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Android developers heavily use reflection in their apps for legitimate reasons. However, reflection is also

significantly used for hiding malicious actions. Unfortunately, current state-of-the-art static analysis tools

for Android are challenged by the presence of reflective calls, which they usually ignore. Thus, the results

of their security analysis, e.g., for private data leaks, are incomplete, given the measures taken by malware

writers to elude static detection. We propose a new instrumentation-based approach to address this issue

in a non-invasive way. Specifically, we introduce to the community a prototype tool called DroidRA, which

reduces the resolution of reflective calls to a composite constant propagation problem and then leverages

the COAL solver to infer the values of reflection targets. After that, it automatically instruments the app to

replace reflective calls with their corresponding Java calls in a traditional paradigm. Our approach augments

an app so that it can be more effectively statically analyzable, including by such static analyzers that are not

reflection-aware. We evaluate DroidRA on benchmark apps as well as on real-world apps, and we demonstrate

that it can indeed infer the target values of reflective calls and subsequently allow state-of-the-art tools to

provide more sound and complete analysis results.
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1 INTRODUCTION

Reflection is supported by some modern programming languages for enabling a running program
to examine itself and its software environment, and to change what it does depending on what
it finds [27]. In Java, reflection is used as a convenient means to handle genericity or to process
Java annotations inside classes. Along with many Java features, Android has inherited the Java
Reflection APIs, which are packaged and included in the Android SDK for developers to use. Be-
cause of the fragmentation of the Android ecosystem, where many different versions of Android
are concurrently active on various devices, reflection is essential. It allows developers, with the
same application package, to target devices running different versions of Android. Developers of-
ten use reflection techniques to determine, at runtime, if a specific class or method is available
before proceeding to use it. This allows the developer to leverage, in the same application, new
APIs where available while still maintaining backward compatibility for older devices [22, 48]. Re-
flection is also used by developers to exploit Android hidden and private APIs, as these APIs are
not exposed in the developer SDK and consequently cannot be invoked through traditional Java
method calls.

Unfortunately, recent studies of Android malware have shown that malware writers are using
reflection as a powerful technique to hide malicious operations [34, 49, 53]. In particular, reflection
can be used to hide the real purpose of an app, e.g., by invoking a method at runtime to escape
static scanning, or simply to deliver malicious code [12]. Most state-of-the-art approaches and
tools for static analysis of Android simply ignore the use of reflection [26, 33] or may treat it
partially [30, 62]. A review of recent contributions on static analysis-based approaches for Android
shows that over 90% of around 90 publications [47] from top conferences (including ICSE and
ISSTA) do not tackle this reflection problem. This means that many research and practice tools
that provide analysis results are incomplete, since some parts of the program may not be included
in the app call graph, and unsound, since the analysis does not take into account some hidden
method invocations or potential writes to object fields. In this regard, a recent study by Rastogi
et al. [61] has shown that reflection makes most current static analysis tools perform poorly on
malware detection tasks.

Handling reflection is, however, challenging for static analysis tools. There exist ad-hoc imple-
mentations for dealing with specific cases of reflection patterns [62]. Such implementations cannot
unfortunately be re-used in other static analysis tools. Nevertheless, there is a commitment in the
Android research community to propose solutions for improving the analysis of reflection. For ex-
ample, in a recent work [17], Barros et al. propose an approach for resolving reflective calls in their
Checker static analysis framework [25]. Their approach, however, (1) requires application source
code, which is not available for most Android apps, (2) targets specific check analyses based on
developer annotations, which requires additional developer effort to, e.g., learn the target frame-
work, find the right place to annotate, and so on, and (3) does not provide a way to directly benefit
existing static analyzers, i.e., to support them in performing reflection-aware analyses.

Our aim is to deal with reflection in a non-invasive way so that state-of-the-art analysis tools
can better analyze application packages from app markets. To that end, we present our new
DroidRA instrumentation-based approach for automatically resolving reflection in Android apps.
In DroidRA, the targets of reflective calls are determined after running a constraint solver to output
a regular expression satisfying the constraints generated by an inter-procedural, context-sensitive
and flow-sensitive static analysis. A Booster module is then implemented to augment reflective
calls with their corresponding explicit standard Java calls. Because some code can be loaded dy-
namically, before our reflection analysis, we also use heuristics to extract any would-be dynami-
cally loaded code. This is done by scanning all the files disassembled from APKs, such as a jar file
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with classes.dex inside, into our working space. Indeed, our reflection resolving approach hinges
on the assumption that all the code that exists in the app package may be loaded at runtime and
thus should be considered for analysis.

We make the following key contributions:

• We provide insights on the use of reflection in Android apps, based on an analysis of 1000
apps randomly selected from a repository of apps collected from Google Play, third-party
markets, as well as malware samples [11]. Our findings show that (1) a large portion of
Android apps rely on reflective calls, and that (2) reflective calls are usually used with some
common patterns. We further show that we can discriminate between reflective calls in
benign and malicious apps.

• We designed and implemented DroidRA—an approach that aims to boost existing state-of-
the-art static analysis for Android by resolving reflection in Android apps. DroidRA models
the use of reflection withCOAL [57] and is able to resolve the targets of reflective calls
through a constraint solving mechanism. By instrumenting Android apps to augment re-
flective calls with their corresponding explicit standard Java calls, DroidRA complements
existing analysis approaches.

• We evaluated DroidRA on a set of real applications and report on the coverage of reflection
methods that DroidRA identifies and inspects. We further rely on well-known benchmarks
to investigate the impact that DroidRA has on improving the performance of state-of-the-
art static analyzers. In particular, we show how DroidRA is useful in uncovering dangerous
code, such as sensitive API calls, sensitive data leaks [14, 41], that was not previously visible
to existing analyzers.

• We release DroidRA and its associated benchmarks as open source [4], not only to foster
research in this direction but also to support practitioners in their analysis needs.

This article is an extended and improved version of previous work presented at the 2016 Interna-
tional Symposium on Software Testing and Analysis (ISSTA). In this extension, we have improved
DroidRA in three aspects:

• Improvement #1: We introduce a probabilistic-like approach to strengthen our static re-
flection analysis, aiming at providing more sound and comprehensive reflection analysis
results to support whole-program analysis of Android apps. Previously, when DroidRA can-
not correctly infer the value of specific reflective calls, which is quite common because of
the drawbacks of static analysis, DroidRA would yield a “*” as output indicating that this
value can be anything. This output is not useful for users. Hence, in this improvement, when
“*” occurs, we try to mitigate it by predicting its possible values using domain knowledge
on top of static analysis results. Our experimental results show that this improvement can
indeed help in resolving more reflective targets, compared to that of the previous version
of DroidRA.

• Improvement #2: We further take Fragment into consideration for the reflection analysis
process. Fragment is a special element that can be placed in an Activity component to form
a piece of an app’s user interface. A Fragment element has its own lifecycle methods for
which each of them can access into reflective calls. If Fragment elements are overlooked,
then an inevitable part of code will be missed, leading to less reflective calls characterized.
After integrating Fragment into our analyzing process, our tool is capable of reaching re-
flective calls that could not be reached previously, and thereby results in more reflective
calls discovered and resolved.
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• Improvement #3: Since static analysis is known to be time consuming, we introduce a
feature into DroidRA to support customized analysis of Android apps. If a given component
is known to not include any reflective calls, then there is no need to include this component
for reflective analysis. As a result, less code will be analyzed, and hence better performance
can be achieved. As revealed in our experiments, the customized module can (1) reduce
computational costs while keeping the reflection analysis results unchanged for such apps
that are successfully analyzed before, and (2) enable the analysis of some apps that cannot
be successfully analyzed if not customized.

Apart from tool enhancements, which are detailed in the approach section (i.e., sec.approach),
we have also improved the manuscript in the following aspects. First, we conduct extensive new
experiments to evaluate the prototype tool improvements. Specifically, we have doubled the num-
ber of selected apps, and all the apps are randomly selected from a dataset with the latest apps.
We have also compared our approach with another state-of-the-art tool called DINA, except for
comparing against the Checker framework. Second, apart from updating the results of the original
research questions, we have also added two new research questions (i.e., RQ2 and RQ4) for eval-
uating the effectiveness of the newly introduced functions in the DroidRA enhancements. Third,
we have now included a discussion section to discuss the impact of timeout setting on our ex-
periments. Except for giving 10 min as timeout, which has been used in the experiments of the
conference version and subsequently this extension, we further repeat the experiments with differ-
ent timeouts (i.e., 1, 5, 20, 30, and 50 min). Our exploratory results show that 10 min is a reasonable
timeout for applying DroidRA to analyze Android apps. Finally, we have significantly extended the
related work discussion.

The remainder of this article is organized as follows. Section 2 motivates our work through
a concrete example and Section 3 investigates the use of reflection in Android apps. Section 4
presents our approach DroidRA, including its design and implementing details. Section 5 reports
on the evaluation of DroidRA while Section 6 presents the limitations of DroidRA. Later, Section 7
discusses the related work and finally Section 8 concludes this article.

2 MOTIVATION

Millions of applications are freely available for download by Android users. However, malware
developers keep targeting the platform and trying to get their abusive applications into the An-
droid ecosystem [28, 32, 44]. For example, 360 Security recently reported that over 500,000 new
mobile malware variants targeting the Android platform were found in China in the first quarter
of 2019 [65]. Also, as of early 2020, 1 out of every 1,000 app installs from Google’s official Play store
is from a potentially harmful application, as shown in the recent Google Transparency Report.1

These numbers demand practical and scalable approaches and tools to support security analysis
of large sets of Android apps [28, 32, 54].

As an example of such approaches, static taint analyzers aim at tracking data across control-flow
paths to detect potential privacy leaks. Consider the state-of-the-art FlowDroid [14] approach as
a concrete example. FlowDroid is used to detect private data leaks from sensitive sources, such as
contact information or device identification numbers, to sensitive sinks, such as sending HTTP
posts or short messages. FlowDroid has demonstrated many promising results. However, it suf-
fers from limitations inherent to the challenges of performing static analysis in Android where
the presence of reflection, dynamic class loading and native code calling, makes static analysis
very challenging. Reflection breaks the traditional call graph construction mechanism in static

1https://transparencyreport.google.com/android-security/overview.
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Listing. 1. Code excerpt of de.ecspride.MainActivity from DroidBench’s Reflection3.apk. We remind the
readers that while our approach proposed in this work works at the bytecode level of Android apps, we
present as examples Java code snippets directly for the sake of readability.

analysis, resulting in an incomplete control-flow graph (CFG) and consequently leading to incom-
plete analysis results. For example, a dynamically loaded class and reflectively called method can
not usually be detected. In this article, we focus on resolving reflection in Android apps to allow
state-of-the-art tools such as FlowDroid to significantly improve their results. Dealing with re-
flection in static analysis tools is challenging. The Soot Java optimization framework, on top of
which most state-of-the-art approaches are built, does not address the presence of reflective calls
in its analyses. Thus, overall, resolving reflection at the app level will enable better analysis by
state-of-the-art analysis tools to detect more potential security issues for app users.

Consider the case of an app included in the DroidBench benchmark suite [3, 14]. The Reflection3
benchmark app is known to be improperly analyzed by many tools, including FlowDroid, because
it makes heavy use of reflective calls. Listing 1 shows part of this app. Here, class ReflectiveClass
is first retrieved (line 3) and initialized (line 4). Then, two methods (setImei() and getImei()) from
this class are reflectively invoked (lines 5–8). setImei(), which is selected by concatenating
two strings at run-time, will store the device ID, obtained on line 2, into field imei of class
ReflectiveClass (line 6). getImei(), similarly, gets back the device ID into the current context
so that it can be sent outside the device via SMS to a hard-coded—i.e., not provided by the user—
phone number (line 10).

The operation implemented in this code sample is malicious as the sensitive, private information
of device ID is sent to a number unknown to the user. The purpose of the reflective calls, which
appear between the obtaining of the device ID and its leakage outside the device, is to elude any
taint tracking by confusing traditional control flow analysis. Thus, statically detecting such leaks
becomes very hard. For example, bypassing property and method name detection by using run-
time constructed string patterns, as done in line 5. Furthermore, even using simple string analysis
is not enough to identify such malicious reflective calls. This is because both the method name (e.g.,
getImei for methodm2) and its declaring class name (e.g., ReflectiveClass form2) are needed. These
values must therefore be matched and tracked together: this is known as a composite constant
propagation problem.

3 REFLECTION IN ANDROID APPS

We investigated whether reflection is truly a noteworthy problem in the Android ecosystem. To
this end, we investigated why and to what extent reflection is used in Android apps. In Section 3.1,
we report on the common, legitimate reasons that developers have to use reflection techniques in
their code. Then, we investigate, in Section 3.2, the extent of the usage of reflection in real-world
applications.
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3.1 Legitimate Uses of Reflection

We have parsed Android developer blogs and reviewed some apps to understand when devel-
opers need to inspect and determine program characteristics at run-time, by leveraging the Java
reflection feature.

Listing. 2. Reflection usage in real Android apps.

Providing Genericity. Just like in any Java-based software, Android developers can write apps
by leveraging reflection to implement generic functionality. Example (1) in Listing 2 shows how
a real-world Android app implements genericity with reflection. In this example, a fiction reader
app, sunkay.BookXueshanfeihu (4226F82), uses reflection to effect the initialization of Collection
List and Set.

Maintaining Backward Compatibility. In app com.allen.cc (44B232, an app for cell phone bill
management), reflection techniques are used to check at run-time the targetSdkVersion of a device,
and, based on its value, to realize different behaviors. A similar use scenario includes checking
whether a specific class exists or not, to enable the use of advanced functionality when possible. For
example, the code snippet (Example (2) in Listing 2), extracted from app com.gp.monolith (61BF01,
a 3D game app), relies on reflection to verify whether the running Android version, includes the
text-to-speech module. Such uses are widespread in the Android community as they represent the
recommended way [2] of ensuring backward compatibility for different devices and SDK versions.

2In this article, we represent an app with the last six letters of its sha256 code.
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Table 1. Top 10 Used Reflection Methods and Their
Argument Type: Either (C): Class, (M): Method or

(F): Field

Method (belonging class) # of Calls # of Apps
getName (C) 12,588 283 (56.6%)
getSimpleName (C) 5,956 87 (17.4%)
isAssignableFrom (C) 4,886 164 (32.8%)
invoke (M) 3,026 223 (44.6%)
getClassLoader (C) 2,218 163 (32.6%)
forName (C) 2,141 227 (45.4%)
getMethod (C) 1,715 135 (27.0%)
desiredAssertionStatus (C) 1,218 202 (40.4%)
get (F) 1,139 177 (35.4%)
getCanonicalName (C) 1,115 388 (77.6%)
Others 24,708 4 (8%)
Total 60,710 438 (87.6%)

Protecting Intellectual Property. To prevent simple reverse engineering, developers separate
their app’s core functionality into an independent library and load it dynamically (through reflec-
tion) when the app is launched: this is a common means to obfuscate app code. As an example,
developers usually dynamically load code containing premium features that must be shipped after
a separate purchase.

Accessing Hidden/Internal APIs. In the development phase, Android developers write apps
that use the android.jar library package containing the SDK API exposed to apps. In contrast,
when in production and apps are running on a device, the used library is actually different, i.e.,
richer. Indeed, some APIs (e.g., getService() of class ServiceManager) are only available in the
platform SDK as they might still be unstable or were designed only for system apps [46]. However,
by using reflection, such previously hidden APIs can be exploited at runtime. Example (3), found
in a wireless management app—com.wirelessnow (314D51)—illustrates how such a hidden API can
be targeted by a reflective call.

3.2 Adoption of Reflection in Android

To investigate the use of reflection in real Android apps, we consider a large research repository
of over 2 million apps crawled from Google Play, third-party markets and known malware sam-
ples [11].

We randomly selected 500 apps from this repository and parsd the bytecode of each app, search-
ing for the use of reflective calls. The strategy used consists in considering any call to a method
implemented by the four reflection-related classes3 as a reflective call, except such methods that
are overridden from java.lang.Object.

3.2.1 Overall Usage of Reflection. Our analysis shows that reflection usage is widespread in
Android apps, with 87.6% (438/500) of these selected apps making use of reflective calls. In fact, on
average, each of the selected apps uses 138 reflective calls. Table 1 summarizes the top 10 methods
used in reflective calls.

3java.lang.reflect.Field, java.lang.reflect.Method, java.lang.Class, and java.lang.reflect.Constructor.
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Table 2. Top 5 Patterns of Reflective Calls Sequences

Sequence pattern Occurrences
Class.forName()→ getMethod()→ invoke() 133
getName()→ getName()→ getName() 120
getDeclaredMethod()→ setAccessible()→ invoke() 110
getName()→ isAssignableFrom()→ getName() 92
getFields()→ getAnnotation()→ set()→ ... 88

However, many real-world ad libraries make extensive use of reflection. Thus, we performed
another study to check whether or not most reflective calls are only contributed by common ad-
vertisement libraries. We thus exclude reflective calls that are invoked by common ad libraries.4

Our results show that there are still 382 (76.4%) apps whose non-ad code includes reflective calls,
suggesting the use of reflection in primary app code.

3.2.2 Patterns of Reflective Calls. To have a clearer picture of how one can find reflection in
apps, we further investigate the sequences of reflective calls used and summarize the patterns
used by developers to implement Android program behaviour with reflection. We consider all
method calls within the selected 500 apps and focus on the reflection-related sequences that are
extracted. We used a simple and fast approach considering the natural order in which the bytecode
statements are yielded by Soot.5 We find 34,957 such sequences (including 1 or more reflective
calls). An isolated reflective call is relatively straightforward to resolve as its parameter is usually
a String value (e.g., name of class to instantiate or method to call). However, when a method in
the instantiated class must be invoked, other reflective calls may be necessary (e.g., to get the
method name or parameter object type), which complicate reflection target resolution. We found
45 distinct patterns of sequences containing at least three reflective calls. Table 2 details the top five
sequences of reflection calls in these apps. In most cases, reflection is used to access methods and
fields of a given class, which may be identified or loaded at runtime. This confirms the fundamental
functionality of reflective calls, which is to access methods/fields.

We further investigate the 45 distinct patterns to identify the reflective call patterns that are
potentially dangerous, as they may change program state. We focus on sequences that include a
method invocation (sequences 1 and 3 in Table 2) or access a field value in the code (sequence 5).
Taking into account all the relevant patterns, including 976 sequences, we infer the common pat-
tern, which is represented in Figure 1. This pattern illustrates how the reflection mechanism allows
an app to obtain methods/fields dynamically. These methods and fields can be used directly when
they are statically declared (solid arrows in Figure 1); they may otherwise require initializing an
object of the class, e.g., also through a reflective call to the corresponding constructor (dotted
arrows). With this common pattern, we can model most typical usages of reflection, which can
hinder state-of-the-art static analysis approaches.

The model yielded allows us to consider different cases for reflective call resolution. In some
simple cases, a string analysis is sufficient to extract the value of the call parameter. However,
in other cases where class objects are manipulated to point to methods indicated in field values,
simple string analysis cannot be used to help mapping the flow of a malicious operation. Finally,

4We take into account 12 common libraries, which are published by Reference [16] and are also used by Reference [40].

We believe that a bigger library set like the one provided by Li et al. [45] could further improve our results.
5One of the most popular open-source framework that supports static analysis of Java/Android apps.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 32. Pub. date: April 2021.



Taming Reflection: An Essential Step Toward Whole-program Analysis of Android Apps 32:9

Fig. 1. Abstract pattern of reflection usage and some possible examples.

Fig. 2. Overview of DroidRA.

in some cases, there is a need to track back to the initialization of an object by another reflective
call to resolve the target.

4 RESOLVING REFLECTION

We have two key aims: (1) to resolve reflective call targets to expose all program behaviors for static
analysis, especially for analyses that must track private data, to produce more complete results;
and (2) to unbreak app control-flow in the presence of reflective calls to allow static analyzers to
produce more precise results.

Figure 2 presents an overview of the architecture of the DroidRA approach involving three mod-
ules. (1) The first module named JPM prepares the Android app to be inspected. (2) The second
module named RAM locates reflective calls and retrieves the values of their associated parameters
(i.e., class/method/field names). All resolved reflection target values are made available to the ana-
lysts for use in their own tools and approaches. (3) Leveraging the information yielded by the RAM
module, the BOM module instruments the app and transforms it into a new app where reflective
calls are now augmented with standard java calls. The objective of BOM is to produce an equivalent

app whose analysis by state-of-the-art tools will yield more precise and complete results [38].
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4.1 JPM—Jimple Preprocessing Module

Android programming presents specific characteristics that require app code to be preprocessed
before Java standard analysis tools can be used on it. First, an Android app is distributed as an apk

file in which the code is presented in the form of Dalvik bytecode, a specific format for Android
apps. Our analysis and code instrumentation will, however, manipulate code in Jimple, the inter-
mediate representation required by Soot [36], a Java optimization framework. As a result, in a first
module in DroidRA, JPM, leverages the Dexpler [18] translator to decompile the apk and output
Jimple code.

Second, similar to any other static analysis approaches for Android, DroidRA needs to start
analysis from a single entry-point. Unfortunately, Android apps do not have a well-defined entry-
point, e.g., main() in Java applications. But instead, they have multiple entry-points, since each
component that declares Intent Filters, which define the capabilities of a component, is a pos-
sible entry-point. To address this challenge, we use the same approach as in FlowDroid [14]. This
is to artificially assemble a dummy main method, taking into account all possible components in-
cluding all possible callback methods (e.g., onClick()), and their lifecycle methods (e.g., onCreate()

and onStop()). In Android, there are four types of components: Activities, Services, Broadcast Re-
ceivers, and Content Providers. Each of these four types of components has its own lifecycle that
is different from others and hence needs to be separately modeled and analyzed. Indeed, as an
example of an activity’s lifecycle shown in Figure 3, all the methods, both lifecycle and callback,
are not connected at the code level. They therefore need to be artificially connected in the dummy
main method to allow the static analyzers to reach them.

Apart from these four components, there is a special element called the Fragment that also
introduces challenges to static analysis. A Fragment, although it cannot be run independently, can
be placed in an Activity component, responsible for an app’s user interface, to form a piece of the
app’s user interface and can be added or removed while the host Activity is running. Fragment is
introduced to Android apps for achieving the following advantages: (1) Modularity: cohesive UI
code can be encapsulated into a fragment rather than scattered in an Activity; (2) Reusability: a
dedicated fragment can be leveraged by multiple Activities; and (3) Adaptability: according to the
screen size or screen orientation of the hardware, different layouts can be adapted for fragments
to enable better user experience.

Because of these, the Fragment concept has been heavily leveraged by app developers to imple-
ment Android apps. However, reflection might also be used in the implementation of Fragment,
and therefore there is a need to take into account Fragments in our analysis. Listing 3 illustrates
a Fragment-related code snippet extracted from a real-world Android app. Developers have to ex-
tend the Fragment class to create concrete Fragment implementations (e.g., SmartBarFragment).
Reflection might also be used in the implementation of Fragments. Indeed, as shown in Listing 3,
reflection (e.g., lines 28–31) has been leveraged by getNavBarOverride() to access system properties.

Unfortunately, when developing the initial version of DroidRA, the authors were not aware of
Fragments and their potential impacts on static analysis of Android apps (i.e., less code reached). As
a result, Fragments had been ignored, resulting in Fragment-related code blocks not being visited,
and consequently, reflective calls leveraged by those code blocks not reached. To this end, there
is a strong need to also take Fragments-related code into consideration. However, it is non-trivial
to implement this as Fragments (like Android components) also introduce their own lifecycle and
callback methods and these may also access reflective calls. Indeed, let us take Listing 3 again as an
example, there are three lifecycle methods (i.e., onCreate(), onCreateView, onViewCreated) declared
in the SmartBarFragment class. These lifecycle methods are not directly connected at the code
level. Their execution sequences are also determined by the Android framework (hard to decide
by statically parsing this code).
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Fig. 3. The lifecycle of an activity.

Hence, these lifecycle methods also need to be included in the generated dummy main method.
Figure 3 illustrates the lifecycle of an activity where it involves a fragment and its lifecycle methods
(including the aforementioned three lifecycle methods). In this work, we include these methods
into the dummy main method following the call relations shown in Figure 3. When a Fragment
is identified in Android activities, our approach will attach the Fragment’s lifecycle and callback
methods into the lifecycle of the activities. For example, there will be a call flow from the onCreate()

method of the activity to the onAttach() method of the Fragment. When there is a joint point (e.g.,
after the onActivityCreated() method), an if-statement will be created in the dummy main method,
which will subsequently generate two branches covering all the possible execution sequences of
the lifecycle methods (e.g., either the onStart() method of the activity or the onStart() method of
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the Fragment). This enables the static analyzer to build an inter-procedural control-flow graph and
consequently to traverse all the app code.

Listing. 3. Fragment example with simplified code snippets extracted from a real-world Android app.

To support customized analysis of Android apps, we introduce an option allowing users to spec-
ify how the dummy main method should be built. Users can leverage this option to exclude such
classes that have already been analyzed previously and have not been changed at the time of the
new analysis if a regular reflective analysis is planned. This option further provides opportunities
for the analysis to remove such methods that do not use reflective calls. To ensure a given method
is reflection-free, we check not only the method itself but also its accessed methods, following the
call graph constructed for the analyzed Android app. We believe this option will be helpful when
the analyzed apps are large. Indeed, some complicated apps may cause static reflective analysis to
be unable to terminate within a certain period of time. To overcome this problem, which is com-
monly encountered by many static analysis tools, users can leverage this option to exclude part of
the codebase from the app, thereby only analyzing a part of the app code. In this way, the reflection
analysis can finish and could yield useful results. Although these results are only partial for the
whole app, it is nonetheless better than the former case where no results are obtained.
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Third, we aim to analyze the entire available app code, including such code that is dynamically
loaded (e.g., at runtime). However, such Dynamic Code Loading (DCL) is yet another challenge
for static analysis. This is because some would-be loaded classes that are added at runtime, e.g.,
downloaded from a remote server, may not exist at all at static analysis time. We focus on dynam-
ically loaded code that is included in the apk file, although in a separated archive file, and which
can then be accessed at static analysis time. We assume that this way of locally storing the code
to be dynamically loaded is most widespread. Indeed, in our previous work in understanding the
piggybacking behaviors of Android apps, we have empirically found that a significant number of
DEX files are distributed (inside the APK) via resource files such as image or XML files. In any case,
Google Play policy explicitly states that an app downloaded from Google Play may not modify,
replace or update its own APK binary code using any method other than Google Play’s update
mechanism [7].

In practice, our DCL analysis is performed through heuristics. Given an app a, we first unzip6 it
and then traverse all its embedded files, noted as the set F . For each file f ∈ F , if it is a Java archive
format—the file extension could vary from dat, bin to db—then we recursively open it and check
whether it contains a dex file through its magic number (035). All retrieved dex files, usually with
classes.dex, are then taken into consideration for any further analysis of the app.

We tested our heuristics-based process for finding DCL code by analyzing 1,000 malicious apps
randomly selected from our data set. We found that 348 (34.8%) apps contain additional code that
can be dynamically loaded at runtime. Among these 348 apps, we collected 1,014 archives that
contain an extra classes.dex file, giving an average of 2.9 “archives with code” per app. We also
found that the 1,014 archives are redundant in many apps: there are actually only 74 distinct archive
names. For example, library bootablemodule.jar, which contains a classes.dex file, is used by 115
apps. This library package was recently studied in a dynamic approach [73].

4.2 RAM—Reflection Analysis Module

The Reflection Analysis Module of DroidRA identifies reflective calls in a given app and maps
their target string/object values. For example, consider the motivating example from the Droid-
Bench app presented in Listing 1. The aim of RAM is to extract not only the method name in the
m2.invoke(o) reflective call (line 8 in Listing 1) but also the class name that m2 belongs to. In
other words, we have to associatem2 with дetImei but also o with de .ecspride .Re f lectiveClass .

To that end, based on this motivating example and our study of reflective call patterns described
previously, we observe that this can be modeled as a constant propagation problem within an
Android Inter-procedural Control-Flow Graph. Mapping a reflective call eventually consists of re-
solving the value of its parameters—name and type—through a context-sensitive and flow-sensitive
inter-procedural data-flow analysis. The purpose is to obtain highly precise results. This is very
important, since the app will be automatically instrumented without any manual check of these
results.

Let us consider the resolution of the value of m2 in line 8 (“Strinд s = (Strinд) m2.invoke (o)”
in Listing 1) as an example. If we cannot precisely extract the class name thatm2 belongs to, then
our RAM module might tell us that m2 belongs to class TelephonyManager, rather than the right
class ReflectiveClass. During instrumentation, we will then write code calling m2 as a member of
TelephonyManager, which would yield an exception at runtime, i.e., no such method error, and
consequently fail the static analysis.

To build a mapping from reflective calls to their target string/object values, our static analysis
adopts an inter-procedural, context-sensitive, flow-sensitive analysis approach. We leverage the

6The format of an apk is actually a compressed ZIP archive.
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composite COnstant propAgation Language (COAL) [57] for specifying this reflection problem.
To use COAL, the first step is to model the reflection analysis problem independently from any
app. We use the abstract patterns of reflective calls described in Section 3.2.2. This generic model
is specified by composite objects. For example, a reflective method is specified as an object (in
COAL) with two fields: the method name and its declaring class name. Once reflection analysis has
been modeled, we build on top of the COAL solver to implement a specific analyzer for reflection.
This analyzer then performs composite constant propagation to resolve the previously defined
composite objects and thereby to infer the reflective call target values.

COAL-based Reflection Analysis. We now illustrate a simple example shown in Listing 4 to
better explain the constant propagation of reflection-related values for class Method. Specifications
for all other reflection-related classes are defined similarly. All specifications will be open-sourced
eventually. Based on the specification shown in Listing 4, the COAL solver generates the semilat-
tice that represents the analysis domain. In this case, the Method has two string fields, where Class
types (strings of characters) are modeled as fully qualified class names. In the COAL abstraction,
each value on an execution path is represented by a tuple, in which each tuple element is a field
value. More formally, letS be the set of all strings in the program and let B = (S ∪ {ω}) × (S ∪ {ω}),
where ω represents an unknown value. Then the analysis domain is the semilattice L = (2B , ⊆),
where for any set X , 2X is the power set of X , and elements in 2B represent the set of values of
Method variables across all execution paths. Semilattice L has a bottom element ⊥ = ∅ and its top
element is the set of all elements in B. For example, the following equation models the value of
object m at line 10 of Listing 4:

{(first.Type, method1), (second.Type, method2)}. (1)

The first tuple in Equation (1) represents the value of Method object m contributed by the first
branch of the if statement. The second tuple, however, models the value on the fall-through
branch.

To generate transfer functions for the calls to getMethod, the COAL solver relies on the spec-
ification presented in lines 15–17 of Listing 4. The modifier mod statement specifies the signature
of the getMethod method and it describes how the method modifies the state of the program.
The gen keyword specifies that the method generates a new object of type Method (i.e., it is a
factory function). Statement -1: replace declaringClass_method indicates that the name of
the Class object on which the method is called (e.g., first.Type at line 4) is used as the field
declaringClass_method of the generated object. Note that in this statement the special -1 index
indicates a reference to the instance on which the method call is made, for example object c at line
5. Finally, statement 0: replace name_method indicates that the first argument (as indicated by
index 0) of the method is used as the name_method field of the generated object.

At the start of the propagation performed by the COAL solver, all values are associated with
⊥. Then the COAL solver generates transfer functions that model the influence of program state-
ments on the values associated with reflection. Following the formalism from [57], for any v ∈ L,
we define function initv such that initv (⊥) = v . By using the specification at lines 15-17, the COAL
solver generates function init {(first.Type,method1) } for the statement at line 5. The function that sum-
marizes the statement at line 8 is defined in a similar manner as init {(second.Type,method2) } . Thus,
when taking the join of init {(first.Type,method1) } (⊥) with init {(second.Type,method2) } (⊥), we obtain the
value given by Equation (1). For string analysis, the COAL solver introduces a flow-sensitive and
interprocedural approach. This first gathers the dataflow facts for string variables and then deter-
mines regular sets that satisfy these facts. This analysis is implemented based on the flow-sensitive
use-def analysis provided by the Soot framework [36]. By leveraging the Single Static Assignment
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Listing. 4. Example of COAL-based reflection analysis for class Method. Similar specifications apply for all
other reflection classes.

Listing. 5. Example of use of a varargs parameter.

(SSA) intermediate program representation, the analysis traverses all the instructions in all reach-
able functions to determine the corresponding constraints related to strings.

The COAL specification in Listing 4 includes a query statement at lines 18 and 19. This causes
the COAL solver to compute the values of objects of interest at specific program points. In our ex-
ample, the query statement includes the signature for the invoke method. The -1: type Method
statement specifies that objects on which the invoke method is called have type Method. Thus
using this specification the COAL solver will compute the possible values of object m at line 10 of
Listing 4.

Improvements to the COAL Solver. We have contributed to several improvements of the
COAL solver in this work. These improvements now enable it to perform efficiently for resolving
the targets of reflective calls. At first, we extended the COAL language and its solver to be able to
query the values of objects on which instance calls are made. This allowed us to query the value of
object m in statement m.invoke(obj, args). Second, we added limited support for arrays of objects
such that the values of object arrays can be propagated to array elements. More specifically, if
an array a is associated with values v1, v2, . . . , vn , for any i array element a[i], we mark it as
potentially containing all the values (from v1 to vn ). While this may not be precise in theory, in
the case of reflection analysis, the arrays of constructors, returned by method getConstructors(),
that we consider typically only have a few elements. Thus, this improvement, which ensures that
the propagation of constructors is done, is precise enough to use in practice.
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We detail an example of a difficulty that we encountered to retrieve the string/object values.
The difficulty is due to the fact that some reflection calls such as m.invoke(Object, Object[]) take
as parameter a varargs [9]. The problem here is that the object array is not the real parameter of
the method m. Indeed, the parameters are instead the elements of the array. This keeps us from
extracting the appropriate method for instrumentation.

Let us consider the example code snippet in Listing 5. By only looking in line 4, we would infer
that the parameter of the methodm is objs . Whereas actuallym has two parameters: a Strinд and
an int (as showed in line 5). To solve this problem and infer the correct list of parameters, we
perform a backward analysis for each object array. For example, from objs in line 4, we go back to
consider the assignments to array elements on both lines 2 and 3. We thus infer that (1) the first
parameter of m is a Strinд whose value is TOSEM , and (2) the second parameter is an int whose
value is 2020.

Refinements to the COAL Outputs. Finally, although we have improved the COAL Solver
in various aspects, specific reflective calls still cannot be resolved by COAL. In such a context,
COAL will yield a star (i.e., “*”) as output, indicating that the reflective call could refer to any
method. Indeed, as revealed by Barros et al. [17], in some cases, it can be impossible for static
approaches to resolve reflective calls, because the reflective target can be a runtime user input.
Furthermore, as argued by Octeau et al. [57], the COAL Solver shares the traditional limitations of
static analysis on Java programs in that it does not handle native code and reflection. As a result, the
constant propagation traces may be broken and thereby lead to unknown results (i.e., “*”). These
unknown results provide meaningless information to users. To improve prior work and to refine
the outputs of the COAL solver, we go one step further to approximate the possible values of “*”
when our approach fails to reveal them. The approaches introduced by Octeau et al. [56], propose
to combine static analysis with probabilistic models to improve static analyzers. Those provided by
Smaragdakis et al. [64] and Li et al. [50] [51] propose to infer reflective targets by leveraging code
information such as reflective API semantics and type systems in Java. In this work, we present a
similar approach (i.e., essentially a subset of the inference system introduced by Li et al. [50, 51])
to “guess” the unknown reflective targets. The resolved targets are then integrated back to the
results of the COAL solver to support further analyses. In this work, DroidRA rewrites the app
by representing the resolved reflective calls with traditional Java calls. It subsequently generates
a semantically equivalent new app for supporting reflection-free static app analyses.

More specifically, given a method called via reflection, ideally, we would need to infer the class
for which the method belongs to, the method’s name, the method’s parameter numbers and types.
Only by this we can be sure which method is called reflectively. Unfortunately, in practice, it may
not be always possible to resolve all the aforementioned targets for a reflectively called method.
In such cases where only partial targets are resolved, we propose to predict the unresolved targets
based on domain knowledge, i.e., their relationship to the resolved targets. In Android, we resort
to the scheme defined in the app code, including that specified in the Android framework, to build
domain knowledge. By statically scanning the code of a given app, we obtain the following code
scheme, i.e., domain knowledge: (1) the list of all involved classes; (2) given a class, except its name,
we know all the methods and fields it declares, including its declared constructors, i.e., methods
that share the same name of their class; (3) given a method, we know the class it belongs to and
the parameter numbers and types it contains; and (4) given a field, we know the class it belongs
to and the type it is defined for.

To demonstrate the usefulness of leveraging the above domain knowledge, which can be ob-
tained before the reflection analysis, for approximating the value of reflective targets, we use a
concrete example to depict this refinement to COAL outputs. Listing 6 presents a sample code
showing the basic usage of reflection in Android. In the beginning, a method is extracted from
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Listing. 6. Example of an unresolvable reflective method.

class TOSEM via reflection (line 2) and then reflectively invoked (line 5). Lines 8–12 enumerates
the code structure of the TOSEM class. Unfortunately, since the method name of the reflective call
is given as run-time input (line 1), our tool cannot infer its value correctly, resulting in “*” for the
method name from COAL analysis.

Nonetheless, except for the method name, our tool can correctly resolve the other relevant tar-
gets: (1) the method’s class TOSEM and (2) the method has two parameters, and their types are
both java.lang.String. We can then compare these resolved targets with our domain knowledge.
The only match in our codebase would be the publish method, with the same class name and the
same argument numbers and types (line 9). Therefore, we can confidently refine the “*” value to
publish, as the output of the COAL solver. Note that in some cases the refined results might not be
unique, and in such a case we report all of the possible results.

4.3 BOM—Booster Module

The Booster Module for DroidRA takes as input an Android app represented by its Jimple instruc-
tions and the reflection analysis results yielded by the RAM module. The output of BOM is a new
reflection-aware, analysis-friendly app where instrumentation has conservatively augmented re-
flective calls with appropriate standard Java calls. All reflective calls remain in the app code to
conserve its initial behaviour for runtime execution, while standard calls are included in the call
graph to allow only static exploration of once-hidden paths.

For example, in the case of Listing 1, the aim is to augment “m.invoke (o, imei )” with
“o.setImei (imei )” where o is a concrete instance of class de .ecspride .Re f lectiveClass (i.e., explic-
itly instantiated with the new operator). Boosting approaches have been successful in the past
in state-of-the-art frameworks for improving analysis of specific software by reducing the cause
of analysis failures. TamiFlex [20] deals with reflection in standard Java software in this way,
while IccTA [41] explicitly connects components, to improve Inter-Component Communication
analysis.

Consider again our motivating example presented in Listing 1 to better illustrate the instrumen-
tation done by BOM. Listing 7 presents the boosting results of Listing 1. Our instrumentation tactic
is straightforward: for an instance where a reflection call initializes a class, we explicitly represent
the statement with the Java standard new operator (line 4 in Listing 7). If a method is reflectively
invoked (lines 5 and 8), then we explicitly call it (lines 7 and 10). This instrumentation is possible
thanks to the mapping of reflective call targets yielded by the RAM module. In this example the tar-
get resolution in RAM exposes that (1) object c is actually an instance of class ReflectiveClass;
(2) object m represents method setImei of class ReflectiveClass with a String parameter imei;
(3) objectm2 represents method дetImei of class ReflectiveClass.
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Listing. 7. The boosting results of our motivating example (Augmented app code lines are highlighted by
the # symbol).

This example illustrates why reflection target resolution is not a simple string analysis problem.
In this case, the support of composite object-analysis in RAM is needed: In line 1 of Listing 7, c
is actually an object, yet the boosting logic requires information that this represents class name
“ReflectiveClass.”

Note also that the new injected code is always guarded by a conditional to construct a guarded
control flow path for the traditional calls. The check() method is declared in an interface whose
implementation is not included for static analysis, otherwise a precise analyzer could have com-
puted its constant return value. However, for run-time execution, check() always returns false,
preventing paths added by BOM from ever being executed. Thus, this predicate keeps the new
injected code from changing the app behavior, while all sound static analysis can safely assume
that the path can be executed.

Additional Instrumentations. BOM performs some additional instrumentations that are not
directly related to the Reflection problem. Nevertheless, these instrumentations are useful to im-
prove the completeness of other static analyses. The goal of our approach is to enable existing
analyzers such as FlowDroid to perform reflection-aware static analysis in a way that improves
their security results. For instance, FlowDroid aims to detect data leaks with taint-flow static anal-
ysis. In the presence of dynamic class loading, FlowDroid stops its analysis when a class has to
be loaded. We explained above how DroidRA tackles this problem with its JPM module (cf. Sec-
tion 4.1). However, not all classes that have to be loaded are actually accessible. One reason is
that some files are encrypted, which prevents the analysis from statically accessing them. For
example, app com.ivan.oneuninstall contains an archive file called Grid_Red_Attract.apk, which
contains another archive file called tu.zip that has been encrypted. Because it is unrealistic to
implement a brute-force technique to find the password, we simply exclude such apps from our
analysis. However, to allow tools such as FlowDroid to continue their analyses, we use an instru-
mentation that conservatively solves this problem. We explicitly mock all the classes, methods
and fields that are reported by the RAM module7 but do not exist in the current class path, i.e.,
they are neither present in the initial code of the apk, nor in the code “extracted” by the JPM
module.

Consider the instruction “result=o.inc(a_1, a_2),” where the method inc is not accessible
and where a1 is tainted. Without any modification of this code, a standard analyzer would stop
its analysis. Our instrumentation consists of creating the method inc—and its associated declar-
ing class if required—in a way that the taints of a1 and a2 can be propagated. Concretely, the
instrumented method inc will contain the following instruction: return (Object ) (a1.toStrinд() +
a2.toStrinд()), assuming that the type of result is Object .

7This means that we only take into account reflective calls.
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5 EVALUATION

Our goal is to enable existing state-of-the-art Android analyzers to perform reflection-aware static
analysis, thus improving the soundness and completeness of their approaches. Our evaluation of
DroidRA thus investigates whether this objective is fulfilled. To that end, we attempt to answer
the following research questions:

RQ1 What is the coverage of reflection calls that DroidRA identifies and inspects?
RQ2 How does DroidRA compare with its earlier version for resolving reflective call targets in

Android apps?
RQ3 How does DroidRA compare with state-of-the-art approaches for resolving reflective call

targets in Android apps?
RQ4 Is the customization function of DroidRA useful for improving the performance of reflection

analysis of Android App?
RQ5 Does DroidRA support existing static analyzers to build sounder call graphs of Android

apps?
RQ6 Does DroidRA support existing static analyzers to yield reflection-aware results?

5.1 RQ1: Coverage of Reflective Calls

The goal of DroidRA’s app reflection analysis is to provide the necessary information for analysts,
other approaches, to better determine how reflections are used by an Android app. Thus, instead
of considering all reflection-related methods, in this experiment, we select such methods that are
most interesting for analysts. These include: (1) methods that acquire Method, Constructor and Field

objects. Those method call sequences are used in our common pattern in Figure 1 and are critical
as they can be used by malware, e.g., to exchange sensitive data between normal explicit code and
reflectively hidden code parts. For these calls, we perform a composite analysis and inspect the
related class names and method/field names if applicable; and (2) methods that contain at least
one string parameter. For these methods, we explore their string parameter’s possible values.

To investigate DroidRA’s coverage of an app’s reflection calls, we randomly select 1,000 apps
from Google Play to set up our experiment. All 1,000 apps were released after 2018 (i.e., based on
their last modified date). Instead of reusing the original corpus of 500 apps that are selected in
the earlier conference version of this article, we use Google Play to form the new dataset, because
we want to evaluate our approach based on the latest apps. Our original 500 apps were quite old
and selected in 2015 when we were working on the first version of DroidRA. From each app with
reflective calls, we extract two key items of information:

(1) Reached: The total number of reflective calls that are identified by our RAM reflection
analysis module; and

(2) Resolved: The number of reflective calls that are successfully resolved, i.e., the values of
relevant class, method and field names can be extracted by our reflection analysis.

Our experimental results are illustrated in Figure 4, which shows the performance of DroidRA
in reaching reflective calls from the dummy main, and in resolving their targets. Unfortunately, as
a static analyzer, DroidRA shares the same limitation of any other static analysis approaches—it
cannot finish the analysis within limited time and hardware resources. Indeed, as experimentally
demonstrated by Avdiienko et al. [16], their approach sometimes cannot finish the analysis of a
single app in 24 h on a computer server with 730 GB of RAM and 64 Intel Xeon CPU cores. In
our experiment, we launch our experiment on a rather small server (with 32 GB memory and 28
CPUs), and a short timeout (with just 10 min).
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Fig. 4. Results of the coverage of reflection methods.

Among the randomly selected 1,000 apps, 152 of them cannot be successfully analyzed by
DroidRA. Some representative failing reasons include (1) exceptions of DroidRA due to malformed
Android apps (e.g., no DEX file included), (2) exceptions of Soot and COAL, the underlying tools
leveraged by DroidRA, (3) timeout errors, for which the analysis cannot finish in 10 min, and so
on. Therefore, in this experiment, we report the experimental results based on the remaining 848
apps. Overall, among the 848 successfully analyzed apps, we extract 13,073 reflection calls, among
which the number of resolved reflective calls is 11,646, giving a resolution rate of 89%. This high
rate experimentally shows the effectiveness of DroidRA in resolving reflective calls for Android
apps.

The missing resolutions are mainly explained by: (1) the limitations of static analysis, where
runtime values (e.g., user configuration or user inputs) cannot be solved statically at compile time;
and (2) the limitations of our COAL solver, e.g., currently it is not able to fully propagate arrays of
objects, although we have provided a limited improvement on this.

Regarding the accuracy of our approach, we go one step further to calculate the accuracy of our
approach in pinpointing reflective calls in Android apps. Unfortunately, there is no known ground
truth available for evaluating the usage of reflective calls in Android apps. We have to resort to a
manual process to calculate the accuracy. In particular, among the 848 successfully analyzed apps,
we randomly select 10 of them and manually look into their disassembled code to check whether
the reported reflective calls are actually leveraged or not. Table 3 enumerates the selected apps
(package name and version code), the analysis results of DroidRA, and the confirmed results of
our manual analysis. In total, DroidRA can statically reach 437 reflective calls, among which 369
of them are successfully resolved while 68 of them remain to be “*” (i.e., fails to be resolved by the
conference version of DroidRA and also fails to be optimized by the extended version). Among the
resolved calls, our manual analysis reveals that 24 of them are inaccurate results, giving an accu-
racy of 93.4% (i.e., 345/369). We consider a result as inaccurate if (1) it contains more targets than
it actually represents (i.e., in addition to the correct results, there are also false-positive results8),
or (2) the resolved targets are incorrect (i.e., false-positive results). The latter case is mainly rele-
vant to reflection-based field accesses. DroidRA fails to correctly pinpoint the reflectively accessed

8False-positive usually refers to a result that indicates a given condition exists when it does not. In this work, it refers to

such results that are reported by our approach as such but are not presented in the corresponding app.
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Table 3. The Experimental Results of the Manually Checked Apps

App Name Version #. Reached #. Resolved #. Resolved Unresolved
Reflection Calls Reflection Calls (Accurate) (i.e., “*”)

bhakti.sagar.aroma.clock.lwp 1.4 60 48 41 12
com.magzter.lichfieldgazette 4.0 41 39 37 2

com.jb.gokeyboard.theme.tmegreenkeyboardskkin 4.172.54.79 22 21 19 1
bhakti.sagar.aroma.clock.lwp 1.0 40 27 24 13

au.get.freshops 1.2.11.2 57 50 48 7
com.icontrolenergy.app 2.1.15 69 61 57 8

com.hhgregg.endlessblitz 15 33 29 29 4
com.andromo.dev456237.app434261 2.0 48 35 32 13

info.rguide.zzmtr 6.5.4 29 29 28 0
com.justinleingang.khw 1.0.0 38 30 30 8

Total 437 369 345 68

Table 4. The Comparison Results Between the Current Version and the Conference Version of DroidRA

Tool # Analyzed # Reached # Resolved Resolved Common # Reached # Resolved Resolved

Version Apps Reflective Calls Reflective Targets Rate Apps Reflective Calls Reflective Targets Rate

DroidRA (current) 848/1,000 13,073 11,646 89.1% 742 12,481 11,349 90.9%

DroidRA (earlier) 819/1,000 11,952 9,375 78.4% 742 10,611 8,451 79.6%

fields, because Java fields do not provide additional information (such as parameter numbers and
types, return types in method calls) to help in inferring their possible values. Overall, apart from
a few inaccurate results, our approach (along with the newly introduced improvements) is useful
for resolving reflection targets in Android apps.

5.2 RQ2: Comparison with the Earlier Version of DroidRA

As revealed in the previous subsection, compared to the original version of DroidRA (as reported
in the conference paper), which achieves only 81.2% of resolving rate, the new version of DroidRA
has exceeded the original version by 7.88%. This evidence demonstrates the effectiveness of our
improvements newly contributed to DroidRA. In the second research question, we now give more
details about the performance growth.

In this extended version, we have improved DroidRA from three angles: (1) approximating pos-
sible values for such targets that cannot be resolved originally; (2) taking Fragments into consid-
eration for reflection analysis; and (3) providing a means to customize the code to be analyzed.
The first two improvements aim at enhancing the static analysis capability of DroidRA: the first
improvement attempts to increase the resolving rate of reflection targets, while the second im-
provement aims at expanding the coverage of reflective calls that can be reached by DroidRA. In
this research question, we will mainly evaluate the effectiveness of the first two improvements.
The last improvement, which mainly looks at improving the performance of DroidRA in terms of
time and memory usages, will be evaluated later in an independent research question.

To set up the experiments for comparison, we launch the earlier version of DroidRA on the
same 1,000 apps selected in answering the RQ1. The experiments are executed under the same
environment, i.e., the same server and the same timeout. Table 4 summarizes the experimental
results. As shown in the second column, a similar number of apps are successfully analyzed by
the two versions of DroidRA. There are 29 apps that are more analyzed by our extended version,
compared to that of the conference version. This result is expected, as we have introduced into
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Fig. 5. Distribution of the number of reached and resolved reflection calls between the current version (i.e.,
DroidRA) and the conference version (i.e., DroidRA(c)) of DroidRA.

DroidRA various improvements. Some changes have been made to reduce the time and memory
complexities, which allow DroidRA to analyze more apps under the same timeout, significant
improvements are made to improve the analysis capabilities (e.g., covering more code). Although
this increases the time and memory complexities, our extended version of DroidRA achieve better
performance due to the fact that more number of apps can be successfully analyzed. The number of
reached and resolved reflective calls (i.e., 13,073 and 11,646, respectively (or 89.1% resolving rate))
is larger than that of the conference version, which is, respectively, 11,952 and 9,375 (or 78.4%
resolving rate). This result experimentally demonstrates the effectiveness of our improvements
for DroidRA toward resolving reflective calls in Android apps.

If we only consider the common apps (742 apps as shown in the fifth column) that are suc-
cessfully analyzed by both versions, then the reached and resolved reflective calls of the current
version are significantly larger than that yielded by the earlier version (as shown in the sixth and
seventh columns). Interestingly, as far as reflective calls concerned, the numbers of reached reflec-
tive calls collected from the new dataset (cf. Figure 5 (a)) are also much larger than that obtained
from the original 500 apps. This result suggests that the latest Android apps may leverage more
reflective calls that older Android apps. As illustrated in Figure 5, the distribution of the number of
reached and resolved reflective calls in each app yielded by the earlier version is also significantly
less than that of the current version. This significance is confirmed by Mann-Whitney-Wilcoxon
(MWW) tests, for which the resulting p-values are both less than α = 0.001. Given a significance
level α = 0.001, if p −value < α , there is one chance in a thousand that the difference between the
two datasets is due to a coincidence.

We now go one step further to break down the experimental results brought by the first two
tool improvements. Using the newly introduced approximation model, i.e., the first improvement,
1,068 reached reflective targets—which could not be resolved by the earlier version of DroidRA—
are now resolved by DroidRA. This improvement allows DroidRA to additionally resolve 10% of
its reached reflective calls (over 90%), which experimentally demonstrates that the approximation
model is effective for DroidRA to resolve the possible targets of reflective calls.

Second, the inclusion of Fragments, i.e., the second improvement, enables DroidRA to addition-
ally discover 1,870 reflective calls, among which 1,815 (or 97.0%) of them are further resolved by the
current version of DroidRA. This evidence further empirically shows that the second improvement
we integrate into DroidRA is useful and practical. Note that the number of additionally reached
reflective calls brought by Fragments is quite small compared to the total number of reached reflec-
tive calls. Aiming at understanding the possible reasons behind this, we check how are Fragments
used by Android apps and how often do they access reflective calls. Among the 742 common apps,
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a scan of their code reveals that 419 of them have leveraged Fragments, suggesting that Fragment
has been frequently leveraged by Android apps and thereby should not be ignored when stati-
cally analyzing Android apps. Moreover, among the 419 apps, 107 of them have actually accessed
reflective calls in Fragments. This evidence further shows that there is a large portion of apps
accessing reflective calls over Fragments, which demonstrates the necessity of taking Fragments
into consideration for reflection analysis of Android apps.

5.3 RQ3: Comparison with the State-of-the-art

We compare our approach with some state-of-the-art works targeting the problem of resolving re-
flective targets. Several other proposed approaches include: Smaragdakis et al. [64], SOLAR [51],
Elf [50], EdgeMiner [23], Ripple [72], DL2 [68], StaDynA [73], DINA [10], the Checker frame-
work [17]. Unfortunately, Smaragdakis et al., SOLAR, and Elf are designed for analyzing Java ap-
plications and hence cannot be directly applied to analyze Android apps. Indeed, as replied by the
authors of SOLAR to our request about launching their approach to analyze Android apps, SO-
LAR, at the moment, only theoretically works for Android apps. Additional non-trivial extensions
are needed to apply it for this purpose. Therefore, we cannot compare our approach with these
Java-focused analyzers.

State-of-the-art tools EdgeMiner and Ripple, although being proposed for Android apps, do not
specifically focus on resolving reflective calls in Android apps. Indeed, the objective of EdgeMiner
is to mine the Android framework for pinpointing implicit control flow transitions. It does not
consider the whole Java reflection mechanism when conducting the analysis. Ripple only attempts
to resolve reflection for Android apps in incomplete information environments. We believe it is
not fair to compare DroidRA against these two approaches. The authors of Ripple have endorsed
our decision after we communicated with them in this regard.

Another three tools proposed by our fellow researchers, namely, DL2, StaDynA, and DINA, com-
bine both static and dynamic analyses to analyze Android apps. These three tools do not directly
focus on the analysis of reflective calls. All of them are proposed for detecting security issues, such
as privacy leaks hidden by dynamically loaded code. Nonetheless, since dynamically loaded classes
have to be accessed via reflection, we consider these approaches are relevant for comparison with
our approach. Unfortunately, both StaDynA and DL are not made publicly available and we can
only compare our approach with DINA in this work.

Finally, the approach proposed by Barros et al. [17] is another closely related work to ours.
Their work presents an approach, referred to as Checker, to address reflection in the Information
Checker Framework [25]. This tool has been made publicly available in the community. We also
compare Checker with our DroidRA approach.

The Checker framework has been evaluated based on a dataset consisting of 10 real-world apps
crawled from the F-Droid open-source apps repository [5]. Checker has been evaluated by pro-
viding statistics on methods and constructors related to reflective invocations. We thus consider
the same settings for the comparison. Table 5 lists the 10 apps and provides comparative results
for Checker, DINA, and DroidRA. It is worth noting that, by comparing with Checker, we apply
DroidRA directly on the bytecode of the apps while Checker is applied on source code. Addition-
ally, our approach does not need extra developer efforts while Checker needs manual annotations,
e.g., one has to pinpoint good places to put appropriate annotations. When comparing with DINA,
our approach is purely static, while DINA is a hybrid approach combining advantages of both
static and dynamic analyses.

Overall, as shown in Table 5, on this dataset DroidRA resolves 9 more methods/constructors than
Checker. For the app RemoteKeyboard, DroidRA missed one method and Checker reports that it
is not able to resolve it either. On further investigation, we observe that it is impossible for static
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Table 5. The Comparison Results of Checker, DINA, and DroidRA

App
Checker DINA DroidRA

methods constructors methods constructors methods constructors
AbstractArt 1 0 1 0 1 0
arXiv 14 0 13 0 14 0
Bluez IME 4 2 4 2 4 2
ComicsReader 6 0 8γ 0 7 0
MultiPicture 1 0 0 0 1 0
PrimitiveFTP 2 0 1 4 2 7
RemoteKeyboard 1α 0 1γ 0 0 3
SuperGenPass 1 0 0 0 1 0

VimTouch 3β 0 1 0 2 0
VLCRemote 1 0 1 0 1 0
α Reached but not resolved.
β One from dead code.
γ Contain a reflective call that is overlooked by DroidRA.

approaches to resolve the reflective call in this case as the reflection target is read from configura-
tion files at runtime. Indeed, as illustrated in Listing 8, the class name of the reflective method is
loaded from configuration file “telnetd.properties.” For app VimTouch, DroidRA refuses to report a
reflective call, namely, method Service.stopForeground, because its caller method ServiceForeground-

Compat.stopForeground is not invoked at all by other methods. It thus becomes unreachable from
our entry method. For app ComicsReader, DroidRA has resolved one more reflective method than
Checker. We manually verify in the source code that the additional reflective call is a true posi-
tive of DroidRA. However, with ComicsReader, DroidRA missed one method,9 although it resolved
two additional reflective calls that Checker missed. This missed method is actually located in a
UI-gadget class, which is not an Android component (e.g., Activity). Since our dummy main only
considers Android components of an app as potential entry-points, DroidRA failed to reach this
method from its dummy main. Last but not the least, we have found 10 more constructors located
in libraries embedded in the studied apps. Because Checker only checks the source code of apps,
it could not reach and resolve them.

When comparing DroidRA to DINA on the same dataset, DroidRA is able to resolve nine more
reflective methods or constructors. This is expected as DINA is a hybrid approach, which relies
on dynamic testing to resolve reflective calls. More specifically, the dynamic module of DINA is
realized via monkey [6], the default dynamic testing tool provided by Google. It is known that
the monkey tool has code coverage limitations, where certain codes in the app may not be able to
be explored, resulting in less reflective calls resolved. Nevertheless, dynamic analysis techniques
also come with advantages that cannot be simply achieved by static analysis. Indeed, as shown
in Table 5, DINA has additionally resolved two reflective calls. One is related to the reflective
call lying in the RemoteKeyboard app we discussed previously. This reflective call involves ex-
ternal configuration files that cannot be simply parsed statically. The other case is related to the
ComicsReader app. DINA resolves a reflective call that has been overlooked by both DroidRA and
Checker. This reflective call, as shown in Listing 9, is achieved in two steps where the reflectively
accessed method is stored as a class attribute (i.e., mSetSystemUiVisibility) and then invoked in an-
other class (line 11). This case is non-trivial to be handled by static analysis approaches in general
as it requires to model the invocation sequence of the code. This experimental evidence shows

9View.setSystemUiVisibility().
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Listing. 8. Simplified source code extracted from app RemoteKeyboard.

Listing. 9. Simplified source code extracted from app ComicsReader.

that dynamic analysis can indeed be useful to supplement the capabilities of static analyses. As of
future work, we plan to also integrate dynamic analysis into DroidRA to improve its performance
in resolving reflective calls in Android apps.

5.4 RQ4: Usefulness of the Customized Reflection Analysis

We introduced three main improvements to DroidRA. The second research question has empir-
ically demonstrated the effectiveness of the first two improvements (the inclusion of Fragments
and the approximation of unresolved targets). We now empirically evaluate the third improve-
ment, which enables customized reflection analysis for Android apps, aiming at improving the
time and memory complexities of the analysis of DroidRA.

For the sake of simplicity to demonstrate the usefulness of the customization capability, we in-
troduce a simple customization strategy to DroidRA. Since the objective of DroidRA in this work is
to resolve reflection targets in Android apps, our customization enforces DroidRA to only analyze
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Fig. 6. Distribution of the number of reached and resolved reflection calls between the current version (i.e.,
DroidRA) of DroidRA and the version with dedicated customization (i.e., DroidRA(DC)).

components that actually use reflective calls. In other words, if a component is known to not in-
volve reflection, then it will not be included for analysis. To implement this, we have implemented
a static analyzer to check whether a component accesses reflection or not. This checking nonethe-
less is not straightforward as components may not directly access reflective calls but access other
classes or libraries that may further access reflective calls. We make sure that our static analyzer
also checks such indirect reflective calls through an inter-procedural static analysis, implemented
on top of Soot.

By applying the aforementioned simple customization strategy, we aim at evaluating the cus-
tomization capability of DroidRA in two aspects:

• (1) reducing the time and memory usage while achieving the same results in terms of re-
solving reflective calls in Android apps.

• (2) being able to successfully analyze Android apps that cannot be done otherwise. In this
aspect, we apply our customization strategy to the 152 apps that cannot initially be analyzed
by DroidRA as reported in RQ1 experiments.

For the first aspect, we apply our customization strategy to the 848 apps that have already been
successfully analyzed by DroidRA, on the same server with the same 10 min timeout. We then
compare the obtained results with the original results yielded by DroidRA. Figure 6 illustrates these
reflection analysis results. The distribution of the number of reached and resolved reflection calls
is generally the same, suggesting that our customization strategy does not impact the underlying
reflection analysis of DroidRA.

Figure 7 shows that while keeping the same reflection analysis results, the call graph size of
the current version without using a customization strategy is significantly larger than that of the
version with customization, confirmed by a MWW test. The call graph size is critical to the time and
memory complexities of the reflection analysis as all the methods reached on the call graph need
to be statically visited and explored to uncover potential reflective calls. This empirical evidence
confirms the effectiveness and usability of the customization capability toward reducing the time
and memory complexities while achieving more or less the same reflection analysis results.

Regarding the second aspect, among the 152 apps that could not initially be analyzed by
DroidRA, by employing the customization strategy to DroidRA, under the same execution envi-
ronment (i.e., same server and timeout), 57 of them can now be successfully analyzed. This leads to
1,368 newly reached reflective calls, among which 1,280 of them are further successfully resolved.
This experimental evidence further demonstrates the usefulness of the customization capability
we have introduced, as the third improvement, to DroidRA.
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Fig. 7. Distribution of the size of call graph between DroidRA (without involving customization strategy)
and the version with dedicated customization (i.e., DroidRA(DC)).

Table 6. The Call Graph Results of Three Apps We Highlight for Our Evaluation

Package Algorithm Original DroidRA Difference Permission
com.boyaa.bildf Spark 714 22,867 22,153 3

CHA 172,476 190,436 17,960 51
org.bl.cadone Spark 694 951 257 0

CHA 172,415 187,079 14,664 16
com.audi.light Spark 6,028 6,246 218 0

CHA 174,007 174,060 53 0

Permission column means the number of call graph edges that are actually empowered by DroidRA

and are accessing permission protected APIs.

5.5 RQ5: Call Graph Construction

An essential step of performing precise and sound static analysis is to build at a complete method
call graph (CG) for an app. This will be used by static analyzers to visit all the reachable code, and
thus perform a sound analysis. Indeed, methods not included in the CG will never be analyzed,
since these methods are unreachable from the analyzer’s point of view. We investigate whether our
DroidRA is able to enrich an app’s CG. To that end, we build the CG of each of the apps before and
after they are instrumented by BOM. Our CG construction experiments are performed with the
popular Soot framework [36]. We use both the CHA [24] algorithm, which is the default algorithm
for CG construction in Soot, and the more recent Spark [37] algorithm, which was demonstrated
to improve over CHA. Spark was demonstrated to be more precise than CHA, and thus producing
fewer edges in its constructed CG.

In our study dataset of 500 apps, on average for each app DroidRA improves by 3.8% and 0.6%
the number of edges in the CG constructed with Spark and CHA, respectively. Since CHA is less
precise than Spark, CHA yields far more CG edges, and thus the proportion of edges added thanks
to DroidRA is smaller than for Spark.

We highlight the case of three real-world apps from our study dataset in Table 6. The CG
edges added (Diff column) vary between apps. We have further analyzed the added edges to check
whether they reach sensitive API methods10 (ActivityManager.getRunningTasks(int)), which

10The list of sensitive API methods are collected from PScout [15].
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Fig. 8. The class dependency graph (simplified call graph) of app org.bl.cadone (based on CHA algorithm).
Black color shows the originally edges/nodes, green color shows edges/nodes that are introduced by
DroidRA, while red color shows new edges that are further protected by permissions.

are protected by a system permission (GET_TASKS). The recorded number of such newly reach-
able APIs (Perm column) further demonstrates how taming reflection can allow static analysis to
check the suspicious call sequences that are hidden by reflective calls. We confirmed that this app
is flagged as malicious by 24 anti-virus products from VirusTotal.

Consider the example of app org.bl.cadone, which further highlights the improvement in CG
construction by DroidRA. We have computed the call graph (CG) of this app with CHA and, for
the benefit of presentation clarity, we have simplified it into a class dependency graph (CDG). All
CG edges between methods of two classes are transformed into a single CDG edge, where all nodes
representing methods from a single class are merged into a single node representing this class.

Figure 8 presents the CDG with 14,664 new edges added after applying DroidRA. Black edges
represent nodes and edges that were available in the original version of the app. The new edges
(and nodes) have been represented in green. Some of them reach sensitive APIs and are highlighted
in red. We found that among the 8 permissions that protect the 16 sensitive APIs (included in
8 classes) that are now reachable, 6 (i.e., 75%) are of the dangerous level [1]. This further suggests
that the corresponding reflective calls were meant to hide dangerous actions.

5.6 RQ6: Improvement of Static Analysis Results by DroidRA

We use the state-of-the-art tool FlowDroid and its ICC-based extension called IccTA for assessing
to what extent DroidRA can support static analyzers in yielding reflection-aware results. Our ex-
periments are based on benchmark apps, for which the ground truth of reflective calls is known,
and on real-world apps. On the real-word apps, we check whether the runtime performance of
DroidRA will not prevent its use in complementing other static analyzers.

DroidRA on Benchmark Apps. We assess the efficacy of DroidRA on 13 test case apps for
reflection-based sensitive data leaks. Four of these apps are from the Droidbench benchmark where
they allowed to show the limitations of FlowDroid and IccTA. We further consider 9 other test cases
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Table 7. The 13 Test Cases We Use in Our in-the-lab Experiments

Case Source Reflection Usage IccTA DroidRA+IccTA

1 DroidBench forName()→ newInstance() � �
2 DroidBench forName()→ newInstance() ✗ �
3 DroidBench forName()→ newInstance()→ m.invoke()→ m.invoke() ✗ �
4 DroidBench forName()→ newInstance() ✗ �
5 New forName()→ getConstructor()→ newInstance() ✗ �
6 New forName()→ getConstructors()→ newInstance() ✗ �
7 New forName()→ getConstructor()→ newInstance()→ m.invoke()→ m.invoke() ✗ �
8 New loadClass()→ newInstance() ✗ �
9 New loadClass()→ newInstance()→ f.set()→ m.invoke() ✗ �
10 New forName()→ getConstructor()→ newInstance()→ f.get() ✗ �
11 New startActivity()→ forName()→ newInstance()→ m.invoke()→ m.invoke() ✗ �
12 New forName()→ getConstructor()→ newInstance()→ f.set()→ f.get() ✗ �
13 New forName()→ getConstructor()→ newInstance()→ getFields()→ f.set()→ f.get() ✗ ✗

These 13 cases follow the common pattern of Figure 1 and each case contains exactly one sensitive data leak.

that include other reflective call patterns (the top used sequences , cf. Table 2). Since the test cases
are handcrafted, the data leak (e.g., leak of device id via SMS), are known in advance. In 12 of the
apps, the leak is intra-component, while in the 11th it is inter-component.

Table 7 provides details on the reflective calls and whether the associated data-leak is identified
by the static analysis of IccTA and/or DroidRA-supported IccTA. Expectedly, IccTA alone only
succeeds on the first test case, Reflection1 in DroidBench. This is where the reflective calls are
not in the data-leak path, thus not requiring a reflective call resolution for the taint analysis to
detect the leak. However, IccTA fails on all of the other 12 test cases. This was expected, since
IccTA is not a reflection-aware approach. When reflection is resolved in the test cases by DroidRA,
IccTA gains the ability to detect a leak on 11 out of 12 test cases. In test case 13, the reflective
call is not resolved, because the reflection method getFields() returns an array of fields that our
current DroidRA implementation of constant propagation cannot manage to resolve. Indeed, we
have enhanced COAL with limited support to propagate array elements, complex field arrays are
not addressed. Nevertheless, constructor arrays can now be resolved, allowing DroidRA to tame
reflection in test case 6.

DroidRA on Real-world Apps. To investigate the impact of DroidRA on the static analysis
results of real-word apps, we consider a random set of 100 real-world apps that contain reflective
calls and at least one sensitive data leak, as discovered by IccTA. Compared to using IccTA on
the original apps, the instrumentation by DroidRA impacts the final results by allowing IccTA to
report on average (median) 1 more leak in a reflection-aware setting.

We further investigate the time overhead brought by the instrumentation of BOM to check
whether it will be an obstacle to support practical usage in complement with state-of-the-art static
analyzers. On the previous set of apps, we observe that the overheads are always within a minute.
This value is reasonable (and neglectable) compared to the execution time of static analysis tools
such as IccTA or FlowDroid, which can run for several minutes and even hours on a given app.

6 DISCUSSION AND LIMITATIONS

Observant readers may have noted that we have set 10 min as timeout for all the reflection anal-
yses we have conducted in this work. In some circumstances this timeout may not be adequate
for DroidRA to completely analyze an Android app. Indeed, among the 1,000 randomly selected
apps, 152 of them cannot be successfully analyzed by DroidRA within that time, as demonstrated
in Section 5.1. We would like to stress that the unsuccessful cases may not necessarily be related to
timeout (e.g., could be tool-chain exceptions). Since time performance is known to be a common
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Table 8. The Numbers of Successfully Analyzed Apps with Different Timeouts

Group 1 min 5 min 10 min 20 min 30 min 50 min
Group-A (152 successfully analyzed apps) 0 105 152 152 152 152
Group-B (152 unsuccessfully analyzed apps) 0 0 0 0 11 14

issue for static code analyzers, like many other static Android app analysis approaches, we prior-
itize precision and accuracy over computational cost. We believe that enlarging the timeout may
enable DroidRA to successfully analyze more apps, but this may not impact the tool’s capabilities
of locating and resolving reflective calls in Android apps. Nevertheless, to evaluate this hypothe-
sis, we check how this timeout period could impact on our DroidRA reflection analysis approach.
To this end, we re-ran DroidRA on the selected apps with different timeouts: 1, 5, 10, 20, 30, and
50 min. For the sake of time efficiency, instead of considering the whole 1,000 apps, we take into
account only 304 apps that are formed as (A) 152 apps randomly selected from the set of apps
that are successfully analyzed in 10 min, and (B) 152 apps that cannot be successfully analyzed by
DroidRA with 10 min timeout.

Table 8 presents these experimental results. With 1 minute as timeout, as expected, DroidRA
cannot finish its analysis on any of the selected apps. This situation is dramatically changed when
the timeout is set to 5 min: around two-thirds of the apps in Group-A can now be successfully
analyzed, although the number of analyzed apps in Group-B remains to be zero. With 10 min as
timeout, we observe the same experimental results as what we have presented previously: all the
apps in group A are now successfully analyzed while all the apps in Group-B are not. This result
is not changed, even when we increase the timeout to 20 min. Only when we set the timeout to
be 30 and 50 min, the apps in Group-B start to be successfully analyzed. In our experiments, there
are 11, and 14 apps (out of the 152 failed apps) are successfully analyzed when 30 and 50 min are
given as timeout, respectively. This experimental evidence shows that 10 min is a suitable timeout
for our study as the majority of apps can be successfully analyzed within this time (cf. Group-A)
and such apps that cannot be analyzed within 10 min are unlikely to be analyzed even when the
timeout is significantly increased.

Limitations. The main threats to validity of our evaluations of DroidRA are carried over from the
COAL solver. At the moment, the composite constant propagation cannot fully track objects inside
an array. We have provided limited support in our improved version of the COAL solver, and we
plan to address this further in future work. The conservative setting where a string is represented
by a regular expression (“*”) if COAL cannot statically infer its value can be taken as everything and
thus may also introduce false positives. We have applied a probabilistic model attempting to miti-
gate this threat by leveraging domain knowledge in developing Android apps [56] [72]. However,
for some targets, it still remains to be unresolved (i.e., “*”). In some other cases, although resolved
successfully by the probabilistic model, these may include false-positive results. Indeed, the prob-
abilistic model may yield multiple sets of results, among which only one of them is correct. Users
of DroidRA hence need to put additional effort (such as taking type and data-flow information
into consideration) to exclude such false-positive results. Fortunately, as shown in our experimen-
tal results, the fact that only a small portion of results are inaccurate, shows that our approach is
practical in taming reflection for supporting the whole-program analysis of Android apps.

The current implementation of our approach may also confront false-negative results.11 The
single entry-point method (i.e., the dummy main method) that we build may not cover all the

11False-negative usually refers to a result that wrongly indicates that a given condition does not hold. In this work, it refers

to such results that are missed by our approach, although they do exist in the corresponding app.
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reflective calls, which means that some reflective calls may not be reachable from the call graph
of RAM (and thereby result in false-negative results). Another threat is related to Dynamic Class
Loading. Although we have used heuristics to include external classes, some other would-be
dynamically loaded code (e.g., downloaded at runtime) can be missed during the reflective call
resolution step, which would again introduce false-negative results to our approach. However, our
objective in this article was not to solve the DCL problem. Other approaches [58, 73] can be used
to complement our work. As of our future work, we plan to continuously improve our approach
to address the aforementioned challenges to reduce false-negative results as much as possible.

Since our experiments are conducted based on 1,000 randomly selected Google Play apps, our
results may overly influenced by these apps and hence may not generalize to other apps. Nev-
ertheless, compared to the results obtained over the previously randomly selected 500 apps, the
fact that DroidRA achieves good results on the newly selected 1000 apps suggests that this threat
might be limited.

The code dependency analysis we applied to identify “reflection-free” code in Android apps
may not be fully accurate. Our approach at the moment cannot guarantee that there is absolutely
no dependency between the retained and excluded code. Moreover, the call graph built by RAM
leverages the implementation of the Spark algorithm in Soot, which also comes with specific lim-
itations [8]. Nevertheless, as shown in Section 5.4, this feature has been demonstrated to be effec-
tive in practice. This feature does provide an option for users to achieve a trade-off between the
soundness of the analysis results and the time performance consumed by successfully analyzing
an app.

The release date we leveraged to select apps is based on the last modification date of the app,
which, unfortunately, is known to be not reliable. Indeed, as shown in our previous work [43],
according to the last modification date, some apps may access APIs that do not yet exist at that
time, i.e., such APIs are introduced posterior to the last modification date. Nonetheless, the time
information is not critical to our approach, and hence we believe its impact on our results is limited.

Finally, DroidRA handles neither native code, Javascript code, nor multi-threaded code. These
are challenges that most current Android static analysis approaches ignore, and are for now out
of the scope of this work.

7 RELATED WORK

Research on static analysis of Android apps presents strong limitations related to reflection han-
dling [19, 29, 42, 69]. Authors of recent approaches explicitly acknowledge such limitations, in-
dicating that they ignore reflection in their approaches [41, 57, 67] or failing to state whether
reflective calls are handled [66] in their approach.

The closest work to ours was concurrently proposed by Barros et al. [17] within their Checker
framework. Their work differs from ours in several ways: first, the design of their approach focuses
on helping developers to check the information-flow in their own apps, using annotations in the
source code. This limits the potential use of their approach by security analysts in large markets
of Android apps such as GooglePlay or AppChina. Second, they build on an intra-procedural type
inference system to resolve reflective calls, while we build on an inter-procedural precise and
context-sensitive analysis. Third, our approach is non-invasive for existing analysis tools whose
performance can be boosted by our augmented app code with reflection resolutions.

Reflection, by itself, has been investigated in several works for Java applications. Most notably,
Bodden et al. [20] have presented TamiFlex for aiding static analysis in the presence of reflections
in Java programs. Similar to our approach, TamiFlex is implemented on top of Soot and includes
a Booster module, which enriches Java programs by “materializing” reflection methods into tra-
ditional Java calls. However, DroidRA manipulates Jimple code directly while TamiFlex works on
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Java bytecode. Furthermore, DroidRA is a pure static approach while TamiFlex needs to execute
programs after creating logging points for reflection methods to extract reflection values. Finally,
although Android apps are written in Java, TamiFlex cannot even be applied to Android apps as it
uses a special Java API that is not available in Android [73].

Recently, Li et al. [52] present a comprehensive understanding of Java reflection through ex-
amining its underlying concepts and its real-world usages. Building on this, the authors fur-
ther introduce a static approach to resolve Java reflection in practice. This static approach has
been integrated into SOLAR, a soundness-guided reflection analysis tool for Java [51]. The au-
thors also introduced tools called Elf [50] and Ripple [72] for reflection analysis of Java and An-
droid apps. Elf infers the targets of reflective calls using the API semantics, such as class name,
method name, method arguments, and so on. Ripple takes into account incomplete informa-
tion environments to improve the coverage of potential reflective calls. Smaragdakis et al. [64]
present another static reflection handling technique to resolve reflective targets for Java pro-
grams. Some of the incomplete information environments discussed by these approaches could
be leveraged to further refine our approximation model to help DroidRA resolve more reflective
targets.

Another work that tackles reflection for Java has been done by Livshits et al. [55], in which
points-to analysis is leveraged to approximate the targets of reflection calls. Unlike our approach,
their approach needs users to provide a per-app specification to resolve reflections. This is difficult
to apply for large scale analysis. Similarly, Braux et al. [21] propose a static approach to optimize
reflection calls at compile time, for the purpose of increasing time performance.

Regarding Dynamic Code Loading in Android, Poeplau et al. [58] have proposed a systematic
review on how and why Android apps load additional code dynamically. In their work, they use an
approach that attempts to build a super CFG by replacing any invoke() call with the target method’s
entry point. This approach, however, fails to take into account the newInstance() reflective method
call, which initializes objects, resulting in a context-insensitive approach, potentially leading to
more false positives. StaDynA [73] was proposed to address the problem of dynamic code loading
in Android apps at runtime. This approach requires a modified version of the Android framework
to log all triggering actions of reflective calls. StaDynA is thus not market-scalable, and presents
a coverage issue in dynamic execution. Our approach, DroidRA, provides a better solution for
reflective method calls and can be leveraged to compliment these approaches, to enhance them to
conduct better analysis.

Instrumenting Android apps to strengthen static analysis is not new [13, 39]. For example,
IccTA [41], a state-of-the-art ICC leaks analyzer, instruments apps to bridge ICC gaps and eventu-
ally enables inter-component static analysis. AppSealer [70] instruments Android apps for gener-
ating vulnerability-specific patches, which prevent component hijacking attacks at runtime. Other
approaches [63, 71] apply the same idea, which injects shadow code into Android apps, to perform
privacy leaks prevention.

In addition to statically infer the target values for reflective calls, various approaches to resolve
the reflective targets dynamically have been proposed [35]. Hirzel et al [31] proposed an approach
to handle dynamic features in Java at runtime through online pointer analyses. When new code
is introduced by reflection, their approach will gradually take them into consideration and will
incrementally update the points-to information. More recently, Rasthofer et al. [59, 60] introduce
an approach for automatically extracting runtime values from Android apps. This approach can
be leveraged to identify the reflective calls, which are frequently leveraged by malware samples
to hide sensitive behaviors. All of these dynamic approaches can be leveraged to supplement our
work toward statically taming the reflective calls in Android apps.
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8 CONCLUSION

A long-time challenge has been how to effectively perform a complete and sound reflection-aware
static analysis of Android apps. We have presented an open source tool DroidRA to perform such
reflection analysis. DroidRA models the identification of reflective calls as a composite constant
propagation problem via the COAL declarative language. It leverages the COAL solver to auto-
matically infer reflection-based values. DroidRA then uses a booster module, which is based on
the previously inferred results to augment apps with traditional Java calls, augmenting app code
with resolved reflective calls. This augmented app code provides a non-invasive way of support-
ing existing static analyzers in performing highly sound and complete reflection-aware analysis,
without any modification or configuration. Through various evaluations, we have demonstrated
the benefits and performance of DroidRA.
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