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ABSTRACT

Despite being one of the largest and most popular projects, the

official Android framework has only provided test cases for less

than 30% of its APIs. Such a poor test case coverage rate has led to

many compatibility issues that can cause apps to crash at runtime

on specific Android devices, resulting in poor user experiences for

both apps and the Android ecosystem. To mitigate this impact, var-

ious approaches have been proposed to automatically detect such

compatibility issues. Unfortunately, these approaches have only

focused on detecting signature-induced compatibility issues (i.e.,

a certain API does not exist in certain Android versions), leaving

other equally important types of compatibility issues unresolved.

In this work, we propose a novel prototype tool, JUnitTestGen, to

fill this gap by mining existing Android API usage to generate unit

test cases. After locating Android API usage in given real-world

Android apps, JUnitTestGen performs inter-procedural backward

data-flow analysis to generate a minimal executable code snippet

(i.e., test case). Experimental results on thousands of real-world An-

droid apps show that JUnitTestGen is effective in generating valid

unit test cases for Android APIs. We show that these generated

test cases are indeed helpful for pinpointing compatibility issues,

including ones involving semantic code changes.
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1 INTRODUCTION

Unit testing is a type of software testing aiming at testing the ef-

fectiveness of a software’s units, such as functions or methods. It

∗
Li Li is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00

https://doi.org/10.1145/3551349.3561151

is often the first level of testing conducted by software develop-

ers themselves (hence a white box testing technique) to ensure

that their code is correctly implemented. Unit testing has many

advantages. First, it helps developers fix bugs early in the develop-

ment cycle which subsequently saves costs in the end. Indeed, it is

known that the cost of a bug increases exponentially with time in

the software development workflow. Second, it makes it possible to

achieve regression testing. For example, if developers refactor their

code later, it allows them to make sure that the refactored code

still works correctly. Third, unit tests provide an effective means

for helping developers understand the unit under testing, i.e., what

functions are provided by the unit and how to use them? Because

of the aforementioned advantages, it is recommended to always

write unit tests when developing software, and the unit tests should

cover as many units as possible.

The Android framework, as one of the largest software projects

(with over 500,000 commits), is no exception. The Android frame-

work provides thousands of public APIs that are heavily leveraged

by app developers to facilitate their development of Android apps.

Ideally, each such public API should be provided with a set of unit

tests to ensure that the API is correctly implemented and the con-

tinuous evolution of the framework will not change its semantics.

Unfortunately, based on our preliminary investigation, less than

30% of APIs, are provided with unit test cases, leaving the majority

of APIs uncovered. This is unacceptable considering that the An-

droid framework nowadays has become one of the most popular

projects (with millions of devices running it).

This poor test coverage of Android APIs has led to serious com-

patibility issues in the Android ecosystem, as recently shown [10,

11, 22, 31, 47, 53]. For example, Li et al. [22] demonstrate that vari-

ous Android APIs suffer from compatibility issues as the evolution

of the Android framework will regularly remove APIs from or add

APIs into the framework. Such API removal or addition can result

in no such class or method runtime exceptions when the corre-

sponding app is running on certain framework versions. Liu et

al. [26] further present an approach to detect silently-evolved An-

droid APIs, which could cause another type of compatibility issue

as their semantics are altered (while not explicitly documented)

due to the evolution of the Android framework. Moreover, Wei et

al. [48] experimentally show that some Android APIs could even

be customized by smartphone manufacturers, leading to another

type of compatibility issue that causes Android apps to crash on

https://doi.org/10.1145/3551349.3561151
https://doi.org/10.1145/3551349.3561151
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certain devices while behaving normally on others. The authors

further propose a prototype tool called PIVOT to automatically

learn device-specific compatibility issues from existing Android

apps. Their experiments on a set of top-ranked Google Play apps

have discovered 17 device-specific compatibility issues.

To the best of our knowledge, the state-of-the-art works target-

ing compatibility issue detection leverage static analysis techniques

to achieve their purpose. However, as known to the community,

the static analysis will likely yield false positive results as it has to

make some trade-offs when handling complicated cases (e.g., object-

sensitive vs. object-insensitive). In addition, the static analysis will

also likely suffer from soundness issues because some complicated

features (e.g., reflection, obfuscation, and hardening) are difficult

to be handled [38, 44]. Furthermore, except for syntactic changes,

compatibility issues could also be triggered by semantic changes,

which are non-trivial to be handled statically. Indeed, as demon-

strated by Liu et al. [26], there are various semantic change-induced

compatibility issues in the Android ecosystem that remain unde-

tected after various static compatibility issue detection approaches

are proposed to the community.

Moreover, static app analysis can only be leveraged to perform

post-momentum analysis (i.e., after the compatibility issues are

introduced to the community). They cannot stop the problems

from being distributed into the community – many Android apps,

including very popular ones, still suffer from compatibility issues.

To mitigate this problem, we argue that incompatible Android APIs

should be addressed as early as possible, i.e., ideally, at the time

when they are introduced to the framework. This could be achieved

by providing unit tests for every API introduced to the framework

and regressively testing the APIs against Android devices with

differentmanufacturers and different framework versions. However,

it is time-consuming to manually write and maintain unit tests for

each Android API (which probably explains why there is only a

small set of APIs covered by unit tests at the moment). There is

hence a need to automatically generate compatibility unit tests for

Android APIs.

In this work, we present a prototype tool, JUnitTestGen, that

attempts to automatically generate test cases for Android APIs

based on their practical usage in real-world apps. Specifically, after

locating existing API usages in real-world Android apps, JUnitTest-

Gen performs field-aware, inter-procedural backward data-flow

analysis to infer the API caller instance and its parameter values.

JUnitTestGen then leverages the inferred information to recon-

struct a minimal executable code snippet for the API under testing.

Experimental results on thousands of Android apps show that JU-

nitTestGen is effective in generating test cases for Android APIs.

It achieves an 80.4% of success rate in generating valid test cases.

These test cases subsequently allow our approach to pinpoint vari-

ous types of compatibility issues, outperforming a state-of-the-art

generic test generation tool named EvoSuite, which can only gen-

erate test cases to reveal a small subset of compatibility issues.

Furthermore, we demonstrate the usefulness of JUnitTestGen by

comparing it against a state-of-the-art static analysis-based com-

patibility issue detector called CiD. JUnitTestGen is able to mitigate

CiD’s false-positive results and go beyond CiD’s capability (i.e.,

detecting compatibility issues induced by APIs’ signature changes)

to detect compatibility issues induced by APIs’ semantic changes.

Overall, we make the following main contributions in this work:

• Wehave designed and implemented a prototype tool JUnitTestGen

that leverages a novel approach to automatically generate unit

test cases for APIs based on their existing usages.

• We have set up a reusable testing framework for pinpointing API-

induced compatibility issues by automatically executing a large

set of unit test cases on multiple Android devices.

• We have demonstrated the effectiveness of JUnitTestGen by i)

generating valid test cases for Android APIs and pinpointing

problematic APIs that could induce compatibility issues if accessed

by Android apps, ii) outperforming state-of-the-art tools on real-

world apps in detecting a wider range of compatibility issues.

The source code
1
and experimental results are all made publicly

available in our artifact package.
2
.

2 MOTIVATION

To overcome the fragmentation problem, our fellow researchers

have proposed various approaches to mitigate the usage of com-

patibility issues in Android apps [47, 48, 50]. These approaches

mainly leverage static analysis to achieve their purpose. Unfortu-

nately, static analysis is known to likely generate false-positive and

false-negative results and is yet hard to handle such issues that in-

volve semantics changes in Android APIs [26]. Therefore, we argue

that there is a need also to invent dynamic testing approaches to

complement existing works in handling app compatibility issues.

We hence start by conducting a preliminary study investigating

the test case coverage in the Android framework. Specifically, we

downloaded the source code of AOSP from API level 21 to 30 and

then calculated the number of public APIs
3
and their corresponding

unit test cases provided by Google. Our result reveals that on aver-

age less than 30% of Android framework APIs have provided

test cases in each API level, indicating the Android framework

has a poor test case coverage. When more APIs are provided with

unit test cases, more compatibility issues of APIs will likely be

identified during regression testing. This will enable them to be

fixed at an earlier stage to avoid the introduction of compatibility

issues in the first place. To this end, we propose to effectively and

efficiently detect compatibility issues through a dynamic testing

approach that fulfills its objective by automatically generating valid

test cases by mining API usages from real-world Android apps.

Why Dynamic Testing. We now present a concrete example

to motivate why there is a need to generate more and better unit

test cases for Android APIs to pinpoint compatibility issues. There

is an Android API called getNotificationPolicy(), located in class No-
tificationManager. At the moment, there are no unit tests provided

for this API. The lack of solid testing for this API has unfortunately

led to various problems, as demonstrated by the various discussions

on StackOverflow [41], one of the most widely used question and

answer websites.

Figure 1 presents the brief evolution of the source code of getNoti-
ficationPolicy(). This API was introduced to the Android framework

at API level 23. The apps that accessed this API would crash on

devices powered by Android with API level 22 or earlier, resulting

1
https://github.com/SMAT-Lab/JUnitTestGen

2
https://doi.org/10.5281/zenodo.6507579

3
The APIs in platform/frameworks/base path.
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     /**
     * Gets the current user-specified default notification policy.
     *
     * <p>
     */
    public Policy getNotificationPolicy() {
        INotificationManager service = getService();
        try {
            return 
service.getNotificationPolicy(mContext.getOpPackageName());
        } catch (RemoteException e) {
            throw e.rethrowFromSystemServer();
        }
    }

     /**
     * Gets the current notification policy.
     *
     * <p>
     * Only available if policy access is granted to this package.
     * See {@link #isNotificationPolicyAccessGranted}.
     */
    public Policy getNotificationPolicy() {
        INotificationManager service = getService();
        try {
            return 
service.getNotificationPolicy(mContext.getOpPackageName());
        } catch (RemoteException e) {
        }
        return null;
    }

     /**
     * Gets the current notification policy.
     *
     * <p>
     * Only available if policy access is granted to this package.
     * See {@link #isNotificationPolicyAccessGranted}.
     */
    public Policy getNotificationPolicy() {
        INotificationManager service = getService();
        try {
            return 
service.getNotificationPolicy(mContext.getOpPackageName());
        } catch (RemoteException e) {
            throw e.rethrowFromSystemServer();
        }
    }

API 23 (getNotificationPolicy Added at this version) API 24-27 API 28 latest

Figure 1: The source code of Android API getNotificationPolicy().

in forwarding compatibility issues. During the evolution of the

Android framework, the implementation of getNotificationPolicy()
is quickly changed at API level 24 (i.e., no longer returns null). Nev-

ertheless, at this point, the comments are not changed, suggesting

potential compatibility issues because of changed semantics. At API

level 28, this API is further changed. This time, only the comments

are changed, i.e., the implementation of the API is kept the same.

This change further suggests that this API may be involved with

compatibility issues as the source code of the API and its comments

are inconsistent at a certain period (over six API levels).

1 @Override
2 protected void onCreate(Bundle savedInstanceState) {
3 super.onCreate(savedInstanceState);
4 setContentView(R.layout.activity_main);
5

6 NotificationManager mng = (NotificationManager)
this.getSystemService("notification");

7 NotificationManager.Policy policy =
mng.getNotificationPolicy ();

8 int priorityCallSenders = policy.priorityCallSenders;
9 }

Listing 1: Code example of invoking API getNotificationPolicy().

The actual implementation of getNotificationPolicy() is through
the complicated inter-process communication mechanism (e.g., the

API is defined via Android Interface Definition Language (AIDL).

Thus, it is non-trivial to confirm if there is a compatibility issue

after API level 23 by only (statically) looking at the Java code of the

framework. It is still a known challenge to statically analyze Java

and C code at the same time.

We resort to a dynamic approach to check if getNotificationPol-
icy() suffers from compatibility issues. Specifically, we implement a

simple Android app with minimal lines of code to invoke the API

(i.e., lines 6-7 in Listing 1) and also the usage of the return value of

this API(i.e., lines 8 in Listing 1). The minimal and targeted SDKs of

this app are set to be 21 and 30, respectively. We then launch this

app on ten emulators covering Android API levels from 21 to 30.

As expected, the app throws NoSuchMethodError as the API is not
yet introduced at API level 21 and 22. From API level 23 to 27, the

app throws SecurityException with the message “Notification policy

access denied”, due to a lack of declaration of Android permissions.

Even though the permission was granted, the API can still introduce

compatibility issues at API level 23 because the return value can be

null, causing NullPointerException later on (e.g., lines 8 in Listing

1)). Surprisingly, since API level 28, the app does not throw any

exception, even though no permissions are declared as well. We

then go one step further to track the detailed implementation of

service.getNotificationPolicy(String) and found that the enforcement

of policy access (i.e., line 3 in Listing 2) is removed in the API at

API level 28, which explains why the app no longer crashes since

API level 28.

1 @Override
2 public Policy getNotificationPolicy(String pkg) {
3 - enforcePolicyAccess(pkg , "getNotificationPolicy");
4 final long identity = Binder.clearCallingIdentity ();
5 try {
6 return mZenModeHelper.getNotificationPolicy ();
7 } finally {
8 Binder.restoreCallingIdentity(identity);
9 }}

Listing 2: Code changes of method

getNotificationPolicy(String), which includes the underline implementation

of Android API getNotificationPolicy().

These observed runtime behaviours strongly indicate that the

direct invocation of getNotificationPolicy() will very likely result

in two compatibility issues: (1) a method is not yet defined and (2)

method semantics have been altered. Ideally, such issues – espe-

cially the latter case – should not be introduced into the Android

framework. However, due to the lack of API unit tests, such issues

are non-trivial to identify and avoid. It is hence essential to provide

more and better unit test cases for all Android APIs. Since it is

time-consuming to achieve this manually, we argue that there is

a strong need to provide automated approaches to automatically

generate unit test cases for Android APIs to identify compatibility

issues as early as possible. In this work, we propose to generate

unit test cases for Android APIs by learning from existing Android

API usages.

Why mining API usage. In addition, generic test generation

tools [1, 7, 35] mainly targeting on satisfying coverage criteria for

classes, while compatibility issues are mainly caused by the fast-

evolving of APIs [22], which makes them insufficient in detecting

compatibility issues. Specifically, such generic test case generation

approaches (such as EvoSuite) are tailored to generate tests based

on the source code of classes, lacking API usage knowledge [15],

including both API calling context and API dependency knowledge.

This information is crucial to setting up the environment for suc-

cessfully calling Android APIs properly to detect compatibility is-

sues. In addition, all of these tools completely ignore semantic-level

behaviours at the API level, leading to many compatibility issues

undetected. Especially in Android, APIs often come with usage

caveats, such as constraints on call order [37]. Thus, it is essential

to capture API dependencies [51] involved in the calling context

before invoking the target API. However, it is challenging for tra-

ditional test generation tools to achieve this since they generate

test suites only based on source code, which lacks API dependency

knowledge. Thus, the insufficiency of the generic coverage-based

test case generation approach motivates us to mine API usage to
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generate much more effective test cases in detecting compatibility

issues.

3 OUR APPROACH

Themain goal of this work is to automatically generate unit tests for

the Android framework to provide better coverage at the unit test

stage of asmanyAndroid APIs as possible. Fig. 2 outlines the process

of JUnitTestGen, which is made up of two modules involving a

total of nine steps. We first locate target API invocations after

disassembling the APK bytecode. We then apply inter-procedural

data-flow analysis to identify the API usage, including API caller

instance inference and API parameter value inference. We then

execute these generated test cases on Android devices with different

Android versions (i.e., API levels). The following elaborates on the

detailed process of each module.

The first module, Automated API Unit Test Generation, includes
five sub-processes to automatically generate unit test cases for

Android APIs. This module takes as input an Android API (or an

API list) for which we want to generate unit tests and an Android

app that invokes the API and outputs a minimum executable code

snippet involving the given API. This code snippet is the API’s unit

test case.

The second module, App Compatibility Testing, includes two sub-
processes. This module takes as input the previously generated

unit test cases to build an Android app, allowing direct executions

of the test cases on Android devices running different framework

versions (i.e., API levels). The output of this second module is the

execution results of the test cases concerning different execution

environments. Using this, JUnitTestGen can then determine all the

Android APIs suffering from potential compatibility issues. We now

detail these two modules of JUnitTestGen below.

3.1 Automated API Unit Test Generation

As shown in Figure 2, the first module of JUnitTestGen, namely

Automated API Unit Test Generation, is made up of five steps.

I.1AndroidBytecodeDisassembling. JUnitTestGen takes An-

droid APKs as input. Given an Android app, the first step of JU-

nitTestGen is to disassemble the Dalvik bytecode to an intermediate

representation. In this work, we leverage Soot [45], which provides

precise features for code analysis. In particular, it supports 3-address

code intermediate representation Jimple and accurate call-graph

analysis framework Spark[17]. On top of Soot, JUnitTestGen is able

to convert Android APK’s bytecode into Jimple precisely.

I.2 Android API Locating. The second step towards locating

the practical usages of Android APIs is quite straightforward. JU-

nitTestGen visits every method of each application in its Jimple

representation, i.e., statement by statement, to check if any of the

APIs in the input list is invoked. If so, we record the location and

mark the usage of the API as located.

I.3 API Caller Instance Inference. Android APIs are invoked

as either static methods (also known as class methods) or instance
methods. A static method can be called without needing an object

of the class, while an instance method requires an object of its class

to be created before it can be called. Listing 3 shows an example for

each method type in the Jimple representation. The static method

(boolean equals()) can be called directly as long as the API signa-

ture (<android.text.TextUtils: boolean equals(java.lang.CharSequence,
java.lang.CharSequence)>) is acquired, which has already been done

in step I.2. However, to invoke the instance method (void setLayout-
Params()), its calling object $r5 needs to be identified. Specifically, a
backward data-flow analysis is needed to locate both the definition

statement of $r5 and any intermediate APIs (or methods) on the

call trace that may change the behaviour of the caller instance.

1 // Calling a Static API
2 <android.text.TextUtils: boolean

equals(java.lang.CharSequence ,java.lang.CharSequence)>
3

4 // Calling an Instance API
5 $r5.<android.widget.ListView: void

setLayoutParams(android.view.ViewGroup$LayoutParams)>

Listing 3: Examples of calling static and instance APIs.

Identifying the calling object and constructing the call trace is a

non-trivial task. As the calling object’s instantiation could depend

on multiple method calls (e.g., can be defined in other methods and

passed on via callee’s returned values), the caller instance inference

process needs to be inter-procedural. Furthermore, each of the

involved methods in the instantiation process may further require

specific parameter values, which need to be properly prepared in

order to successfully create the calling object. Hence, the caller

instance inference process requires backtracing not only the direct

caller instance but also many other variables leveraged by the app

to instantiate the calling object.

Algorithm 1 API Caller Instance Inference.

Require: 𝑎𝑝𝑖𝑡 : the target API
Ensure: 𝑀 : a list of method invocations towards 𝑎𝑝𝑖𝑡
1: function calculateMinimumExecutableContext(𝑎𝑝𝑖𝑡 )
2: 𝑀 = ∅
3: 𝑠𝑡𝑚𝑡𝑡 ← statement contains 𝑎𝑝𝑖𝑡
4: if 𝑎𝑝𝑖𝑡 is a static API then

5: 𝑀 ← The API signature of 𝑎𝑝𝑖𝑡
6: end if

7: if 𝑎𝑝𝑖𝑡 is an instance API then

8: 𝑎𝑠𝑠𝑖𝑔𝑛𝑆𝑡𝑚𝑡 ← getDefinitionStmt(𝑠𝑡𝑚𝑡𝑡 )
9: 𝑀 ← constructCallTrace(𝑎𝑠𝑠𝑖𝑔𝑛𝑆𝑡𝑚𝑡, ∅)
10: end if

11: return𝑀
12: end function

Algorithm 2 Construct Call Trace.

Require: 𝑠𝑡𝑚𝑡𝑐𝑜 : A definition statement of the calling object

𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑆𝑡𝑚𝑡𝑠 : The set of statements visited by the analysis.

Ensure: 𝑐𝑎𝑙𝑙𝑇𝑟𝑎𝑐𝑒 : a list of method invocations towards 𝑠𝑡𝑚𝑡𝑐𝑜
1: function constructCallTrace(𝑠𝑡𝑚𝑡𝑐𝑜 , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑆𝑡𝑚𝑡𝑠)
2: 𝑐𝑎𝑙𝑙𝑇𝑟𝑎𝑐𝑒 ← ∅
3: if (𝑠𝑡𝑚𝑡𝑐𝑜 in 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑆𝑡𝑚𝑡𝑠) OR (𝑠𝑡𝑚𝑡𝑐𝑜 is Constant) OR (𝑠𝑡𝑚𝑡𝑐𝑜 is Syetem API) then

4: return 𝑐𝑎𝑙𝑙𝑇𝑟𝑎𝑐𝑒
5: end if

6: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑆𝑡𝑚𝑡𝑠 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑆𝑡𝑚𝑡𝑠 ∪ 𝑠𝑡𝑚𝑡𝑐𝑜
7: if 𝑠𝑡𝑚𝑡𝑐𝑜 is ParameterRef then

8: 𝑠𝑡𝑚𝑡𝑖𝑛𝑣 ← 𝑔𝑒𝑡𝐼𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔𝑆𝑡𝑚𝑡𝑠 𝑓 𝑟𝑜𝑚𝐶𝑎𝑙𝑙𝐺𝑟𝑎𝑝ℎ (𝑠𝑡𝑚𝑡𝑐𝑜 )
9: for 𝑒𝑎𝑐ℎ 𝑠 ∈ 𝑠𝑡𝑚𝑡𝑖𝑛𝑣 do

10: 𝑑𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑆𝑡𝑚𝑡𝑝𝑎𝑟𝑎𝑚 ← getDefinitionStmt(𝑠)

11: 𝑐𝑎𝑙𝑙𝑇𝑟𝑎𝑐𝑒 ← constructCallTrace(𝑑𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑆𝑡𝑚𝑡𝑝𝑎𝑟𝑎𝑚 , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑆𝑡𝑚𝑡𝑠)

12: end for

13: end if

14: if 𝑠𝑡𝑚𝑡𝑐𝑜 is InvokeExpr then

15: 𝑠𝑡𝑚𝑡𝑖𝑛𝑣 ← 𝑔𝑒𝑡𝐼𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔𝑆𝑡𝑚𝑡𝑠 𝑓 𝑟𝑜𝑚𝐶𝑎𝑙𝑙𝐺𝑟𝑎𝑝ℎ (𝑠𝑡𝑚𝑡𝑐𝑜 )
16: for 𝑒𝑎𝑐ℎ 𝑠 ∈ 𝑠𝑡𝑚𝑡𝑖𝑛𝑣 do

17: 𝑚𝑒𝑡ℎ𝑜𝑑ℎ𝑜𝑠𝑡 ← the host method of 𝑠

18: 𝑟𝑒𝑡𝑢𝑟𝑛𝑆𝑡𝑚𝑡 ← 𝑔𝑒𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑆𝑡𝑚𝑡𝐹𝑟𝑜𝑚𝑀𝑒𝑡ℎ𝑜𝑑 (𝑚𝑒𝑡ℎ𝑜𝑑ℎ𝑜𝑠𝑡 )
19: 𝑑𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑆𝑡𝑚𝑡𝑟𝑒𝑡𝑢𝑟𝑛𝑆𝑡𝑚𝑡 ← getDefinitionStmt(𝑟𝑒𝑡𝑢𝑟𝑛𝑆𝑡𝑚𝑡 )

20: 𝑐𝑎𝑙𝑙𝑇𝑟𝑎𝑐𝑒 ← constructCall-

Trace(𝑑𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑆𝑡𝑚𝑡𝑟𝑒𝑡𝑢𝑟𝑛𝑆𝑡𝑚𝑡 , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑆𝑡𝑚𝑡𝑠)
21: end for

22: end if

23: end function
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Figure 2: The working process of our approach.

Algorithm 1 gives the details of the approach. Given a target

API as input, we apply a backward data flow analysis to identify

the minimum executable context of the target API (lines 1~12).

As shown in Algorithm 1, we describe the API caller inference

process for both static methods (lines 4~6) and instance methods

(lines 7~10). For static methods, we return its corresponding API

signature, which has been obtained in step I.2. For instance meth-

ods, we first locate the definition statement of the calling object

through invoking method getDefinitionStmt (line 8), which returns

the definition statement for a local variable. This method walks the

inter-procedural control flow graph from the target API statement

in reverse order, aiming to look for the nearest assignment state-

ment defining the API’s calling object. After that, with the help of

the function constructCallTrace(i.e., defined in Algorithm 2) (line 9),

we can extract the call trace corresponding to the calling object. As

shown in Algorithm 2, we handle parameter callers (lines 7~13) and

method callers (lines 14~22), respectively. If the definition statement

of the calling object comes from a parameter reference, we first

retrieve all the statements at which the invocation occurs, and then

for each of the statements, we recursively construct its call trace by

calling the method constructCallTrace. A similar process has been

applied to handle method callers (lines 14~22), which recursively

construct the call trace involving statements of the calling object.

The recursive process will not terminate until any of the conditions

have been satisfied in line 3, i.e., either the statement is a constant,

or it has been visited before, or it is an Android system API.

We elaborate on this process with a Jimple code example pre-

sented in Listing 4. In this example, the target Android API to test

(i.e., queryDetailsForUid(int,String,long,long,int)) is invoked in line

26 by the calling object $r3, where $r3 is a returned value of a

self-defined method getNetworkStatsManager(Context) (line 22). We

then step into the definition of the method getNetworkStatsMan-
ager(Context) (lines 1~7), and further backtrace the variables $r2
and $r1 along the call chain. $r1 retrieves the network stats service

from the application context $r0 (line 4), and finally, the backtrace

terminates at $r0 (line 3), where all unknown variables are resolved.

1 public static android.app.usage.NetworkStatsManager
getNetworkStatsManager(android.content.Context)

2 {
3 $r0 := @parameter0: android.content.Context;
4 $r1 = $r0. getSystemService("netstats");

5 $r2 = (android.app.usage.NetworkStatsManager) $r1;
6 return $r2;
7 }
8

9 public static int getUid(android.content.Context) throws
android.content.pm.PackageManager$NameNotFoundException

10 {
11 $r0 := @parameter0: android.content.Context;
12 $r1 = $r0.getPackageManager ();
13 $r2 = $r0.getPackageName ();
14 $r3 = $r1.getApplicationInfo($r2 , 1);
15 i0 = $r3.<android.content.pm.ApplicationInfo: int uid >;
16 return i0;
17 }
18

19 public static float getCurAppFlow(android.content.Context)
throws
android.content.pm.PackageManager$NameNotFoundException

20 {
21 $r0 := @parameter0: android.content.Context;
22 $r3 = DeviceInfoUtil.getNetworkStatsManager($r0);
23 $l1 = System.currentTimeMillis ();
24 $i0 = DeviceInfoUtil.getUid($r0);
25 // Target API
26 $r5 = virtualinvoke

$r3.<android.app.usage.NetworkStatsManager:
android.app.usage.NetworkStats
queryDetailsForUid(int ,java.lang.String ,long ,long ,int) >(0,
"", 0L, $l1 , $i0);

27 }

Listing 4: Code example demonstrating the usage of API queryDetailsForUid.
The code snippet is extracted from app com.eyoung.myutils.

In addition to inter-procedural data-flow analysis, JUnitTestGen

also needs to be field-aware. When performing backward data-flow

analysis, the access of fields may break the original flow and hence

may lead to unexpected results if not properly handled.

To mitigate this, we transform a field involved in the call trace of

the API under testing (in the analyzed app) into a local variable in

the generated test case. The local variable will be initiated following

the same method as it is assigned in the original app. We then

search the whole class to check how the field’s value is assigned

and subsequently apply the same method to initialize the local

variable. If we cannot find the field’s assignment or the assigned

value is complicated to be reconstructed, we will use a dummy

object to mock the required value.

In addition, JUnitTestGen needs to handle branches in the back-

ward dataflow analysis. Specifically, we leverage the Inter-procedural

Control Flow Graph ( ICFG [3]), which is a combination of call-

graph(CG) and control flow graph(CFG), to identify the minimum
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executable context of the target API. Here, CG is a graph represent-

ing the calls between methods over the entire program, while CFG

is a graph that represents the control flows in a single method. ICFG

treats each statement (or a set of sequential statements) as a node,

including branch statements that enable path-sensitive analyses, i.e.,

the propagation of different information along different branches.

With ICFG, we are able to implement branch analysis by analyzing

the structure of the graph. To this end, for those methods involving

multiple branches, JUnitTestGen will separate each branch to form

a different test case.

I.4 API Parameter Value Inference. To support API compati-

bility testing, e.g., to ensure that the API will, in any case, be reached

once the test case is executed, we propose to directly assign possible

values to the API’s parameters inside the test case, i.e., the test case

per se will not contain any parameter. To achieve this, JUnitTestGen

also infers possible values for each parameter of the API to be tested.

This step follows the same strategy i.e., the approach adopted to

infer API caller instances, to infer the API’s parameter values. This

is done by performing inter-procedural backward data-flow anal-

ysis. We apply the same algorithms described in Algorithm 1 and

Algorithm 2 on each parameter object to figure out the exact value.

Unfortunately, some Android APIs’ parameter values may in-

volve sophisticated operations when building their run-time values

that are non-trivial to correctly retrieve statically. Specifically, if

the analysis process does not end up at a constant/Android system

API statement, the value of a parameter is regarded as being undis-

covered. To mitigate this, we introduce a set of pre-defined rules to

generate dummy values for such APIs that have their parameter

values hard to retrieve practically. Some of the representative rules

for generating dummy values for such hard-to-retrieve parameters

are:

• For the eight primitive data types in Java (such as int, double, etc.)

or their wrapper data types (such as Integer, Double, etc.) – we

provide random values for each of them that conform to their

types.

• For the String data type in Java – we generate a random alphanu-

meric string.

• For the Array parameter whose basic type is the eight primitive

data types (or their wrapper data types) in Java (such as int, Integer,

etc.) – we generate an Array variable with random primitive

values.

• For Android system-related objects (or the intermediate objects

in the calling object’s instantiation process), we use a heuristic

approach to obtain the corresponding constructors to create their

instances. If an object has multiple constructors, we select the

simplest one (with the least number of parameters) to achieve the

highest possibility of constructing a valid object.

I.5 Return Value Analysis. To support detecting compatibility

issues caused by return values (e.g., a given API may return A at

API level X and B at API level Y), we propose to output the return

value of the target API at the end of the test case. To achieve this,

JUnitTestGen adds a statement at the end of the test case to further

record the API’s return value.

I.6 API Usage Construction. After obtaining the caller in-

stance, the invocation statements along the call trace and the return

object, we can now recover the call sequence from program entry

to the target Android API by reversing the retrieved statements

step by step. Based on the results of API caller instance inference

along, JUnitTestGen will generate a test case containing the same

number and type of parameters as the API to be tested. For example,

as shown in Listing 5 at line 3, the generated test case contains five

parameters, in the same type and order of the API under testing.

1 //for supporting generic testing
2 @Test
3 public void testQueryDetailsForUid(int var1 , String var2 ,long

var3 , long var4 , int var5) throws Exception {
4 Context var6 = InstrumentationRegistry.getTargetContext ();
5 Object var7 = var6.getSystemService("netstats");
6 NetworkStatsManager var8 = (NetworkStatsManager) var7;
7 var8.queryDetailsForUid(var1 , var2 , var3 , var4 , var5);
8 }
9

10 //for supporting compatibility testing
11 @Test
12 public void testQueryDetailsForUid () throws Exception {
13 long var1 = System.currentTimeMillis ();
14

15 Context var2 = InstrumentationRegistry.getTargetContext ();
16 PackageManager var3 = var2.getPackageManager ();
17 String var4 = var2.getPackageName ();
18 ApplicationInfo var5 = var3.getApplicationInfo(var4 , 1);
19 int var6 = var5.uid;
20

21 NetworkStats var7 = testQueryDetailsForUid (0, "", 0L, var1 ,
var6);

22 // Output return value
23 out(var7);
24 }

Listing 5: Examples of the generated test cases for API queryDetailsForUid
(int networkType, String subscriberId, long startTime, long endTime, int uid).

Taking the results of the API parameter value inference step,

JUnitTestGen will generate another test case containing no parame-

ters (line 10 in Listing 5). This test case will directly call the former

test case with prepared parameter values. This test case is specifi-

cally designed to support API compatibility testing. The former test

case, on the contrary, is designed to serve a more general purpose.

With the help of fuzzing testing approaches (to generate possible

parameter values for the test case), we expect the former test case

could be leveraged to discover not only compatibility issues but

also design defects such as bugs and security issues. This trade-off

allows JUnitTestGen to generate test cases that are at least suitable

for identifying signature-based compatibility issues (e.g., a given

API is no longer available in a certain framework), although it may

not be effective enough to help identify semantic change involved

compatibility issues.

Please note that there are several special classes, such as Instru-
mentationRegistry, involved in the generated unit test cases. These

classes are part of the Android Testing Support Library provided

by Google for supporting instrumented unit tests. Compared to

traditional unit tests, also known as local unit tests which can run

on the JVM, instrumented unit tests require the Android system

to run (e.g., through physical Android devices or emulators). Since

this requires us to generate actual Android apps to run on Android

devices or emulators, instrumented tests are much slower than local

unit tests.

Nevertheless, we still choose to use instrumented tests to exam-

ine the compatibility of Android APIs. This is because instrumented

tests provide more fidelity than local unit tests, which we have

found is essential to reveal potential compatibility issues, especially

those that involve device-specific issues.
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I.7 Equivalent Test Case Elimination. Considering that the

constructed test cases could be equivalent (i.e., duplicated), it is

necessary to filter them out to save subsequent testing time and

resources. Here, based on the concept of semantic equivalence

defined in operational semantics [12], we consider that two test

cases are equivalent if they share the same API invocation sequence.

To this end, we first obtain the API invocation sequence for each

test case and then examine the discrepancy between any two of

them to check if 𝑂𝑎 = 𝑂𝑏 , where 𝑂𝑎 and 𝑂𝑏 are the lists of API

invocations in two different test cases. Based on this rule, we are

able to eliminate equivalent tests (i.e., the first test case is retained).

After this step, for the sake of simplicity, if there are still multiple

test cases retained for a given API, we will select the small-scale

one (with the least number of method invocations) for supporting

follow-up analyses.

3.2 App Compatibility Testing

Using the unit test cases generated by the first module, the second

module of JUnitTestGen leverages them to check if the correspond-

ing Android APIs will likely induce app compatibility issues. It first

assembles all the test cases into an Android app and then aggregates

their execution results against different devices running different

Android frameworks. We now briefly detail these two steps below.

II.1 Test APK Generation. As discussed earlier, we have to

resort to instrumented unit tests to examine Android APIs’ incom-

patibilities. This process essentially requires us to generate an An-

droid app (or APK) to be installed and executed on Android systems.

Fortunately, Google has provided such a mechanism to achieve this

purpose, i.e., supporting instrumented tests for a limited number

of Android APIs. In this work, we directly reuse this mechanism to

generate the test APK for all the unit tests automatically generated

by JUnitTestGen.

II.2 Test Results Aggregation.After the test APK is generated,

we can distribute it for execution on multiple devices. Since the test

APK contains only known test cases, it is quite straightforward to

execute it fully. The only challenge that lies in this step is to select

the right set of devices on which to execute the test cases to reveal

as many incompatible APIs as possible. Crowdsourced app testing

could be an approach to achieve this purpose.

After installing and executing the generated test APK onmultiple

devices, the last step is in aggregating the test results to highlight

potential compatibility issues in the app. Inspired by the experi-

mental setup of the work proposed by Cai et al. [4], we consider an

API as a potential incompatible case if 1) its corresponding test case

can successfully run on a nonempty set of devices while failing on

others; 2) its corresponding test case returns different values when

running on different SDKs.

4 EVALUATION

Our JUnitTestGen aims to generate unit test cases covering as many

Android APIs as possible, so as to allow the discovery of more API-

induced compatibility issues in apps. To evaluate if this goal has

been fulfilled, we propose to answer the following three research

questions.

RQ1 To what extent can JUnitTestGen generate executable unit

test cases for Android APIs?

va
lid

in
va

lid
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Figure 3: Distribution of the number of valid and invalid test cases per APK.

RQ2 How effective is JUnitTestGen in discovering API-induced

Compatibility Issues?

RQ3 How does JUnitTestGen compare with existing tools in de-

tecting compatibility issues?

4.1 Experimental Setup

To investigate the success rate of JUnitTestGen in producing valid

test cases, we randomly select 1,000 Android apps for each target

SDK version between 21 (i.e., Android 5.0) and 30 (i.e., Android

11.0
4
) fromAndroZoo to prepare the experimental dataset. Here, we

select 1,000 apps for each target SDK version because compatibility

issues mainly lie in the evolution of APIs on different Android

SDK versions [22]. Here, the criteria for app selection are based on

the targetSdkVersion, which is the most appropriate API level on

which the app is designed to run. Hence, the overall dataset for the

experiment contains 10,000 Android apps whose target API versions

are distributed equally across ten API levels. Our experiment runs

on a Linux server with Intel(R) Core(TM) i9-9920X CPU@ 3.50GHz

and 128GB RAM. The timeout setting for analyzing each app with

JUnitTestGen is 20 minutes. In this experiment, we generate the

test cases for all Android APIs that have been invoked in the apps.

However, users of JUnitTestGen could provide a customized list of

APIs to only generate test cases based on their interests.

4.2 RQ1-Effectiveness

Our first research question concerns the effectiveness of JUnitTest-

Gen in mining API usages from existing Android apps to generate

valid unit tests for Android APIs. In this work, we consider a test

case to be valid if (1) the generated code snippet can be successfully

compiled on all API levels and (2) the test case does not throw an

exception before the execution point of the API on all API levels.

The first condition ensures that the test case is syntactically correct.

The second condition makes sure that the API’s execution envi-

ronment is properly set up. In other words, the second condition

ensures that the exceptions we collected from valid test cases are

exceptions thrown by the API under testing, which is essential for

examining if the API will induce compatibility issues.

Result.Among the 10,000 randomly selected apps, JUnitTestGen

generates in total 1,032,182 test cases. After eliminating the equiv-

alent test cases, 66,499 of them are retained as distinct test cases,

w.r.t. 28,367 distinct Android APIs. For the sake of simplicity, we

select the small-scale test case (with the least number of invocation

sequences) for each API (i.e., 28,367 test cases) for further study. By

compiling and executing these 28,367 test cases, we further confirm

that 5,562 of them are invalid (i.e., 22,805 of them are valid), giving

a success rate of 80.4% in generating valid test cases. In addition,

4
The latest version at the time when we conducted this study.
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Figure 4: Distribution of time spent by JUnitTestGen to generate test cases per

APK.

our manual analysis on 100
5
randomly selected test cases confirm

that these test cases generated by JUnitTestGen are indeed valid.

Figure 3 summarizes the distribution of the number of valid and

invalid test cases generated per app. The median number of valid

and invalid test cases generated per app are 70 and 17, respectively,

while their average are 106.29 and 25.37, respectively. Like most

other state-of-the-art approaches, even though our static analysis

approach has limitations so that it cannot generate valid test cases

for every API, especially the complex ones, our approach is still

capable of generatingmore valid test cases than invalid ones.

This demonstrates the effectiveness of our approach in mining

Android API usages to generate API unit test cases.

We note that the success rate of generating valid test cases –

80.4% at the moment – is important but not crucial to our work.

Theoretically, as long as we increase the number of Android apps

considered for learning, we would likely be able to generate valid

test cases for the given API under testing. For the test cases that

are regarded as invalid, we further manually look into their root

causes. Our in-depth analysis reveals that the invalid cases are

mainly caused by the lack of prerequisites (e.g., resource files),

especially in UI-related APIs. For example, UI objects can hardly be

programmatically initialized without certain resource files.

We further look at the efficiency of JUnitTestGen by reporting its

time cost when applied to generate test cases. Figure 4 summarizes

the distribution of time consumed by JUnitTestGen per app. On

average, it takes 17.45 seconds to process an app. The median time

cost is 14 seconds. The fact that the time spent by JUnitTestGen to

process an Android app is quite small suggests that it is practical

to apply JUnitTestGen to analyze large-scale Android apps.

Answers to RQ 1. By learning from existing API usages, our
approach can automatically generate API unit test cases. Despite
various challenges posed by advanced Android programming
features, our static analysis approach can still achieve over 80%
of the success rate in generating valid test cases.

4.3 RQ2-Performance on Real-World

Applications

The ultimate goal of JUnitTestGen is to help better identify API

compatibility issues that occur during Android system evolution.

To this end, in this research question, we evaluate, based on the

generated valid unit test cases, to what extent can JUnitTestGen

help in identifying API-induced compatibility issues.

5
The sample size is determined based on a confidence level at 95% and a confidence

interval at 10(https://www.surveysystem.com/sscalc.htm).

We consider an Android API has a compatibility issue if the

execution results on different Android SDK versions are inconsis-

tent. More specifically, an API is considered to have a compatibility

issue if any of the following happens: (1) the corresponding test

case runs successfully on some Android SDK versions but fails (e.g.,

throws errors or exceptions) on others; or (2) the corresponding

test case throws different errors or exceptions on different Android

SDK versions (e.g., throws NoSuchMethodError on some versions,

while throws IllegalArgumentException on others); or (3) the return

values of a target API are non-identical on different SDK versions.

Result. Recall that JUnitTestGen successfully generates 22,805

distinct valid test cases covering 22,805 unique Android APIs, based

on the randomly selected 10,000 apps. In this work, these 22,805 test

cases are respectively executed on ten Android emulators running

API levels from 21 to 30.

By comparing the experimental results against the aforemen-

tioned three rules, we are able to locate 3,488 compatibility

issues covering 2,695 Android APIs. Note that some APIs may

involve more than one compatibility issue. To confirm whether

the APIs identified by JUnitTestGen indeed have compatibility is-

sues, we manually examined 100 randomly selected APIs reported

to have compatibility issues, 100 of them are confirmed to have

compatibility issues (i.e., true positive results). Here, we remind the

readers that all of the compatibility issues are actually identified

through dynamic analysis, which is expected to be highly accurate.

In the manual validation process, we manually examine the APIs’

implementation in Android framework source code across different

SDK versions and compare it with the release notes in the official

API documentation.

According to the root causes of the compatibility issues, we

further categorize them into the following types.

• Type 1: Signature-based compatibility issue. This type refers

to the incompatibility caused by adding new APIs, deprecating ex-

isting APIs, or changing existing APIs’ signatures, such as chang-

ing parameters or return types.

• Type 2: Semantics-based compatibility issue. This type refers

to the incompatibility caused by the same API (i.e., the signature

is not changed) behaving differently on different Android API lev-

els. Based on the APIs’ behaviours, semantic-based compatibility

issues are further breakdown into the following two sub-types.

1) Type 2.1 Semantics-based compatibility issue: Different

Errors: The APIs categorized into this type will throw exceptions

or errors (including app crashes) on devices running some SDK

versions but will not (either running successfully or throw differ-

ent exceptions/errors) when running on devices with other SDK

versions.

2) Type 2.2 Semantics-based compatibility issue: Different

Return Values: APIs of this type will not directly cause compati-

bility issues. Under the same experimental setting, these APIs will

return different values when running on different SDKs. However,

if the different return values are not specifically distinguished, the

subsequent code that uses these return values may behave differ-

ently on different devices, leading to also compatibility issues.

Among the 3,488 identified compatibility issues, 438 of them suf-

fer from signature-based issues, while 3,050 are caused by semantic

issues. Within the semantic-based compatibility issues, 946 of them

https://www.surveysystem.com/sscalc.htm
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are caused by different errors (Type 2.1), while the remaining 2,104

cases observe different return values (Type 2.2). Table 1 summarizes

the possible errors/exceptions that cause the signature/semantic

compatibility issues.

As expected, the most common error is no such method error,

which can be caused by (1) the API being deprecated and removed

from the framework, or (2) the API not yet introduced. Both reasons

are introduced by the evolution of the framework. As also revealed

by Li et al. [22], the fast evolution of the Android framework has

indeed introduced a lot of APIs that will likely induce compatibility

issues. Except for signature-based issues, which are relatively easy

to be statically identified (for example, by comparing the framework

codebase of different versions), our approach has also found 2,974

issues (over five times the number of Type 1 issues) involving

semantic changes of APIs, which are non-trivial to be identified

statically [26].

Table 1: Categories and statistics of the observed error/exception types asso-

ciated with compatibility issues.

Issue Type Errors/Exceptions Count

Signature

NoSuchMethodError 270

NoClassDefFoundError 163

NoSuchFieldError 5

Semantic

SecurityException 196

NullPointerException 189

RuntimeException 139

Resources$NotFoundException 113

IllegalArgumentException 67

NoSuchElementException 42

Crash 41

IllegalStateException 24

AndroidRuntimeException 23

IOException 15

ArrayIndexOutOfBoundsException 15

FileNotFoundException 12

PackageManager$NameNotFoundException 10

IndexOutOfBoundsException 10

ClassCastException 9

IllegalAccessError 9

ActivityNotFoundException 8

StringIndexOutOfBoundsException 5

UnsupportedOperationException 5

BadTokenException 3

CanceledException 3

ErrnoException 2

KeyChainException 2

SQLiteCantOpenDatabaseException 1

ParseException 1

StackOverflowError 1

NumberFormatException 1

Below, we elaborate on real-world compatibility issues for each

type of case study.

Case Study 1: Signature-basedCompatibility Issue.TheAPI

android.content.pm.LauncherApps#hasShortcutHostPermission has

been reported to contain a signature compatibility issue. The corre-

sponding test case(whose API usage is extracted from app ch.deletescape.
lawnchair.plah6) throws NoSuchMethodError on Android SDK ver-

sion 21 to 23 but can be successfully executed on Android SDK

version 24 to 30. This result suggests that the API was introduced

to the Android system since API level 24; therefore, it would cause

an error if the containing app runs on devices with Android SDK

version earlier than 24. However, according to the official Android

API documentation, this API was added in API level 25 [9], which

6
SHA-256:bf4e6e7fb594cd9db4b168a68f70157ad9c1fea0192e0bd5d9a39d1c38802639

Table 2: The comparison results between JUnitTestGen and Evosuite, CiD.

Tool # Type 1 # Type 2.1 # Type 2.2

JUnitTestGen 438 946 2,104

Evosuite 36 0 0

CiD 864 - -

is imprecise according to our result. We further checked the source

code of Android SDK 24 and confirmed its existence.

Case Study 2: Semantics-based compatibility issue caused

by different Exceptions.TheAPI android.app.NotificationManager
#notify has been reported to contain a semantic compatibility is-

sue. The corresponding test case(whose API usage is extracted from
app com.ag.dropit7) can be successfully executed on Android SDK

version 21 to 22 but throws IllegalArgumentException on Android

SDK version 23 to 30. We manually looked into its source code in

the Android codebase and found that the actual implementation of

this API has been changed since API level 23, which added a sanity

check of objectmSmallIcon. This explains why it throws IllegalArgu-
mentException when there is no valid small icon from the API level

after 23. Unfortunately, the official Android API documentation

does not reflect this change, which is misleading.

Case Study 3: Semantics-based compatibility issue caused

by different return values. The API (extracted from app cleaner.
clean.booster8) <android.text.format.Formatter: String formatShort-
FileSize(Context, long)> has a return value-induced compatibility

issue. The format of the return values vary on different API levels:

given the 1L(The long data type of value 1) as the second parameter,

the return value on API level 21 to 22 is “1.0B”, the return value

on API level 23 is “1.0 B” (with additional whitespace between 1.0

and B), while the return value on API level 24 to 30 is “1 B”. The
difference in return values can introduce potential issues if app

developers rely on the return value to implement future functions

without checking the running API level. For example, if app de-

velopers cast the return value from String to Byte afterwards, it

may throw an exception if users ignore the value discrepancy on

different API levels.

Answers to RQ 2. Our approach is useful in automatically
pinpointing API-induced compatibility issues. It also goes beyond
the state-of-the-art to be capable of detecting not only signature-
based compatibility issues but also more significant semantics-
based compatibility issues, i.e., the corresponding APIs’ signatures
are kept the same, while their semantics are altered.

4.4 RQ3-Comparison with State-of-the-art

Considering the main purpose of our work is generating test cases

for detecting compatibility issues, both generic test case generation

approaches, such as EvoSuite [8] and compatibility issues detection

tools, such as CiD [22], are selected as the baselines to evaluate

our approach. We evaluate the performance of JUnitTestGen, Evo-

Suite [8] and CiD [22] in detecting compatibility issues. Overall,

table 2 lists the number of compatibility issues found by JUnitTest-

Gen, EvoSuite and CiD.We then break down the comparative results

as follows:

7
SHA-256:30f7f72cebeffd7c6e26489198ee5ad244bd44b076dd9cb59865d8b0e82a86af

8
SHA-256:def5db37b3a68de62a0472e872700092060bdec3e875d4f476fcda52795bceb2



ASE ’22, October 10–14, 2022, Rochester, MI, USA Xiaoyu Sun, Xiao Chen, Yanjie Zhao, Pei Liu, John Grundy, and Li Li

Comparison with EvoSuite. To compare JUnitTestGen with

generic test case generation tools, we choose EvoSuite as the base-

line because EvoSuite has been considered the state-of-the-practice

test generation tool, which achieved the highest score at the SBST

2021 Tool Competition [46]. EvoSuite uses an evolutionary search

approach to generate and optimize test suites toward satisfying an

entire coverage criterion for Java classes. We remind the readers

that the objective of EvoSuite is to generate tests for classes, not

directly aiming at generating tests for APIs, which are the main

target when concerning compatibility issues happening in Android

apps. Since Evosuite can only generate tests based on source code,

we resort to AOSP from SDK 21 to 30 for Evosuite to generate

test cases. In total, Evosuite successfully generates 5,335 test cases.

We then execute all of them on SDK versions from 21 to 30 and

apply the same rules for determining compatibility issues as used

in JUnitTestGen.

As shown in Table 2, EvoSuite only finds 36 signature-based com-

patibility issues, and no semantic compatibility issues are identified.

We further manually check the test cases generated by EvoSuite

and observe that the false negatives (compared with JUnitTestGen)

are mainly caused by overlooking API dependency information. For

example, some APIs can only be invoked by system services, which

makes EvoSuite fail to generate valid tests without knowing the

usage of such APIs. Missing API dependency information makes

EvoSuite insufficient in pinpointing compatibility issues. In other

words, our comparison result reveals that mining API usage from

apps is beneficial for finding compatibility issues.

Comparison with CiD. To the best of our knowledge, no work

has been devoted to detecting compatibility issues in Android apps

dynamically. CiD [22] is the closest work to ours on detecting com-

patibility issues. CiDmodel and compare API signatures on different

SDK versions to detect compatibility issues. We thus evaluate the

performance of JUnitTestGen and CiD on the same dataset in RQ1,

which contains 10,000 Android apps.

In total, CiD detects 864 compatibility issues, as highlighted

in Table 2. Out of the 864 compatibility issues detected by CiD,

JUnitTestGen successfully identified 3,050 cases that have been

overlooked by CiD. We further randomly analyze 50 false negatives

of CiD and find that these issues are caused by the lack of semantics

analysis of the API implementation. Specifically, when analyzing

the evolution of APIs, CiD only examines the change of API signa-

tures (including name, type, and parameters); hence it is not capable

of detecting APIs that modify the implementation details but retain

the same signature. Also, we find other 51 false positives of CiD are

caused by imprecisely extracting the usage of the APIs, due to the

context-insensitive approach of CiD when building the conditional

call graph (CCG). On the other hand, we find that JUnitTestGen

miss 375 cases reported in CiD (i.e., false negatives in JUnitTest-

Gen). This is mainly caused by the sophisticated usage of some APIs,

which cannot easily be initialized programmatically (e.g. UI-related

APIs). For example, some APIs may involve the initialization of UI

objects that cannot be initialized programmatically. This makes it

very challenging to automatically generate unit test cases in some

circumstances. However, we argue that this limitation can be alle-

viated by manually adding prerequisite resources to create more

valid tests. Overall, the comparison results reveal the weakness

of static analysis approaches in detecting semantic compatibility

issues, i.e., yields false-positive results and is hard to detect issues

involving semantic changes in methods. It also demonstrates that

our approach can indeed find more diverse compatibility issues and

hence is promising to complement existing static approaches.

Answers to RQ 3. JUnitTestGen outperforms the state-of-the-
practice test generation tool, EvoSuite, and the state-of-the-art
static compatibility detection tool, CiD, in pinpointing compati-
bility issues caused by the fast evolution of Android APIs. This
experimental evidence shows the necessity to perform dynamic
testing to pinpoint compatibility issues in Android apps, and
it should take API usage dependencies into consideration when
generating test cases to fulfill the dynamic testing approach.

5 DISCUSSION

We now discuss the potential implications and limitations of this

work.

5.1 Implications

Better Supplementing Compatibility Analysis: JUnitTestGen

is able to automatically generate tests for Android APIs for detect-

ing both signature-based and semantics-based compatibility issues.

Previous static analysis works [22] overlooked the semantics-based

ones (i.e., APIs have the same signature but different implementa-

tion), which are more challenging to detect statically. Together with

the state-of-the-art static analysis-based methods, our proposed

method can provide a more comprehensive overview of compati-

bility issues in Android APIs. Therefore, we argue that there is a

need to invent hybrid approaches to take advantage of both static

analysis and dynamic analysis to conquer compatibility issues.

Beyond Compatibility Testing: JUnitTestGen is not only use-

ful in pinpointing compatibility issues in Android APIs but also

could be easily adopted to automatically generate test cases for

other purposes. For instance, in the cases that an API takes various

parameters as input, it can work with other testing approaches such

as fuzz testing to explore the API’s implementation dynamically.

It hence goes beyond compatibility testing and provides a more

general-purpose form of API testing.

Go Beyond Android. Our approach performs static program

analysis to learn and generate test cases from existing API usages,

which are not strongly attached to Android apps. We believe it

could be easily adapted to analyze other Java projects, e.g., to auto-

matically generate test cases for popular Java libraries. Although

our approach cannot be directly applied to analyze projects written

in other programming languages than Java, we believe the idea

and methodology proposed in this paper could still work. We plan

to explore these research directions in our future work. We also

encourage our fellow researchers to explore this direction further.

5.2 Limitations

The main limitation of JUnitTestGen lies in its backward data-flow

analysis when inferring API caller instance and API parameter

values. Indeed, as already known in the community, it is non-trivial

to implement a sound data-flow analysis. Other researchers often

accept trade-offs to obtain relatively good results, and this is the

same in our case. When the variables to be backwardly retrieved are
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complex, e.g., involving constructing various intermediate objects,

JUnitTestGen rely on their simplest constructor to initialize the

objects to generate a valid test case. Unfortunately, some of the

constructors are too complex to initialize, leading to invalid test

cases. Some other APIs may involve the initialization of UI objects

that cannot be initialized programmatically (hence random values

are leveraged to handle such cases). This makes it very challenging

to automatically generate unit test cases in all circumstances.

Second, currently, our JUnitTestGen data-flow analysis is agnos-

tic to some advanced programming features, such as reflective and

native calls. This may further impact the soundness of our approach.

As part of our future work, we plan to integrate approaches de-

veloped by our fellow researchers to mitigate those long-standing

challenges (e.g., applying DroidRA [20] to mitigate the impact of

reflective calls on our static analysis approach.).

Third, the capability of our approach is limited by the number

of Android APIs leveraged by real-world apps. Our approach can-

not generate unit test cases for such APIs that have never been

accessed by real-world Android apps. Nevertheless, we argue that

this impact is not significant as the APIs that have never been used

by app developers should have a low priority to be tested than the

others that are frequently accessed. Compared to the latter case,

the former ones will not cause problems such as crashes to Android

apps. Subsequently, it will not impact the user experience and the

reputation of the app developers.

Fourth, considering the generated parameter values are inferred

from real-world apps, which might not reveal all possible semantic-

related compatibility issues. In other words, the capability of our

approach is limited by the values of parameters leveraged by real-

world apps. As for our future work, we plan to integrate fuzzing

techniques [36, 42, 52] into our approach so as to trigger as many

compatibility issues as possible.

Fifth, our definition of compatibility issue is based on the obser-

vation that the same test case throws different errors or exceptions

on different Android SDK versions. However, this might introduce

false negatives because the tests that throw the same exception

across all SDK versions are ignored. Nevertheless, we argue that this

type of false-negative requires further human validation and thus

cannot be determined automatically. In addition, related works [4]

also have not considered this situation.

Sixth, the tests generated by our approach may suffer from flaky

tests. Indeed, non-deterministic return values may appear under

different execution environments, leading to false positives. How-

ever, it is a non-trivial task to tackle flaky tests [56] because the

root causes of flaky tests can be quite sophisticated. Nevertheless,

as part of our future work, we plan to integrate other approaches

developed by our fellow researchers to mitigate this long-standing

challenge, e.g., by applying FlakeScanner [6] to mitigate the impact

of flaky tests on our approach.

Seventh, the types of compatibility issues detected in our ap-

proach are the ones that are related to exceptions or return values.

However, this will certainly not be complete to cover all possible

cases. For example, the value of variables in the same API may

evolve on different SDK versions. Indeed, as summarised by Liu et

al. [27], apart from compatibility issues raised by API signature/se-

mantic changes and return value differences, there exist other types

of compatibility issues, such as those introduced by field evolution,

callback method changes, etc. Nevertheless, as also highlighted

by Liu et al. [27], the number of such compatibility issues is quite

limited, suggesting that the impact of such cases on our approach

may not be significant.

Eighth, the main objective of the generated test cases in this

work is to pinpoint compatibility issues. The quality of these test

cases (e.g., readability, overlaps, and maintenance) has hence not

been considered. We therefore commit to further investigating the

quality of the generated test cases in our future work.

Last but not least, our approach relies on existing code examples

to generate test cases. However, the selected code examples may

contain sub-optimal or erroneous API usages. Nevertheless, we

argue that this impact is not significant as we extract code exam-

ples from real-world Android apps from Google Play, for which

thousands of users might have used (hence tested) them in practice.

6 RELATEDWORK

Android API evolution is a critical issue in software maintenance [5,

14, 16, 18, 19, 23, 28, 29, 32, 34, 43, 55]. McDonnell et al. [30] have

shown that the Android system updates 115 APIs per month on

average, while app developers usually adopt the new APIs much

more slower. The slow adoption of API updates may raise various

issues, such as security and compatibility. An empirical study on

StackOverflow conducted by Linares-Vasquez et al. [25] suggests

that API updates would trigger more discussions, especially if APIs

are removed from the Android system. They also revealed that users

are in more favour of apps that use less fault and change-prone

APIs [2, 24], as these apps would likely introduce fewer failures,

crashes and other bugs.

Android developers have long been suffered from compatibil-

ity issues due to the fast-evolving and fragmented nature of the

Android ecosystem [13, 21, 33, 50, 54]. Researchers have proposed

several solutions for detecting compatibility issues of Android APIs.

Wei et al. [47, 49] conducted an empirical study to investigate

fragmentation-induced API compatibility issues and proposed a

tool named FicFinder to detect such APIs. FicFinder identifies APIs

with compatibility issues based on heuristic rules manually derived

from a limited number of Android apps, which is expected to intro-

duce high false negatives (i.e., missing undiscovered compatibility

issues). Thereafter, several works have been proposed to leverage

data-driven techniques that automatically mine compatibility issues

from various sources such as Android code base and real-world

apps. Li et al. proposed a tool named CiD to detect potential com-

patibility issues by mining the history of the Android framework

source code. CiD identifies Android APIs’ lifetimes and finds if an

app’s declared supported versions conflict with its used APIs.

Comparable to our method, several works have been proposed

to mine API usage from real-world apps. Scalabrino et al. [39, 40]

considered the APIs wrapped in a version check condition (e.g., if
(Build.VERSION.SDK_INT >= 21)) to potentially have compatibility

issues and developed a tool named ACRYL to extract such APIs

from real-world apps. However, ACRYL can only detect APIs whose

compatibility issue is already known by the developers (i.e., they

are enclosed in the version check conditions by the developers),

while our method is capable of detecting zero-day compatibility

issues that the app developers are not yet aware of, or even Google
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itself. Other generic test generation tools, such as EvoSuite and

Randoop[35], are able to generate tests for Java classes. However,

these tools do not directly aim at generating tests for APIs and they

have been demonstrated as insufficient in pinpointing compatibility

issues because of the lack of API usage knowledge.

7 CONCLUSION

In this work, we presented a novel prototype tool, JUnitTestGen,

that mines existing Android API usages to generate API-focused

unit test cases automatically for pinpointing potential compatibility

issues caused by the fast evolution of the Android framework. Ex-

perimental results on thousands of real-world Android apps show

that (1) JUnitTestGen is capable of automatically generating valid

unit test cases for Android APIs with an 80.4% success rate; (2) the

automatically generated test cases are useful for pinpointing API-

induced compatibility issues, including not only signature-based

but also semantics-based compatibility issues; and (3) JUnitTestGen

outperforms the state-of-the-practice test generation tool, EvoSuite,

and the state-of-the-art static compatibility detection tool, CiD, in

pinpointing compatibility issues.
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