
On the Importance of Building High-quality Training Datasets
for Neural Code Search

Zhensu Sun
zhensuuu@gmail.com
Monash University

Melbourne, Victoria, Australia

Li Li
1853549@tongji.edu.cn

Tongji University
Shanghai, China

Yan Liu
yanliu.sse@tongji.edu.cn

Tongji University
Shanghai, China

Xiaoning Du∗
xiaoning.du@monash.edu

Monash University
Melbourne, Victoria, Australia

Li Li∗
li.li@monash.edu
Monash University

Melbourne, Victoria, Australia

ABSTRACT
The performance of neural code search is significantly influenced
by the quality of the training data from which the neural models
are derived. A large corpus of high-quality query and code pairs is
demanded to establish a precise mapping from the natural language
to the programming language. Due to the limited availability, most
widely-used code search datasets are established with compromise,
such as using code comments as a replacement of queries. Our
empirical study on a famous code search dataset reveals that over
one-third of its queries contain noises that make them deviate from
natural user queries. Models trained through noisy data are faced
with severe performance degradation when applied in real-world
scenarios. To improve the dataset quality andmake the queries of its
samples semantically identical to real user queries is critical for the
practical usability of neural code search. In this paper, we propose
a data cleaning framework consisting of two subsequent filters: a
rule-based syntactic filter and a model-based semantic filter. This
is the first framework that applies semantic query cleaning to code
search datasets. Experimentally, we evaluated the effectiveness
of our framework on two widely-used code search models and
three manually-annotated code retrieval benchmarks. Training the
popular DeepCSmodel with the filtered dataset from our framework
improves its performance by 19.2% MRR and 21.3% Answer@1, on
average with the three validation benchmarks.

CCS CONCEPTS
• Software and its engineering→ Reusability.

KEYWORDS
Code search, dataset, data cleaning, deep learning

∗Xiaoning Du and Li Li are co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510160

ACM Reference Format:
Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li. 2022. On the Importance
of Building High-quality Training Datasets for Neural Code Search. In
44th International Conference on Software Engineering (ICSE ’22), May 21–
29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3510003.3510160

1 INTRODUCTION
A semantic code search engine is a vital software development
assistant, which significantly improves the development efficiency
and quality. With a description of the intended code functionality
in natural language, a search engine can retrieve a list of semanti-
cally best-matched code snippets from its codebase. Recently, deep
learning (DL) has been widely applied in this area in view of its
advantages in semantic modeling and understanding of languages.
In the task of code search, DLmodels learn and represent the seman-
tic mappings between the natural language and the programming
language from query-code pairs.

Like many other DL tasks, code search models are data-hungry
and require large-scale and high-quality training datasets. Never-
theless, collecting a large set of query-code pairs is challenging,
where the queries are supposed to be natural expressions from
developers and the code to be a valid semantic match. Instead, con-
sidering the scale and availability, code comments are popularly
used as an alternative to the queries, many of which describe the
core functionalities and with the corresponding code implementa-
tion rightly available. To better understand the quality of datasets
hence constructed, we investigated a Github dataset, CodeSearch-
Net (Java) [19], which is popularly used in current code search
research. Surprisingly, we found a considerable amount of noise
and unnaturalness in the queries of its data samples, which can
hinder the training of high-quality models for practical usage. As
shown in Fig. 1, one-third of its queries contain text features (see
Table 1 for examples of different features) that hardly exist in actual
user queries. The features are summarized based on our observa-
tions of the dataset, and may not be sufficient. Comments may also
be used for other purposes, such as copyright and to-do, instead of
describing the core functionalities, thus shall not be seen as queries.
The proportion of noise data can be higher than one-third.

Code search models trained with noisy queries will face severe
performance degradation when dealing with actual user queries.
The gap between the collected comment-code pairs and the natural
user queries violates the basic assumption of learning algorithms

ar
X

iv
:2

20
2.

06
64

9v
1

 [
cs

.S
E

]
 1

4
Fe

b
20

22

https://doi.org/10.1145/3510003.3510160
https://doi.org/10.1145/3510003.3510160
https://doi.org/10.1145/3510003.3510160

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li

图表 1

0

20000

40000

60000

80000

Javadoc tags Parentheses Short Sentence URLs

#

表格 1

Feature #
Javadoc tags 47412
Parentheses 19307
Short Sentence 70495
URLs 662
HTML tags 32990
Punctuation 20677
Interrogation 531
Non-English
Languages 6729

Non-English Languages
3.4%

Interrogation
0.3%

Punctuation
10.4%

HTML tags
16.6%

URLs
0.3%

Short Sentence
35.5%

Parentheses
9.7%

Javadoc tags
23.8%

表格 2

Others 264049
Noise 130422

33.1%66.9%

Others
Noise

1

Figure 1: Statistics of 394,471 code comments used in Code-
SearchNet (Java). The feature definitions are presented in
Section 3.1.

that the training data and the evaluation data share a similar distri-
bution. It is also noteworthy that evaluating the model with a noisy
comment-code benchmark can hardly reflect how useful the model
would be in practice, and, even worse, may bring non-negligible
bias to the model design, evaluation and application. Many other re-
searchers [7, 30, 44] also point out the misalignment between code
comments and natural user queries, and report it as a threat to the
validity of their approaches. As mentioned in [31, 57], improving
the quality of the training data is still a research opportunity for
machine learning, including DL-based code search models. Consid-
ering that there are still plenty of comments close to actual user
queries and naturally paired with high-quality code snippets, a
promising solution is to filter out the noisy ones. Manual filter-
ing can produce the most accurate results but is hardly practical
for large-scale datasets. Automated data cleaning methods are of
demanding needs.

Queries for code retrieval possess specific syntactic and semantic
characteristics, which can be utilized as key features to distinguish
genuine user queries from noise. Typical syntactic features include
text attributes such as keywords, sentence length, and language
type. Semantic features are related to the intention underneath the
text expression, which usually describes the computational func-
tionality of code snippets and might be influenced by the design
convention of common program APIs. Compared with syntactic fea-
tures, semantic features are more abstract, implicit, and hard to be
matched by simple rules. Recently, some initial efforts have emerged
on query quality enhancement, but primarily focusing on the regu-
larization of syntactic features. Simple filtering heuristics are pro-
posed, based on the appearance of verb and noun phrases [30],
keywords uncommonly used in queries [7], and constraints on the
query length [19, 30].

However, the improvement in data quality is limited. As declared
in [19], the collected dataset is still noisy despite their data cleaning
efforts. The proposed rules are not sufficient to cover the various
syntactic violations, let alone the semantic misalignment. For exam-
ple, warning messages such as “Use of this property requires Java
6” widely exist in the code comments, but few code queries would
request this way. Hence, a remaining challenge is recognizing the
code comments that are syntactically valid but encode semantics
rarely seen in natural user queries.

To tackle this challenge, we propose an automated and effective
data cleaning framework that distills high-quality queries from

Table 1: Examples of syntactic rules.

Syntax Feature Rule Action Example
HTML tags Partly Remove <p>parse line</p>
Parentheses Partly Remove (TODO) Send requests
Javadoc tags Fully Remove Returns a {@link Support}
URLs Fully Remove See https://github.com/
Non-English
Languages Fully Remove 创建临时文件

Punctuation Fully Remove ==============
Interrogation Fully Remove Is this a name declaration?
Short Sentence Fully Remove DEPRECATED

generally collected code comments on a large scale. The frame-
work is orthogonal to the design of code search algorithms and
could be integrated with any of them to improve the quality of the
training dataset. Basically, it encompasses two subsequent filters:
a rule-based syntactic filter and a model-based semantic filter. The
rule-based filter includes a set of systematically designed heuristic
rules and weeds out data with anomalous syntactic features, e.g.,
HTML tags and Javadoc tags. It is developed to cover a diverse
range of syntactic violations, and each member inside is validated
to reduce the noises effectively. It is also extensible to fulfill the
specific requirements for the dataset based on the applications. The
model-based semantic filter further refines the dataset produced
by the rule-based filter and retains the comments that are seman-
tically close to the natural queries. The filter relies on a bootstrap
query corpus, a set of high-quality queries, which represents how
semantically the queries should look. It learns the semantic features
of the corpus, such as the expression style and topic, with a DL
model, and leverages it to identify samples with similar semantics.
The bootstrap query corpus could be constructed with any trusted
sources of natural user queries, and we formulate it with question
titles from StackOverflow in this work. These titles are an ideal
approximation of natural queries and could be re-used by related
studies. Then, a Variational Auto-Encoder [22] is trained with the
bootstrap query corpus, which maps the inputs into a latent space
and attempts to reconstruct the original inputs solely based on the
latent features. The reconstruction loss reflects “how far away” an
input is from the training data distribution, i.e., the distribution of
queries in the bootstrap query corpus. The lower the reconstruction
loss, the more qualified an input is as a natural query. We compute
the reconstruction loss for each code comment in the raw dataset
and cluster them into two groups. The group of qualified queries is
retained for training, and the group of noises is discarded.

To evaluate the effectiveness of our data cleaning framework,
we compare the performance of code search models trained with
datasets before and after the filtering. One training dataset, two
neural models, and three manually annotated validation datasets
are used in the experiments, and our framework brings a significant
performance improvement under all settings. In particular, the per-
formance of the popular DeepCS [15] model is improved by 19.2%
MRR and 21.3% Answer@1, on average with the three validation
datasets. More importantly, with less training data used after the
filtering, we also save the training time and computation resources.

On the Importance of Building High-quality Training Datasets for Neural Code Search ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Further, we carry out a comprehensive ablation study to validate
the usefulness of each filter component and each rule and manually
inspect the quality of the rejected and retained data. Finally, we
release the implementation of our framework, NLQF , and a cleaned
code search dataset, COFIC, to facilitate future research. The source
code and datasets are available at https://github.com/v587su/NLQF.

To the best of our knowledge, this is the first systematic data
cleaning framework for comment-based code search datasets. Our
main contributions include:

• A two-step data cleaning framework for code search datasets,
which bridges the gap between code comments and natural user
queries, both syntactically and semantically.
• Implementation of the framework as a Python library for the
code search task in academia and industry.
• A comprehensive evaluation of our framework’s effectiveness,
which demonstrates significant model performance improvement
on three manually-annotated validation benchmarks.
• The first systematically distilled Github dataset for neural code
search, containing over one million comment-code pairs.

2 PRELIMINARIES
We prepare readers with the primary sources for collecting query-
code pairs and the Variational Auto-Encoder, a major building block
of our framework.

2.1 Data Source
A query for neural code search describes, in natural language, the
functionality of the code snippets desired by users, e.g., “convert
string to JSON object”. The ideal data source for genuine code
queries is the production data from existing neural code search
engines. However, these queries are not publicly accessible due to
privacy and business sensitivity. In academia, researchers use texts
with similar intentions (e.g., code comments) as a replacement. The
primary alternative data sources for semantic code search research
include GitHub and StackOverflow.

2.1.1 Github. Github[1] is an open-source community, hosting
more than 100 million repositories. It is the most popular platform
for developers to share and manage their projects. The large-scale
well-maintained repositories on Github are a treasury for code
reuse during development, thus naturally becoming the main re-
trieval source for code search tasks. Moreover, mature projects
are usually accompanied by canonical development documents.
According to Javadoc[2], a code comment style guide, the first sen-
tence of doc comments should be a summary sentence. Therefore,
it is convenient to construct a code search dataset by collecting the
code snippets paired with the first sentence of comments, forming
the comment-code pairs. Javadoc-generated comments have hence
been widely used in practice for various software engineering pur-
poses [25–27, 33] due to their large scale, ease of obtaining, and
being close to actual use scenarios.

However, developers write comments for their software projects
without considering the retrieval purposes. Not all the comments
properly map to queries. As mentioned in Section 1, the Code-
SearchNet collected from Github contains plenty of anomalies that
rarely exist in natural user queries. It is not appropriate to include

these comments in the dataset, and we call for more attention to be
drawn to this problem.

2.1.2 StackOverflow. StackOverflow[4] serves as a Q&A commu-
nity specialized for software developers. It is a rich resource of
software-related questions and answers. When asking about codes
or APIs for implementing a specific functionality, users would pro-
pose a question title to express their intention. These are natural
user queries with valid syntax and semantics. Hence, researchers[52,
54] also collect the titles of StackOverflow questions paired with
proper answers containing sample code snippets, which also form
the query-code pairs. Others also evaluate their code search models
with queries manually selected from StackOverflow [7, 15, 32], and
additional public evaluation benchmarks could be found in [24, 50].

Compared with the Github data source, queries from StackOver-
flow have a significant advantage of being closer to natural user
queries, but the quality of code samples is hard to guarantee. Hence,
the dataset collected from StackOverflow is still not as desired.
Nevertheless, the query corpus is valuable. It is worth investigat-
ing whether and how it could be leveraged to improve the other
query-code datasets.

2.2 Variational Auto-Encoder
Variational Auto-Encoder (VAE) [5] is a neural model that learns
the distribution of a set of data. A VAE model consists of an en-
coder and a decoder. The encoder learns to map an input data 𝑥
into a prior distribution 𝑝𝜃 (𝑧), from which a latent variable 𝑧 is
sampled, and the decoder maps 𝑧 back to 𝑥 , a reconstruction of 𝑥 .
It is expensive to calculate 𝑝𝜃 (𝑧) directly, so VAE introduces an
approximate posterior 𝑞𝜙 (𝑧 |𝑥). 𝜃 and 𝜙 are parameters of the prior
and the approximate posterior.

The loss function, Evidence Lower Bound (ELBO), which seeks
to maximize the likelihood of reconstructing the original data and
minimize the Kullback-Leibler (KL) divergence between the actual
and estimated posterior distributions, is represented as:

L = E𝑞𝜙 (𝑧 |𝑥) [−𝑙𝑜𝑔𝑝𝜃 (𝑥 |𝑧)] + 𝐾𝐿(𝑞𝜙 (𝑧 |𝑥) | |𝑝𝜃 (𝑧)), (1)

where 𝐾𝐿 represents the KL divergence. Theoretically, the distribu-
tions of𝑞𝜙 (𝑧 |𝑥) and 𝑝𝜃 (𝑧) can be arbitrary. In practice, the Gaussian
distribution is mostly adopted.

3 THE DATA CLEANING FRAMEWORK
This section introduces our automated and effective data cleaning
framework for code search datasets, mainly to filter out query-code
pairs with inappropriate queries. The framework consists of two
subsequent filters, the rule-based syntactic filter andmodel-based se-
mantic filter. An overview of the framework, when applied to clean
the comment-code pairs collected from Github, is shown in Fig. 2.
The raw comment-code pairs are firstly cleaned by the rule-based
filter, where a ruleset is applied to detect the existence of invalid
query syntax. Next, for the model-based filter, leveraging a small
bootstrap query corpus as the semantics reference, a VAE model
is trained to model its characteristics and further used to reject
comments violating the natural query semantics. Here we collect
the bootstrap query corpus (no need of the paired code snippets)
from StackOverflow, and more details can be found in Section 4.1.
Such, we take advantage of both the Github and StackOverflow

https://github.com/v587su/NLQF

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li

Github

StackOverflow

Heuristic Rule

Variational
Auto-Encoder

Bootstrap
Query Corpus

EM-GMM
Clustering

Raw Comment-
Code Pairs

Javadoc tags

HTML tags

Short Sentence
…

Loss

train

Model-based Semantic Filter

 Comment-Code
Pairs

Query-Code Pairs

Rule-based Syntactic Filter

Figure 2: An overview of our data cleaning framework.

data sources and produce a large set of high-quality query-code
pairs. In the following, we elaborate on the design of the two filters.

3.1 The Rule-based Syntactic Filter
Code comments contain richer information than just descriptions
on code functionalities and manifest various syntactic features
rarely existing in actual code search quires. For example, URLs are
used for external references, and HTML tags are used in comments
for documentation autogeneration. To reduce such deviations from
natural queries, we sampled 1% code comments from CodeSearch-
Net, manually inspected and summarized noises in these 3,949
instances. We establish a black list of invalid syntax features to
reject unqualified code comments. If a comment matches any of
these features, we remove the invalid parts if they are detachable;
otherwise, we abandon this comment-code pair.

Based on a comparative observation of code comments and user
queries, we develop a set of rules to precisely identify synthetically
inappropriate queries and leave the fine-grained semantic check
to the model-based filter. To facilitate the management, we define
three criteria that the ruleset must comply with: 1) any rule should
define a unique and specific construction pattern, 2) the rules should
be conservative and limit the preclusion of valid queries within an
acceptable range, and 3) any rule is not a subrule of other rules in
the set. As a plug-in framework, the ruleset is extensible, and any
rules that meet these criteria can be appended to the set.

We introduce the syntax features covered by our ruleset in the fol-
lowing, and their examples can be found in Table 1. We empirically
decide whether to keep the content enclosed by a feature structure
or not and validate the decisions with experiments (see our web-
site [3] for more details) and manual inspection (see Section 5.2).
From the results, our decisions help improve the naturalness and
bring greater improvement to the model performance.
HTML tags HTML tags are used for documentation autogenera-
tion in comments and should not appear in user queries. However,
the content wrapped by the tags can still be informative. There-
fore, we remove the HTML tags from the comments but keep the
wrapped content.
Parentheses Parentheses in comments are for adding supplemen-
tary information and do not appear in user queries. Due to such
purpose, the removal of the content inside the parentheses does

not have much influence on the completeness of the comments. We
only retain the content outside of the parentheses.
Javadoc tags Javadoc tags starting with an “@” sign are special
tags indicating a Javadoc comment. Such comments are only con-
sumed by the Javadoc project for autogenerating well-formatted
documentation. Considering that the special syntax of the tags may
mislead code search models on natural language understanding,
we reject all comments containing Javadoc tags.
URLs URLs in comments provide external references to relevant
code snippets, but natural language queries do not contain any
URLs. We reject all comments containing URLs.
Non-English Languages Non-English expressions exist as devel-
opers from different countries may write comments in their first
languages. However, current code search models are not designed
to handle multi-languages. We reject all non-English comments.
Punctuation Sometimes, punctuation symbols are used for section
partitioning in the comments. For example, developers use a row
of equal signs (=) or asterisks signs (∗) (see examples in Table 1)
to indicate a new section. For effectiveness, we reject comments
containing no English letters in our implementation.
Interrogation Based on our observation, some of the comments
in the dataset are interrogative. Developers seem to use comments
to communicate with their collaborators during the code review
process. There may be some sparse information about the code
functionality, but the quality is hard to control. We reject comments
ending with a question mark.
Short Sentence The sentence length is a commonly used criterion
for comment filtering. Extremely short comments are not informa-
tive enough for code search models to establish their mapping to
the corresponding code snippets. We reject comments containing
no more than two words.

3.2 The Model-based Semantic Filter
This section introduces the model-based semantic filter, which takes
the initially cleaned comment-code pairs from the rule-based filter
as input and further selects the pairs with comments semantically
close to the queries in a pre-collected bootstrap query corpus. We
present the detailed design of the VAE model and discuss how it is
used for filtering.

3.2.1 The VAE Model. The two main components of a VAE model
are the encoder and decoder, which are generally composed of deep
neural networks. Here, we use Gated Recurrent Unit (GRU) [11] for
both the encoder and decoder in our VAE model. GRU is a variant
of Recurrent Neural Network (RNN), which enables the model
to capture information from sequential texts. Fig. 3 illustrates an
overview of the design of the model structure. Details about each
layer are as follows.

Embedding Given a query𝑤0𝑤1 . . .𝑤𝑛 of length 𝑛, the 𝑖-th to-
ken is 𝑤𝑖 . The embedding layer is responsible for mapping each
token into an embedding vector. It consists of an embedding matrix
E ∈ R𝑜𝑤×𝑑 , where 𝑜𝑤 is the vocabulary size of the query language
and 𝑑 is the dimension of embedding vectors. The matrix is initial-
ized with random values and updated during training.

GRU EncoderWe design the encoder of VAE as a bi-directional
GRU. Sequentially, it deals with the input tokens, and propagates
the upstream and downstream context through the hidden states,

On the Importance of Building High-quality Training Datasets for Neural Code Search ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

“Convert int to string”

Token

Embedding

convert int stringto

Cell Cell Cell Cell GRU (Encoder)

Cell Cell Cell Cell GRU (Decoder)

convert int stringto

[BOS] Cell

[EOS] Reconstructed Token

Latent Variable ()z

Loss

Figure 3: The structure of the Variational Auto-Encoder in
themodel-based filter. The dashed lines denote the propaga-
tion of hidden states in neural cells.

respectively in the forward and backward directions, as shown
in Eq. (2) and Eq. (3). 𝑒𝑚𝑏 maps a token to its embedding vector.
Finally, we sum up the last hidden states of both directions to get
the final hidden state, as in Eq. (4), and pass it to the next layer.

−→
h𝑖 =

−−−→
𝐺𝑅𝑈 (𝑒𝑚𝑏 (𝑤𝑖),

−−−→
h𝑖−1) (2)

←−
h𝑖 =

←−−−
𝐺𝑅𝑈 (𝑒𝑚𝑏 (𝑤𝑖),

←−−−
h𝑖+1) (3)

h =
−→
h𝑛 +

←−
h𝑛 (4)

Latent Variable Based on the hidden state h from the encoder,
we estimate the parameters of a Gaussian distribution with a fully-
connected layer, which are the mean vector 𝝁 and variance vector
𝝈2. The latent variable z is randomly sampled from this distribution.
The equations are as follows:

𝝁;𝝈2 = 𝐹𝐶 (h)

z = 𝝁 + r · e𝝈
2/2

where 𝐹𝐶 is a fully-connected layer and r is a random vector from
the standard normal distribution.

GRU Decoder The latent variable represents the key features
of the original input in a highly abstract and compact way. The
decoder works to reconstruct the input solely based on the latent
variable. Iteratively, the decoder computes the hidden state 𝑠𝑖 at
each step 𝑖 and reconstructs token𝑤 ′

𝑖
, based on the previous state

𝑠𝑖−1 (or z at step 0) and 𝑤 ′
𝑖−1 generated in the previous step. The

equations are as follows:

s𝑖 =

{
𝐺𝑅𝑈 (𝑒𝑚𝑏 (𝑏𝑜𝑠), z)) i=0
𝐺𝑅𝑈 (𝑒𝑚𝑏 (𝑤 ′

𝑖−1), s𝑖−1)) i>0
𝑝𝑖 = 𝐹𝐶 (s𝑖)
𝑤 ′𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝𝑖)

where 𝑏𝑜𝑠 is a special token indicating the start of a sentence, and
𝑝𝑖 ∈ R𝑜𝑤 represents the probability of 𝑖-th token to be generated.

LossWe measure the likelihood of reconstructing the original
input with the Cross-Entropy (CE) loss. Hence, the ELBO loss in-
troduced in Section 2.2 can be computed as:

L = − 1
𝑛

𝑛∑︁
𝑖=1

𝐶𝐸𝐿𝑜𝑠𝑠 (𝑤𝑖 ,𝑤
′
𝑖) + 𝐾𝐿𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝝁,𝝈

2)

P
er

fo
rm

an
ce

0% 100%best dividing point

Figure 4: An illustration of the relation between the por-
tion of retained data and the performance of the code search
model trained with it.

where 𝐶𝐸𝐿𝑜𝑠𝑠 and 𝐾𝐿𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 represents the calculation of the
CE loss and KL divergence.

3.2.2 The Filtering Algorithm. We train the VAE model with a set
of high-quality code search queries collected from near-real scenar-
ios, which we call the bootstrap query corpus. After the training,
the VAE model is able to recognize whether a query semantically
resembles those in the corpus. We measure the reconstruction loss,
i.e., the CE loss, of an input when fed to the VAE model, which just
reflects howwell it is within the training set distribution. Intuitively,
the loss value is the anomaly score gauging how far an input stays
away from the queries in bootstrap query corpus. Comments with
smaller losses are more likely to be query-appropriate.

To select comments resembling queries in bootstrap query cor-
pus, we sort the comments based on their reconstruction losses,
in ascending order, and retain the top-ranked ones. It is tricky to
decide an appropriate dividing point for retaining the portion with
better quality and discarding the remaining. The less data we keep
from the top, the higher the dataset quality. However, a sharp re-
duction in the data size hinders the performance of the trained
code search model. Fig. 4 shows a theoretical model illustrating the
relation between the dividing point and the model performance.
As the amount of retained data increases, the model performance
firstly increases and then decreases after reaching the peak. There
is a trade-off between the quality and quantity of the dataset.

We leverage an unsupervised clustering algorithm, EM-GMM
(Expectation-Maximization for Gaussian Mixture Model) [14], to
decide the partition automatically. It is widely used to model the
mixed distributions of a dataset. For our task, EM-GMM divides
a set of comments into the qualified and the unqualified groups
based on the reconstruction loss. For each group, GMM fits a Gauss-
ian probability density function and mixes them together as the
distribution of the whole dataset, which can be represented as:

𝑃 (𝑥) = 𝜋𝑁 (𝑥 |𝜇𝑞, 𝜎𝑞) + (1 − 𝜋)𝑁 (𝑥 |𝜇𝑢𝑞, 𝜎𝑢𝑞)
where 𝜋 is the mixture coefficient for the qualified group, (𝜇𝑞, 𝜎𝑞)
and (𝜇𝑢𝑞, 𝜎𝑢𝑞) are the parameters for the Gaussian probability den-
sity functions of the qualified and unqualified groups, respectively.
Finally, the EM algorithm [14] is applied to estimate a set of optimal
values for all the parameters.

Note that, to establish a high-quality code search dataset, all
comments are processed together with their paired code snippets.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li

Hence, we obtain a set of comment-code pairs after applying this
semantic filter, where the comments are syntactically and semanti-
cally close to natural user queries.

4 EXPERIMENT SETUP
We introduce the research questions, the basic experimental setup
about the datasets and models, and the evaluation metrics used
throughout the evaluation. The research questionswe aim to answer
include:
RQ1: How effective is our data cleaning framework?
RQ2: What is the impact of each filter component and each rule
on the effectiveness of our framework?
RQ3: How is the dividing point determined by the clustering algo-
rithm during the model-based filtering?

4.1 Datasets
Three types of datasets are involved in our evaluation, including
the training and validation datasets used to train and assess the
performance of code search models and the bootstrap query corpus
used to develop our model-based filter. To make the best use of
existing resources, we focus on the Java programming language
in this work, for which there have been the most public datasets
and models in the field of neural code search. Theoretically, our
framework is language-independent and applicable to other pro-
gramming languages with a proper adaptation of the filtering rules.

4.1.1 Training Datasets. Weuse the popular CodeSearchNet (CSN) [19]
dataset to train all the code search models. CSN is a collection of
datasets and benchmarks for semantic code retrieval. It extracts
functions and their paired comments from Github repositories. It
covers six programming languages, and we take the training dataset
for Java, which contains 394,471 data points. We took the first sen-
tence of each comment. In what follows, we denote it as CSN-t.
Another widely used dataset in DeepCS [15] is not included because
the authors only released the processed data, but our framework
cannot work without accessing the raw data.

4.1.2 Validation Datasets. We utilize human-annotated validation
datasets to evaluate how well a code search model performs in a
real-world scenario, and three widely used datasets are adopted. It
is noteworthy that the validation datasets are never filtered by our
framework in order to ensure the fairness of our experiments. They
are listed as follows:
• CSN-v CSN also offers a validation benchmark for Java, contain-
ing query-code pairs collected from Bing and StackOverflow. Hu-
man annotators are hired to rate the relevance between the query
and the code. Pairs with a score greater than 0 are deemed as rele-
vant, and there are 434 relevant pairs in total. In the dataset, each
pair is accompanied by 999 distractor code snippets. It means,
given a query, the code search model needs to retrieve the ground
truth among 1000 candidates.
• CB CosBench (CB) [50] is a validation dataset consisting of 52
selective queries from StackOverflow. For each query, the authors
prepared around ten paring code snippets as its ground truths,
including its best answer on StackOverflow and several other
matched code snippets selected from GitHub. Additionally, there
is a pool of 4,199,769 distractor code snippets. The model needs

to search the ground truths from a mixture with the complete
code pool given a query.
• NCSED Proposed in [24], the NCSED dataset contains 287 ques-
tion queries manually collected from StackOverflow. For each
query, there are around three pairing code snippets selected from
GitHub. The ground truths are mixed with other 4,716,814 dis-
tractor code snippets collected from GitHub. The search model
is required to retrieve the ground truths from the large corpus
for a query.
The extremely large search space in NCSED and CB makes it

extremely hard for code search models to achieve a good perfor-
mance, and the performances variations brought by data cleaning
can also be too marginal to compare. Without loss of generality, for
each query in NCSED and CB, we construct 999 distractor snippets,
following a similar fashion as CSN-v.

4.1.3 BootstrapQuery Corpus. StackOverflow is an ideal source for
collecting resemblers of actual user queries, though the quality of
the pairing code snippets is hard to guarantee. It becomes an optimal
choice to establish the bootstrap query corpus.We surveyed existing
StackOverflow datasets in the code search field, and found that they
were of severely limited size. With their aim to collect high-quality
question-code pairs, numerous questions were discarded due to
the lack of qualified code answers. Hence, to better facilitate the
training of our VAE model, we determined to construct a question-
only corpus from StackOverflow instead of using existing ones.

According to a study [36], the StackOverflow questions can be di-
vided into four types: “Debug/Corrective”, “Need-To-Know”, “How-
To-Do-It” and “Seeking-Different-Solution”. Among them, questions
of the “How-To-Do-It” type are most relevant to queries for the
code search task. Aiming to select the most qualified resemblers, we
require the question titles to 1) start with “how to”, 2) be tagged with
“Java”, and 3) pass the rule-based syntactic filter proposed in Sec-
tion 3.1 (except for the Interrogation rule). In the end, 168,779 out
of 1,709,703 Java-related question titles were retained. Afterwards,
we transformed them into declarative sentences by removing the
starting “how to” and the question marks if any, thus forming the
bootstrap query corpus, which is used to train the VAE model later.

4.2 Code Search Model
Two code search models, DeepCS [15] and CARLCS [41], are used
in our experiments. They are designed with representative archi-
tectures among most neural code search models. DeepCS is based
on the Siamese architecture, and CARLCS is an Interaction-based
network [35]. The Siamese architecture consists of two DL models
to represent the query and code, respectively, with independent
embedding vectors, and the similarity between these vectors is used
to measure the relevance between query and code. The Interaction-
based network compares the query and code directly by generating
an interaction matrix to reflect their relevance.

When training the models with our training dataset, we adopted
the recommended settings for all the hyper-parameters, except for
the training epoch of the DeepCS model. In order to save some time
and computation resources, we set the maximum training epoch
of DeepCS to 100 instead of the recommended 500. Without loss
of fairness, the same setting has been used for training with the
dataset either before or after the data cleaning. This change should

On the Importance of Building High-quality Training Datasets for Neural Code Search ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: The Answered@k and MRR scores of the DeepCS and CARLCS models trained over different datasets.

Model Test Set #Query Train Set #Pairs Train Hours A@1 A@5 A@10 MRR

DeepCS

CSN-v 434
CSN-t (all) 394,471 8 h 123 248 306 0.407
CSN-t (controlled) 192,031 4 h 107 235 275 0.376
CSN-t (filtered) 192,031 4 h 168 36.6% ↑ 299 20.6% ↑ 348 13.7% ↑ 0.512 26.0% ↑

CB 52
CSN-t (all) 394,471 8 h 25 31 38 0.522
CSN-t (controlled) 192,031 4 h 20 26 28 0.438
CSN-t (filtered) 192,031 4 h 29 16.0% ↑ 38 22.6% ↑ 40 5.3% ↑ 0.644 23.3% ↑

NCSED 287
CSN-t (all) 394,471 8 h 44 101 136 0.250
CSN-t (controlled) 192,031 4 h 31 90 135 0.210
CSN-t (filtered) 192,031 4 h 49 11.4% ↑ 110 8.9% ↑ 142 4.4% ↑ 0.271 8.4% ↑

CARLCS

CSN-v 434
CSN-t (all) 394,471 6 h 54 210 292 0.283
CSN-t (controlled) 192,031 3 h 54 202 284 0.281
CSN-t (filtered) 192,031 3 h 62 14.8% ↑ 221 5.2% ↑ 296 1.4% ↑ 0.302 6.7% ↑

CB 52
CSN-t (all) 394,471 6 h 1 2 6 0.038
CSN-t (controlled) 192,031 3 h 0 1 3 0.012
CSN-t (filtered) 192,031 3 h 2 100.0% ↑ 4 100.0% ↑ 7 16.7% ↑ 0.056 49.4% ↑

NCSED 287
CSN-t (all) 394,471 6 h 20 34 57 0.105
CSN-t (controlled) 192,031 3 h 15 33 49 0.097
CSN-t (filtered) 192,031 3 h 35 75.0% ↑ 58 70.6% ↑ 74 29.8% ↑ 0.168 59.9% ↑

not affect the evaluation conclusion on the effectiveness of our
framework, which focuses more on whether the model performance
improves after removing the noises instead of its absolute level.

4.3 Evaluation Metrics
Twowidely used metrics are adopted in our experiments to evaluate
the code retrieval performance.

• Answered@k: Answered@k (abbrev. A@k) is the number of
queries answered by snippets in the top-k results.
• Mean Reciprocal Rank (MRR): MRR is the average of the re-
ciprocal ranks of the ground truth in the result list.

5 RESULTS
In this section, we show the experimental results and answer the re-
search questions. Measures for both evaluation metrics are reported
as the medium over five independent runs.

5.1 RQ1: Effectiveness
This experiment evaluates the effectiveness of our data cleaning
solution as a pre-processing step when training neural code search
models. Specifically, one training dataset (CSN-t), two code search
models (DeepCS and CARLCS), and three validation datasets (CSN-
v, CB, and NCSED) are used in the evaluation. Thus, we have six
(1 × 2 × 3) experimental settings in total. During experiments, a
relatively smaller filtered training set will be derived from CSN-
t after our framework is applied for the data cleaning. To also
benchmark the performance variation brought by the size shrinking,
we further derive a controlled training set by randomly selecting
from CSN-t an equivalent number of data as the filtered set. We
observe the model performance resulted from training with these
three datasets respectively.

The model performance is measured with four evaluation met-
rics, namely, A@1, A@5, A@10, andMRR, and the results are shown

in Table 2. Under all the six experimental settings, our data clean-
ing framework demonstrates a positive influence on the model’s
searching ability and helps it hit the best score. On average of the
three validation datasets, DeepCS trained over the filtered data out-
performs the one trained over original data by 21.3% A@1, 17.4%
A@5, 7.8% A@10, and 19.2% MRR. Correspondingly, the improve-
ments of CARLCS are 63.3% A@1, 58.6% A@5, 16.0% A@10, and
38.6% MRR. Regarding the MRR on the three validation datasets,
CSN-v,CB, and NCSED, DeepCS achieves 0.512, 0.644 and 0.271,
and CARLCS achieves 0.302, 0.056 and 0.168, respectively. Basically,
DeepCS and CARLCS are boosted to their new best records, and
CARLCS sees a greater improvement. Note that the A@1 score of
CARLCS over NCSED is increased by 75.0% (from 20 to 35), which
is an extraordinary improvement.

Overall, with around half of the data quantity and half of the
training time, models trained over the filtered data achieve a sig-
nificant improvement on the number of answered queries and the
rank of ground truth in search results.

Answer to RQ1: Our filtering framework produces a high-
quality query-code dataset, which shortens the training time
by reducing the training data and effectively improves the
performance of the code search model under a real-world
application scenario.

5.2 RQ2: The impact of each filter component
and each rule

We evaluate the effectiveness of each filter component with abla-
tion experiments and conduct manual inspection on the queries
accepted/rejected by each syntactic rule and the model-based filter
to study their precision in identifying noises.

Each time, one of the two filter components is muted for the
ablation experiments. We observe the model performance after

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li

Table 3: Results of the ablation experiments on the filter components.

Model Test Set #Query Train Set #Pairs A@1 A@5 A@10 MRR

DeepCS

CSN-v 434

CSN-t (all) 394,471 123 248 306 0.407
CSN-t (filtered) 192,031 168 299 348 0.512
Rule Filter only 285,372 157 6.5% ↓ 283 5.4% ↓ 335 3.7% ↓ 0.490 4.3% ↓
Model filter only 286,306 158 6.0% ↓ 276 7.7% ↓ 323 7.2% ↓ 0.491 4.2% ↓

CB 52

CSN-t (all) 394,471 25 31 38 0.522
CSN-t (filtered) 192,031 29 38 40 0.644
Rule Filter only 285,372 28 3.4% ↓ 35 7.9% ↓ 38 5.0% ↓ 0.598 7.2% ↓
Model filter only 286,306 24 17.2% ↓ 35 7.9% ↓ 38 5.0% ↓ 0.539 16.3% ↓

NCSED 287

CSN-t (all) 394,471 44 101 136 0.250
CSN-t (filtered) 192,031 49 110 142 0.271
Rule Filter only 285,372 46 6.1% ↓ 106 3.6% ↓ 139 2.1% ↓ 0.265 2.3% ↓
Model filter only 286,306 48 2.0% ↓ 106 3.6% ↓ 137 3.5% ↓ 0.264 2.4% ↓

CARLCS

CSN-v 434

CSN-t (all) 394,471 54 210 292 0.283
CSN-t (filtered) 192,031 62 221 296 0.302
Rule Filter only 285,372 57 8.1% ↓ 211 4.5% ↓ 288 2.7% ↓ 0.293 3.0% ↓
Model filter only 286,306 57 8.1% ↓ 219 0.9% ↓ 294 0.7% ↓ 0.300 0.6% ↓

CB 52

CSN-t (all) 394,471 1 2 6 0.038
CSN-t (filtered) 192,031 2 4 7 0.056
Rule Filter only 285,372 1 50.0% ↓ 2 50.0% ↓ 5 28.6% ↓ 0.039 31.2% ↓
Model filter only 286,306 1 50.0% ↓ 3 25.0% ↓ 6 14.3% ↓ 0.049 14.0% ↓

NCSED 287

CSN-t (all) 394,471 20 34 57 0.105
CSN-t (filtered) 192,031 35 58 74 0.168
Rule Filter only 285,372 18 48.6% ↓ 57 1.7% ↓ 74 0.0% ↓ 0.122 27.6% ↓
Model filter only 286,306 21 40.0% ↓ 46 20.7% ↓ 63 14.9% ↓ 0.120 28.4% ↓

training with such derived filtered dataset and compare it with their
previous performance (in Section 5.1). If the performance declines
compared with when both filters are enabled, we can infer a positive
impact of the muted component on the framework effectiveness.
We evaluate the performance of DeepCS and CARLCS trained under
ablation and report the results in Table 3. The removal of any filter
leads to worse performance scores. Without the model-based filter,
the A@1, A@5, A@10, and MRR scores of DeepCS on the three
validation sets reduce by 5.4%, 5.6%, 3.6%, and 4.6% on average.
CARLCS sees a much more severe deduction, and on average, A@1,
A@5, A@10, and MRR decrease by 35.5%, 18.7%, 10.4%, and 20.6%.
After removing the rule-based filter, the performance of DeepCS
averagely drops by 8.4% A@1, 6.4% A@5, 5.2% A@10, and 7.6%
MRR. Meanwhile, the average reduction percentages of CARLCS
on all the validation sets are 32.7% A@1, 15.5% A@5, 9.9% A@10,
and 14.3% MRR. It is noteworthy that the A@1 score of CARLCS on
NCSED drops from 35 to 18 when the rule filter is muted, indicating
that the ruleset plays a very influential part during the data cleaning.

For the manual inspection, two annotators, with over two years’
development experience, are hired to rate how likely a sentence is
to be used as a code search query. The rating score ranges from 0 to
2, where 0 means worst and 2 best. There are 11 groups of data to
annotate, including eight groups of comments rejected by each rule,
the group of comments discarded by the model filer, the original
CSN-t dataset, and the filtered dataset after the two-filter cleaning.
The last two groups are for comparison purposes. For rules focusing
on detachable features, i.e., the Parentheses and HTML tags, we let
the annotators judge how well the removed part can help with a

query expression. We sample a subset of data from its full set for
each group. The sample size 𝑠𝑠 of each group is computed by a sta-
tistical formula which is extracted from [12], 𝑠𝑠 = 𝑧2∗𝑝∗(1−𝑝)/𝑐2

1+ 𝑧
2∗𝑝∗(1−𝑝)/(𝑐2−1)

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

,

where 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is the size of the entire dataset, 𝑝 is the standard
deviation of the population, 𝑐 is the confidence interval (margin
of error), 𝑧 is the Z-Score determined by the confidence level. In
this experiment, we choose to work with a 95% confidence level
(i.e., 1.96 Z-Score according to [20]), a standard deviation of 0.5 (0.5
is the maximum standard deviation, and a safe choice given the
exact figure unknown), and a confidence interval of 5%. We also
measure the agreement between the two annotators with Cohen’s
Kappa [13], which is 0.69 and within the range of fair to good.

For each data, we finalize its score as the average of scores from
the two annotators and display the statistics in Table 4. We report
the number of data examined in each group, the respective portion
of data scored as 0 or no less than 1, and the group’s average score,
in the last four columns. In general, the comments rejected by either
the rule-based filter or the model-based filter poorly resemble real
user queries, with 96.9% and 85.9% of them receiving a score of 0
and the average scores being as low as 0.04 and 0.20, respectively.
Still, it comes at an acceptable cost of losing a small set of good
quality data, where 3.1% and 14.1% of the discarded data by the two
filters score at least 1. Each of the eight rules rejects code comments
in an effective way, with four of them rejecting non-query-like data
at 100% precision. The precision of the Parentheses rule is relatively
low, where 11% of the discarded data is of high quality. In the future,
when deciding whether the content inside the parentheses should

On the Importance of Building High-quality Training Datasets for Neural Code Search ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 4: Results of the manual inspection.

Type Rule # Likeness score
=0 ≥1 Avg.

Origin - 394,471 79.0% 21.0% 0.27

Discarded by
Rule Filer

HTML Tag 32,989 100.0% 0.0% 0.00
Parentheses 19,305 89.0% 11.0% 0.15
Javadoc Tags 47,106 94.9% 5.1% 0.08

URLs 640 97.3% 2.7% 0.05
Non-Eng. Lan. 6,503 100.0% 0.0% 0.00
Punctuation 39,032 100.0% 0.0% 0.00
Interrogation 516 100.0% 0.0% 0.00
Short Sentence 15,186 97.3% 2.7% 0.04

In total 161,277 96.9% 3.1% 0.04
Discarded by
Model Filer - 93,457 85.9% 14.1% 0.20

Retained - 192,031 59.2% 40.8% 0.61

be removed, a more refined rule can be derived. Also, the model-
based semantic filter is accompanied by a larger sacrifice, indicating
it as a more challenging task.

Overall, through the two-phase filtering, the average likeness
score increases from 0.27 to 0.61. In particular, the portion of non-
query-like data drops from 79.0% to 59.2%, and the portion of highly
query-like data scoring at least 1 improves from 21% to 40.8%. There
are still many comments inappropriate to be seen as code search
queries, but our data cleaning framework makes a substantial con-
tribution to alleviating the situation. We call for more attention to
be drawn to overcoming related challenges.

Answer toRQ2: Each filter and rule in our framework demon-
strates a positive contribution to the effectiveness. The full
setting boosts it to the best performance. However, there re-
main many unqualified comments even after the filtering, and
it calls for more attention to be paid from the community.

5.3 RQ3: Quality of dividing point determined
in the model-based filtering

In the model-based filter, we use EM-GMM to decide the dividing
point between the qualified and the unqualified groups. To assess
the quality of the dividing point, we observe the model performance
resulting from alternative dividing points, including fix proportions
and the one decided by K-means, another widely used clustering
algorithm. For the fixed proportions, we set a 25% step and select
25%, 50%, 75%, and 100% top-ranked comments, respectively.

The results on DeepCS and CARLCS are reported in Table 5. For
DeepCS, EM-GMM outperforms K-means and the fixed proportions
on all the validation sets. Compared with the second-best partition,
75%, EM-GMM still achieves higher average performances by 4.3%
A@1, 4.2% A@5, 4.3% A@10, and 3.3% MRR. The superiority is also
observed on CARLCS at every metric, and EM-GMM outperforms
K-means on average of CSN-v and NCSED by 30.4% A@1, 5.9%
A@5, 2.8% A@10, and 15.0% MRR.

EM-GMM ultimately retains 192,031 data points, accounting
for 67.3% of the original dataset, which locates between 57.5%, the

dividing point set by K-means and 75%. As discussed in Section 3.2.2,
the relation between the data quantity and the model performance
should be a convex function. According to the property of the
convex function, if there exists another optimal dividing point,
it would locate between 57.5% and 75.0%. Therefore, EM-GMM
successfully identifies an optimal solution of the dividing point
with an error less than 9.8% (calculated by 67.3% − 57.5%).

Answer to RQ3: EM-GMM produces a better approximation
of the best dividing point for the datasets and is adequate to
be used in the framework.

6 APPLICATION
This section presents the applications of our filtering framework,
including a proof-of-concept data cleaning toolbox and a high-
quality code search dataset.

6.1 NLQF : Natural Language Query Filter
We release the implementation of our filtering framework as a third-
party Python library, Natural Language Query Filter (NLQF), which
is designed to systemically filter queries for neural code search
models. As a lightweight library with convenient APIs, NLQF can
be easily integrated into the development pipeline of any code
search model. Besides, NLQF is extensible at several features to
ensure its applicability in a wide range of contexts:
Extensible Ruleset The ruleset in NLQF is configurable, which
enables users to specify the rules based on the characteristics of their
own data. Besides, NLQF accepts user-defined functions as a part of
rule-based filtering. One can easily extend the filter implementation
by creating the filtering function for any new rule.
Open-source FilteringModelNLQF requires a trained VAEmodel
in the model-based filter. We release the source code for training the
VAE model used in this paper. Following the instructions, users can
easily train a new model with their own bootstrap query corpus,
which may boost the filtering performance further.
Tunable Dividing Proportion Besides the recommended cluster-
ing method, EM-GMM, NLQF also provides an interface accepting
user-defined dividing points. Users can create their own method for
finding the dividing point and configure NLQF to adopt it easily.

6.2 COFIC: Codebase Paired with Filtered
Comments

We build and release a Codebase paired with Filtered Comments
(COFIC) for Java programming language.

6.2.1 Dataset Building. We collect the source code of Java reposito-
ries fromGithub according to the list maintained by Libraries.io [37],
From these files, we extract the methods and corresponding com-
ments using the scripts provided by CodeSearchNet [19]. In the
end, 2,475,692 raw comment-code pairs are obtained. Through the
processing with NLQF , there are 1,048,519 data points left in the
cleaned query-code dataset. Detailed statistics of the dataset during
filtering are reported in Table 6.

6.2.2 Dataset Comparison. We compare COFIC, on the query qual-
ity, with several other datasets currently used in neural code search
research. Following the same manual inspection convention as

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li

Table 5: Results of changing the EM-GMM to other methods.

Model Dividing Point # CSN-v (434) CB (52) NCSED (287)
A@1 A@5 A@10 MRR A@1 A@5 A@10 MRR A@1 A@5 A@10 MRR

DeepCS

Percentile (25%) 71,343 134 240 285 0.420 22 31 34 0.500 40 80 115 0.215
Percentile (50%) 142,686 138 277 324 0.459 23 33 36 0.528 34 91 129 0.212
KMeans (57.5%) 164,194 146 274 321 0.471 23 34 39 0.530 39 99 127 0.229
EM-GMM (67.3%) 192,031 168 299 348 0.512 29 38 40 0.644 49 110 142 0.271
Percentile (75%) 214,029 160 284 332 0.505 28 36 38 0.604 47 108 138 0.266
Percentile (100%) 285,372 157 283 335 0.490 28 35 38 0.598 46 106 139 0.265

CARLCS

Percentile (25%) 71,343 51 190 270 0.264 0 2 6 0.031 6 23 35 0.053
Percentile (50%) 142,686 57 217 290 0.295 1 2 5 0.031 8 32 48 0.070
KMeans (57.5%) 164,194 58 220 292 0.299 1 2 5 0.032 24 44 59 0.119
EM-GMM (67.3%) 192,031 62 221 296 0.302 2 4 7 0.056 35 58 74 0.168
Percentile (75%) 214,029 61 216 288 0.298 1 3 5 0.035 22 53 72 0.130
Percentile (100%) 285,372 57 211 288 0.293 1 2 5 0.039 18 57 74 0.122

Table 6: The statistics during the data filtering.

Step Rule #Discarded #Retained

Rule-based

HTML tags 189,250 2,475,692
Parentheses 129,130 2,475,692
Javadoc tags 423,313 2,052,379

URLs 3,119 2,049,260
Non-English Languages 67,943 1,981,317

Punctuation 201,881 1,779,436
Interrogation 3,300 1,776,136
Short Sentence 112,133 1,664,003

Model-based - 615,484 1,048,519

Table 7: A comparison between the training datasets for code
search tasks.

Dataset Source Language Likeness #
COFIC Github Java 0.52 1 M

CSN (Java)[19] Github Java 0.27 543 K
Hu et al.[18] Github Java 0.48 69 K

StaQC[52] StackOverflow Python 0.80 148 K
SQL 0.80 120 K

Barone et al.[6] Github Python 0.43 150 K

in Section 5.2, the annotators rate the queries sampled from each
dataset, reported in Table 7. Again, we measure the agreement
level between the two annotators with Cohen’s Kappa, which is
0.73 and within the range of fair to good. Among all the datasets
collected from Github, COFIC receives the highest score on data
quality, but there is still a gap compared with the StackOverflow
dataset, StaQC. Indeed, the datasets collected from StackOverflow
have high-quality queries, but they suffer from the unstable code
quality in answers[45, 55]. With our filtering framework, a Github
dataset with better quality is established.

Besides the user study, we also experimentally compare COFIC
with CSN-t. We train the DeepCS and CARLCS models with three

datasets: CSN-t, COFIC, and a controlled COFIC (same size as CSN-
t). The model trained with COFIC outperforms other experimental
settings on the three validation datasets (CSV-v, CB, and NCSED).
The detailed results are reported in Table 8.

7 THREATS TO VALIDITY
Rule Design Though our experiments have evaluated the use-
fulness of each rule in the ruleset; the rule-based filter may still
introduce a few false positives or false negatives due to its design
and implementation. For example, the widely used query “quick
sort” can be filtered out by the rule Short Sentences. Besides, some
rules are tricky to be implemented exactly in line with our aim.
For example, non-English letters in the comments are identified
based on ASCII encoding. It may leave out several other languages
also using English letters. But no English sentences will be falsely
filtered out. Overall, it requires further exploration on balancing
the trade-off between precision and recall better.
BootstrapQueryCorpusThe bootstrap query corpus in this work
is built based on the questions on StackOverflow. Only titles start-
ing with “how to” are collected into the corpus, which limits the
sentence pattern. The VAE model trained over this corpus may not
have a good tolerance to other patterns. Besides, StackOverflow
titles are also not fully query-appropriate. Although we filter the
titles by rules, there are still semantically irrelevant texts left.
Generalization Limited by the accessibility of models and evalua-
tion benchmarks for code search tasks, we evaluate our solution
only on Java datasets. In theory, our approach is capable of any
comment-based code search dataset. Yet, the generalization of our
filtering framework in different programming languages has not
been experimentally verified. Besides, we only evaluate our filter-
ing framework on two code search models, DeepCS and CARLCS,
which is also a threat to the generalizability of our approach.

8 RELATEDWORK
Code Search Dataset Recent years have witnessed a growing in-
terest in the semantic search for code snippets [21]. DL models are
applied to establish links between natural language and program-
ming language. To train these models [7, 9, 15–17, 28, 30, 40, 41, 46,

On the Importance of Building High-quality Training Datasets for Neural Code Search ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 8: The results of the experimental comparison between COFIC and CSN-t.

Model Test Set #Query Train Set #Pairs A@1 A@5 A@10 MRR

DeepCS

CSN-v 434
CSN-t 394,471 123 248 306 0.407
COFIC (controlled) 394,471 188 52.8% ↑ 297 19.8% ↑ 344 12.4% ↑ 0.555 36.3% ↑
COFIC 1,048,519 191 55.3% ↑ 314 26.6% ↑ 354 15.7% ↑ 0.577 41.9% ↑

NCSED 287
CSN-t 394,471 44 101 136 0.250
COFIC (controlled) 394,471 58 31.8% ↑ 109 7.9% ↑ 137 0.7% ↑ 0.281 12.4% ↑
COFIC 1,048,519 72 63.6% ↑ 118 16.8% ↑ 148 8.8% ↑ 0.327 31.0% ↑

CB 52
CSN-t 394,471 25 31 38 0.522
COFIC (controlled) 394,471 34 36.0% ↑ 38 22.6% ↑ 39 2.6% ↑ 0.693 32.6% ↑
COFIC 1,048,519 38 52.0% ↑ 39 25.8% ↑ 41 7.9% ↑ 0.744 42.3% ↑

CARLCS

CSN-v 434
CSN-t 394,471 54 210 292 0.283
COFIC (controlled) 394,471 66 22.2% ↑ 237 12.9% ↑ 319 9.2% ↑ 0.328 15.8% ↑
COFIC 1,048,519 69 27.8% ↑ 247 17.6% ↑ 322 10.3% ↑ 0.339 19.8% ↑

NCSED 287
CSN-t 394,471 20 34 57 0.105
COFIC (controlled) 394,471 34 70.0% ↑ 68 100.0% ↑ 87 52.6% ↑ 0.172 64.1% ↑
COFIC 1,048,519 47 135.0% ↑ 75 120.6% ↑ 92 61.4% ↑ 0.211 101.1% ↑

CB 52
CSN-t 394,471 1 2 6 0.038
COFIC (controlled) 394,471 1 - 3 50.0% ↑ 7 16.7% ↑ 0.043 12.9% ↑
COFIC 1,048,519 1 - 4 100.0% ↑ 7 16.7% ↑ 0.059 56.3% ↑

47, 51, 53], code snippets paired with comments are collected from
Github [6, 15, 18, 19, 46]. According to a manual investigation[39],
there are 16 categories of comments in source code, most of which,
e.g., TODO, License, and Exception, are not appropriate to serve as
queries. However, to the best of our knowledge, the comments in
code search datasets have never been fully cleaned. For example,
Barone et al. [6] remove empty or non-alphanumeric lines from
the docstrings. CodeSearchNet [19] filters each comment-code pair
with its comment length. Ling et al. [30] use heuristic rules (e.g.,
the existence of verb and noun phrases) to filter comments. Cam-
bronero et al. [7] filter out queries that contain specific keywords.
These simple and scattered efforts are not enough to filter out the
various noises, especially the texts that are semantically unrelated
to real queries. Liu et al. [31] also mention that improving the data
quality is still a research opportunity for deep-learning-based code
search models, which well motivates our work.

There are two evaluation methods for neural code search re-
search: train-test split and actual user query evaluation. A lot of
works [7, 41, 47, 53] split their datasets into train and test sets. The
queries of their test set contain the same defects as the train set so
that the results fail to reflect the model performance in an actual
environment. Manually reviewed queries [19, 24, 50] can overcome
this problem but they are usually on a small scale and cannot serve
as the training dataset.
Unsupervised Anomaly Detection Comments cleaning is an ap-
plication of the unsupervised anomaly detection algorithm as la-
beled comments are non-trivial to obtain. Unsupervised anomaly
detection algorithms identify the outliers solely based on the in-
trinsic properties of the data instances. Various techniques can
be applied, such as Principal Component Analysis [48], Genera-
tive Adversarial Network [23], Spatio Temporal Networks [10] and
LSTM [42]. Among them, Auto-Encoder (AE) is the fundamental
architecture for unsupervised anomaly detection [38]. It has been
applied in many tasks. For example, Zhang et al. [56] detect the

rumors in social media using multi-layer AE. Castellini et al. [8] ap-
ply AE to detect false followers on Twitter. Luo and Nagarajan [34]
use AE to identify the error events of interest such as equipment
faults and undiscovered phenomena in wireless sensor networks.

The encoder of AE maps an input to a point in the latent space,
while VAE maps an input to a region. In this way, VAE can extract
more abstract semantic features. It has been applied to unsupervised
anomaly detection with promising evaluation scores [5, 29, 43, 49].

9 CONCLUSION
We propose the first data cleaning framework for code search tasks,
which improves the quality and naturalness of the queries. The
framework leverages two subsequent filters, the rule-based syntac-
tic filter, and the model-based semantic filter. The rule-based filter
uses configurable heuristics rules to filter out comments with syn-
tactic anomalies. The model-based filter aims to refine the dataset
semantically. It trains a VAE model over a pre-collected bootstrap
query corpus, and exploits it to select comments with smaller re-
construction losses. Experiments show that our filtering framework
can significantly save computing resources and improve the model
accuracy. Finally, we release our framework as a Python library
NLQF and make public a high-quality cleaned code search dataset
COFIC, to facilitate relevant research in academia and industry.

REFERENCES
[1] 2021. Github. Retrieved Sep 1, 2021 from https://github.com/
[2] 2021. How to Write Doc Comments for the Javadoc Tool. Retrieved Sep 1,

2021 from https://www.oracle.com/technical-resources/articles/java/javadoc-
tool.html#styleguid

[3] 2021. On the Importance of Building High-quality Training Datasets for Neural
Code Search. Retrieved Sep 1, 2021 from https://sites.google.com/view/hqtd

[4] 2021. StackOverflow. Retrieved Sep 1, 2021 from https://stackoverflow.com/
[5] Jinwon An and S. Cho. 2015. Variational Autoencoder based Anomaly Detection

using Reconstruction Probability.

https://github.com/
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html#styleguid
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html#styleguid
https://sites.google.com/view/hqtd
https://stackoverflow.com/

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li

[6] Antonio Valerio Miceli Barone and Rico Sennrich. 2017. A Parallel Corpus of
Python Functions and Documentation Strings for Automated Code Documenta-
tion and Code Generation. ArXiv abs/1707.02275 (2017).

[7] José Cambronero, Hongyu Li, S. Kim, K. Sen, and S. Chandra. 2019. When deep
learning met code search. Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (2019).

[8] Jacopo Castellini, V. Poggioni, and Giulia Sorbi. 2017. Fake Twitter followers
detection by denoising autoencoder. Proceedings of the International Conference
on Web Intelligence (2017).

[9] Q. Chen and Minghui Zhou. 2018. A Neural Framework for Retrieval and Sum-
marization of Source Code. 2018 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE) (2018), 826–831.

[10] Dan Chianucci and A. Savakis. 2016. Unsupervised change detection using Spatial
Transformer Networks. 2016 IEEE Western New York Image and Signal Processing
Workshop (WNYISPW) (2016), 1–5.

[11] Kyunghyun Cho, B. V. Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Represen-
tations using RNN Encoder-Decoder for Statistical Machine Translation. ArXiv
abs/1406.1078 (2014).

[12] William G Cochran. 1977. Sampling techniques. Wiley Eastern Limited.
[13] Cohen and J. 1960. A Coefficient of Agreement for Nominal Scales. Educational

& Psychological Measurement 20, 1 (1960), 37–46.
[14] A. Dempster, N. Laird, and D. Rubin. 1977. Maximum likelihood from incomplete

data via the EM - algorithm plus discussions on the paper.
[15] Xiaodong Gu, H. Zhang, and S. Kim. 2018. Deep Code Search. 2018 IEEE/ACM

40th International Conference on Software Engineering (ICSE) (2018), 933–944.
[16] Rajarshi Haldar, L. Wu, Jinjun Xiong, and J. Hockenmaier. 2020. A Multi-

Perspective Architecture for Semantic Code Search. ArXiv abs/2005.06980 (2020).
[17] Gang Hu, Min Peng, Yihan Zhang, Qianqian Xie, and Mengting Yuan. 2020.

Neural joint attention code search over structure embeddings for software Q&A
sites. J. Syst. Softw. 170 (2020), 110773.

[18] X. Hu, G. Li, Xin Xia, D. Lo, and Zhi Jin. 2018. Deep Code Comment Generation.
2018 IEEE/ACM 26th International Conference on Program Comprehension (ICPC)
(2018), 200–20010.

[19] H. Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. ArXiv abs/1909.09436 (2019).

[20] Glenn D Israel. 1992. Determining sample size. (1992).
[21] Kisub Kim, Dongsun Kim, Tegawendé F Bissyandé, Eunjong Choi, Li Li, Jacques

Klein, and Yves Le Traon. 2018. FaCoY - A Code-to-Code Search Engine. In The
40th International Conference on Software Engineering (ICSE 2018).

[22] Diederik P. Kingma and M. Welling. 2014. Auto-Encoding Variational Bayes.
CoRR abs/1312.6114 (2014).

[23] W. Lawson, Esube Bekele, and K. Sullivan. 2017. Finding Anomalies with Gener-
ative Adversarial Networks for a Patrolbot. 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW) (2017), 484–485.

[24] Hongyu Li, S. Kim, and S. Chandra. 2019. Neural Code Search Evaluation Dataset.
ArXiv abs/1908.09804 (2019).

[25] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein. 2016. Access-
ing Inaccessible Android APIs: An Empirical Study. In The 32nd International
Conference on Software Maintenance and Evolution (ICSME 2016).

[26] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2018.
Characterising Deprecated Android APIs. In The 15th International Conference on
Mining Software Repositories (MSR 2018).

[27] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2020.
CDA: Characterising Deprecated Android APIs. Empirical Software Engineering
(EMSE) (2020).

[28] W. Li, Haozhe Qin, Shuhan Yan, Beijun Shen, and Y. Chen. 2020. Learning
Code-Query Interaction for Enhancing Code Searches. 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME) (2020), 115–126.

[29] Shuyu Lin, R. Clark, R. Birke, Sandro Schönborn, Niki Trigoni, and S. Roberts.
2020. Anomaly Detection for Time Series Using VAE-LSTM Hybrid Model.
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2020), 4322–4326.

[30] Chunyang Ling, Zeqi Lin, Yanzhen Zou, and Bing Xie. 2020. Adaptive Deep Code
Search. Proceedings of the 28th International Conference on ProgramComprehension
(2020).

[31] C. Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and J. Grundy. 2020. Op-
portunities and Challenges in Code Search Tools. ArXiv abs/2011.02297 (2020).

[32] Chao Liu, Xin Xia, David Lo, Zhiwei Liu, A. Hassan, and Shanping Li. 2020.
Simplifying Deep-Learning-Based Model for Code Search. ArXiv abs/2005.14373
(2020).

[33] Pei Liu, Li Li, Yichun Yan, Mattia Fazzini, and John Grundy. 2021. Identifying
and Characterizing Silently-Evolved Methods in the Android API. In The 43rd
ACM/IEEE International Conference on Software Engineering, SEIP Track (ICSE-SEIP
2021).

[34] Tie Luo and Sai Ganesh Nagarajan. 2018. Distributed Anomaly Detection Using
Autoencoder Neural Networks inWSN for IoT. 2018 IEEE International Conference
on Communications (ICC) (2018), 1–6.

[35] Bhaskar Mitra, Nick Craswell, et al. 2018. An introduction to neural information
retrieval. Now Foundations and Trends.

[36] Seyed Mehdi Nasehi, Jonathan Sillito, F. Maurer, and C. Burns. 2012. What makes
a good code example?: A study of programming Q&A in StackOverflow. 2012
28th IEEE International Conference on Software Maintenance (ICSM) (2012), 25–34.

[37] A. Nesbitt and Benjamin Nickolls. 2017. Libraries.io Open Source Repository and
Dependency Metadata.

[38] Raghavendra Chalapathy University of Sydney, Capital Markets Cooperative Re-
search Centre, Sanjay Chawla Qatar Computing Research Institute, and Hbku.
2019. Deep Learning for Anomaly Detection: A Survey.

[39] Luca Pascarella, Magiel Bruntink, and Alberto Bacchelli. 2019. Classifying code
comments in Java software systems. Empirical Software Engineering 24, 3 (June
2019), 1499–1537. https://doi.org/10.1007/s10664-019-09694-w

[40] Zhu Qihao, Sun Ze-yu, Liang Xiran, Xiong Yingfei, and Z. Lu. 2020. OCoR: An
Overlapping-Aware Code Retriever. arXiv: Computation and Language (2020).

[41] Jianhang Shuai, Ling Xu, Chao Liu, Meng Yan, Xin Xia, and Yan Lei. 2020. Im-
proving Code Search with Co-Attentive Representation Learning. Proceedings of
the 28th International Conference on Program Comprehension (2020).

[42] A. Singh. 2017. Anomaly Detection for Temporal Data using Long Short-Term
Memory (LSTM).

[43] Suwon Suh, Daniel H. Chae, Hyon-Goo Kang, and S. Choi. 2016. Echo-state
conditional variational autoencoder for anomaly detection. 2016 International
Joint Conference on Neural Networks (IJCNN) (2016), 1015–1022.

[44] Zhensu Sun, Yan Liu, Chen Yang, and Yu Qian. 2020. PSCS: A Path-based Neural
Model for Semantic Code Search. arXiv preprint arXiv:2008.03042 (2020).

[45] Valerio Terragni, Yepang Liu, and S. C. Cheung. 2016. CSNIPPEX: automated
synthesis of compilable code snippets from Q&A sites. Proceedings of the 25th
International Symposium on Software Testing and Analysis (2016).

[46] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and
Philip S. Yu. 2019. Multi-modal Attention Network Learning for Semantic Source
Code Retrieval. 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE) (2019), 13–25.

[47] W. Wang, Y. Zhang, Zhengran Zeng, and Guandong Xu. 2020. TranS3̂: A
Transformer-based Framework for Unifying Code Summarization and Code
Search. ArXiv abs/2003.03238 (2020).

[48] S. Wold, K. Esbensen, and P. Geladi. 1987. Principal component analysis. Chemo-
metrics and Intelligent Laboratory Systems 2 (1987), 37–52.

[49] Haowen Xu, Wenxiao Chen, N. Zhao, Z. Li, Jiahao Bu, Zhihan Li, Y. Liu, Y.
Zhao, D. Pei, Y. Feng, Jian Jhen Chen, Zhaogang Wang, and Honglin Qiao. 2018.
Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal
KPIs in Web Applications. Proceedings of the 2018 World Wide Web Conference
(2018).

[50] Shuhan Yan, H. Yu, Y. Chen, Beijun Shen, and L. Jiang. 2020. Are the Code
Snippets What We Are Searching for? A Benchmark and an Empirical Study
on Code Search with Natural-Language Queries. 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER) (2020),
344–354.

[51] Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. 2019. CoaCor: Code
Annotation for Code Retrieval with Reinforcement Learning. The World Wide
Web Conference (2019).

[52] Ziyu Yao, Daniel S. Weld, W. Chen, and Huan Sun. 2018. StaQC: A Systematically
Mined Question-Code Dataset from Stack Overflow. Proceedings of the 2018 World
Wide Web Conference (2018).

[53] Wei Ye, Rui Xie, Jing lei Zhang, Tian xiang Hu, Xiaoyin Wang, and Shikun Zhang.
2020. Leveraging Code Generation to Improve Code Retrieval and Summarization
via Dual Learning. Proceedings of The Web Conference 2020 (2020).

[54] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and GrahamNeubig.
2018. Learning to Mine Aligned Code and Natural Language Pairs from Stack
Overflow. 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR) (2018), 476–486.

[55] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. 2018. Are Code Examples on an Online Q&A Forum Reliable?:
A Study of API Misuse on Stack Overflow. 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE) (2018), 886–896.

[56] Y. Zhang, Weiling Chen, C. Yeo, C. Lau, and B. Lee. 2017. Detecting rumors on
Online Social Networks using multi-layer autoencoder. 2017 IEEE Technology &
Engineering Management Conference (TEMSCON) (2017), 437–441.

[57] Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawende Bissyande, Jacques
Klein, and John Grundy. 2021. On the Impact of Sample Duplication in Machine
Learning based Android Malware Detection. ACM Transactions on Software
Engineering and Methodology (TOSEM) (2021).

https://doi.org/10.1007/s10664-019-09694-w

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Data Source
	2.2 Variational Auto-Encoder

	3 The Data Cleaning Framework
	3.1 The Rule-based Syntactic Filter
	3.2 The Model-based Semantic Filter

	4 Experiment setup
	4.1 Datasets
	4.2 Code Search Model
	4.3 Evaluation Metrics

	5 Results
	5.1 RQ1: Effectiveness
	5.2 RQ2: The impact of each filter component and each rule
	5.3 RQ3: Quality of dividing point determined in the model-based filtering

	6 Application
	6.1 NLQF: Natural Language Query Filter
	6.2 COFIC: Codebase Paired with Filtered Comments

	7 Threats to validity
	8 Related Work
	9 Conclusion
	References

