professional development: We found 9.09% of the primary se-
lected studies (ED10 ED16 ED20 ED44 ED46) are not suitable for use in
the professional level. For example, pattern modeling language consid-
ered in ED20 is unsuitable for software developers as the input model
is built using Groovy. Similarly, the MAML framework shown in ED46
is not suited for use by a professional mobile app developer because it
does not contains much customization support for addressing complex
issues during modeling. Experts must implement text corrections or
validations during code generation in ED44, and the generated code in
ED10 is not modifiable at all. ED16 does not generate optimized code,
nor take into account good practices, potentially creating performance
or security issues in the generated code.

I. Extension: Seven of the selected studies (ED2 ED12 ED33 ED35
ED38 ED45 ED53) have not examined how their approaches can be
extended to other domains. In ED2, the authors claim that there is no
practical limit to the overarching AXIOM approach, but they also say
that extension to web apps needs to be examined in the future. In ED33,
creating a database of already created UI elements to ensure their reuse
was not considered. ED35 does not consider the rule extension, same
as ED45 for the gesture, ED38 for recommendation criteria in the tool,
and ED53 for supporting devices other than touchscreens.

J. Require further explanation, empirical tests, and evaluations:
We believe that many selected studies (ED1 ED8 ED14 ED15 ED17
ED22 ED23 ED25 ED26 ED29 ED31 ED32 ED36 ED39 ED41 ED49
ED50 ED51 ED54 ED55) need to analyze their work more thoroughly
and better explain the development processes proposed. For example,
In ED1, the authors show that it is possible to adapt Geographic
Information (GI) services dynamically to context and user properties
in general. How to achieve optimal results requires further empirical
tests, evaluations, and theoretical work. For example, what parameters
to choose, how to weigh them, and what types of adaptation to realize
to get the expected outcome still need more experiments. This is also
true for nineteen other works grouped in this category. For example,
ED25 tries to improve user experiences. This approach was tested only
using the Android Dalvik VM runtime environment.

In ED26, MIM is used to specify characteristics of the final UI of
an app. However, there is no standard procedure for confirming the
completeness of GUI specified by MIM. Two gaps we identified in
ED29 are: (i) It focuses on object structure and behavior, and not on
interaction; (ii) The employed top-down approach does not adequately
consider platform-specific features. ED31 directly uses Java to create
DSL tools. Compared to the plain programming approach, this can
be more productive and easier to adopt changes. However, more test
results should be presented, especially for the end-users. Proposal of
ED32 presents comparatives with at least two output platforms, but in
some cases, the approaches were described in only one platform, similar
to ED36, where more detail about code generator with feasibility study
should be presented. In ED39, it is not clear whether the presented DSL
has a static type system or not. All the works categorized in this group
also lack consideration of real-world scenarios in their evaluation,
adoption in the current environment, and the current progress in the
20

domain.
4.3.3. RQ3-SubRQ𝐶 What are our recommendations for future work in this
area?

We suggest several recommendations for future research into mo-
bile app development based on model driven development techniques.
These recommendations are based on the common identified gaps and
proposed future work found in the fifty-five selected studies of this SLR.

A. App requirements modeling: The majority of the studies have
applied model driven development to the design and implementation
phases of mobile app development, but we found that the requirements
phase is missing in 20% of the selected studies. This finding is interest-
ing in the sense that the requirements engineering community has been
modeling requirements for many years, but we found no mention of
app requirement capture or modeling in these eleven selected studies.
In addition, only two studies explicitly considered modeling of Non-
Functional Requirements (NFR), and 23.63% studies partially apply
MDD in all development phases. Although it is possible to develop a
fully functional mobile application only with functional requirements,
considering NFRs may better increase the reliability, performance,
scalability, useability, and security of the target apps. Therefore, the
researchers, development community, and stakeholders need to pay
significant attention to apply MDD in the entire app development
life-cycle and address NFRs in-app generations.

B. Logic and presentation: The custom MDD based solutions ded-
icated to mobile app development are mostly concerned with the
following two aspects: (i) UI/UX, e.g., how end-users interact with the
application and what they see?; and (ii) Business logic, e.g., information
parsing, data manipulation, API calls, etc. However, aspects related to
the content and data layer need more attention as decisions related to
these layers have a significant impact on the overall app performance.
For example, issues such as where should the data source reside? how
will communication takes place between the app and data source?
how does the app deal with hardware issues? These are generally
not handled by most MDD approaches proposed and hence further
investigation is required.

C. Use of artificial intelligence and machine learning: None of
the selected studies considered integrating Artificial Intelligence (AI)
and Machine Learning (ML) techniques with MDD based solutions
for app development. This is a promising area, especially for data
processing, decision-making, and use cases. For example, a health app
model powered with AI/ML, might be able to analyze its data more
appropriately. Hence, relevant up-to-date recommendations from AI
and ML components for the solutions to be used in the app could be
suggested. This is also true for apps related to e-commerce, retail, game,
entertainment etc. MDD approaches supporting AI and ML aspects of
mobile apps could include modeling these intelligent aspects of apps,
reusing existing AI and ML algorithms in generated apps, and using
AI/ML techniques as part of the app development e.g. evolutionary
techniques to generate parts of apps.

D. Code quality and target tool users: The majority of the studies
have proposed new MDD based tools/languages to provide most of
the code generation and theoretically offer higher productivity gains.
However, these tools often have a poor reputation among developers
due to their limited flexibility and sometimes poor code quality output.
Rarely we were able to find a complete and good quality output was
a focus of the development and evaluation. We found only one tool
(ED24) that was dedicated for experienced mobile app developers, and
only two methods (ED38 and ED49) were exclusively targeted for use
by non-technical developers.

E. Human centric issues: None of the studies considered issues of
end users of the apps with widely differing ages, languages, culture,
accessibility issues etc. Different end user groups may need different
approaches in their apps for interaction, explanation, and presenta-

tion of information to address these human issues. Human-Centric

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Issues (HCIs) appear to have had little attention to date by researchers
into MDD based approaches for mobile app development. For exam-
ple,two studies (ED10 and ED38) explicitly designed for health care
applications generation, targeting diverse end-users. However, these
approaches did not provide any mechanism to address (model) the need
for diverse users, e.g., elderly users, users with physical and mental
challenges, and users with different languages, cultures, and socioeco-
nomic backgrounds. Failure to incorporate such HCIs into app modeling
can generate an app that is unsuitable for whom it is designed.

F. Native, cross-platform, web and hybrid apps: Most attention has
been paid to producing native mobile apps development for a single
platform. Almost every approach relies on its own DSL, either defined
from scratch or by enhancing an existing one. However, no specific
standard has been devised for the mobile app modeling domain, and
hence, no advantages offered by standardization is leveraged. Only just
over 20% of the examined approaches target the development of cross-
platform apps or target at least two different app platforms. In this case,
a distinct code generator was used for each distinct platforms. This itself
introduces serious maintainability issues for the approach as platforms
evolve. We also found very few approaches investigating hybrid and
web-based techniques in this domain.

G. Reliability and scalability of studies: Relatively little work has
been done to prove the reliability and scalability of the proposed
approaches. More than half of the studies do not report any validation
method to ensure the appropriateness of their solution. Overall, we
found that the details for feasibility studies and proof of scalability of
the solution are missing for most of the selected studies.

5. Threats to validity

This SLR is subject to standard search and selection bias threats. We
counter this threat by searching the most commonly used databases in
the SE and IT context. We modified our search strings several times
during the automatic search to maximize the number of relevant arti-
cles that match the SLR concepts defined in Table 2. We also kept our
search string generic to search through the titles, abstracts, keywords
and full text of an article to cover the maximum number of relevant
papers. We have also conducted a manual search on Google Scholar
to complement the automatic search using a snowballing strategy. All
these together covered more than a thousand relevant publications and
resulted in a broad set of original papers. We did not extensively search
on relevant journals, proceedings of relevant conferences, and books
related to MDD as we believe the search in the electronic database
covered will this. However, we did include the option to search for book
chapters while performing an automatic search. This process allowed
us to find some book chapters, but only one of them got into our final
selected paper set that is leveraged for data extraction after applying
inclusion, exclusion and quality criteria filtering. Although we found
more than a thousand potentially relevant articles during our automatic
and manual searches, only 5% of these papers met our paper selection
criteria. To mitigate the paper remotion risk, we cross-checked and
discussed several times among the authors before excluding a paper
from the final list. Moreover, predefined review protocols with detailed
inclusion and exclusion criteria helped us reducing bias in selecting
primary studies.

The results of this SLR paper are based on the data extracted and
synthesized from the selected MDD-based mobile app development
studies. We applied several quality criteria (shown in Sections 3.2.6
and 3.2.7) to estimate the quality of the selected primary studies. Even
though the proposed criteria are not too strict, applying them indeed
caused several initially selected papers to be excluded. To mitigate the
risk of missing important data from the primary studies, we put back
the excluded papers closely related to the primary studies. Eventually,
we re-selected two papers to be included in the final set of primary
21

selected studies for data extraction and analysis. Moreover, the paper
list was gathered in early 2020, and there may be papers published
after our search, which are not included here. Moreover, we still have
a risk of producing biased results addressing only expert needs as the
people involved in these processes have extensive experience in this
domain. We provided detailed documentation on the searching, study
filtration, and result analysis process to counter this issue. The results
and recommendations for this SLR were prepared to help the reader
identifying the scope and opportunities in MDD based mobile app
development. To this end, we ignored those focusing only on testing
and test case generation for mobile apps. We also ignored making
recommendations in the area of mobile app development that exclude
MDD approaches.

6. Conclusion

To better understand the research done to advance MDD-based
approaches for mobile app development, we conducted a Systematic
Literature Review (SLR). To this end, extracting data, analyzing them
based on our three main research questions and corresponding eight
sub-research questions are defined in the SLR protocol. We also iden-
tified the popularity of different applied MDD techniques, supporting
tools, artifacts and evaluation techniques. This review study found that
the existing MDD techniques for mobile application development are
helpful in general. The primary strengths of the selected studies are
categorized into six areas – Support for abstraction, Productivity, Flex-
ibility, Multi-platform development, Process automation and Greater
efficiency. We also found ten common limitation groups – No GUI
development, Unsupported requirements, Lack of scalability, Problem
in the variant generation, Limited integration and interoperability,
Development process incompleteness, Need for further abstractions,
Not suitable for professional development, Lack of domain extension,
and Lack of empirical tests and theories. These identified gaps helped
us to recommended seven high priority potential future research areas
in this domain — including Better app requirement modeling, Greater
logic and presentation Support, Support for artificial intelligence and
machine learning in apps and app development, Better quality and
more comprehensive code generation, Flexibility and output mapping,
Better support for human-centric issues for diverse end-users, Integrate
cross-platform, web and hybrid app development, and Increase support
for reliability and scalability.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Md. Shamsujjoha is supported by Monash International Tuition
Scholarship (MITS), RTP Stipend and CSIRO Data61 Top-up Scholarship
for his Ph.D. study at Monash University, Melbourne, Australia.

This work was also supported by the Australian Research Council
(ARC) under a Laureate Fellowship project FL190100035, a Discovery
Early Career Researcher Award (DECRA) project DE200100016, and a
Discovery project DP200100020.

Appendix A. List of selected studies

[ED1] A. Zipf, Using styled layer descriptor (SLD) for the dynamic gen-
eration of user- and context-adaptive mobile maps a technical
framework, in: Proceedings of the 5th International Conference
on Web and Wireless Geographical Information Systems, 2005,

p. 183–193. doi:10.1007/11599289_16.

http://dx.doi.org/10.1007/11599289_16

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[ED2] X. Jia, C. Jones, Cross-platform application development using
AXIOM as an agile model-driven approach, in: Proceedings of
the 7th International Conference Software and Data Technolo-
gies, Vol. 411, 2013, p. 36–51. doi:10.1007/978-3-642-45404-
2_3.

[ED3] O. Etzion, F. Fournier, I. Skarbovsky, B. von Halle, A model
driven approach for event processing applications, in: Pro-
ceedings of the 10th ACM International Conference on Dis-
tributed and Event-Based Systems, 2016, p. 8192. doi:10.1145/
2933267.2933268.

[ED4] M. Usman, M. Z. Iqbal, M. U. Khan, A model-driven approach
to generate mobile applications for multiple platforms, in: Pro-
ceedings of the 21st Asia-Pacific Software Engineering Confer-
ence - Volume 01, 2014, p. 111–118. doi:10.1109/APSEC.2014.
26.

[ED5] H. Benouda, M. Azizi, R. Esbai, M. Moussaoui, MDA approach
to automate code generation for mobile applications, in: Mobile
and Wireless Technologies, 2016, p. 241–250. doi:10.1007/
978-981-10-1409-3_27.

[ED6] S. Vaupel, G. Taentzer, R. Gerlach, M. Guckert, Model-driven
development of mobile applications for Android and iOS sup-
porting role-based app variability, Softw. Syst. Model. 17 (1)
(2018) 35–63. doi:10.1007/s10270-016-0559-4.

[ED7] M. Jaber, Y. Falcone, K. Dak-Al-Bab, J. Abou-Jaoudeh, M. El-
Katerji, A high-level modeling language for the efficient design,
implementation, and testing of Android applications, Interna-
tional Journal on Software Tools for Technology Transfer 20 (1)
(2018) 1–18. doi:10.1007/s10009-016-0441-2.

[ED8] J. S. Lee, H. S. Chae, Domain-specific language approach to
modelling UI architecture of mobile telephony systems, IEE
Proceedings - Software 153 (6) (2006) 231–240. doi:10.1049/
ip-sen:20060022.

[ED9] A. Carton, S. Clarke, A. Senart, V. Cahill, Aspect-oriented
model-driven development for mobile context-aware comput-
ing, in: First International Workshop on Software Engineering
for Pervasive Computing Applications, Systems, and Environ-
ments, 2007, p. 5–5. doi:10.1109/SEPCASE.2007.3.

ED10] A. Khambati, J. Grundy, J. Warren, J. Hosking, Model-driven
development of mobile personal health care applications, in:
Proceedings of the 23rd IEEE/ACM International Conference
on Automated Software Engineering, 2008, p. 467–470. doi:
10.1109/ASE.2008.75.

ED11] A. Ruokonen, L. Pajunen, T. Systa, On model-driven develop-
ment of mobile business processes, in: Proceedings of the Sixth
International Conference on Software Engineering Research,
Management and Applications, 2008, p. 59–66. doi:10.1109/
SERA.2008.30.

ED12] C. Taconet, Z. Kazi-Aoul, Context-awareness and model driven
engineering: Illustration by an e-commerce application sce-
nario, in: 2008 Third International Conference on Digital Infor-
mation Management, 2008, p. 864–869. doi:10.1109/ICDIM.
2008.4746829.

ED13] Y. Choi, J.-S. Yang, J. Jeong, Application framework for multi
platform mobile application software development, in: 11th
International Conference on Advanced Communication Tech-
nology, Vol. 01, 2009, p. 208–213. https://ieeexplore.ieee.org/
document/4809935

ED14] M. Feldmann, V. Oleniuk, L. Globa, A. Schill, Overview of a
model-to-code transformation approach for generating service-
based interactive applications for google Android, in: 19th
International Crimean Conference Microwave Telecommunica-
tion Technology, 2009, p. 362–364. URL https://ieeexplore.
ieee.org/document/5293090

ED15] A. Manjunatha, A. Ranabahu, A. Sheth, K. Thirunarayan, Power
of clouds in your pocket: An efficient approach for cloud
22
mobile hybrid application development, in: IEEE Second In-
ternational Conference on Cloud Computing Technology and
Science, 2010, p. 496–503. URL https://ieeexplore.ieee.org/
document/5708492

ED16] A. G. Parada, L. B. De Brisolara, A model driven approach
for Android applications development, in: Brazilian Symposium
on Computing System Engineering, 2012, p. 192–197. doi:10.
1109/SBESC.2012.44.

ED17] A. Sabraoui, M. E. Koutbi, I. Khriss, GUI code generation for
Android applications using a MDA approach, in: IEEE Inter-
national Conference on Complex Systems, 2012, p. 1–6. doi:
10.1109/ICoCS.2012.6458567.

ED18] J. Schafer, D. Klein, Implementing situation awareness for car-
to-x applications using domain specific languages, in: IEEE 77th
Vehicular Technology Conference, 2013, p. 1–5. doi:10.1109/
VTCSpring.2013.6692589.

ED19] A. Schuler, B. Franz, Rule-based generation of mobile user
interfaces, in: 10th International Conference on Information
Technology: New Generations, 2013, p. 267–272. doi:10.1109/
ITNG.2013.43.

ED20] C. Jones, X. Jia, The AXIOM model framework: Transforming
requirements to native code for cross-platform mobile applica-
tions, in: 9th International Conference on Evaluation of Novel
Approaches to Software Engineering, 2014, p. 1–12. doi:10.
5220/0004882100260037.

ED21] M. Lachgar, A. Abdali, Generating Android graphical user in-
terfaces using an mda approach, in: 3rd IEEE International
Colloquium in Information Science and Technology, 2014, p.
80–85. doi:10.1109/CIST.2014.7016598.

ED22] L. P. d. Silva, F. Brito e Abreu, A MDE generative approach for
mobile business apps, in: 9th International Conference on the
Quality of Information and Communications Technology, 2014,
p. 312–317. doi:10.1109/QUATIC.2014.50.

ED23] L. P. d. Silva, F. Brito e Abreu, Model-driven GUI genera-
tion and navigation for Android BIS apps, in: Proceedings of
the 2nd International Conference on Model-Driven Engineering
and Software Development, 2014, p. 400–407. doi:10.5220/
0004715504000407.

ED24] S. Barnett, R. Vasa, J. Grundy, Bootstrapping mobile app devel-
opment, in: IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 2, 2015, p. 657–660. doi:10.1109/
ICSE.2015.216.

ED25] P. A. de Sousa Duarte, F. M. Barreto, F. A. de Almada Gomes,
W. V. de Carvalho, F. A. M. Trinta, Critical: A configuration tool
for context aware and mobile applications, in: IEEE 39th An-
nual Computer Software and Applications Conference, Vol. 2,
2015, p. 159–168. doi:10.1109/COMPSAC.2015.91.

ED26] S. Geiger-Prat, B. Marín, S. España, G. Giachetti, A GUI model-
ing language for mobile applications, in: IEEE 9th International
Conference on Research Challenges in Information Science,
2015, p. 76–87. doi:10.1109/RCIS.2015.7128866.

ED27] M. Lachgar, A. Abdali, DSL and code generator for accelerating
iOS apps development, in: 3rd World Conference on Complex
Systems, 2015, p. 1–8. doi:10.1109/ICoCS.2015.7483269.

ED28] T. Channonthawat, Y. Limpiyakorn, Model driven development
of Android application prototypes from windows navigation di-
agrams, in: International Conference on Software Networking,
2016, p. 1–4. doi:10.1109/ICSN.2016.7501929.

ED29] S. Evers, J. Ernsting, T. A. Majchrzak, Towards a reference
architecture for model-driven business apps, in: 49th Hawaii
International Conference on System Sciences, 2016, p. 5731–
5740. doi:10.1109/HICSS.2016.708.

ED30] F. Freitas, P. H. M. Maia, Justmodeling: An MDE approach to
develop Android business applications, in: VI Brazilian Sym-
posium on Computing Systems Engineering, 2016, p. 48–55.
doi:10.1109/SBESC.2016.016.

http://dx.doi.org/10.1007/978-3-642-45404-2_3
http://dx.doi.org/10.1007/978-3-642-45404-2_3
http://dx.doi.org/10.1007/978-3-642-45404-2_3
http://dx.doi.org/10.1145/2933267.2933268
http://dx.doi.org/10.1145/2933267.2933268
http://dx.doi.org/10.1145/2933267.2933268
http://dx.doi.org/10.1109/APSEC.2014.26
http://dx.doi.org/10.1109/APSEC.2014.26
http://dx.doi.org/10.1109/APSEC.2014.26
http://dx.doi.org/10.1007/978-981-10-1409-3_27
http://dx.doi.org/10.1007/978-981-10-1409-3_27
http://dx.doi.org/10.1007/978-981-10-1409-3_27
http://dx.doi.org/10.1007/s10270-016-0559-4
http://dx.doi.org/10.1007/s10009-016-0441-2
http://dx.doi.org/10.1049/ip-sen:20060022
http://dx.doi.org/10.1049/ip-sen:20060022
http://dx.doi.org/10.1049/ip-sen:20060022
http://dx.doi.org/10.1109/SEPCASE.2007.3
http://dx.doi.org/10.1109/ASE.2008.75
http://dx.doi.org/10.1109/ASE.2008.75
http://dx.doi.org/10.1109/ASE.2008.75
http://dx.doi.org/10.1109/SERA.2008.30
http://dx.doi.org/10.1109/SERA.2008.30
http://dx.doi.org/10.1109/SERA.2008.30
http://dx.doi.org/10.1109/ICDIM.2008.4746829
http://dx.doi.org/10.1109/ICDIM.2008.4746829
http://dx.doi.org/10.1109/ICDIM.2008.4746829
https://ieeexplore.ieee.org/document/4809935
https://ieeexplore.ieee.org/document/4809935
https://ieeexplore.ieee.org/document/4809935
https://ieeexplore.ieee.org/document/5293090
https://ieeexplore.ieee.org/document/5293090
https://ieeexplore.ieee.org/document/5293090
https://ieeexplore.ieee.org/document/5708492
https://ieeexplore.ieee.org/document/5708492
https://ieeexplore.ieee.org/document/5708492
http://dx.doi.org/10.1109/SBESC.2012.44
http://dx.doi.org/10.1109/SBESC.2012.44
http://dx.doi.org/10.1109/SBESC.2012.44
http://dx.doi.org/10.1109/ICoCS.2012.6458567
http://dx.doi.org/10.1109/ICoCS.2012.6458567
http://dx.doi.org/10.1109/ICoCS.2012.6458567
http://dx.doi.org/10.1109/VTCSpring.2013.6692589
http://dx.doi.org/10.1109/VTCSpring.2013.6692589
http://dx.doi.org/10.1109/VTCSpring.2013.6692589
http://dx.doi.org/10.1109/ITNG.2013.43
http://dx.doi.org/10.1109/ITNG.2013.43
http://dx.doi.org/10.1109/ITNG.2013.43
http://dx.doi.org/10.5220/0004882100260037
http://dx.doi.org/10.5220/0004882100260037
http://dx.doi.org/10.5220/0004882100260037
http://dx.doi.org/10.1109/CIST.2014.7016598
http://dx.doi.org/10.1109/QUATIC.2014.50
http://dx.doi.org/10.5220/0004715504000407
http://dx.doi.org/10.5220/0004715504000407
http://dx.doi.org/10.5220/0004715504000407
http://dx.doi.org/10.1109/ICSE.2015.216
http://dx.doi.org/10.1109/ICSE.2015.216
http://dx.doi.org/10.1109/ICSE.2015.216
http://dx.doi.org/10.1109/COMPSAC.2015.91
http://dx.doi.org/10.1109/RCIS.2015.7128866
http://dx.doi.org/10.1109/ICoCS.2015.7483269
http://dx.doi.org/10.1109/ICSN.2016.7501929
http://dx.doi.org/10.1109/HICSS.2016.708
http://dx.doi.org/10.1109/SBESC.2016.016

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ED31] M. Stürner, P. Brune, Virtual worlds on demand? Model-driven
development of JavaScript-based virtual world UI components
for mobile apps, in: 4th International Conference on Model-
Driven Engineering and Software Development, 2016, p. 648–
655. URL https://ieeexplore.ieee.org/document/7954416

ED32] H. Benouda, M. Azizi, M. Moussaoui, R. Esbai, Automatic
code generation within MDA approach for cross-platform mo-
biles apps, in: First International Conference on Embedded
Distributed Systems, 2017, p. 1–5. doi:10.1109/EDIS.2017.
8284045.

ED33] C. Bernaschina, S. Comai, P. Fraternali, Online model editing,
simulation and code generation for web and mobile applica-
tions, in: IEEE/ACM 9th International Workshop on Modelling
in Software Engineering, 2017, p. 33–39. doi:10.1109/MiSE.
2017.1.

ED34] E. E. Thu, N. Nwe, Model driven development of mobile ap-
plications using Drools knowledge-based rule, in: IEEE 15th
International Conference on Software Engineering Research,
Management and Applications, 2017, p. 179–185. doi:10.1109/
SERA.2017.7965726.

ED35] H. Cai, Y. Gu, A. V. Vasilakos, B. Xu, J. Zhou, Model-driven
development patterns for mobile services in cloud of things,
IEEE Transactions on Cloud Computing 6 (3) (2018) 771–784.
doi:10.1109/TCC.2016.2526007.

ED36] S. Rehman, R. M. K. Ullah, S. Tanvir, F. Azam, Development of
user interface for multi-platform applications using the model
driven software engineering techniques, in: IEEE 9th Annual In-
formation Technology, Electronics and Mobile Communication
Conference, 2018, p. 1152–1158. doi:10.1109/IEMCON.2018.
8615013.

ED37] A. Sabraoui, A. Abouzahra, K. Afdel, M. Machkour, MDD ap-
proach for mobile applications based on DSL, in: Interna-
tional Conference of Computer Science and Renewable Ener-
gies, 2019, p. 1–6. doi:10.1109/ICCSRE.2019.8807572.

ED38] J. Schobel, T. Probst, M. Reichert, M. Schickler, R. Pryss, En-
abling sophisticated lifecycle support for mobile healthcare
data collection applications, IEEE Access, 7 (2019) 61204–
61217. doi:10.1109/ACCESS.2019.2916142.

ED39] H. Behrens, MDSD for the iPhone: Developing a domain-specific
language and IDE tooling to produce real world applications for
mobile devices, in: Proceedings of the ACM International Con-
ference Companion on Object Oriented Programming Systems
Languages and Applications Companion, 2010, p. 123–128. doi:
10.1145/1869542.1869562.

ED40] A. H. Ranabahu, E. M. Maximilien, A. P. Sheth, K.
Thirunarayan, A domain specific language for enterprise grade
cloud-mobile hybrid applications, in: Proceedings of the Com-
pilation of the Co-Located Workshops on DSM’11, TMC’11,
AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11
Workshops, 2011, p. 77–84. doi:10.1145/2095050.2095064.

ED41] H. Heitkötter, T. A. Majchrzak, H. Kuchen, Cross-platform
model-driven development of mobile applications with MD2,
in: Proceedings of the 28th Annual ACM Symposium on Applied
Computing, 2013, p. 526–533. doi:10.1145/2480362.2480464.

ED42] A. Dittmar, M. Kühn, P. Forbrig, A domain-specific model-
based design approach for end-user developers, in: Proceedings
of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, 2014, p. 161–166. doi:10.1145/2607023.
2610275.

ED43] M. Franzago, H. Muccini, I. Malavolta, Towards a collaborative
framework for the design and development of data-intensive
mobile applications, in: Proceedings of the First International
Conference on Mobile Software Engineering and Systems, 2014,
p. 58–61. doi:10.1145/2593902.2593917.
23
ED44] M. Kühn, P. Forbrig, Mobile data collection forms based on
DSLs with different levels of abstraction, in: Proceedings of the
International Conference on Multimedia, Interaction, Design
and Innovation, 2014, p. 1–8. doi:10.1145/2643572.2643588.

ED45] O. P. González, S. España, O. Pastor, Including multi-stroke
gesture-based interaction in user interfaces using a model-
driven method, in: Proceedings of the XVI International Con-
ference on Human Computer Interaction, 2015, p. 1–8. doi:
10.1145/2829875.2829931.

ED46] C. Rieger, Business apps with MAML: A model-driven approach
to process-oriented mobile app development, in: Proceedings of
the Symposium on Applied Computing, 2017, p. 1599–1606.
doi:10.1145/3019612.3019746.

ED47] J. Dunkel, R. Bruns, Model-driven architecture for mobile ap-
plications, in: Proceedings of the 10th International Conference
on Business Information Systems, 2007, p. 464–477.

ED48] C. Thompson, J. White, B. Dougherty, D. C. Schmidt, Op-
timizing mobile application performance with model–driven
engineering, in: IFIP International Workshop on Software Tech-
nolgies for Embedded and Ubiquitous Systems, 2009, p. 36–46.
doi:10.1007/978-3-642-10265-3_4.

ED49] F. Balagtas-Fernandez, M. Tafelmayer, H. Hussmann, Mobia
modeler: Easing the creation process of mobile applications for
non-technical users, in: Proceedings of the 15th International
Conference on Intelligent User Interfaces, 2010, p. 269–272.
doi:10.1145/1719970.1720008.

ED50] R. Acerbis, A. Bongio, M. Brambilla, S. Butti, Model-driven
development based on OMG’s IFML with webratio web and
mobile platform, in: Proceedings of the 15th International Con-
ference on Engineering the Web in the Big Data Era - Volume
9114, 2015, p. 605–608. doi:10.1007/978-3-319-19890-3_39.

ED51] D. Vaquero-Melchor, A. Garmendia, E. Guerra, J. de Lara,
Domain-specific modelling using mobile devices, in: Interna-
tional Conference on Software Technologies, 2017, p. 221–238.
doi:10.1007/978-3-319-62569-0_11.

ED52] L. B. Ammar, A usability model for mobile applications gen-
erated with a model-driven approach, International Journal of
Advanced Computer Science and Applications 10 (2) (2019)
140–146 . doi:10.14569/IJACSA.2019.0100218.

ED53] C. Rieger, H. Kuchen, A model-driven cross-platform app devel-
opment process for heterogeneous device classes, in: Proceed-
ings of the 52th Hawaii International Conference on System
Sciences, 2019, p. 1–10. doi:10.24251/HICSS.2019.894.

ED54] A. Nestor Ribeiro, C. Rogério Araújo, An automated model
based approach to mobile UI specification and development,
in: Proceedings, Part I, of the 18th International Conference
on Human-Computer Interaction. Theory, Design, Development
and Practice - Volume 9731, 2016, p. 523–534. doi:10.1007/
978-3-319-39510-4_48.

ED55] Y. Cheon, A. Barua, Model driven development for Android
apps, in: Proceedings of the International Conference on Soft-
ware Engineering Research and Practice, The Steering Commit-
tee of The World Congress in Computer Science, Computer . . . ,
2018, p. 17–22. URL https://csce.ucmss.com/cr/books/2018/
LFS/CSREA2018/SER3296.pdf

https://ieeexplore.ieee.org/document/7954416
http://dx.doi.org/10.1109/EDIS.2017.8284045
http://dx.doi.org/10.1109/EDIS.2017.8284045
http://dx.doi.org/10.1109/EDIS.2017.8284045
http://dx.doi.org/10.1109/MiSE.2017.1
http://dx.doi.org/10.1109/MiSE.2017.1
http://dx.doi.org/10.1109/MiSE.2017.1
http://dx.doi.org/10.1109/SERA.2017.7965726
http://dx.doi.org/10.1109/SERA.2017.7965726
http://dx.doi.org/10.1109/SERA.2017.7965726
http://dx.doi.org/10.1109/TCC.2016.2526007
http://dx.doi.org/10.1109/IEMCON.2018.8615013
http://dx.doi.org/10.1109/IEMCON.2018.8615013
http://dx.doi.org/10.1109/IEMCON.2018.8615013
http://dx.doi.org/10.1109/ICCSRE.2019.8807572
http://dx.doi.org/10.1109/ACCESS.2019.2916142
http://dx.doi.org/10.1145/1869542.1869562
http://dx.doi.org/10.1145/1869542.1869562
http://dx.doi.org/10.1145/1869542.1869562
http://dx.doi.org/10.1145/2095050.2095064
http://dx.doi.org/10.1145/2480362.2480464
http://dx.doi.org/10.1145/2607023.2610275
http://dx.doi.org/10.1145/2607023.2610275
http://dx.doi.org/10.1145/2607023.2610275
http://dx.doi.org/10.1145/2593902.2593917
http://dx.doi.org/10.1145/2643572.2643588
http://dx.doi.org/10.1145/2829875.2829931
http://dx.doi.org/10.1145/2829875.2829931
http://dx.doi.org/10.1145/2829875.2829931
http://dx.doi.org/10.1145/3019612.3019746
http://dx.doi.org/10.1007/978-3-642-10265-3_4
http://dx.doi.org/10.1145/1719970.1720008
http://dx.doi.org/10.1007/978-3-319-19890-3_39
http://dx.doi.org/10.1007/978-3-319-62569-0_11
http://dx.doi.org/10.14569/IJACSA.2019.0100218
http://dx.doi.org/10.24251/HICSS.2019.894
http://dx.doi.org/10.1007/978-3-319-39510-4_48
http://dx.doi.org/10.1007/978-3-319-39510-4_48
http://dx.doi.org/10.1007/978-3-319-39510-4_48
https://csce.ucmss.com/cr/books/2018/LFS/CSREA2018/SER3296.pdf
https://csce.ucmss.com/cr/books/2018/LFS/CSREA2018/SER3296.pdf
https://csce.ucmss.com/cr/books/2018/LFS/CSREA2018/SER3296.pdf

Information and Software Technology 140 (2021) 106693M. Shamsujjoha et al.
Appendix B. Individual quality assessment scores for selected
studies

No Q1 Q2 Q3 Q4 Q5 Q6 No Q1 Q2 Q3 Q4 Q5 Q6
ED1 1 2 2 3 3 2 ED29 3 2 3 2 2 3
ED2 5 5 4 4 4 2 ED30 5 5 5 4 3 3
ED3 3 5 4 5 3 4 ED31 3 3 3 3 2 3
ED4 5 5 5 5 3 3 ED32 3 2 2 2 2 1
ED5 5 3 3 3 2 2 ED33 4 3 2 2 1 3
ED6 5 5 5 5 4 5 ED34 4 4 3 4 2 3
ED7 5 5 5 4 3 4 ED35 4 5 5 5 3 5
ED8 2 4 4 3 2 4 ED36 4 2 2 2 1 1
ED9 5 4 2 2 2 1 ED37 3 3 3 2 1 1
ED10 5 4 5 4 4 4 ED38 5 4 5 4 3 5
ED11 2 3 2 3 2 3 ED39 4 3 2 2 2 3
ED12 3 3 3 3 3 2 ED40 4 3 2 2 1 3
ED13 4 4 4 4 2 3 ED41 5 5 5 5 3 5
ED14 3 3 3 2 2 2 ED42 3 3 5 4 2 4
ED15 2 4 3 3 3 3 ED43 3 3 3 2 1 3
ED16 5 3 3 3 3 2 ED44 2 3 3 2 2 2
ED17 4 4 4 4 2 1 ED45 2 5 4 4 2 4
ED18 1 3 3 3 1 4 ED46 4 3 3 4 2 3
ED19 3 4 4 4 2 1 ED47 2 3 3 3 1 2
ED20 5 5 2 5 3 4 ED48 1 4 3 3 1 3
ED21 4 3 3 3 2 2 ED49 4 3 3 2 3 3
ED22 3 2 2 2 3 2 ED50 4 1 1 2 1 3
ED23 3 2 2 2 3 3 ED51 4 4 3 3 1 4
ED24 5 4 4 5 4 5 ED52 2 2 2 2 2 2
ED25 5 5 5 4 2 3 ED53 4 4 3 4 2 3
ED26 3 5 5 4 3 3 ED54 4 3 2 3 2 2
ED27 3 3 3 3 2 1 ED55 4 3 2 3 2 4
ED28 5 4 4 3 1 1

References

[1] M. Shamsujjoha, J. Grundy, L. Li, H. Khalajzadeh, Q. Lu, Human-centric issues
in ehealth app development and usage: A preliminary assessment, in: 28th IEEE
International Conference on Software Analysis, Evolution and Reengineering,
SANER, IEEE, 2021, pp. 506–510, http://dx.doi.org/10.1109/SANER50967.2021.
00055.

[2] A. Holst, Smartphone Users Worldwide 2016-2021, Tech. rep., Statista, 2019,
Available at https://www.statista.com/statistics/330695, Accessed: Dec-2020.

[3] S. Felgoise, App Economy Stats You Should Know, Tech. rep., IronSour-
rce, 2019, Available at https://www.ironsrc.com/blog/app-economy-stats-you-
should-know, Accessed: Dec-2020.

[4] M. Shamsujjoha, J. Grundy, L. Li, H. Khalajzadeh, Q. Lu, Checking app behavior
against app descriptions: What if there are no app descriptions?, in: 29th
IEEE/ACM International Conference on Program Comprehension, ICPC 2021,
IEEE, 2021, pp. 422–432, http://dx.doi.org/10.1109/ICPC52881.2021.00050.

[5] J. Clement, Total Global Mobile App Revenues 2014-2023, Tech. rep., Statista,
2019, Available at https://www.statista.com/statistics/269025/worldwide-
mobile-app-revenue-forecast, Accessed: Dec-2020.

[6] J. Grundy, M. Abdelrazek, M.K. Curumsing, Vision: Improved development of
mobile ehealth applications, in: Int. Conf. on Mobile Software Engineering and
Systems, MOBILESoft, 2018, pp. 219–223, http://dx.doi.org/10.1145/3197231.
3197263.

[7] B. Selic, What will it take? A view on adoption of model-based methods in
practice, Softw. Syst. Model. 11 (4) (2012) 513–526, http://dx.doi.org/10.1007/
s10270-012-0261-0.

[8] A.W. Brown, Model driven architecture: Principles and practice, Softw. Syst.
Model. 3 (4) (2004) 314–327, http://dx.doi.org/10.1007/s10270-004-0061-2.

[9] S. Barnett, I. Avazpour, R. Vasa, J. Grundy, A multi-view framework for
generating mobile apps, in: IEEE Symposium on Visual Languages and Human-
Centric Computing, 2015, pp. 305–306, http://dx.doi.org/10.1109/VLHCC.2015.
7357239.

[10] S. Barnett, I. Avazpour, R. Vasa, J. Grundy, Supporting multi-view development
for mobile applications, J. Comput. Lang. 51 (2019) 88–96, http://dx.doi.org/
10.1016/j.cola.2019.02.001.
24
[11] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report, 2007.

[12] C. Rahmani, M. Zand, H. Siy, S. Srinivasan, A survey on model driven software
development, in: 18th International Conference on Software Engineering and
Data Engineering 2009, SEDE 2009, 2009, pp. 105–110.

[13] S.W. Liddle, Model-driven software development, in: Handbook of Conceptual
Modeling, Springer, 2011, pp. 17–54, http://dx.doi.org/10.1007/978-3-642-
15865-0_2.

[14] T. Stahl, M. Voelter, K. Czarnecki, Model-Driven Software Development: Tech-
nology, Engineering, Management, John Wiley &; Sons, Inc., Hoboken, NJ, USA,
2006.

[15] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in
Practice: Second Edition, second ed., Morgan &; Claypool Publishers, 2017,
http://dx.doi.org/10.2200/S00751ED2V01Y201701SWE004.

[16] M. Staron, Adopting model driven software development in industry–a case study
at two companies, in: International Conference on Model Driven Engineering
Languages and Systems, Springer, 2006, pp. 57–72, http://dx.doi.org/10.1007/
11880240_5.

[17] H. Heitkötter, T.A. Majchrzak, H. Kuchen, Cross-platform model-driven devel-
opment of mobile applications with mD2, in: Proceedings of the 28th Annual
ACM Symposium on Applied Computing, 2013, pp. 526–533, http://dx.doi.org/
10.1145/2480362.2480464.

[18] M. Willocx, J. Vossaert, V. Naessens, Comparing performance parameters of
mobile app development strategies, in: Proceedings of the International Con-
ference on Mobile Software Engineering and Systems, 2016, pp. 38–47, http:
//dx.doi.org/10.1145/2897073.2897092.

[19] A.I. Wasserman, Software engineering issues for mobile application development,
in: Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research, 2010, pp. 397–400, http://dx.doi.org/10.1145/1882362.1882443.

[20] M.E. Joorabchi, A. Mesbah, P. Kruchten, Real challenges in mobile app devel-
opment, in: 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2013, pp. 15–24, http://dx.doi.org/10.1109/
ESEM.2013.9.

[21] M. Fowler, Domain Specific Languages, first ed., Addison-Wesley Professional,
2010.

[22] A. Hudli, S. Hudli, R. Hudli, An evaluation framework for selection of mobile
app development platform, in: Proceedings of the 3rd International Workshop
on Mobile Development Lifecycle, MobileDeLi 2015, ACM, 2015, pp. 13–16,
http://dx.doi.org/10.1145/2846661.2846678.

[23] A. Sahay, A. Indamutsa, D. Di Ruscio, A. Pierantonio, Supporting the under-
standing and comparison of low-code development platforms, in: 46th Euromicro
Conference on Software Engineering and Advanced Applications, SEAA, IEEE,
2020, pp. 171–178, http://dx.doi.org/10.1109/SEAA51224.2020.00036.

[24] E. Umuhoza, M. Brambilla, Model driven development approaches for mobile ap-
plications: A survey, in: International Conference on Mobile Web and Information
Systems, 2016, pp. 93–107, http://dx.doi.org/10.1007/978-3-319-44215-0_8.

[25] H. Tufail, F. Azam, M.W. Anwar, I. Qasim, Model-driven development of
mobile applications: A systematic literature review, in: 2018 IEEE 9th Annual
Information Technology, Electronics and Mobile Communication Conference,
2018, pp. 1165–1171, http://dx.doi.org/10.1109/IEMCON.2018.8614821.

[26] P. Kong, L. Li, J. Gao, K. Liu, T.F. Bissyandé, J. Klein, Automated testing of
android apps: A systematic literature review, IEEE Trans. Reliab. 68 (1) (2019)
45–66, http://dx.doi.org/10.1109/TR.2018.2865733.

[27] L. Li, T.F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J. Klein, L.
Traon, Static analysis of android apps: A systematic literature review, Inf. Softw.
Technol. 88 (2017) 67–95, http://dx.doi.org/10.1016/j.infsof.2017.04.001.

[28] D. Hidellaarachchi, J. Grundy, R. Hoda, K. Madampe, The effects of human
aspects on the requirements engineering process: A systematic literature review,
IEEE Trans. Softw. Eng. (2021) 1, http://dx.doi.org/10.1109/TSE.2021.3051898.

[29] S.K. Lo, Q. Lu, C. Wang, H.-Y. Paik, L. Zhu, A systematic literature review
on federated machine learning: From a software engineering perspective, ACM
Comput. Surv. 54 (5) (2021) http://dx.doi.org/10.1145/3450288.

[30] M. Petticrew, H. Roberts, Systematic Reviews in the Social Sciences: A Practical
Guide, John Wiley & Sons, 2008.

[31] K. Lano, L. Alwakeel, S.K. Rahimi, H. Haughton, Synthesis of mobile applica-
tions using agileuml, in: 14th Innovations in Software Engineering Conference
(Formerly Known As India Software Engineering Conference), ISEC 2021, 2021,
pp. 1–10, http://dx.doi.org/10.1145/3452383.3452409.

[32] M. Derakhshandi, S.K. Rahimi, J. Troya, K. Lano, A model-driven
framework for developing android-based classic multiplayer 2D board games,
Autom. Softw. Eng. J. (2021) (Accepted in March 2021), Available at
https://mdse.ui.ac.ir/a-model-driven-framework-for-developing-android-based-
classic-multiplayer-2d-board-games/.

[33] D. Wolber, App inventor and real-world motivation, in: Proceedings of the 42nd
ACM Technical Symposium on Computer Science Education, 2011, pp. 601–606,
http://dx.doi.org/10.1145/1953163.1953329.

http://dx.doi.org/10.1109/SANER50967.2021.00055
http://dx.doi.org/10.1109/SANER50967.2021.00055
http://dx.doi.org/10.1109/SANER50967.2021.00055
https://www.statista.com/statistics/330695
https://www.ironsrc.com/blog/app-economy-stats-you-should-know
https://www.ironsrc.com/blog/app-economy-stats-you-should-know
https://www.ironsrc.com/blog/app-economy-stats-you-should-know
http://dx.doi.org/10.1109/ICPC52881.2021.00050
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast
http://dx.doi.org/10.1145/3197231.3197263
http://dx.doi.org/10.1145/3197231.3197263
http://dx.doi.org/10.1145/3197231.3197263
http://dx.doi.org/10.1007/s10270-012-0261-0
http://dx.doi.org/10.1007/s10270-012-0261-0
http://dx.doi.org/10.1007/s10270-012-0261-0
http://dx.doi.org/10.1007/s10270-004-0061-2
http://dx.doi.org/10.1109/VLHCC.2015.7357239
http://dx.doi.org/10.1109/VLHCC.2015.7357239
http://dx.doi.org/10.1109/VLHCC.2015.7357239
http://dx.doi.org/10.1016/j.cola.2019.02.001
http://dx.doi.org/10.1016/j.cola.2019.02.001
http://dx.doi.org/10.1016/j.cola.2019.02.001
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb11
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb11
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb11
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb11
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb11
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb12
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb12
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb12
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb12
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb12
http://dx.doi.org/10.1007/978-3-642-15865-0_2
http://dx.doi.org/10.1007/978-3-642-15865-0_2
http://dx.doi.org/10.1007/978-3-642-15865-0_2
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb14
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb14
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb14
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb14
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb14
http://dx.doi.org/10.2200/S00751ED2V01Y201701SWE004
http://dx.doi.org/10.1007/11880240_5
http://dx.doi.org/10.1007/11880240_5
http://dx.doi.org/10.1007/11880240_5
http://dx.doi.org/10.1145/2480362.2480464
http://dx.doi.org/10.1145/2480362.2480464
http://dx.doi.org/10.1145/2480362.2480464
http://dx.doi.org/10.1145/2897073.2897092
http://dx.doi.org/10.1145/2897073.2897092
http://dx.doi.org/10.1145/2897073.2897092
http://dx.doi.org/10.1145/1882362.1882443
http://dx.doi.org/10.1109/ESEM.2013.9
http://dx.doi.org/10.1109/ESEM.2013.9
http://dx.doi.org/10.1109/ESEM.2013.9
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb21
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb21
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb21
http://dx.doi.org/10.1145/2846661.2846678
http://dx.doi.org/10.1109/SEAA51224.2020.00036
http://dx.doi.org/10.1007/978-3-319-44215-0_8
http://dx.doi.org/10.1109/IEMCON.2018.8614821
http://dx.doi.org/10.1109/TR.2018.2865733
http://dx.doi.org/10.1016/j.infsof.2017.04.001
http://dx.doi.org/10.1109/TSE.2021.3051898
http://dx.doi.org/10.1145/3450288
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb30
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb30
http://refhub.elsevier.com/S0950-5849(21)00148-8/sb30
http://dx.doi.org/10.1145/3452383.3452409
https://mdse.ui.ac.ir/a-model-driven-framework-for-developing-android-based-classic-multiplayer-2d-board-games/
https://mdse.ui.ac.ir/a-model-driven-framework-for-developing-android-based-classic-multiplayer-2d-board-games/
https://mdse.ui.ac.ir/a-model-driven-framework-for-developing-android-based-classic-multiplayer-2d-board-games/
http://dx.doi.org/10.1145/1953163.1953329

	Developing Mobile Applications Via Model Driven Development: A Systematic Literature Review
	Introduction
	Background and related work
	Model-driven development and related surveys
	State of the art approaches for mobile app development and related surveys

	Research methodology
	Research questions
	Search strategy
	Search string formulation
	Automatic search in electronic databases for scientific literature
	Snowballing using Google scholar
	Selection of papers: Inclusion and exclusion criterion
	Collection and filtering of the studies
	Quality assessment
	Qualitative information to be extracted from each paper
	Reference management and screening tool

	Data extraction and synthesis

	Evaluation results and analysis
	RQ1: What are the main goals and objectives for generating mobile apps using model driven approaches?
	RQ: What are the goals and objectives for each research paper reviewed?
	RQ: Who are the target end-users of the tools and generated apps?
	RQ: Is the study applied to academic or industrial problems or both?

	RQ2. What model-driven approaches have been applied to date to generate mobile apps?
	RQ. What are the main domain model(s) used by the researchers?
	RQ: What are the code generation steps? How is it accomplished?

	RQ3 : Which empirical methods are used in the selected studies to evaluate MDD based app development approaches, and what are the results obtained?
	RQ: How were the studies evaluated?
	RQ: What are the strengths and limitations of the selected studies?
	RQ: What are our recommendations for future work in this area?

	Threats to validity
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. List of Selected Studies
	Appendix B. Individual quality assessment scores for selected studies
	References

