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ABSTRACT
Jupyter notebooks—documents that contain live code, equations,
visualizations, and narrative text—now are among the most popu-
lar means to compute, present, discuss and disseminate scientific
findings. In principle, Jupyter notebooks should easily allow to re-
produce and extend scientific computations and their findings; but
in practice, this is not the case. The individual code cells in Jupyter
notebooks can be executed in any order, with identifier usages pre-
ceding their definitions and results preceding their computations.
In a sample of 936 published notebooks that would be executable
in principle, we found that 73% of them would not be reproducible
with straightforward approaches, requiring humans to infer (and
often guess) the order in which the authors created the cells.

In this paper, we present an approach to (1) automatically satisfy
dependencies between code cells to reconstruct possible execution
orders of the cells; and (2) instrument code cells to mitigate the
impact of non-reproducible statements (i.e., random functions) in
Jupyter notebooks. Our Osiris prototype takes a notebook as input
and outputs the possible execution schemes that reproduce the
exact notebook results. In our sample, Osiris was able to reconstruct
such schemes for 82.23% of all executable notebooks, which has
more than three times better than the state-of-the-art; the resulting
reordered code is valid program code and thus available for further
testing and analysis.
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1 INTRODUCTION
Jupyter notebooks—documents that contain live code, equations,
visualizations, and narrative text—have become the most widely
used system for interactive literate programming [49]. They are
being used to compute, present, discuss and disseminate scientific
findings; and have emerged as the de facto standard for data sci-
entists to easily record and understand data analyses [32, 51]. In
September 2018, more than 2.5 million Jupyter repositories were
stored on GitHub—10 times more than in 2015 [33].

One of the promises of Jupyter notebooks is that they should
make scientific findings reproducible—that is, readers should be
able to reconstruct and assess the path from raw source data to
abstractions and findings, as presented in the notebook [18, 36].
Unfortunately, this is rarely the case. Published notebooks suffer
from lack of data, from lack of modules, from lack of metadata
indicating tool and library versions, or bad packaging [6]. But even
if all of this is given, only a small fraction of notebooks can be
faithfully reproduced.

Why is that so? A central feature of Jupyter notebooks is that the
individual cells they aremade of can be executed interactively in any
order. The language interpreter (typically Python) will execute the
code in the cell as soon as a user “runs” it. While Jupyter provides
a “run all cells” feature that runs all cells starting from the topmost
one, authors do not need to ensure that this results in meaningful
execution order. It is not uncommon that notebooks output and
present a result at the very beginning, followed by the code that
actually produces the result, making the notebook more akin to
an article than a conventional program. The interactive nature of
notebooks makes all of this possible.

Jupyter notebooks assign a monotonically increasing number to
each cell as it is executed; readers may thus find that a cell at the top
may have been executed after a cell further downwards. However,
even with this information, notebooks are hard to reproduce. In a
2019 study by Pimentel et al. [33], with a straightforward setting,
less than 25% of valid notebooks (with defined Python versions and
recorded execution order) could be executed without errors; and
less than 5% of them would actually produce the same results.

Given how many scientific results now are being produced using
Jupyter notebooks [37], it is time for the program analysis and test-
ing community to make their best approaches available to notebook
authors. But with 75% of valid notebooks not even running with-
out errors, this means that the majority of notebooks are actually
inaccessible for any automated testing and analysis tool.

https://doi.org/10.1145/3324884.3416585
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In this paper, we present an automatic approach to make Jupyter
notebooks reproducible, and in consequence, available for analysis
and testing. Our approach automatically identifies and satisfies
dependencies between Jupyter notebook cells, reconstructing the
possible execution orders that reproduce the exact notebook results
without errors. The resulting ordered code can thus be subject to
testing and analysis (e.g., enabling continuous regression testing
for notebook contributors to ensure the reproducibility of their
notebooks); our approach thus forms a necessary prerequisite for
further analysis of notebook code. If a given notebook cannot be
reproduced, our Osiris prototype provides detailed debugging mes-
sages explaining (to notebook users) why reproducibility is not
achievable.

This paper is organized as follows. After detailing the problem
(cf. Section 2), we make the following contributions:
A study on the causes of non-reproducibility. We conduct a

large-scale reproducibility study about Jupyter notebooks
and manually summarise the root causes making notebooks
non-executable and non-reproducible (cf. Section 3).

Making notebooks reproducible again. We design and imple-
ment a prototype tool called Osiris (cf. Section 4), which
combines static analysis and dynamic testing to explore the
possibilities of reproducing given notebooks. The resulting
reordered code faithfully reproduces the results in the note-
book; since it is valid program code, it is available for further
testing and analysis. Since different users may require dif-
ferent amounts of reproducibility (e.g. some users may wish
to reproduce all results as stated, others may only wish to
re-run the notebook, possibly with different data), Osiris
supports a number of matching and execution strategies to
achieve the best result.

Automatic diagnosis for non-reproducible notebooks. In case
a notebook cannot be reproduced, Osiris features a targeted
debugging module to infer and report failure causes.

Our approach is effective: In our sample, Osiris was able to
reproduce 82.23% of executable notebooks (cf. Section 5), which is
a large improvement over the 16.7% listed in state of the art [33].
After discussing the potential implication and limitations of our
approach (cf. Section 6), we depict related work (cf. Section 7) and
close this paper with conclusion (cf. Section 8).

2 MOTIVATION
Let us start with some background and terminology.

Repository

Notebook1 Notebook2

main.ipynbutils.py cat.jpg

images

Figure 1: The file structure of a simple Jupyter notebook
repository.

Jupyter is used to refer to the Jupyter application, which pro-
vides the computational environment to allow the execution of
notebooks. Notebook (or Jupyter Notebook) refers to the literate
programming document, which contains the actual content (e.g.,
main.ipynb in Figure 1) written by the notebook authors. Similar
to the work of Pimentel et al. [33], Notebook and Jupyter Notebook
will be interchangeably used in this paper. Independent Python
Code will be used to refer to Python code that is not directly pre-
sented in a notebook but might be accessed by the notebook code.
For example, the code shown in utils.py (cf. Figure 1) is regarded
as independent python code. Notebook Repository refers to the
project where the notebooks are written and managed. A note-
book repository can contain multiple notebooks. For example, the
repository shown in Figure 1 contains two Jupyter notebooks (i.e.,
Notebook1 and Notebook2).

Jupyter notebooks are sequences of cells, essentially Code Cells
and Text Cells (cf. Figure 2). Code cells contain executable (Python)
source code to generate results, while text cells contain text that
enables programmers to state rationales behind the code logic; this
text includesMarkdown andHTML for rich text, images, formatting,
and more. These combinations of these two cell types allows for
literate programming [19], implemented by Jupyter in an interactive
computational notebook environment. This environment allows parts
of a notebook to be executed with immediate results, including
formatted texts and visual graphs.

import random
from IPython.display import Image
a=random.randint(5, 50)
print (a)

In [1]

Image (‘../images/cats.jpg’)

10

a += b
print (a)

In [5]

110

Execution
Counter

Code
Cell

This is an example of Jupyter 
notebook

Markdown
Cell

Output

C1

C2

C3

Code
Cell Index

b = 20
a = a + b 
print (a)

b += 10

30

C5

C4In [8]

In [7]

In [2]

Figure 2: Jupyter notebook example.
Figure 2 illustrates a simple example of a notebook. It contains

one (Markdown) text cell and five (Python) code cells. All the code
cells have been executed as indicated by the execution mark (e.g.,
“In [1]”) shown in front of the code cells. The execution mark tells
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not only the information that the code cell is executed but also
the order when the cell is executed (e.g., “In [5]” shows that the
corresponding code cell is the fifth executed cell). The number
of the execution mark is also known as the execution counter of
the code cell. The output of a code cell, shown right under it, will
always reflect the results of the latest execution (i.e., aligning with
the execution counter).

It should be noted that a code cell can be either non-executed
or executed in a given notebook. For non-executed cells, there will
be no execution counters and outputs. Conversely, for executed
cells, both execution counters and outputs (if any) will be generated
for them. Moreover, the code cells can be executed by the user in
any order and each of the cells can be executed multiple times, as
long as the execution counter is respected. When skips of execution
counters exist in a notebook, the actual execution order of the note-
book cells becomes non-trivial to reproduce (as the counter records
only the last execution). Subsequently, the skips make it difficult to
automatically reproduce the results of the original notebook.

As an example, consider the notebook shown in Figure 2, in
which three execution counter skips (i.e., 3, 4, and 6) are intro-
duced. The notebook cannot be reproduced by simply following
the top-down sequence of the code cells as well as the sequence
of execution counters. For both cases1, the reproducing process
will fail at C4, where the output will be 90 rather than 110.2 Conse-
quently, we see that (1) Reproducing notebook executions can be
a challenge; (2) There is a need for approaches that support users
in reproducing notebook results; and (3) If a notebook cannot be
reproduced automatically, there should be means to support users
to do so manually.

3 REPRODUCIBILITY STUDY
To understand the nature and extent of the reproducibility problem,
we first conducted a large-scale reproducibility study, eventually
guiding the design of our automated approaches.

3.1 Dataset Collection
How many Jupyter Notebooks are non-reproducible, and why?
To answer this question, we apply the approach introduced by
Pimentel et al. [33], collecting a dataset of notebooks from Github.
Specifically, we have randomly cloned 10,000 Git repositories that
have a file with “Jupyter Notebook” as identified language and
have Python as the declared programming language. Among the
10,000 Git repositories, we further retrieve 10,000 notebooks for
experiments and evaluations.3

Based on the dataset, we first look at the Python versions targeted
by the notebooks. Among the 10,000 notebooks, 93% of notebooks
specify detailed Python version requirements. The top-5 targeted
versions are 2.7 (34.3%), 3.6 (31.4$), 3.5 (23.6%), 3.4 (3.4%), 3.7 (0.3%).
The other 7% provide only vague information (such as Python3,
Python [Root]).

1Let us assume at this point that the output of C1 is correct (i.e., the random function
always returns 10).
2The correct execution sequence would be C1, C2, C4, C4, C5, C3, C3, C4.
3We select one notebook from each repository to avoid potential bias, where notebooks
from the same repository may share similar problems for execution or reproducing.
For such repositories that contain multiple notebooks, we simply choose the first one
(by directory ordering) to form the dataset.
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Figure 3: Distribution of the number of cells (left) and the
maximum number of original execution count(right) in the
selected notebooks.

Figure 3 further presents the distribution of the number of cells
and the maximum execution counter among the selected notebooks.
Themedian andmean numbers are 14 and 20 for the number of cells;
and 34 and 74 for the maximum execution counter, respectively.
The fact that half of the notebooks have more than 15 code cells
(executed more than 35 times) shows that the selected notebooks
are actually “serious” notebooks suitable for this study.

3.2 Execution Environment Setup
To determine whether a notebook is reproducible, we need an
execution environment for automated Python code execution.4 Un-
fortunately, because of the infamous evolution of Python platforms
(e.g., Python 2 and Python 3 are not compatible with each other), it
is non-trivial to properly set up the execution environment.

As an example, the incompatibility of Python versions forces
Python library contributors to maintain different versions of library
modules (e.g., Numpy or Matplotlib) that are often imported by
Jupyter notebooks. Specifically, a given notebook may import a
large number of library modules, which per se also import many
other library modules. It is hence non-trivial to know the neces-
sary library modules beforehand when preparing the execution
environment.

To produce consistent environments, we make use of Conda, an
open-source library management system that supports automated
library installation and updating [11]. Conda also implements an
environment manager that allows different execution environments
(such as Python 2 and Python 3) to be prepared and configured in the
same systemwithout involving conflicts between them. In this work,
we set up four Conda virtual environments respectively for the top-
5 leveraged major Python versions (except 2.7) discussed in the
previous section, resulting in four pre-constructed environments
for Python versions from 3.4 to 3.7.5 For each of the four major
Python versions, we install all the standard packages integrated into
Conda by default (i.e., the Anaconda repository [2]), which leads to
over 200 library packages included in the execution environment.

4In this work, we focus on Python-based Jupyter notebooks only.
5We decide not to pre-construct the environment for Python 2.7 as this version is now
officially abandoned [35].
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Table 1: Executable and reproducible notebooks. The execu-
tion is done based on the order of cells’ execution counters.

Python Notebooks Executable Reproducible
3.4 306 71(23.20%) 16(22.54%)
3.5 2,161 330(15.27%) 90(27.27%)
3.6 2,902 528(18.19%) 151(28.60%)
3.7 24 7(29.17%) 0(0.00%)
Total 5393 936(17.36%) 257(27.46%)

3.3 Experimental Study
Now that we have execution environments, we can execute all the
notebooks in a suitable environment. Again following Pimentel
et al. [33], we run the notebooks through the recorded execution
counter of their code cells. For instance, regarding the notebook
shown in Figure 2, the code cells will be executed via the following
order: C1 → C2 → C5 → C3 → C4.

Because only four Python versions (i.e., 3.4–3.7) are configured
in the execution environment at the moment, 4,130 out of the
10,000 notebooks (e.g., with Python 2.7 or without explicitly men-
tioning the depending version) are directly excluded from the execu-
tion. Among 5,870 notebooks, we further filtered out 477 notebooks
that contain no execution records. For the remaining 5,393 note-
books, Table 1 summarizes the execution and reproducible results.
The results are concerning. To start, only 17.36% of notebooks can be
fully executed without error. Even worse, among the 936 executed
notebooks, only 27.46% of them can be exactly reproduced. These
results is more or less in line with the results reported by Pimentel
et al. [33]—and still surprising, as we would have anticipated that
the execution/reproducible rate would be high as Jupyter notebooks
are likely used for education [7, 29].

3.4 Root Causes of Non-Reproducibility
Let us now explore the reasons (root causes) why the majority of
notebooks (i.e., 679 = 936-257) cannot be executed or reproduced.

In this work, we summarize the root causes in two types: (1)
Jupyter notebooks cannot be fully executed and (2) Jupyter note-
books can be fully executed but cannot reproduce the same results
as of the original version. Recall that the objective of this work is
to restore the reproducibility of notebooks. We will hence mainly
focus on the root causes of the latter.

For the case where given notebooks can be fully executed but the
results cannot be reproduced, our manual observation has identified
the following reasons that may lead to different execution results
compared to that of the original execution. We now summarize
the representative ones, together with their absolute and relative
prevalence.

R1: Randomness (276/679 = 40.6%).Many scientific comput-
ing programs require random functions, e.g. for sampling from
Gaussian distributions or data shuffling. They produce different
results after each execution (if no seed is given), making it hard to
determine if the results can be reproduced. In our dataset, around
41% (276 out of 679) of non-reproducible notebooks contain random
functions.

R2: Time and Date (87/679 = 12.8%). Time functions are re-
currently used by notebook authors (roughly 13% of notebooks in
our non-reproducible set) to achieve some specific functions such
as evaluating time efficiency, logging for SQL operations, etc. Since
time changes continuously, the outputs of the time function also
vary every time, making it hard to ascertain the reproducibility of
the code.

R3: Plots (352/679 = 51.8%). We see a considerable number
of notebooks that cannot be reproduced because of differences in
plotted images. Indeed, in some cases, images are generated based
on input data or random numbers that cannot be ensured to remain
the same each time when the notebooks are executed. Additionally,
the running environment can also impact plotting results. Given
the same inputs, if different library versions are used, the plot-
ted images could also be different (because of API improvements6
or change of default parameter values).7 Furthermore, when the
matplotlib module is not properly invoked, the image may not be
properly displayed. Instead, there will be some warning texts re-
lated to Python’s magic functions (e.g.,[<matplotlib.lines.Line2D at
0x7f24b114c3c8>] that could be different from time to time. Among
the 352 image-related non-reproducible notebooks, around 10% of
them are caused by incorrect usage of matplotlib.

R4: External Inputs (18/679 = 2.7%). Jupyter notebooks may
rely on external inputs (data fetched from web servers such as web
crawler demonstration) to execute. However, the external inputs are
subject to change (such as URL decay [50]), causing inconsistencies
between the reproduced results and the recorded original results.

R5: Floats (21/679 = 3.1%). In notebooks, floating point num-
bers may be printed differently depending on the running machines,
or the targeted Python versions. Therefore, the reproduced results
(relevant to floating point numbers) might be different from the
original ones.

R6: Container Traversal (29/679 = 4.3%). In Python, the order
in which sets and dictionaries are traversed is not fixed. Hence, this
order may differ across execution environments, causing differing
cell outputs. In our non-reproducible set, 4% of notebooks show
this root cause.

R7: Execution Environment (181/679 = 26.7%). Notebooks
may access the execution environment information (e.g., number of
CPUs, Python package versions, the memory location of variables,
etc.) that is usually specific to each setting and hence is different
from one another. Moreover, in different execution environments,
the same datamight be printed in different formats. For example, the
number 1 might be printed as 1.0. The matrix (i.e., two-dimensional
array) might be printed with different spaces between the elements.
All these differences will impact the reproducibility of notebooks.

Inappropriate execution order of cells.Apart from the errors
raised by execution environments, we also observe a significant
number of notebooks that fail to be executed due to poor code qual-
ity, e.g., containing name errors (undefined variables), key error (key
not found in dictionaries), syntax errors, etc. We found this amount
of errors surprising, as we would have expected code in notebooks
to be of good quality. Indeed, the notebooks are collected from

6https://matplotlib.org/users/dflt_style_changes.html
7https://bit.ly/2QNO3P9
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publicly released repositories, for which most of them are related
to educational materials for teaching inexperienced developers.

This fact hence motivates us to go one step deeper to check
the reasons behind this kind of errors. Our manual observation
reveals that these errors are yielded because the execution order of
cells is inappropriate (e.g., a variable is used before its definition).
Since this problem is not caused by the execution environment,
we decide to consider it as another root cause making notebooks
non-reproducible. This root cause refers to problems that cause
notebooks to be non-reproducible because the code cells are not
executed in the intended order. Ideally, if the appropriate execution
order of code cells is respected, the notebooks, falling into this
category, would become reproducible.

In summary, all of these findings will impact any approach that
attempts to reproduce, test, or analyze Jupyter notebooks. Indeed,
even for executable notebooks, it may not always be possible to
reproduce the exact results as originally obtained. In this work, we
thus attempt to resolve all the aforementioned non-reproducible
root causes (R1–R7 and Inappropriate execution order), aiming to
design an automated approach for restoring the reproducibility of
notebooks as much as possible.

4 OSIRIS
Now that we have identified causes for non-reproducibility, let us
fix them. We have implemented a tool called Osiris, which adopts
different strategies to resolve the aforementioned root causes of
non-reproducibility, attempting to maximize the execution and
reproducibility of notebooks. Osiris takes as input a Jupyter note-
book and outputs the possible execution schemes that reproduce
the exact notebook results. If Osiris fails to reproduce the note-
book, it will highlight the location of failures (i.e., non-reproducible
parts) that could be useful for understanding the root causes of
non-reproducibility of Jupyter notebooks.

Figure 4 illustrates the working process of Osiris, which is mainly
made up of four modules: (1) Cell Code Parsing, (2) Cell Depen-
dency Graph Construction, (3) Strategy-based Reproducing, and
(4) Targeted failure debugging. We now detail these four steps,
respectively.

Cell Dependency 
Graph Construction

Strategy-based 
Reproducing

Targeted Failure 
Debugging

Jupyter
Notebook

Execution
Reports

Cell Code Parsing

Figure 4: The working process of Osiris.

4.1 Parsing Cell Code
To analyze the code in Jupyter Notebook cells, we first have to parse
it. For this purpose, Osiris makes use of built-in Python parsers,
transforming Python code into abstract syntax trees (ASTs). Special
care is taken to handle and resolve import statements as well as

translating syntactic sugar statements8 and lambda statements9 into
analyzable normal forms.

4.2 Resolving Cell Dependencies
The second module of Osiris aims at identifying and characterizing
dependencies between notebook cells. By statically parsing the code
cells, Osiris builds the so-called cell dependency graph (CDG) to
model the relationships.

Technically speaking, a code cells depends on the set of variables,
functions, classes, modules used, defined, or imported in the code
snippets. A given code cell can be executed as long as all its used
variables are defined in the Jupyter execution environment. In
this work, we leverage the classical producer-consumer model to
represent the define-use relationship of variables in the code cells
of a notebook.

Given the parsed abstract syntax tree (AST) of a code cell C , as
illustrated in Figure 5, we calculate the stored and loaded variables
(including method calls and class initialization). The stored vari-
ables, defined functions/classes, imported modules are put into a
producer set while loaded variables/functions/calls are added to a
consumer set. Note that, within a code cell, if a variable is produced
after being consumed (e.g., a in C2), this variable will be excluded
from the producer set. The calls of the built-in functions (e.g., hash(),
ascii()) will not be added into consumer set [24]. Hence, the final
producer and consumer sets ofC2 are P(C2) =

{
b
}
,C(C2) =

{
a,b

}
.

b = 20
a = a + b 
print (a)

Module

Assign Assign Print

Name
b

Num
20

Name
a

BinOp

Name
a

Add Name
b

Name
a

P(C2) = {b}
C(C2) = {a, b}

Code Cell C2 AST Producer/Consumer Sets

Figure 5: Generating producer/consumer sets.

After the producer/consumer sets are calculated for every code
cell, Osiris then leverages this knowledge to construct a CDG for
the notebook. In the CDG, every code cell becomes a node. Edges
will be added if given two code cells (or nodes, say Ci and Cj )
have no conflicts between each other. Concretely, an edge Cj →

Ci can be added as long as the following constraint is respected:
C(Cj ) ⊂ P(Cj ) ∪ P ′(Ci ), where P ′(Ci ) is the accumulated producer
set after Ci is executed (or reached from a root node in the CDG).
Consequently, after the execution of Cj , P ′(Cj ) = P(Cj ) ∪ P ′(Ci )
(i.e., the produced set is the combination of the newly produced
variables and all the previously produced ones.).

It is worth mentioning that a given node in a CDG can be reached
from the root node via multiple paths. Hence, the accumulated
producer set may not be unique. Take the motivating notebook
(cf. Figure 2) as an example, as demonstrated in Figure 6(a), C4 can
be reached from both C2 and C3.Subsequently, the accumulated
producer set P ′(C4) could be P(C4) ∪ P ′(C2) or P(C4) ∪ P ′(C3).

8Syntactic sugar statements (e.g.,i += 5, a *= 5) are designed to make things easier to
read or express.
9Lambda statements are usually used to concisely define functions. For example, the
following simple lambda statement x = lambda a : a + 10 actually defines a function
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C1

C3

C4

C2

P(C3) = {}
C(C3) = {b}

P(C4) = {}
C(C4) = {a, b}

P(C1) = {random, Image, a}
C(C1) = {a}

P(C2) = {b}
C(C2) = {a, b}

C(C4) < P(C4) U P’(C3)

C(C4) < P(C4) U P’(C2)

(a) Example of multiple paths

C1

C2

C2

C4

C5C4C3

C5

C4

C3 C4C4

C3

C5 C3C3

C3C5C5

C5

C4 C3C4

S1 S2 S3 S4 S8S7S6S5

(b) Full paths

Figure 6: The possible execution orders of code cells w.r.t. producer/consumer constraints. The left sub-figure presents a sim-
plified example of multiple paths while the right sub-figure illustrates all the possible execution paths for the motivating
example shown in Figure 2.

4.3 Strategy-based Reproducing
As discussed in Section 1, we assume that Osiris users may have
different expectations and requirements regarding reproducibility.
Osiris thus supports two types of strategies to be configured: (1)
match strategy and (2) execution strategy. We now detail these two
types respectively.

4.3.1 Match Strategy. Wehave integrated threematch strategies
into Osiris:
Strong Match (Stage 1). The reproduced results should exactly

match the results yielded by the original notebook. This
matching strategy has been used in our preliminary repro-
ducibility study as well as in the empirical study of Pimentel
et al. [33]. This matching strategy is needed by users who
want to exactly reproduce all results; we consider it as the
baseline for reproducing Jupyter notebooks.

Weak Match (Stage 2). The reproduced results are the samewhen
repeating the execution in the same environment but may
not match exactly to that of the original notebook. This
matching strategy targets users who are more interested in
reusing and re-executing the code rather than reproducing
the exact results.
With this matching strategy, most of the non-reproducible
root causes categorized in R4–R7 are expected to be miti-
gated. Indeed, let us take R4 as an example, a given note-
book dedicated to analyzing a Github project will be updated
weekly. Since the Github project is continuously updated,
the analyzing results will be different occasionally. However,
if we launch the notebook twice (with a short time interval)
in the same environment, the analyzing results should be
identical.

Best-effort Match (Stage 3). For code cells that cannot be weakly
matched (e.g., R1 − R3), Osiris will go one step deeper to ex-
plore alternative means to reproduce the code cells, aim-
ing to achieve weakly match with special consideration

named x . When statically parsing this statement, it should be interpreted as def x(a):
return a+10;

(i.e., best-effort match). In particular, Osiris leverages a code
instrumentation-based approach to achieve the aforemen-
tioned objective. Given a code cell, Osiris attempts to trans-
form it into a semantically equivalent version. If the new
version can be weakly matched, we consider the original
code cells can be matched with best-effort. Again, this strat-
egy targets users who want to reuse the notebook or parts
of its code.

Osiris has three “antidotes” to achieve best-effort matches:
(1) Regarding randomness, we attempt to configure a seed

before the random functions being called. As illustrated in
Listing 1, random functions may be used by various library
modules, which need to be addressed separately.

(2) For time/date functions, we select the “time-freeze” tactic
to mock the time-related modules of Python [13]. Within
this tactic, all the functions relying on the current timestamp
such as time.time() will return constant values.

(3) (As for plots involving the matplotlib library, we force the
notebook to directly display the image (to avoid the output of
memory addresses) by explicitly inserting a magic function
(i.e., %matplotlib inline) at the beginning of the notebook.

1 # For the random module of Python
2 random.seed (100)
3
4 # For the random module of numpy , sklearn and scipy
5 numpy.random.seed (100)
6
7 # For time functions
8 from freezegun import freeze_time
9 freezer = freeze_time("2019 -01 -01 00:00:00")
10 freezer.start()
11
12 # For matplotlib images
13 %maplotlib inline

Listing 1: Sample solutions for best-effort match.

4.3.2 Execution Strategy. The second type of strategies that can
be configured in Osiris is related to the execution of the notebook.
This strategy type allows users to specify how do they want to
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execute the code cells in a given notebook. So far, Osiris has been
equipped with three execution strategies.
Original Execution Counter (OEC). In this strategy, the code

cells of a given notebook will be simply executed following
the order of the cells’ execution counters. Skipped counters
(e.g., 3, 4, 6 in Figure 2) will be simply ignored. For the note-
book presented in Figure 2, the execution order under this
strategy will be solution S5 in Figure 6. All the experiments
conducted in Section 3 are based on this strategy.

Top-down (Normal). In this strategy, the code cells will be exe-
cuted following their natural order, from top to down. For
the notebook illustrated in Figure 2, the execution order will
be solution S1 in Figure 6.

Cell Dependency Graph (CDG). This strategy attempts to exe-
cute the code cells of a given notebook in all the possible
orders with respect to the producer/consumer dependencies.
Like the aforementioned two strategies, this strategy will
only execute each code cell once. Regarding the notebook
shown in Figure 2, this strategy will generate eight possible
solutions for reproducing the notebook.

4.4 Targeted Failure Debugging
Using its strategy-based reproducing module, Osiris is now capable
of exploring the reproducibility of a given notebook in different
ways. Some of the attempts may not be able to reproduce the results
(even with weak or best-effort matches). When the reproducing at-
tempt fails, or even the execution fails, there will be, most likely, no
logs or execution traces illustrating the reason why it fails, giving
no clue for users to understand and refine their execution strategies.
For this reason, Osiris features a debugging module. Given a note-
book and a code cell where the reproducing process or execution
fails, this module will then record the execution trace of the cell.
To this end, we implement an instrumentation-based approach to
record the execution status at the client code side. Particularly, for
every code line of the specified cell, we inject logging statements
to record the current execution state (e.g., the variables and their
values) the code line will be executed with.

For each line executed in the cell, we record and compare a
snapshot of all self-defined variables and their states. After cell
execution, Osiris locates the first suspicious line in which the freshly
computed variable values are inconsistent with published values.

Additionally, Osiris also highlights non-repeatable code cells,
which may generate the same outputs but will yield variable values
that would impact the subsequent execution of other cells. In our
motivating example from Figure 2, all the first four cells (e.g.,C1–C4)
are non-repeatable ones. These non-repeatable cells may prevent
notebook reproduction if execution counter skips are present.

5 EVALUATION
Our evaluation addresses the following research questions.

• RQ1: Can Osiris build sound cell dependency graphs for
Jupyter notebooks?

• RQ2: To what extent can Osiris improve the reproducibility
rate of Jupyter notebooks by varying the match strategies?

• RQ3:With different execution strategies, can Osiris improve
the reproducibility rate of Jupyter notebooks?

• RQ4: Can the targeted failure debugging module of Osiris
help pinpoint the root causes for non-reproducibility?

5.1 RQ1: Soundness of Cell Dependencies
Our first research question concerns the soundness of the cell depen-
dency graph (CDG), which is important for Osiris to fully explore
the reproducibility of Jupyter notebooks. Indeed, Osiris leverages
the CDG to generate all the possible execution paths when depen-
dency execution strategy is enabled. Ideally, if the CDG is sound,
all the paths generated based on it (hereinafter referred to as CDG
paths) would be executable (which may not be able to fully repro-
duce the notebook though). To this end, we transform the problem
of checking the soundness of the generated CDG to the problem of
checking the executability of CDG paths.

Since the number of CDG paths is huge, it is not practical to
exhaustively execute all of them. Therefore, for each notebook to be
tested, we randomly select 10 CDG paths to fulfill this experiment.
To avoid potential biases, e.g., the non-executability is due to syntax
errors in the Python code, this experiment should only be conducted
on notebooks known as executable ones.

Therefore, we choose the 936 notebooks that are demonstrated
to be executable in Section 3 as the input dataset to perform the
experiment. Among the 936 notebooks, despite that only 10 CDG
paths selected, our approach finds that (1) 79.81% of them have all
the selected CDG paths successfully executed, (2) 14.32% of them
have at least one CDG path failing; and (3) the remaining 5.88%
have all CDG paths failed.

We further look into the reasons causing certain CDG paths to
fail in our experiment. Our manual observation reveals that the
fails are indeed related to the soundness of the CDG built by Osiris.
The problems are mainly introduced by the static code analysis
step of Osiris, where certain complicated Jupyter/Python features
are overlooked. Listing 2 presents a common challenge that keeps
Osiris from building a sound CDG. Because Osiris is not aware of
dictionary keys, it will consider that cell 3 is reachable from cell 1
since the producer/consumer dependency is fulfilled. Unfortunately,
accessing this unknown key will result in errors because the dictio-
nary key is not registered yet. The overlook of the aforementioned
Python features subsequently leads to incorrect producer/consumer
sets and thereby resulting in unsound CDGs. Nonetheless, we do
not observe any failures caused directly by the producer/consumer
dependency algorithm. The fact that the majority of notebooks can
be successfully processed to generate executable paths shows that
the cell dependency graph construction process is generally sound.

21 # access unregistered dictionary key.
22 a = {} # cell 1: produce a
23 a['ase'] = "2020" # cell 2
24 x = a['ase'] # cell 3: consume a

Listing 2: An example of challenge that keeps Osiris
from building a sound CDG.

Finally, at the end of this research question, we conduct one
more experiment to check if 10 is a good number when randomly
sampling the CDG execution paths. To this end, we randomly select
10 notebooks with CDG paths that can be successfully executed.
Now, in addition to 10 paths, we further check the execution rate of
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Table 2: Fraction of CDG paths that can be used to success-
fully execute notebooks.

Username/Repository Name 10 20 50 100
vuddagiri-mounica123/datascience 1.00 1.00 1.00 1.00
willengel88/Pandas-homework 0.50 0.60 0.54 0.51
rjsampa/Curso_python_PEC2018 1.00 1.00 1.00 1.00
carlorizzante/MITx6.00.1 1.00 1.00 0.98 0.99
fgnt/oaf 1.00 0.90 0.96 0.97
ratnakumar-nakka/Python 1.00 1.00 1.00 1.00
Novobura/2016-Election-Analysis 1.00 1.00 1.00 1.00
murrayLuke/dithering 1.00 1.00 1.00 0.99
svenchilton/springboard 0.20 0.30 0.34 0.25
mc-carthy/pyDSML 1.00 1.00 1.00 1.00

Table 3: Improvement of execution rate when varying the
match strategies of Osiris.

Python Notebooks Strong Weak Best-effort
3.4 71 16(22.54%) 40(56.34%) 52(73.24%)
3.5 330 90(27.27%) 203(61.52%) 261(79.09%)
3.6 528 151(28.60%) 316(59.85%) 393(74.43%)
3.7 7 0(0.00%) 3(42.86%) 3(42.86%)
Total 936 257(27.46%) 562(60.04%) 709(75.75%)

20, 50, and 100 paths. Table 2 illustrates the 10 selected notebooks
and additional execution results. No matter which threshold is set,
the execution rates are kept more or less the same. This evidence
suggests that 10 is a good threshold for testing the CDG paths.

5.2 RQ2: Match Strategies
The second research question concerns the effectiveness of the
match strategies implemented in Osiris. Specifically, given a set of
non-reproducible notebooks (strong match via original execution
counter, as explained in Section 3), to what extent can our approach
(with weak and best-effort strategies) improve the execution/repro-
ducible rate? To this end, we launch Osiris on all the 936 notebooks
that have been shown executable in our preliminary reproducibility
study. Except for switching the match strategy to weak or best-
effort strategies, we keep all the other parameters unchanged, i.e.,
the code cells are executed following the same order (i.e., original
execution counter).

Table 3 summarizes the execution results. Among the 936 ex-
ecutable notebooks, with weak match strategy, the reproducible
rate can be doubled from that of the weak match, increasing from
27.46% to 60.04%. When best-effort is enabled, an additional 15% of
notebooks can be reproduced, resulting in 75.75% of reproducibility
rate. This significant improvement of the reproducible rate shows
that Osiris is useful and effective for assessing the reproducibility
of Jupyter notebooks.

We further look into the breakdown of the number of notebooks
that are additionally reproduced thanks to the best-effort match
strategy. The majority of them are contributed by the random anti-
dote. Among the 147 additionally reproduced cases, we find that the
main improvement comes from the antidote to random functions,
accounting for 113 (roughly 77%) notebooks. The improvements

over time and image plot antidotes are 6 and 28 notebooks, respec-
tively. Our in-depth analysis further reveals that our best-effort
approach may have overlooked some notebooks. For example, we
additionally find that there are 18 notebooks (out of the 227 non-
reproducible ones) having also accessed into random functions.
After manual investigation, we believe that these overlooked note-
books should not be considered as false negatives of our best-effort
approach since the errors are likely caused by different reasons (i.e.,
not from the random function).

5.3 RQ3: Execution Strategies
We now look at the execution strategies introduced to Osiris when
reproducing Jupyter notebooks. Instead of the original execution
counter, which has been used in all the aforementioned experiments,
we additionally launch Osiris via (1) normal (top-down) and (2)
producer/consumer dependency (CDG) strategies. As discussed
earlier, the possible CDG paths are generally toomany to execute all.
Therefore, as with RQ1, we randomly choose 10 CDG paths to fulfill
this experiment. As long as one path from the randomly sampled
10 paths is capable of executing or reproducing the notebook, we
will consider the notebook as such.

Since different execution strategies may be able to execute differ-
ent notebooks10, we resort to the original 5,393 notebooks for this
experiment. As illustrated in Figure 7, interestingly, with best-effort
match strategy, both normal and CDG execution strategies are able
to improve the overall execution rate, giving 20.66% and 25.24%,
respectively.
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Figure 7: Executable rates and notebooks achieved by vary-
ing the execution strategies of Osiris.

In total, by counting the three execution strategies as a whole,
Osiris can successfully execute 1,435 notebooks. Figure 8 further
illustrates the distribution of reproduced notebooks over the three
strategies. Among the 1,435 executable notebooks, 1,180 of them
have been shown reproducible, giving a reproducibility rate of 82.23%,
which has more than tripled the rate of the state-of-the-art and
significantly increased from our results by leveraging OEC execu-
tion strategy along [33]. This result experimentally shows that the
execution strategies of Osiris are indeed useful for restoring the
reproducibility of Jupyter notebooks.

10We hypothesize that not all the non-executable notebooks are related to the in-
appropriate set up of the execution environment. Therefore, by leveraging different
strategies to execute those notebooks, we might be able to find more executable note-
books, without updating our execution environment. Recall that executability is not
the main focus of this paper.
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Figure 8: Reproducible notebooks among executable ones.

5.4 RQ4: Performance in locating faults via
debug functionality

As revealed in the previous section, among the 1,435 executable
notebooks, 225 can not be reproduced by Osiris. In this research
question, we look at the targeted failure debuggingmodule of Osiris,
aiming at evaluating the usability of this module towards locating
the problematic statements making notebooks non-reproducible
(at least by Osiris). To this end, we apply Osiris again, with the
targeted debugging module enabled and the first non-reproducible
cell as input, to the 255 non-reproducible notebooks. For each line
of code in the cell, Osiris will dump the execution status before and
after the execution of the code line. If a suspicious line is identified,
Osiris will further report it as such.

To evaluate the accuracy of the debugging module, we randomly
select 20 notebooks with suspicious lines reported and manually
check the results. All the selected notebooks are hence manually
executed, using predefined execution strategies. Table 4 summarises
the experimental results. For the 60 samples randomly selected, our
manual validation confirms that 45 of them are correct, giving
an accuracy at 75%. The false positives are mainly caused by two
limitations of Osiris: (1) Some code lines (e.g., function calls) will
only change the outputs of the cell but may not alter the execution
states. Osiris cannot be aware of this. (2) Osiris misses some data
types (such as the ones from third-party libraries such as Pandas
DateFrame) when recording and debugging execution states.

Table 4: Performance of Osiris’s targeted debuggingmodule.

Execution Random True Non-repeatable
Strategy Samples Results Notebooks

OEC 20 12 (60%) 12 (60%)
Normal 20 16 (80%) 15 (75%)

CDG 20 17 (85%) 16 (80%)
Total 60 45 (75%) 43 (72%)

The last column of Table 4 lists the number of non-reproducible
cells (reported by Osiris) that are also non-repeatable cells. As it
is similar to that of non-reproducible cells, there could be a strong
correlation between non-reproducible and non-repeatable cells.
We hence conduct another experiment to evaluate this suggestion
empirically. We randomly select two datasets (i.e., 100 reproducible
notebooks and 100 non-reproducible notebooks) and launch Osiris
to check the number of non-repeatable cells. Figure 9 presents the
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Figure 9: Distribution of the number of non-repeatable cells
between reproducible and non-reproducible notebooks.

distribution of the results. A Mann-Whitney-Wilcoxon (MWW)
test [12] confirms that the difference in terms of the number of non-
repeatable cells between these two datasets is indeed significant
(i.e., p-value is smaller than 0.001).

Cliff’s delta effective size [26] further explains that the corre-
lation between these two datasets is strong, indicating that non-
repeatable cells could be one of the main reasons causing Jupyter
notebooks to be non-reproducible. Therefore, we encourage note-
book authors to mitigate the usage of non-repeatable cells to pro-
mote the reproducibility of their Jupyter notebooks.

6 DISCUSSION
Aiming at maximizing the reproducibility of Jupyter notebooks, our
tool will be beneficial to both notebook authors and users. Note-
book authors can leverage Osiris to check the reproducibility
of their notebooks before committing. To ease the reproducibil-
ity for notebook users, the reproducing details can be dumped and
included in the commit. Indeed, we believe that Osiris can be config-
ured as a regression testing tool that can be regularly (e.g., nightly)
executed to identify potential errors introduced by the development
process. Notebook users can leverage Osiris to understand how a
given notebook, which is released without giving any reproducing
detail, can be reproduced. They can also gain the confidence that
the notebook (if reproduced by Osiris) is correct (hence its code
can be trusted and reused), even if the original output cannot be
literally reproduced. Finally, notebook researchers can develop
new testing and analysis approaches for Jupyter notebooks. For ex-
ample, our fellow researchers could take the initiative to modify the
Jupyter framework to record all the execution orders, including the
skipped ones, which has caused difficulties (e.g., CDG construction)
to properly restore the execution sequences of notebook cells.

6.1 Limitations
Insufficient Setup of Execution Environment. As discussed in
Section 3, the majority of notebooks fail to be executed due to li-
brary dependencies (e.g., import error because of missing modules,
or contain removed functions due to inappropriate library versions).
This finding is similar to the one conducted by Pimentel et al. [33].
Although inferring a sufficient execution environment is not the fo-
cus of this work, we believe that having such an environment would
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significantly complement our work towards restoring the repro-
ducibility of Jupyter notebooks. Recently, Horton and Parnin [15]
have presented an approach to automatically infer environment
dependencies for Python code scripts. This work could be leveraged
to set up appropriate environments for executing and reproducing
Jupyter notebooks.

Unsound static Python code analysis. At the moment, Osiris
has some drawbacks that keep it from performing sound static anal-
yses of Jupyter notebooks. First of all, code cells in notebooks can
be updated following successful execution (e.g., magic functions
are likely to be removed after executing). This execution history is
unfortunately not recorded and hence will introduce inconsisten-
cies between the code and the outputs. Second, the variable value
in notebooks can be updated in succeeding cells, which may cause
runtime exceptions. For example, a matrix of (M × N ) defined in
one cell could be reshaped to a 1×(M×N ) array in another cell. Dif-
ferent CDG paths may cause exceptions of dimension mismatches
in matrix multiplication.

Incomplete match/execution strategies. In all the current
execution strategies, each code cell will only be executed once,
which however may not be the cause in practice. Indeed, the cur-
rent strategies cannot even reproduce the motivating notebooks
shown in Figure 2. Therefore, we believe that there is a need to
explore other strategies that take into account cell dependencies
while respecting the exact execution counter of the cells. The length
of the execution orders should be equal to the maximum value of
the execution counter in the given notebook. In this work, we fur-
ther implement an execution strategy fulfilling the aforementioned
requirements. While respecting the exact execution counter of the
cells, we additionally add random cells (w.r.t. the producer/con-
sumer dependency) to all the skips in the execution counter.

6.2 Threats to Validity
The main threat to the validity of this work lies in the size of our
dataset, though we started from 10,000 real-world Jupyter note-
books, which (unfortunately) may not be fully representative [4].
We attempt to mitigate this threat by randomly selecting the note-
books from a large set. To avoid potential biases, we only select
one notebook from each Git repository that may contain multiple
notebooks. Since our approach only supports Python code analysis,
we further limit the selected dataset to be Python-based notebooks
only, letting several notebooks involving other programming lan-
guages such as R and Julia overlooked.

Apart from the dataset, our work also involves substantial man-
ual work. For example, the root causes of non-reproducibility are
manually summarized based on our preliminary reproducibility
study. The results of targeted failure debugging analysis are also
characterized manually. Such manual processes are known to be
error-prone. To mitigate the threat, we have cross-validated the
results. We also release our tool and dataset for public access.

Furthermore, we have no evidence to show that the randomly
selected notebooks evaluated in this work are designed to be repro-
ducible. If they are not intended to be reproduced, our evaluation
results might be impacted.

Nevertheless, as shown by Rule et al. [44], Jupyter notebooks
have been recurrently leveraged to support reproducible researches

and hence such impact should be neglected. Moreover, a large
number of notebooks cannot be executed (e.g., due to incorrect
dependencies or unsupported Python versions), which may impact
the generality of our sample set. To mitigate this, we have manually
sampled some of the executable notebooks. Our manual observation
confirms that the randomly selected notebooks are not toy ones.
The fact that half of the notebooks have more than 15 code cells
also confirms this observation.

7 RELATEDWORK
Despite its popularity, Jupyter notebooks have not yet been well
studied by the software engineering (SE) community. To the best of
our knowledge, there are only a few such studies available to note-
book authors. Wang et al. [52] have conducted a preliminary study
on the code quality of Jupyter notebooks. They have empirically
found that Jupyter notebooks are inundated with poor quality code,
e.g., not respecting recommended coding practices, or containing
unused variables and deprecated functions. The authors argue that
there is a strong need to programmatically analyze Jupyter note-
books. Our work, by providing valid program code (reordered code
cell, for example), and its cell dependency graph, can be considered
as the first attempt in the SE community towards systematically
analyzing and testing Jupyter notebooks.

The work most closely related to ours is the one by Pimentel et
al. [33]. The authors have conducted a large-scale empirical study
about the quality and reproducibility of Jupyter notebooks. Unlike
the work conducted by Wang et al. [52], which mainly focuses on
the quality of the code presented in the notebooks, our paper is
more focused on the good or bad practices used in the develop-
ment of notebooks. Pimentel et al. [33] have also investigated the
reproducibility of Jupyter notebooks. Through a straightforward
approach, the authors empirically find that only 24.11% of their se-
lected notebooks can be executed without errors, and only 4.03% of
them can produce the same results, compared to that of the original
outputs of the notebooks. The authors have also summarised the
common root causes making notebooks non-executable and hence
non-reproducible. As an implication of their work, the authors ar-
gue that there is an opportunity to improve the reproducibility rate
in notebooks by devising approaches addressing the root causes. In
this work, we take action to actually design and implement such
an approach, which combines both static and dynamic analyses, to
explore the possibilities of reproducing Jupyter notebooks.

Notebooks have been frequently investigated by researchers out-
side of Software Engineering [16, 17, 22, 38, 42, 45, 46, 48, 53]. For
example, Rehman et al. [38] address the reproducibility of Jupyter
notebooks by enriching the provenance-based semantics of inter-
active notebooks. Their ProvBook prototype aims at capturing and
viewing the provenance of notebook changes and thereby pro-
viding a means to track complete paths of scientific experiments.
Yaniv et al. [55] designed “SimpleITK Jupyter Notebooks” based on
Jupyter Notebook, an image analysis environment for researchers
with different levels of development skills, to facilitate reproducible
research.

Kery et al. [16, 17], from the Human-Computer Interaction (HCI)
community, have conducted several studies in understanding note-
books w.r.t. their literate programming features and untangling
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messy histories of notebooks. By interviewing and surveying 66
data scientists, they have observed that notebooks are mainly used
for scratchpad construction, scripts preparation and knowledge
sharing. To combat the challenge of navigating messy version data
to pick out the relevant information for a given task, they introduce
an approach called Verdant for supporting lightweight interactions
among many versions of code and non-code artifacts in the editor.

Similarly, Rule et al. [46] also look at computational notebooks
from the human factors point of view. The authors have empiri-
cally found that, via a large-scale empirical study of computational
notebooks on Github, computational notebooks may not always
contain explanatory text and only a small set of them will discuss
the reasoning or results of the methods described. Rule et al. [43]
have also noticed the non-reproducing problem of notebooks and
hence summarised the top 10 simple rules for reproducibility in
Jupyter notebooks. The authors argue that notebook authors should
advocate in promoting the reproducibility of notebooks. They even
suggest that notebook authors should ask lab-mates or colleagues
to try to run their notebooks to ensure their reproducible uses.
Our work fully supports their claims (i.e., the reproducibility of
notebooks is very important) and supplement their claims with
an automated approach for helping notebooks authors check the
reproducibility of their notebooks.

Our work focuses on the reproducibility of Jupyter notebooks,
aiming at reconstructing the execution orders that reproduce the
exact notebook results and hence supplementing the implementa-
tion of advanced static and dynamic analyses of Jupyter notebooks.
Although the def-use has been a traditional mechanism in program
analysis [31][9], the relevant research on Jupyter notebooks is still
empty. The uniqueness of Jupyter notebook’s cell structure requires
def-use relation to be built for code cells in order to determine their
dependencies.

The software engineering community has investigated the repro-
ducibility of other software artifacts [3, 10, 14, 21, 27, 41]. For exam-
ple, to ensure reproducibility, researchers have proposed various
approaches to achieve record-and-reply executions [28, 34, 47], fa-
cilitate bug reproductions by analyzing execution logs or dumps [1,
20, 54], and understand and detect flaky tests or compatbility issues
that make reproducibility studies difficult [5, 8, 23, 25, 30]. As an-
other example, Ren et al. [39] have proposed an approach to locating
the problematic files for unreproducible builds. The authors claim
that identifying unreproducible issues remains a labor-intensive
and time-consuming challenge due to the diversity of root causes
that may lead to unreproducible binaries. In line with this research,
the authors further present a dedicated study focusing on locating
such root causes [40]. In general, reproducibility has been consid-
ered a hard yet useful endeavor in the SE community. Indeed, as
advocated by Anda et al. [3], achieving more reproducibility in SE
remains a great challenge for SE research, education, and industry.

8 CONCLUSION
Motivated by a low reproducible rate of Jupyter notebooks reported
by the state-of-the-art and detailed in our study, we present to
the SE community the first work to automatically restore repro-
ducibility of Jupyter Notebooks. Our Osiris prototype explores all
the possible execution schemes to reproduce as much of notebook

results as possible. In the evaluation of Osiris, we show it is effec-
tive to restore the reproducibility of Jupyter notebooks, achieving a
significant improvement over the state-of-the-art[33]. In particular,
our approach enables the use of static and dynamic analyses on
Jupyter Notebooks, which can be used for testing, empirical studies,
automatic repair techniques, and more.

To help readers access our tool and replicate our experiments,
we make our tool Osiris and scripts available at

https://github.com/Osiris-Jupyter/Osiris
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