
Detecting and Explaining Self-Admitted Technical Debts with
Attention-based Neural Networks

Xin Wang
School of Computer Science, Wuhan

University
Wuhan, China

xinwang0920@whu.edu.cn

Jin Liu∗
School of Computer Science, Wuhan

University
Wuhan, China

jinliu@whu.edu.cn

Li Li
Faculty of Information Technology,

Monash University
Melbourne, Australia
Li.Li@monash.edu

Xiao Chen
Faculty of Information Technology,

Monash University
Melbourne, Australia

xiao.chen@monash.edu

Xiao Liu
School of Information Technology,

Deakin University
Geelong, Australia

xiao.liu@deakin.edu.au

Hao Wu
School of Information Science and
Engineering, Yunnan University

Kunming, China
haowu@ynu.edu.cn

ABSTRACT
Self-Admitted Technical Debt (SATD) is a sub-type of technical
debt. It is introduced to represent such technical debts that are
intentionally introduced by developers in the process of software
development. While being able to gain short-term benefits, the
introduction of SATDs often requires to be paid back later with a
higher cost, e.g., introducing bugs to the software or increasing the
complexity of the software.

To cope with these issues, our community has proposed vari-
ous machine learning-based approaches to detect SATDs. These
approaches, however, are either not generic that usually require
manual feature engineering efforts or do not provide promising
means to explain the predicted outcomes. To that end, we pro-
pose to the community a novel approach, namely HATD (Hybrid
Attention-based method for self-admitted Technical Debt detec-
tion), to detect and explain SATDs using attention-based neural
networks. Through extensive experiments on 445,365 comments in
20 projects, we show that HATD is effective in detecting SATDs on
both in-the-lab and in-the-wild datasets under both within-project
and cross-project settings. HATD also outperforms the state-of-the-
art approaches in detecting and explaining SATDs.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; Software maintenance tools.

KEYWORDS
Self-Admitted Technical Debt, Word Embedding, Attention-based
Neural Networks, SATD
∗Jin Liu is corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416583

ACM Reference Format:
Xin Wang, Jin Liu, Li Li, Xiao Chen, Xiao Liu, and Hao Wu. 2020. Detecting
and Explaining Self-Admitted Technical Debts with Attention-based Neural
Networks. In 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’20), September 21–25, 2020, Virtual Event, Australia. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3324884.3416583

1 INTRODUCTION
Technical debt is a metaphor, proposed by Cunningham [6], used
to denote a suboptimal solution that developers take shortcuts to
achieve rapid delivery during development. Some typical examples
of technical debts include introducing hard-coded values into the
code, making code changes while ignoring failing unit tests, copy-
pasting code from other modules, etc. Those technical debts are
usually introduced to a software system unintentionally by develop-
ers, or intentionally but without adequately documented. As time
goes by, those undocumented technical debts, if not resolved in
time, might be faded away from the developers’ minds and become
equivalent to unintentionally introduced technical debts [2, 45].
To mitigate this issue, developers may decide to document (via
comments) their intentionally introduced technical debts. The doc-
umented debt is often known as self-admitted technical debt (SATD
in short).

No matter intentionally or unintentionally, the compromises
made to introduce technical debts will likely lead to negative effects
on the maintenance of the software in the long run [18, 21, 23, 27, 35,
53]. Indeed, as argued by Megan Horn1, technical debts may cause
software systems to behave unexpectedly, and those surprising
behaviors could be notoriously difficult to test and fix. Often, fixing
one issue could introduce several new issues, resulting in high
costs for resolving technical debts. As revealed in a recent study by
CAST Software2, a provider of software analysis and measurement
tools, the amount of technical debts that have to be addressed after
the application is deployed in production, on average, is over one
million for each business application.

1https://www.farreachinc.com/blog/far-reach/2017/10/05/the-true-cost-of-technical-
debt
2https://www.itbusinessedge.com/slideshows/show.aspx?c=93589

https://doi.org/10.1145/3324884.3416583
https://doi.org/10.1145/3324884.3416583

ASE ’20, September 21–25, 2020, Virtual Event, Australia Xin Wang and Jin Liu, et al.

Table 1: Examples of SATD comments.
Project SATD Comments

Apache Ant
// TODO: allow user to request the system or no parent
// What is the property supposed to be?
// cannot remove underscores due to protected visibility >:(

JFreeChart
// do we need to update the crosshair values?
// defer argument checking...
// do we need to update the crosshair values?

JMeter
// Don’t try restoring the URL TODO: wy not?
// Can be null (not sure why)
// Maybe move to vector if MT problems occur

SQuirrel
// Do we need this one.
// is this right???
// verify this

ArgoUML
// Why does the next part not work?
// Shouldn’t we throw an exception here?!?!
// The following can be removed if selectAll gets fixed

Despite the fact that technical debts will introduce negative
impacts to the maintenance of software, technical debt is still wide-
spread and seems to be unavoidable in software systems[3, 12, 47,
54]. Hence, there is a strong need to invent automated approaches
to detect technical debts and fix them as earlier as possible. Nev-
ertheless, it is a challenging endeavor to handle all the types of
technical debts at once [25, 38]. As the initial step towards achiev-
ing such a purpose, many state-of-the-art works start by focusing
on the detection of SATDs [10, 14, 17, 58]. Unlike other technical
debts, SATDs are often highlighted as comments in the code of
the software [30, 41, 59]. Table 1 enumerates some SATD examples
identified in popular open-source projects. For example, the com-
ment "May be replaced later" in the JMeter project indicates that
the current code is a temporary solution and needs to be replaced
in the future.

Although explicitly highlighted, as shown in Table 1, SATDs
are still largely presented in open-source software projects. Our
community has hence spent various efforts to experimentally char-
acterize SATDs. For example, Potdar et al. [38] attempt to manually
explore SATDs in code comments of Java projects and eventually
summarize 62 patterns that can be used to identify SATD. Huang et
al. [16] have proposed a text-mining method to identify SATD and
have achieved substantial improvements compared with pattern-
based methods. Yan et al. [56] propose a change-level method for
detecting SATDs utilizing 25 software change features.

Unfortunately, existing state-of-the-art approaches are either
involving heavy manual pre-processes (such as identifying the
SATD-relevant patterns or extracting features to fulfill ML-based
classifiers) or lacking reliable explanations to elucidate why a SATD
is flagged as such[4, 43, 50, 51, 60]. To fill this gap, we propose to
the community a novel deep learning-based approach to detect
and explain self-admitted technical debts in open-source software
projects. We design and implement a prototype tool called HATD.
First, it leverages positional encoder and Bi-directional Long Short-
Term Memory(Bi-LSTM)[64] network to capture the sequential
characteristics of SATDs from code comments. Then, it leverages
diverse attention mechanisms to highlight the importance of the
automatically prepared features that have contributed to the detec-
tion of SATDs. The most important features will subsequently be
leveraged to explain the classification result, e.g., why a comment is
(not) flagged as SATD? Through extensive experiments on 445,365

SATD non_SATD

0

2

4

6

8

10

Nu
m

be
r o

f c
om

m
its

Figure 1: Distribution of changes made to SATD-involved
and non-SATD-involved source code files.

comments in 20 projects, HATD demonstrates its superior perfor-
mance and explainability in both within-project and cross-project
SATD detections over the state-of-the-art methods.

The main contributions of this paper can be summarized as
follows:
• We provide an overview of code comment characteristics that
could be challenging for creating automated tools to detect SATDs
in software projects.
• We design and implement a prototype tool called HATD, which
leverages a hybrid attention-basedmethod combining both single-
head attention and multi-head attention mechanisms for pin-
pointing SATDs from code comments.
• We demonstrate the effectiveness of HATD by comparing with
state-of-the-art methods on open-source benchmark projects,
detecting SATDs in real-world and popular software projects,
and providing explanations to the classification results.

2 MOTIVATION AND BACKGROUND
To help readers better understand our work and motivate the neces-
sity of developing automated approaches for pinpointing SATDs, we
first present in this section a simple empirical investigation to check
whether SATDs impact the maintainability of software projects.
Then, we enumerate some characteristics of code comments that
make it challenging to automatically interpret the semantics of the
comments (i.e., pinpointing self-admitted technical debts).

2.1 SATD VS. Code Changes
Intuitively, SATDs will trigger more future code changes, i.e., in-
creasing the maintainability of the software project [39, 55]. To
quantify the relationship between SATDs and code changes, we
conduct a simple empirical study (count the number of commits
related to files that have been changed, with and without technical
debts) to check if SATDs will trigger more future code changes. To
this end, we select a popular open-source project called Apache Ant
to fulfill the experiments. The reason why this project is chosen
is that the SATDs introduced over the development of this project
are known. Indeed, as of Jan 14, 2016, the Apache Ant project has
introduced in total 131 SATDs, accounting for roughly 3.2% of total
comments (cf. 4,137).

Detecting and Explaining Self-Admitted Technical Debts
with Attention-based Neural Networks ASE ’20, September 21–25, 2020, Virtual Event, Australia

In order to explore the long-term impact of SATDs on the main-
tenance of the project, we set a cutting point on Jan 1, 2014 and
recount the SATDs introduced at that point. Among 131 SATDs, 111
of them have already been introduced into the project and have not
been resolved, involving 82 Java files. In other words, at this point,
1,116 Java files are not involved with SATDs. Starting from this
cutting point, we revisit all upcoming commits and count the times
of changes related to each Java file. The final results are plotted
in Figure 1, which illustrates the distribution of changes made to
SATD-involved and non-SATD-involved Java files. It is quite clear
that SATD-involved files require more changes compared to the
files without involving SATDs. This difference is further confirmed
by a Mann-Whitney-Wilcoxon (MWW) test, i.e., the difference is
significant at a significance level3 of 0.001. This simple empirical
investigation shows that SATDs indeed negatively impact the main-
tenance of software projects, and hence there is a strong need to
invent promising approaches to detect and resolve them [13].

2.2 Characteristics of Code Comments
Code comments are often provided by developers to remind them-
selves to record unsatisfactory design decisions, question design
decisions of other developers, and make future changes. Since code
comments are usually written in natural language by different
developers with different writing styles, they may come with char-
acteristics that are difficult to interpret [31]. In this section, we
summarize some of the characteristics of code comments that make
automated detection of SATDs challenging:
(1) Domain Semantics. Code comments often contain jargons,

method names, and abstract concepts that only programmers
can understand. For example, the comment "FIXME: I use a for
block to implement END node because we need a proc which cap-
tures" in JRuby project contains a term for, an abstract concept
END node.

(2) Level of details (Comment Length). The length of phrases
in code comments can vary widely, ranging from one word
like “unused”, “load”, to short phrases like “call workaround”,
“should probably error” and to sentences like “this is such a bad
way of doing it, but ...”. This varying length text feature in code
comments makes it challenging as well to detect SATDs.

(3) Project Uniqueness. SATD comments on different projects
will show different styles due to different developers, as empiri-
cally confirmed by Potdar et al. [38] in their manual pattern sum-
marization work. In addition, the coding habits and vocabulary
gaps among different developers aggravate this phenomenon.

(4) Polysemy. Polysemy is common in sentence expressions. It is
often accompanied by domain knowledge in code comments.
For example, code comments may contain method names. It is
challenging to distinguish method names and common words,
which often requires contextual information.

(5) Abbreviation.To facilitatememorization andwriting efficiency,
developers often use abbreviations in code comments. Project
differences often exacerbate this phenomenon. For example,
the comment “no default in DB. If nullable, use null.” in project
SQuirrel, in which DB is the abbreviation of Database.

3Given a significance level 𝛼 = 0.001, if p-value < 𝛼 , there is one chance in a thousand
that the difference between the datasets is due to a coincidence.

Code
comment

Word Embedding

Label of code
comment

HATD

Feature Learning SATD Detection

Figure 2: The overall architecture of our approach.

These characteristics exhibited frequently in SATD comments
make traditional pattern-based and text-mining-based SATD detec-
tion approaches difficult to achieve high performance. Therefore,
there is a strong need to mine the in-depth implicit and seman-
tic features from the code comments so as to satisfy the different
challenges in effectively detecting SATDs.

3 OUR APPROACH
We propose a Hybrid Attention-based method for self-admitted
Technical Debt detection named HATD. HATD analyzes code com-
ments of different projects or application domains (Challenge 1 and
3) aiming to learn comprehensive implicit features of SATDs. It can
flexibly extract and aggregate variable-length text features of SATD
detections (Challenge 2). To overcome polysemy and abbreviation
issues (Challenge 4 and 5), we use ELMo to obtain dynamic word
embedding across contexts for SATD detections.

As depicted in Figure 2, HATD has three modules. The word
embedding module maps the words in the comments to vectors.
Different word embedding techniques can be incorporated into our
approach (by default, the ELMo algorithm is implemented). In the
feature learning module, we use positional encoder and Bi-LSTM
to learn sequential features, then we leverage diverse attention
mechanisms to further obtain potential representation of words and
distinguish the importance of different words. Finally, the learned
features are fed into the detection module to predict SATDs.

3.1 Word Embedding
Word embedding is a collective term for language models and repre-
sentation learning techniques in natural language processing (NLP).
Conceptually, it refers to embedding a high-dimensional vector
whose dimension is the number of all words into a vector of a much
lower dimension. The goal of word embedding module is to over-
come the aforementioned challenges (cf. Section 2.2) in handling
code comments. Let us consider the example of keyword proc from
code comment "FIXME: I use a for block to implement END node
because we need a proc which captures" in JRuby project. The proc
here is the abbreviation of process, which may be seen as OOV (out
of vocabulary). Because the labeled code comment is limited, and
we cannot guarantee that any test word exists in training corpus.
According to morphological knowledge, FastText[5, 19] solves the
OOV problem to some extent by learning character-based embed-
ding representation of subwords. Static word embedding techniques
cannot deal with the phenomenon of polysemy, which is common
in comments. Dynamic word representation technique such as
ELMo[37] can deal with this problem to some extent by adjust-
ing the word vector according to the context. ELMo (Embedding
from Language Models)[37] is a new type of deep contextualized
word representation language model, which can model the complex
features of words (such as syntax and semantics) and the change
of words across linguistic contexts (i.e., to polysemy). Since the

ASE ’20, September 21–25, 2020, Virtual Event, Australia Xin Wang and Jin Liu, et al.

Comment Matrix Feature Learning

Single-head
Attention Encoder

Multi-head

Attention Encoder

Dimension

FIXME
formatters
are
not
thread
safe

S1

S2

Figure 3: The working process of the feature learning mod-
ule.

meaning of words is context-sensitive, ELMo’s principle is to input
sentences into a pre-trained language model in real time to get
dynamic word vectors, which can effectively deal with polysemy.
Considering that the main application scenario of ELMo is to pro-
vide dynamic word vectors, acting on downstream tasks, our model
integrates ELMo to identify the SATDs. Detailed comparison of
existing word embedding schemes can be found in Section 5.3.

3.2 Feature Learning
The feature learning module consists of two sub-modules, a single-
head attention encoder (SAE) and a multi-head attention encoder
(MAE), adopting different attention mechanisms and sequence fea-
ture extractors. The single-head attention encoder first inputs the
embedding representation of the comment into a Bi-LSTM net-
work, then we can use an attention mechanism to assign different
weights to different words according to the importance of words
for the purpose of interpreting detection results. In order to fur-
ther encode the current word, the multi-head attention encoder
allows the encoding of words considering other words information
via the so-called self-attention mechanism. By combining the SAE
and MAE modules, we hope to exploit the strengths of the RNN-
based model[64] and the Transformer-based model[48] to improve
SATD detection performance and interpret the detection results
with attention mechanism. Figure 3 shows the internal structure
of the feature learning module. The details of these two internal
sub-modules will be given later.

3.2.1 Single-head Attention Encoder (SAE). Given a code comment,
SAE module firstly learns the features of the comment from the
preceding as well as the following tokens with a two-layer Bi-LSTM
network. In this process, we can exploit an attention mechanism to
assign different attentions to words for the purpose of interpreting
detection results. Figure 4 shows the working process of SAE, which
is carried out in two steps: (1) Extracting sequential features of the
comment, and (2) Assigning attention weight to each word. 𝑆1
denotes the obtained implicit feature vector of the comment.

Word Encoder. Given a code comment, we assume that the
comment contains 𝑙 words. 𝑥𝑡 represents the 𝑡 th word’s vector. We
use a Bi-LSTM to get implicit representation of words by summa-
rizing information from both directions for words. The Bi-LSTM
contains the forward LSTM which reads the comment 𝑐 from 𝑥1 to

B
i-LS

T
M

B
i-LS

T
M

tanh

2 Layers

A
tte

n
tio

n
 La

y
e
r

Comment Matrix S1

SAE

Figure 4: Workflow of the SAE module.

S
e
lf-A

tte
n

tio
n

N
o

rm
a
lizatio

n

P
o

sitio
n

a
l

E
n

co
d

in
g

S2Comment Matrix

MAE

Figure 5: Workflow of the MAE module.

𝑥𝑙 and a backward LSTM which reads from 𝑥𝑙 to 𝑥1:

ℎ𝑡 =
−−−−→
𝐿𝑆𝑇𝑀 (𝑥𝑡), 𝑡 ∈ [1, 𝑙], (1)

ℎ′𝑡 =
←−−−−
𝐿𝑆𝑇𝑀 (𝑥𝑡), 𝑡 ∈ [1, 𝑙] . (2)

We obtain the implicit representation of a given word 𝑥𝑡 by con-
catenating the forward hidded state ℎ𝑡 and back hidden state ℎ′𝑡 ,
i.e., [ℎ𝑡 , ℎ′𝑡].

Assigning AttentionWeights. In a code comment, each word
contributes differently on SATD detection. For example, Potdar et
al.[38] manually summarized 62 patterns for detecting SATDs. Con-
sidering the evolution of the project and gaps between developers,
the manually summarized patterns lack generalizability and adapt-
ability to newly generated code comments. Based on these above
considerations, we exploit an attention mechanism to distinguish
contributions of different words and aggregate the representation
of those informative words to form a sentence vector.

𝑢𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑤 [ℎ𝑡 , ℎ′𝑡] + 𝑏𝑤) (3)

𝑎𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑢𝑇𝑡 ∗ 𝑢𝑤) (4)

𝑆1 =
∑
𝑡

𝑎𝑡 [ℎ𝑡 , ℎ′𝑡] (5)

We firstly feed word representation [ℎ𝑡 , ℎ′𝑡] through one-layer
perception to get 𝑢𝑡 as a hidden representation of [ℎ𝑡 , ℎ′𝑡], then we
measure the importance of the word 𝑢𝑡 with a word level context
vector 𝑢𝑤 and get a normalized importance weight 𝑎𝑡 through a
softmax function. Finally,We add all theword vectors with attention
weight as the final feature representation (𝑆1) of the code comment.

3.2.2 Multi-head Attention Encoder(MAE). The purpose of MAE
is to focus on all the words in the entire input sequence to help
the model better encode the current word. Figure 5 illustrates the
working process of MAE in two steps: (1) Encoding positional
information of words, and (2) Encoding words considering other
words information. 𝑆2 denotes the obtained implicit feature vector
of the comment.

Detecting and Explaining Self-Admitted Technical Debts
with Attention-based Neural Networks ASE ’20, September 21–25, 2020, Virtual Event, Australia

Capturing Positional Information. To learn the order of the
words in the input sequence, we firstly add a positional vector
following the one proposed by Vaswani et al. [48], which follows
the specific pattern that the model learns. Then we perform a linear
transformation on the result. The propagation rule is defined by
the following equation:

𝑝
(𝑖)
𝑡 =

{
𝑠𝑖𝑛(𝑡/100002𝑖/𝑑) 𝑖 𝑓 𝑖 = 2𝑘,

𝑐𝑜𝑠 (𝑡/100002𝑖/𝑑) 𝑖 𝑓 𝑖 = 2𝑘 + 1,
(6)

𝑥𝑡 = (𝑥𝑡 + 𝑝𝑡)𝑊𝑝 + 𝑏𝑝 (7)

where 𝑡 is the position, 𝑖 is the dimension and 𝑑 is the dimension
of the produce output.

Assigning Self-Attention. Given a code comment, the repre-
sentation of a word is closely related to the other words in the
comment. To obtain further word vector representation, we intro-
duce self-attention mechanism[48] to better encode the words. The
details are given by the following equations:

𝑄 𝑗 = 𝑋𝑊𝑞 (8)
𝐾𝑗 = 𝑋𝑊𝑘 (9)
𝑉𝑗 = 𝑋𝑊𝑣 (10)

ℎ𝑒𝑎𝑑 𝑗 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄 𝑗𝐾

𝑇
𝑗√

𝑑𝑘

)𝑉𝑗 (11)

𝑆2 = 𝑁𝑜𝑟𝑚(𝐶𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊 𝑜) (12)

Here, 𝑋 ∈ R𝑙×𝑑 is the word vector matrix. We compute the
attention function on a set of queries simultaneously, and pack
them together into a matrix Q. The keys and values are also packed
together into matrices K and V [48].𝑊𝑞 ∈ R𝑑×𝑑𝑞 ,𝑊𝑘 ∈ R𝑑×𝑑𝑘

and𝑊𝑣 ∈ R𝑑×𝑑𝑣 are three learnable weight matrices. We use eight
attention heads (ℎ = 8 by default) to expand the model’s ability to
focus on different words. For each headwe have𝑑𝑞 = 𝑑𝑘 = 𝑑𝑣 = 𝑑/ℎ,
𝑊 𝑜 ∈ Rℎ𝑑𝑣×𝑑 . After concatenating the embedding vectors from all
the heads, we introduce layer normalization for fixing the mean
and the variance of the accumulated inputs.

3.3 SATD Detection
Finally, as is shown in Figure 6, 𝑆1 and 𝑆2 are concatenated to form
an abstract representation of the code comment, and then input
into a fully connected layer 𝑓𝑓 𝑐 for SATD detection. Prediction
results are calculated by a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function. The classification rule
is defined by the following equations:

𝑌 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑓𝑓 𝑐 (𝑆1
⊕

𝑆2)) (13)

Here,
⊕

denotes the concatenate operation, and 𝑌 denotes the
prediction result of SATD detection.

As shown in Table 2, SATD and non-SATD comments have a
very imbalanced distribution in the open-source projects [20]. To
address the data imbalance problem, instead of downsampling or
applying feature selection that may sacrifice the feature learning
capability, we introduce a weighted cross-entropy loss as the loss
function. Suppose there are 𝑎 SATD comments and 𝑏 non-SATD

S1

S2

non-SATD

SATD

SATD Detection

S

Fully connected layer

W S +b

Figure 6: Workflow of module combination and SATD de-
tection.

comments in the training data, then the loss function is defined as:

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =


𝑏

𝑎 + 𝑏 if 𝑠th class is SATD
𝑎

𝑎 + 𝑏 otherwise
(14)

𝐿𝑜𝑠𝑠 (𝑌,𝑇) = −(𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
∑
𝑠

𝑇𝑠𝑙𝑜𝑔(𝑌𝑠) (15)

Here, 𝑇 and 𝑌 are the groundtruth label and predicted label of the
comment, respectively. All the parameters in the model are trained
via gradient descent.

4 EXPERIMENTAL SETUP
In this section, we have conducted comprehensive experiments on
SATD detections aiming to answer the following research questions:
• RQ1: Is HATD effective in detecting self-admitted technical debts
in software projects?
• RQ2: How does HATD compare with the state-of-the-art ap-
proaches for recognizing self-admitted technical debts?
• RQ3: How effective is the word embedding technique integrated
into HATD compared with other baseline techniques?
• RQ4: To what extent are self-admitted technical debts existing in
real-world software projects?

4.1 Dataset Description
In our experiments, we use the dataset provided by [7]. This dataset
contains labeled code comments for ten open-source projects, in-
cluding ApacheAnt, ArgoUML, Columba, EMF, Hibernate, JEdit,
JFreeChart, JMeter, JRuby, and SQuirrel. The detailed descriptions
of the dataset are shown in Table 2. These ten projects belong to
different application areas and have different numbers of contrib-
utors, comments as well as scale and complexity. We can see that
only a small ratio of SATD comments in each project.

4.2 Evaluation Methods and Metrics
In this work, we adopt three commonly used metrics, namely Pre-
cision, Recall, and F1-score (the balanced view between Precision
and Recall), to evaluate the performance of our approach.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Xin Wang and Jin Liu, et al.

Table 2: Statistics of SATD comments in the benchmark software projects.
Project Description Release Contributions Comments SATD %of SATD
Apache Ant Java library and Command-line Tool 1.7.0 74 4,137 131 3.17
ArgoUML UML Modeling Tool 0.34 87 9,548 1,413 14.80
Columba E-mail Client 1.4 9 6,478 204 3.15
EMF Eclipse Model Driven Architecture 2.4.1 30 4,401 104 2.36
Hibernate ORM Framework 3.3.2 226 2,968 472 15.90
JEdit Text Editor 4.2 57 10,322 256 2.48
JFreeChart Char library 1.0.19 19 4,423 209 4.73
JMeter Performance Tester 2.10 33 8,162 374 4.58
JRuby Ruby Interpreter 1.4.0 328 4,897 662 13.52
SQuirrel SQL Client 3.0.3 46 7,230 285 3.94
Average 91 6,257 411 6.57

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (16)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (17)

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (18)

Here, TP (true positive) means the number of SATD comments
that are detected as such; FP (false positive) means the number
of non-SATD comments that are detected as SATD; and FN(false
negative) means the number of SATD comments that are detected
as non-SATD.

4.3 Parameters and Experimental Environment
In the Bi-LSTM component of our model, the number of layers
is two, the number of hidden units is set to be 128, two branches
produce outputs with 256 units, respectively. The adam optimizer
with default setting (except that learning rate is configured to be 1e-
4) is used for training. In order to avoid overfitting, we add a dropout
layer between every two layers, with a drop probability of 0.5. We
set 𝐿2 loss weight as 5e-4. Due to the unbalanced distribution of
SATD and non-SATD comments, we introduce a weighted cross-
entropy loss as the loss function.We compute themean values of the
Precision, Recall and F1-score across ten experiments to estimate the
performance of models. The experiments are run on a Linux system
(Ubuntu 16.04 LTS) with 64GB memory and a RTX2080Ti GPU,
implemented by leveraging the deep learning library PyTorch4.

5 RESULT
We now present our experimental results towards answering the
aforementioned research questions.

5.1 RQ1: Effectiveness of HATD
Towards evaluating the effectiveness of our approach, we apply
HATD to study the ten projects maintained by [7], since these ten
projects have been provided with ground truth. Based on these ten
projects, we evaluate the performance of HATD from two aspects:
• Within-project. For each project, we perform 10-fold cross-
validation to assess the classification capability of HATD. In
particular, we first equally divide the project’s comments

4https://pytorch.org/

into ten subsets. Then, we train our model with nine subsets
of comments and leverage it to classify the remaining subset
of comments. We repeat this experiment 10 times to ensure
that each subset has been considered as a testing set once.
The final performance is reported as the average score of the
ten rounds of experiments.
• Cross-projects. In this aspect, we also conduct our experi-
ments in ten rounds, with one project tested in each round.
Specifically, for each project, we train our model based on
the other nine projects and leverage it to predict all the com-
ments of the project under testing. The classification results
will be directly attached to the testing project, for the sake of
simplicity, despite that the classification models are trained
based on the other nine projects.

Table 3: The performance of our approach over both within-
project and cross-projects SATD detections.

Project Within-Project Cross-Projects
Precision Recall F1 Precision Recall F1

Apache Ant 0.7050 0.6108 0.6545 0.6569 0.7801 0.7132
ArgoUML 0.8731 0.9469 0.9085 0.8615 0.9487 0.9030
Columba 0.9434 0.9616 0.9524 0.8906 0.9598 0.9239

EMF 0.7475 0.8586 0.7992 0.6769 0.8787 0.7647
Hibernate 0.8866 0.9536 0.9189 0.8699 0.9305 0.8992

JEdit 0.5468 0.6554 0.5962 0.7783 0.8797 0.8259
JFreeChart 0.9268 0.8747 0.9000 0.6897 0.7135 0.7014

JMeter 0.9249 0.8938 0.9091 0.8178 0.8715 0.8438
JRuby 0.9568 0.9388 0.9477 0.8977 0.9397 0.9182

SQuirrel 0.7978 0.8769 0.8355 0.7814 0.8318 0.8058
Average 0.8309 0.8571 0.8422 0.7921 0.8734 0.8299

Table 3 presents the experimental results of our approach w.r.t.
Precision, Recall, and F1-score metrics. The best and worst results
are respectively highlighted in bold and underline, and the differ-
ence is quite significant. This finding shows that the our approach
might be sensitive to the training dataset. Indeed, our approach
yields relatively poor performance for the JEdit project because
many of its comments are short and sometimes meaningless (e.g.,
“Inner classes” or “unsplit() method”), resulting in noises or a lack of
effective semantic information to be learned by our approach. In
addition, the fact that some projects achieved better performance in
the within-project setting (e.g., JFreeChart) while others achieved
better performance in the cross-projects setting (e.g., JEdit) further
confirms that the quality of the training set is important to our
approach.

Detecting and Explaining Self-Admitted Technical Debts
with Attention-based Neural Networks ASE ’20, September 21–25, 2020, Virtual Event, Australia

Nevertheless, the experimental results show that our approach
generally yields good performance for most of the projects con-
cerning both within-project and cross-projects settings. Indeed, on
average, our approach achieves a Precision, Recall, and F1-score of
83.09%, 85.71%, and 84.22% respectively for within-project SATD
detection, and a Precision, Recall, and F1-score of 79.21%, 87.34%,
F1-score of 82.99% respectively for cross-projects SATD detection.
It is worth mentioning that our approach does not perform signifi-
cant differences between within-project and cross-projects settings.
This evidence suggests that our approach could be effective and
practical for pinpointing SATDs in real-world software projects.

Answer to RQ1: Our approach can achieve high-
performance for both within-project and cross-projects
settings and hence is effective and practical to be used to
pinpoint SATDs for real-world software projects.

5.2 RQ2: Performance Comparison with the
state-of-the-art Approach

Table 4: The performance of our appraoch compared to the
state-of-the-art.

Projects With-Project Cross-Project
Ren’s Ours Gains Ren’s Ours Gains

Apache Ant 0.5977 0.6545 +9.50% 0.6260 0.7132 +13.93%
ArgoUML 0.8895 0.9085 +2.14% 0.8409 0.9030 +7.38%
Columba 0.8545 0.9524 +11.46% 0.7782 0.9239 +18.72%
EMF 0.7010 0.7992 +14.01% 0.5797 0.7647 +31.91%

Hibernate 0.8465 0.9189 +8.55% 0.8035 0.8992 +11.91%
JEdit 0.5564 0.5962 +7.15% 0.5760 0.8259 +43.39%

JFreeChart 0.7759 0.9000 +15.99% 0.6504 0.7014 +7.84%
JMeter 0.8858 0.9091 +2.63% 0.7726 0.8438 +9.22%
JRuby 0.8626 0.9477 +9.87% 0.8445 0.9182 +8.73%
SQuirrel 0.7467 0.8355 +11.89% 0.7069 0.8058 +13.99%
Average 0.7717 0.8422 +9.14% 0.7179 0.8299 +15.61%

We now compare our approach with the state-of-the-art ap-
proach proposed by Ren et al.[39]. To the best of our knowledge,
this is the closest work to ours since both approaches are imple-
mented based on deep learning to detect SATDs. Their method
leverages basic neural networks to accomplish its purposes while
our approach brings attention mechanism into neural networks
to achieve our objectives. We compare our approach with their
method on the same dataset, i.e., the ten projects with ground truth.

Table 4 summarizes the comparison results. In within-project
SATD detection, compared with Ren’s method, our method achieves
performance improvements on all projects ranging from 2.14% to
15.99%. Especially, in the EMF project, which only contains 104
comments, our method gets a 14.01% improvement. This evidence
suggests that our approach is more resilient to small training cor-
pora. On average, our method obtains an F1-score of 84.22%, which
is 9.14% higher than that of Ren’s method.

In cross-projects SATD detection, our method achieves even
better performance improvements ranging from 7.38% to 43.39%,
compared to the within-project setting. On overage, for the ten
projects, our method achieves an F1-score of 82.99%, which is 15.61%
higher than that of Ren’s method. It is worth highlighting that for

the JEdit project, our method achieves 43.39% improvement. The
performance improvement for the EMF project also exceeds 30%.
These experimental results demonstrate that our approach can learn
more useful information from other projects than Ren’s method.
Hence, our approach is more practical to be applied to detect SATDs
in real-world software projects.

Finally, despite that, we have only compared our approach with
the state-of-the-art Ren’s approach, our approach should also out-
perform other similar ones targeting SATD extractions or classi-
fications. Indeed, as experimentally demonstrated by Ren et al.,
over the same dataset, their method can outperform three baseline
approaches, including a pattern-based SATD extraction approach,
a traditional text-mining based SATD classification approach, and
Kim’s simple CNN-based sentence classification approach. There-
fore, since our approach can outperform Ren’s method in the same
regard, we believe that our approach should also be able to outper-
form the aforementioned state-of-the-art approaches.

Answer to RQ2: HATD outperforms the state-of-the-art
approaches, including neural-network-based ones such as
Ren’s approach and pattern-based ones, as well as tradi-
tional text-mining based approaches.

5.3 RQ3: Effectiveness of the selected word
embedding technique

Word embedding, allowing to embed a high-dimensional space
with the number of all words into a continuous vector space with
a much lower dimension, has become one of the most important
techniques in the natural language processing (NLP) community.
Apart from the ELMo technique adopted in this work, the NLP
community has invented various other methods to realize word
embedding. Towards answering the third research question, we
conduct a comparative study between ELMo and some of the other
methods to justify our selection of ELMo and its effectiveness.

To the best of our knowledge, there are at least four additional
popular word embedding techniques available in the community
that we can compare with.

One-hot is the simplest encoding method. Each word has its
own unique word vector representation. The dimension of the word
vector is the length of vocabulary. Only one position in each word
vector has a value of 1, and the others are 0. One-hot encoding is to
assume that all words are independent of each other. It ignores the
semantic similarity between words and causes severe data sparsity
problems when the corpus is very large.

Word2Vec[34] is an open-source toolkit for generating word
vectors launched by Google in 2013, containing two traning modes:
skip-gram and continuous bag of words (CBOW). The skip-gram
model is concerned with using one word to predict the surrounding
words, while CBOWmodel is concernedwith using the surrounding
words to predict the central word. In order to improve model accu-
racy and training speed, Word2Vec usually uses negative sampling
and hierarchical softmax. Word vectors generated by Word2Vec
can better express the similarity and analogy relationship between
words.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Xin Wang and Jin Liu, et al.

Table 5: The comparison results of ELMo and other state-of-the-art word embedding techniques.

Projects Within-Project Cross-Projects
ELMo One-Hot Word2Vec GloVe FastText ELMo One-Hot Word2Vec GloVe FastText

Apache Ant 0.6545 0.6263 0.6242 0.5576 0.5825 0.7132 0.6308 0.6783 0.6226 0.6316
ArgoUML 0.9085 0.9132 0.9059 0.8967 0.8918 0.9030 0.8487 0.8440 0.8290 0.8400
Columba 0.9524 0.9467 0.9024 0.9424 0.9434 0.9239 0.8337 0.8685 0.8469 0.8718

EMF 0.7992 0.7826 0.7273 0.7556 0.7506 0.7647 0.6043 0.6435 0.6376 0.6818
Hibernate 0.9189 0.9126 0.9293 0.8871 0.9592 0.8992 0.8257 0.8331 0.8261 0.8242

JEdit 0.5962 0.5862 0.5714 0.5818 0.5622 0.8259 0.6475 0.6013 0.6118 0.6225
JFreeChart 0.9000 0.8837 0.8947 0.8421 0.8660 0.7014 0.6533 0.6645 0.6095 0.7214

JMeter 0.9091 0.8608 0.8718 0.8741 0.8721 0.8438 0.7451 0.7601 0.7537 0.7659
JRuby 0.9477 0.9000 0.9091 0.8841 0.9524 0.9182 0.8726 0.8548 0.8834 0.8626

SQuirrel 0.8355 0.8214 0.7719 0.7970 0.8000 0.8058 0.7070 0.7559 0.7299 0.6872
Average 0.8422 0.8234 0.8108 0.8019 0.8190 0.8299 0.7369 0.7504 0.7351 0.7509

GloVe (Global Vectors for Word Representation) [36] is essen-
tially a log-bilinear model with a weighted least-squares objective.
The model is inspired by the word co-occurrence probability that
may encode global information for words. This just makes up for
the weakness of Word2Vec just using local word co-occurrence
information. Each word of GloVe involves two word vectors, one is
the vector of the word itself, and the other is the context vector of
the word. The final representation of the word vector is obtained
by adding the two vectors.

FastText[5, 19] can be regarded as a derivative of Word2Vec,
which performs word vector training based on the knowledge of
language morphology. For each word entered, a word-based n-gram
representation is performed, and then all n-grams are added to the
original word to represent morphological information. The advan-
tage of this method is that in english words, the morphological
similarity of prefixes or suffixes can be used to establish relation-
ships between words.

To conduct a fair comparison, we respectively reimplement the
word embedding module with one of the aforementioned four tech-
niques and keep the remaining implementation ofHATD unchanged.
We then launch the new version of HATD on the same dataset, with
the same parameters and experimental settings (i.e., within-project
and cross-projects). The word embedding size determines the ability
of the model to capture the feature information of a code comment.
In order to avoid the influence of different word embedding size
on the experimental results, we uniformly set the embedding size
as 1024 except OneHot embedding method, whose dimension is
always equal to the size of the corpus.

Table 5 presents the experimental results for both within-project
and cross-projects settings. In the within-project setting, due to
the small size of corpus, even OneHot can perform well and even
slightly better than other word embedding techniques (Word2Vec,
GloVe and FastText). ELMo achieves the best performance for eight
projects. This result shows that ELMo is a promising word em-
bedding technique to be used for supporting the automated clas-
sification of SATDs. This evidence can be easily observed in the
cross-projects experiments as well. Indeed, as also shown in Ta-
ble 5, for nine out of the ten selected projects, ELMo achieves the
best performance in supporting HATD pinpoint SATDs. Moreover,
as suggested by the average performance for both within-project

and cross-projects experiments, at least for supporting SATD clas-
sifications, ELMo performs much better than that of other word
embedding techniques (i.e., One-Hot, Word2Vec, GloVe, FastText).
This can be explained by the fact that ELMo will generate differ-
ent vector representations for the same word depending on the
context. For example, some teams use the term ‘rework’ to specify
routine refactoring, which is not always TD. ELMO can alleviate
this situation to some extent.

In the within-project SATD detection, the used training set and
testing set come from the same project with similar comment char-
acteristics, due to the same batch of developers. While in the cross-
projects SATD detection, the comments of the testing set come
from a new project, which is different from the training set. Overall,
the performance of cross-project SATD detection is generally lower
than the within-project SATD detection to varying degrees in all
word embedding techniques.

Answer to RQ3: ELMo outperforms other word embedding
techniques by achievingmostly the best or second-best per-
formance when supporting neural network-based SATD
detections. Moreover, under the same context, dynamic
word embedding technique seem to be more reliable than
static ones.

5.4 RQ4: SATDs in real-world software projects
To evaluate the practicality of HATD, in this last research question,
we assess to what extent can HATD be leveraged to detect SATDs
in real-world software projects, which have no ground truth con-
structed beforehand. In addition, we also evaluate whether HATD
is applicable to other programming languages, such as Python,
JavaScript, etc. To this end, we resort to Github to search for hot
projects, and eventually, we select ten software projects, taking
different technical fields into consideration. Table 6 summarizes the
ten projects, along with their metadatas, such as short descriptions,
number of total comments, etc.

We then train our approach based on the ten benchmark apps
(as enumerated in Table 2) and apply it to classify the comments of
each of the aforementioned ten real-world software projects. The
last second column of Table 6 illustrates the experimental results.
In total, among 382,799 comments, HATD flags 5,438 of them as

Detecting and Explaining Self-Admitted Technical Debts
with Attention-based Neural Networks ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 6: The list of our selected real-world popular software projects.
Project Description Release Stars Contributions Comments SATD % of SATD
Spring Boot A framework for creating Spring based applications. 2.3.0 47.0k 675 67,425 44 0.07
Dubbo A high-performance, java based, open source RPC framework. 2.7.6 31.9k 297 37,516 129 0.34
OkHttp Square’s meticulous HTTP client for Java and Kotlin. 4.5.0 36.7k 199 2,728 25 0.92
Guava Google core libraries for Java. 29.0 36.8k 229 102,705 1,398 1.36
Vue a progressive JavaScript framework for building UI on the web. 2.6.11 162.0k 292 11,721 152 1.30
Werkzeug The comprehensive WSGI Web Application Library. 1.0.1 5.3k 332 1,575 17 1.08
PyTorch Tensors and Dynamic neural networks in Python. 1.4.0 37.9k 1,361 21,977 742 3.38
Django The Web Framework for Perfectionists with Deadlines. 3.0.5 48.7k 1,877 24,074 186 0.77
scikit-learn A Python Module for Machine Learning. 0.22.2 40.3k 1,634 19,625 288 1.47
TensorFlow An Open Source Machine Learning Framework for Everyone. 2.2.0 143.0k 2,460 93,453 2,452 2.62
Average 59.0k 936 38,280 543 1.33

SATDs. The ratios of SATDs in all the project’s comments are
quite low, ranging from 0.7% to 3.38%, giving an average of 1.33%.
Compared with the ground truth projects, we observe that there are
fewer SATDs in these ten real-world software projects we selected,
which may be because they are very popular on Github, and more
contributors participate in code commits and maintenances. The
average number of code contributors in these software projects is
ten times that of the ground truth projects.

Manual verification of the results reported by HATD. We
randomly select 50 samples each (100 comments in total) from the
code comments marked as having technical debts and no technical
debt for further analysis. We then invite five programmers to manu-
ally judge these 100 selected comments and compare their decisions
with the results yielded by our attention-based deep learning model.
The five programmers manually flag the 100 comments as SATD
or non-SATD independently and then discuss with each other to
reach consensus if inconsistent decisions are made in the first place.
Among the 50 code comments marked as SATD, 12 of them are
not flagged by five programmers as such. Among the 50 code com-
ments marked as non-SATD, only five comments differ from the
manual annotations. Overall, our approach yields an accuracy of
83% in detecting SATDs in popular real-world software projects.
Considering that the actual projects we selected come from differ-
ent technical fields and have significant domain differences, some
domain characteristics will not be fully covered by our training set
(based on the ten benchmark apps). With the increase of training
data, we believe that the performance of our model can be further
improved.

Answer to RQ4: In a practical scenario, our approach
achieves an accuracy of 83% in detecting SATDs in real-
world software projects. The fact that all the selected soft-
ware projects have more or less involved with SATDs
shows that SATD is commonly spread in software projects.
Therefore, we argue that software developers and main-
tainers should pay more attention to SATDs.

6 DISCUSSION
We now discuss the explainability of our approach to SATD detec-
tion and introduce potential threats to validity of this study.

Th
is is a

ha
ck fo

r
th

e
m

ul
til

in
e

co
lu

m
n

Comment 01

0.0

0.2

0.4

0.6

0.8

TO
DO

Th
er

e is
pr

ob
ab

ly a
be

tte
r

wa
y to do th
is

ha
ck

Comment 02

0.00

0.04

0.08

0.12

0.16

0.20

0.24

Figure 7: Visualization of weights for two code comments
(Comment 01: This is a hack for themultiline column; Com-
ment 02: TODO: There’s probably a better way to do this
hack).

6.1 Interpretability of HATD
In order to interpret the result of SATD classification, Potdar et
al. [38] have manually summarized 62 frequent SATD patterns
for detecting SATD comments. However, this manual process is
time-consuming and labor-intensive, and difficult to summarize all
SATD patterns. Ren et al. [39] exploit the backtracking mechanism
to map CNN-extracted features to key h-grams and summarize key
h-grams into SATD patterns. Their method, however, requires a
backtracking mechanism to propagate the extracted features back
into the same structure of the model.

In this work, we propose an attention-based neural network to
detect and explain SATD classifications. Through the visualization
of weights, we find our method can immediately provide word-level
and phrase-level interpretability for each comment, regardless of
project differences and time-consuming pattern summary issues.

Figure 7 shows two examples of the comments we have exam-
ined. The color shade indicates the attention weight of words. The
higher the attention weight, the darker the color. For visualization
purposes, we remove padding words to ensure that only meaningful
words are emphasized. From Figure 7, we can see that our method
highlights the word hack in the first comment. While in the second
comment, our method highlights the word TODO and the phrase a
better way. We find an interesting phenomenon that the keyword
hack carries a significant SATD tendency in the first comment,
which is different from that in the second comment. This shows
that the same keywords will play different roles for SATD detection

ASE ’20, September 21–25, 2020, Virtual Event, Australia Xin Wang and Jin Liu, et al.

in different comments, which further exacerbates the difficulty of
manually summarizing SATD patterns to identify SATDs.

Furthermore, we summarize in Table 7 the Top-10 SATD pat-
terns for each of the ten open-source projects. Interestingly, we can
observe that many projects share some common one-gram SATD
patterns (underlined), such as "todo", "xxx", "fix", "fixme", "hack",
"work", "perhaps", "workaround", "better" and "bug". At the same
time, some SATD patterns appear in only one or two projects. For
instance, “a public setter" is only used in Apache Ant project, “model
element", "model/extent" and "behind addTrigger" are only used
in ArgoUML project, "programming error" and "tweak" are only
used in JMeter and JFreeChart projects, respectively. We observe
that some patterns (bold) are not discovered by Potdar et al. and
Ren et al. [38, 39], suggesting that manual summary of SATD pat-
terns will likely miss some less evidential SATD patterns and will
also encounter the problem of project differences. Our method can
supplement those works by automatically identifying SATDs and
highlight keywords or phrases contributing to such identifications,
regardless of project differences.

6.2 Threats to Validity
Threats of internal validity are related to errors in our implementa-
tion and personal bias in data labeling. To avoid implementation
errors, we have carefully checked our experimental steps and pa-
rameter settings. To avoid the personal biases of manually marking
the code comments, the dataset used in our experiments has a high
inter-rater agreement (Cohen’s Kappa coefficient of 0.81), which
has reported by Maldonado et al. [31]. In addition, we do not use the
fine-grained SATD categories proposed by [7] and only consider
the binary classification of code comments. In other words, design
debt, requirement debt, defect debt, documentation debt, and test
debt are all simply treated as SATDs.

Threats of external validity are related to both the quantity and
quality of our experimental dataset and the generalizability of our
experiment results and findings. To guarantee the quantity and
quality of our dataset, we have taken into account ten open-source
projects with different functions and fields, and a different num-
ber of comments as well as comment characteristics. In order to
guarantee the generalizability of our experiment results and find-
ings, we have crawled another ten popular software projects from
Github to test our trained model. By manually verifying the results
reported by our method, we conclude that our method has achieved
an accuracy of 83% on 100 randomly selected comments.

7 RELATEDWORK
Self-Admitted Technical Debt (SATD) is a variant of technical debt
that is used to identify debt that is intentionally introduced during
the software development process. The detection of SATD can better
support software maintenance and ensure high software quality
[9, 17, 22, 26, 28, 29, 33]. This paper aims to propose a deep learning
based method to detect SATDs. To the best of our knowledge, there
is very limited research on the use of deep learning technology
for SATD detection. Therefore, we divide the related work into
two main parts: code comment analysis, existing studies in Self-
Admitted Technical Debt.

7.1 Code Comment Analysis
Code comments play an important role in software development.
The significance of comments is to enable developers to easily un-
derstand and manage codes[15, 42, 49]. Code comments are usually
written in natural language texts containing functional descriptions
and task annotations, aiming to assist project development. Code
comments will have different characteristics due to differences in
developers, projects, and programming languages.

Many studies investigated the characteristics of code comments.
Fluri et al. [11] investigated the level of developers adding com-
ments or adapting comments when evolving code in three open-
source systems. As a result, they found that when the relevant code
changed, the comment changes were usually made in the same ver-
sion. Steidl et al. [44] and Sun et al. [46] conducted a code comment
quality analysis to improve the quality of code comments. More
specifically, Steidl et al. provide a semi-automated approach to con-
duct quantitative and qualitative evaluation of comment quality.
Sun et al. extended their work and provide a more accurate and
comprehensive comment assessments and recommendations.

7.2 Studies in Self-Admitted Technical Debt
Currently, many researchers have focused on proposing approaches
to detect and manage technical debts. Indeed, many empirical stud-
ies have applied on technical debts [1, 24, 40, 61–63]. The concept of
self-admitted technical debt (SATD) is proposed by Potdar et al[38].
SATD means that the debt is intentionally introduced and reported
in code comments by developers. They manually summarized 62
specific patterns from different Java projects for the detection of
SATD comments. Wehaibi et al. [52] examined the relationship
between SATDs and software defects and found that SATDs caused
software systems to consume more resources in the future, rather
than equating to software defects. According to different character-
istics of SATD comments, Maldonado et al. [31] further classified
SATD into five types, namely design debt, defect debt, document
debt, requirement debt, and test debt.

In recent years, researchers in the field of software engineering
have made significant efforts to address the issue of SATD detec-
tions [7, 8, 32, 57]. Huang et al.[16] proposed a text-mining-based
method for SATD detections. In their work, they leverage feature
selectors to select useful features for classifier training and detect
SATD comments in the target project based on the results of the
classifier votes from different source projects. Maldonado et al. [7]
built a maximum entropy classifier for automatically identifying de-
sign and requirement SATD comments based on Natural Language
Processing (NLP) technologies. They conducted extensive exper-
iments in 10 open-source projects and outperformed the current
state-of-the-art based on fixed keywords and phrases. Yan et al. [55]
proposed a change-level method for SATD detections utilizing 25
change features. In addition, they investigated the most important
features (“diffusion”) that impact SATD detections.

With the rapid development of deep learning, Ren et al. [39]
exploited a deep learning based method as support of SATD detec-
tions. In their work, they utilized a convolutional neural network
(CNN) to automatically learn key features in SATD comments. They
introduced a weighted loss function to deal with the issue of data

Detecting and Explaining Self-Admitted Technical Debts
with Attention-based Neural Networks ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 7: Top-10 SATD patterns in each project extracted by our approach
Apache Ant ArgoUML Columba EMF Hibernate
xxx todo todo todo todo
todo not needed fixme better better
what is should be function need remove work
a public setter model/extent work why not this support
fixme model element implement factor up into bug
perhaps more work replace with SubProgressMonitor workaround
hack fixme hack revisit fix
better behind addTrigger better GenBaseImpl perhaps
should we not in uml workaround instead of fixme
this comment hack used currently fix render
JEdit JFreeChart JMeter JRuby SQuirrel
hack todo todo todo todo
work check hack fixme work
todo defer argument checking... perhaps require pop data type
fix fixme not used hack render
workaround tweak work better bug
bug happen appear bother hack to deal with
xxx implement this fix fix follow
broken assert a value programming error perhaps workaround
stupid crosshair values bail out NOT_ALLOCATABLE_ALLOCATOR is this right
look bad NOT trigger bug not very efficient better way

imbalance. In addition, for the explainability of detection, they de-
signed a backtracking method to extract and highlight key phrases
and patterns of SATD comments to explain the prediction results.

8 CONCLUSION
The objective of this work is to automatically detect and explain
self-admitted technical debts in software projects, allowing soft-
ware developers to fix those issues in a timely manner so as to avoid
long-time maintenance efforts. To fulfill this objective, in this work,
we have provided an overview of code comment characteristics
that make it challenging to automatically detect SATDs. Then, we
propose to the community a hybrid attention-based method for
SATD detection named HATD, which has been equipped with the
flexibility to switch word embedding techniques based on project
uniqueness and comment characteristics. After that, we experi-
mentally demonstrate the efficiency of HATD by (1) outperform-
ing state-of-the-art methods on benchmark datasets, (2) detecting
SATDs in real-world software projects, and (3) demonstrating the
explainability of HATD in highlighting the core words or phrases
justifying why a given SATD is flagged as such.

ACKNOWLEDGMENT
This work was supported by the grands of the National Natural
Science Foundation of China (Nos.61972290, U163620068, 61962061,
61562090).

REFERENCES
[1] Nicolli S.R. Alves, Leilane F. Ribeiro, Vivyane Caires, Thiago S. Mendes, and

Rodrigo O. Spinola. 2014. Towards an Ontology of Terms on Technical Debt. In
2014 Sixth International Workshop on Managing Technical Debt. 1–7.

[2] Nicolli S R Alves, Thiago Souto Mendes, Manoel Mendonca, Rodrigo O Spinola,
Forrest Shull, and Carolyn Seaman. 2016. Identification and management of
technical debt. Information and Software Technology 70, 70 (2016), 100–121.

[3] Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and
Paris Avgeriou. 2015. The financial aspect of managing technical debt. Information
and Software Technology 64, 64 (2015), 52–73.

[4] G. Bavota and B. Russo. 2016. A Large-Scale Empirical Study on Self-Admitted
Technical Debt. In 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR). 315–326.

[5] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword information. Transactions of the Association
for Computational Linguistics 5 (2017), 135–146.

[6] Ward Cunningham. 1993. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger 4, 2 (1993), 29–30.

[7] Everton da Silva Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using
natural language processing to automatically detect self-admitted technical debt.
IEEE Transactions on Software Engineering 43, 11 (2017), 1044–1062.

[8] Mário André de Freitas Farias, Manoel Gomes de Mendonça Neto, Marcos Kali-
nowski, and Rodrigo Oliveira Spínola. 2020. Identifying self-admitted technical
debt through code comment analysis with a contextualized vocabulary. Inf. Softw.
Technol. 121 (2020), 106270.

[9] Jernej Flisar and Vili Podgorelec. 2018. Enhanced Feature Selection Using Word
Embeddings for Self-Admitted Technical Debt Identification. In Euromicro Con-
ference on Software Engineering and Advanced Applications.

[10] Jernej Flisar and Vili Podgorelec. 2019. Identification of Self-Admitted Technical
Debt Using Enhanced Feature Selection Based on Word Embedding. IEEE Access
7 (2019), 106475–106494.

[11] B. Fluri, M. Wursch, and H.C. Gall. 2007. Do Code and Comments Co-Evolve?
On the Relation between Source Code and Comment Changes. In 14th Working
Conference on Reverse Engineering (WCRE 2007). 70–79.

[12] Matthieu Foucault, Xavier Blanc, Margaretanne Storey, Jeanremy Falleri, and
Cedric Teyton. 2018. Gamification: a Game Changer for Managing Technical
Debt? A Design Study. arXiv: Software Engineering (2018).

[13] Sávio Freire, Nicolli Rios, Boris Gutierrez, Darío Torres, Manoel G. Mendonça,
Clemente Izurieta, Carolyn B. Seaman, and Rodrigo O. Spínola. 2020. Surveying
Software Practitioners on Technical Debt Payment Practices and Reasons for not
Paying off Debt Items. In EASE. 210–219.

[14] Zhaoqiang Guo, Shiran Liu, Jinping Liu, Yanhui Li, Lin Chen, Hongmin Lu,
Yuming Zhou, and Baowen Xu. 2019. MAT: A simple yet strong baseline for
identifying self-admitted technical debt. arXiv: Software Engineering (2019).

[15] Matthew J. Howard, Samir Gupta, Lori Pollock, and K. Vijay-Shanker. 2013.
Automatically mining software-based, semantically-similar words from comment-
code mappings. In MSR. 377–386.

[16] Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li. 2018. Identifying
self-admitted technical debt in open source projects using text mining. Empirical
Software Engineering 23, 1 (2018), 418–451.

[17] Martina Iammarino, Fiorella Zampetti, Lerina Aversano, and Massimiliano Di
Penta. 2019. Self-Admitted Technical Debt Removal and Refactoring Actions:

ASE ’20, September 21–25, 2020, Virtual Event, Australia Xin Wang and Jin Liu, et al.

Co-Occurrence or More?. In 2019 IEEE International Conference on Software Main-
tenance and Evolution,ICSME. 186–190.

[18] Clemente Izurieta, Ipek Ozkaya, Carolyn B. Seaman, Philippe Kruchten, Robert L.
Nord, Will Snipes, and Paris Avgeriou. 2016. Perspectives on Managing Technical
Debt: A Transition Point and Roadmap from Dagstuhl. In Joint Proceedings of
the 4th International Workshop on Quantitative Approaches to Software Quality
(QuASoQ 2016), Vol. 1771. 84–87.

[19] Armand Joulin, Edouard Grave, and Piotr Bojanowski Tomas Mikolov. 2017. Bag
of Tricks for Efficient Text Classification. EACL 2017 (2017), 427.

[20] Michael Kampffmeyer, Arnt-Borre Salberg, and Robert Jenssen. 2016. Semantic
segmentation of small objects and modeling of uncertainty in urban remote
sensing images using deep convolutional neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops. 1–9.

[21] Kisub Kim, Dongsun Kim, Tegawendé F Bissyandé, Eunjong Choi, Li Li, Jacques
Klein, and Yves Le Traon. 2018. FaCoY - A Code-to-Code Search Engine. In ICSE
2018.

[22] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein.
2018. Automated Testing of Android Apps: A Systematic Literature Review. IEEE
Transactions on Reliability (2018).

[23] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. 2012. Technical Debt: From
Metaphor to Theory and Practice. IEEE Software 29, 6 (2012), 18–21.

[24] Philippe Kruchten, Robert L Nord, Ipek Ozkaya, and Davide Falessi. 2013. Tech-
nical debt: towards a crisper definition report on the 4th international workshop
on managing technical debt. ACM SIGSOFT Software Engineering Notes 38, 5
(2013), 51–54.

[25] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The Technical
Debt Dataset. In Proceedings of the Fifteenth International Conference on Predictive
Models and Data Analytics in Software Engineering, PROMISE 2019, Recife, Brazil,
September 18, 2019. ACM, 2–11.

[26] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. 2017. Static Analysis
of Android Apps: A Systematic Literature Review. Information and Software
Technology (2017).

[27] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study
on technical debt and its management. Journal of Systems and Software 101 (2015),
193–220.

[28] Zhongxin Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li.
2018. SATD detector: a text-mining-based self-admitted technical debt detection
tool. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018.
9–12.

[29] Rungroj Maipradit, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto.
2019. Wait For It: Identifying "On-Hold" Self-Admitted Technical Debt. arXiv:
Software Engineering (2019).

[30] E. D. S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik. 2017. An
Empirical Study on the Removal of Self-Admitted Technical Debt. In 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 238–
248.

[31] Everton da S Maldonado and Emad Shihab. 2015. Detecting and quantifying
different types of self-admitted technical debt. In 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD). IEEE, 9–15.

[32] Solomon Mensah, Jacky Keung, Jeffery Svajlenko, Kwabena Ebo Bennin, and
Qing Mi. 2018. On the value of a prioritization scheme for resolving Self-admitted
technical debt. Journal of Systems and Software 135 (2018), 37–54.

[33] Solomon Mensah, Jacky W. Keung, Michael Franklin Bosu, and Kwabena Ebo
Bennin. 2016. Rework Effort Estimation of Self-admitted Technical Debt. In
Joint Proceedings of the 4th International Workshop on Quantitative Approaches
to Software Quality (QuASoQ 2016) Hamilton, New Zealand, December 6, 2016,
Vol. 1771. 72–75.

[34] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[35] Robert L. Nord, Ipek Ozkaya, Edward J. Schwartz, Forrest Shull, and Rick Kazman.
2016. Can Knowledge of Technical Debt Help Identify Software Vulnerabilities?.
In 9th Workshop on Cyber Security Experimentation and Test.

[36] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In EMNLP. 1532–1543.

[37] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. In Proceedings of NAACL-HLT. 2227–2237.

[38] Aniket Potdar and Emad Shihab. 2014. An exploratory study on self-admitted
technical debt. In ICSME. IEEE, 91–100.

[39] XIAOXUE REN, ZHENCHANG XING, XIN XIA, DAVID LO, XINYU WANG, and
JOHN GRUNDY. 2019. Neural Network Based Detection of Self-admitted Tech-
nical Debt: From Performance to Explainability. ACM Transactions on Software
Engineering and Methodology 28, 3 (2019).

[40] Carolyn Seaman, Yuepu Guo, Nico Zazworka, Forrest Shull, Clemente Izurieta,
Yuanfang Cai, and Antonio Vetrò. 2012. Using technical debt data in decision

making: Potential decision approaches. In 2012 Third International Workshop on
Managing Technical Debt (MTD). IEEE, 45–48.

[41] Giancarlo Sierra, Emad Shihab, and Yasutaka Kamei. 2019. A survey of self-
admitted technical debt. Journal of Systems and Software 152 (2019), 70–82.

[42] Giancarlo Sierra, Ahmad Tahmid, Emad Shihab, and Nikolaos Tsantalis. 2019. Is
Self-Admitted Technical Debt a Good Indicator of Architectural Divergences?. In
SANER, Xinyu Wang, David Lo, and Emad Shihab (Eds.). 534–543.

[43] Rodrigo O. Spínola, Nico Zazworka, Antonio Vetro, Forrest Shull, and Carolyn B.
Seaman. 2019. Understanding automated and human-based technical debt identi-
fication approaches-a two-phase study. J. Braz. Comp. Soc. 25, 1 (2019), 5:1–5:21.

[44] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. 2013. Quality analy-
sis of source code comments. In 2013 21st International Conference on Program
Comprehension (ICPC). 83–92.

[45] Ben Stopford, Ken Wallace, and John Allspaw. 2017. Technical Debt: Challenges
and Perspectives. IEEE Software 34, 4 (2017), 79–81.

[46] Xiaobing Sun, Qiang Geng, David Lo, Yucong Duan, Xiangyue Liu, and Bin Li.
2016. Code Comment Quality Analysis and Improvement Recommendation:
An Automated Approach. International Journal of Software Engineering and
Knowledge Engineering 26, 6 (2016), 981–1000.

[47] Edith Tom, Aybuke Aurum, and Richard Vidgen. 2013. An exploration of technical
debt. Journal of Systems and Software 86, 6 (2013), 1498–1516.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[49] Bradley L. Vinz and Letha H. Etzkorn. 2008. Improving program comprehension
by combining code understanding with comment understanding. Knowledge
Based Systems 21, 8 (2008), 813–825.

[50] Supatsara Wattanakriengkrai, Rungroj Maipradit, Hideki Hata, Morakot
Choetkiertikul, and Kenichi Matsumoto. 2018. Identifying Design and Require-
ment Self-Admitted Technical Debt Using N-gram IDF. In IWESEP.

[51] Supatsara Wattanakriengkrai, Napat Srisermphoak, Sahawat Sintoplertchaikul,
Morakot Choetkiertikul, Chaiyong Ragkhitwetsagul, Thanwadee Sunetnanta,
Hideaki Hata, and KenichiMatsumoto. 2019. Automatic Classifying Self-Admitted
Technical Debt Using N-Gram IDF. (2019), 316–322.

[52] Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. 2016. Examining the impact
of self-admitted technical debt on software quality. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1.
IEEE, 179–188.

[53] Will, Snipes, Carolyn, Seaman, Ipek, Ozkaya, Clemente, and Izurieta. 2017. Tech-
nical Debt: A Research Roadmap Report on the Eighth Workshop on Managing
Technical Debt (MTD 2016). Software Engineering Notes Acm Sigsoft (2017).

[54] Jifeng Xuan, Yan Hu, and Jiang He. 2012. Debt-Prone Bugs: Technical Debt in
Software Maintenance. International Journal of Advancements in Computing
Technology 4 (10 2012), 453–461.

[55] Meng Yan, Xin Xia, Emad Shihab, David Lo, Jianwei Yin, and Xiaohu Yang.
2018. Automating change-level self-admitted technical debt determination. IEEE
Transactions on Software Engineering (2018).

[56] Meng Yan, Xin Xia, Emad Shihab, David Lo, Jianwei Yin, and Xiaohu Yang. 2019.
Automating Change-Level Self-Admitted Technical Debt Determination. IEEE
Transactions on Software Engineering 45, 12 (2019), 1211–1229.

[57] Zhe Yu, Fahmid Morshed Fahid, Huy Tu, and Tim Menzies. 2020. Identifying
Self-Admitted Technical Debts with Jitterbug: A Two-step Approach. CoRR
abs/2002.11049 (2020).

[58] Fiorella Zampetti, Cedric Noiseux, Giuliano Antoniol, Foutse Khomh, and Mas-
similiano Di Penta. 2017. Recommending when Design Technical Debt Should
be Self-Admitted. In 2017 IEEE International Conference on Software Maintenance
and Evolution, ICSME. 216–226.

[59] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. 2018. Was
Self-Admitted Technical Debt Removal a Real Removal? An In-Depth Perspective.
In MSR.

[60] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. 2020. Au-
tomatically Learning Patterns for Self-Admitted Technical Debt Removal. In
SANER.

[61] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Seaman. 2011.
Investigating the impact of design debt on software quality. In Proceedings of the
2nd Workshop on Managing Technical Debt. 17–23.

[62] Nico Zazworka, Rodrigo O. Spínola, Antonio Vetro, Forrest Shull, and Carolyn
Seaman. 2013. A case study on effectively identifying technical debt. In Proceed-
ings of the 17th International Conference on Evaluation and Assessment in Software
Engineering. 42–47.

[63] Nico Zazworka, Antonio Vetro, Clemente Izurieta, Sunny Wong, Yuanfang Cai,
Carolyn Seaman, and Forrest Shull. 2014. Comparing four approaches for techni-
cal debt identification. Software Quality Journal 22, 3 (2014), 403–426.

[64] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo
Xu. 2016. Attention-based bidirectional long short-term memory networks for
relation classification. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). 207–212.

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 SATD VS. Code Changes
	2.2 Characteristics of Code Comments

	3 Our Approach
	3.1 Word Embedding
	3.2 Feature Learning
	3.3 SATD Detection

	4 Experimental Setup
	4.1 Dataset Description
	4.2 Evaluation Methods and Metrics
	4.3 Parameters and Experimental Environment

	5 Result
	5.1 RQ1: Effectiveness of HATD
	5.2 RQ2: Performance Comparison with the state-of-the-art Approach
	5.3 RQ3: Effectiveness of the selected word embedding technique
	5.4 RQ4: SATDs in real-world software projects

	6 Discussion
	6.1 Interpretability of HATD
	6.2 Threats to Validity

	7 Related Work
	7.1 Code Comment Analysis
	7.2 Studies in Self-Admitted Technical Debt

	8 Conclusion
	References

