
074 0 -74 5 9 / 2 0 © 2 0 2 0 I E E E SEPTEMBER/OCTOBER 2020 | IEEE SOFTWARE 49

FOCUS: BLOCKCHAIN AND SMART CONTRACT ENGINEERING

 BLOCKCHAIN, ORIGINALLY KNOWN
as block chain, is an ingenious in-
vention to deploy undeniable sys-
tems for recording data changes
among different parties in a veri-
fiable and permanent way. The data
changes are essentially grouped into
blocks that are further linked using

cryptography (i.e., the cryptographic
hash of a given block is stored by
its immediate subsequent block).
One thing that makes blockchain so
promising to the practitioners, who
have investigated millions of dollars
in building the blockchain infra-
structure, could be the innovation of
smart contracts. Indeed, smart con-
tracts provide means for the partici-
pants to execute a contract (such as

exchanging money and shares) in a
transparent, conflict-free manner.
In this article, we limit ourselves to
the Ethereum blockchain platform,
which is the second most popular
blockchain platform. The reason
why we choose Ethereum instead of
other blockchain platforms is that
Ethereum weighs smart contracts as
its strategic opportunity and posi-
tions itself as the Internet of the fu-
ture. The smart contracts running
on the Ethereum platform are usu-
ally written via the so-called Solid-
ity programming language, which
is a super typed JavaScript-like lan-
guage with the inclusion of impor-
tant object-oriented features, such
as inheritance.

 At the end of 2018, there were al-
ready over a million smart contracts
deployed on Ethereum, counting
for a total of more than 100 million
Ether, the fundamental token of op-
eration in Ethereum, or more than
US$1.5 billion (i.e., each Ether is
worth more than US$150 at the time
of writing). Unfortunately, where
there is money, there are attack-
ers following. Indeed, hackers have
launched the infamous DAO attack1

and have stolen at least US$60 mil-
lion from the Ethereum blockchain
platform. More recently, the team
behind the Parity Ethereum software
client reveals that a critical code flaw
(also known as the Parity Freeze)2

has led to the freezing of around
US$160 million worth of Ether.

 The fact that a security problem
would lead to millions of dollars in
losses shows that it is essential to
test smart contracts properly before
releasing them. Indeed, state-of-the-
art testing approaches have been
proposed to mitigate potential se-
curity issues of smart contracts. For
example, Jiang et al.3 propose a pro-
totype tool called ContractFuzzer,

On the Need of
Understanding
the Failures of
Smart Contracts
 Dabao Wang , Monash University

 Kui Liu , Nanjing University of Aeronautics and Astronautics

 Li Li , Monash University

// When the execution of smart contracts fails,

the transaction will not be recorded to provide

hints for analysts to improve their automated

analyzers. To mitigate this, we present

ExecuWatch to watch the execution of smart

contracts and report the execution details. //

Digital Object Identifier 10.1109/MS.2020.3003921
Date of current version: 20 August 2020

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:32:55 UTC from IEEE Xplore. Restrictions apply.

50 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BLOCKCHAIN AND SMART CONTRACT ENGINEERING

which applies fuzz testing to detect
vulnerabilities in smart contracts.
Unfortunately, state-of-the-art ap-
proaches ignore the failed test cases

that could provide useful infor-
mation for generating promising
test cases. Indeed, various con-
straints can hinder the deployment

or execution of smart contracts. If
those constraints are not met, na-
ïve fuzzing techniques could not
bypass those constraints and sub-
sequently may result in wasted fuzz-
ing efforts. Therefore, there is a
need to characterize the failures of
smart contracts to achieve effec-
tive fuzzing.

E xisting smart contract IDEs,
such as Remix provide debugging
features that allow developers to ex-
ecute the contracts step by step, so
as to comprehend the contract fail-
ures, if any. However, such debug-
ging processes are known to be time
consuming, and most importantly,
cannot be automated, which is none-
theless essential to achieve effective
fuzzing. Indeed, it is nontrivial to
automatically locate the failures of
smart contracts under testing. The
Ethereum virtual machine does not
provide possible means to record the
execution status of smart contracts,
especially when a given smart con-
tract is failed. Indeed, developers
usually use what is termed the event
system to log the execution of smart
contracts. When the execution of
a smart contract fails, all of the ex-
ecution status (even the already trig-
gered events) will be rollbacked. As
a result, when integrating execution
feedback to improve fuzz testing ap-
proaches, there is a strong need to
comprehend the failures caused by
the consumed test cases.

I n this article, we present a proto-
type tool called ExecuWatch, which
leverages a code instrumentation
approach to record the execution
details of smart contracts, includ-
ing the results of unsuccessfully ex-
ecuted contracts. (ExecuWatch is
publicly available at https://bitbucket
.org /PanicWoo/execuwatch.) We
further leverage ExecuWatch to lo-
cate failures in smart contracts.

LISTING 1. A SIMPLIFIED
EXAMPLE OF A SMART
CONTRACT WRITTEN IN
SOLIDITY.

 0 pragma solidity ^0.4.24;
 1 contract Demo {
 2 mapping(address => bool) inLedger;
 3 mapping(address => uint256) balanceLedger;
 4 uint256 max_bet_amount = 1000;
 5 uint256 min_bet_amount = 100;
 6 uint256 bonus_rate = 20;
 7 event redeem_result(uint8 _guess, uint8 redeem_code);
 8 event result(address player, uint256 total_bonus, uint256 lost_amount);
 9 event ReceiveFrom(uint, address);
10
11 constructor() public payable {...}
12 function () public payable{...}
13 function random(uint8 seed) public view returns (uint8) {...}
14 function bet(uint8 _guess, address player, uint256
 _amount, uint8 play_times) public payable {
15 uint256 total_bonus = 0;
16 uint256 lost_amount = 0;
17 uint256 bonus = bonus_rate * _amount;
18 require(inLedger[player], “Caller is not in the member list.”);
19 for(uint8 i = 0; i <= play_times; i++) {
20 emit result(player, total_bonus, lost_amount);
21 if (_guess == random(i)) {
22 player.transfer(bonus);
23 total_bonus = bonus + total_bonus;
24 }
25 else {
26 balanceLedger[player] -= _amount;
27 lost_amount = lost_amount + _amount;
28 } }
29 emit result(player, total_bonus, lost_amount);
30 } }

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:32:55 UTC from IEEE Xplore. Restrictions apply.

SEPTEMBER/OCTOBER 2020 | IEEE SOFTWARE 51

When the execution of a given smart
contract fails, ExecuWatch goes
through the execution details to au-
tomatically locate the position where
the failure happens, aiming at help-
ing practitioners better understand
the reasons behind the failure so
as to invent promising strategies to
overcome such failures. Experimen-
tal results show that our approach
is effective in logging the execu-
tion status of smart contracts and
locating the failures of failed smart
contracts. We also experimentally
demonstrate that our approach helps
invent effective fuzz approaches for
testing smart contracts. Fuzz testing
has been recurrently leveraged to au-
tomatically test software for identi-
fying unexpected behaviors, crashes,
and potential security issues.5,6

Motivation
We now reinforce the importance of
this article through a concrete ex-
ample. Listing 1 illustrates a simpli-
fied example of a real-world smart
contract written in Solidity. This ex-
ample defines a contract named Demo
(line 1), which declares a field inLedger
(line 2), one event named result (line 8),
one constructor method (line 11),
and three public methods defined via
the function keyword (line 12, line 13
and lines 14–30).

Although Solidity is similar to
other programming languages, it
has introduced several unique fea-
tures that are worth highlighting.
First, since there is no explicit “log-
ging” mechanism introduced in So-
lidity, “events” are usually used to
record the execution status of smart
contracts. Second, observant read-
ers may have already noticed that
there is a public method declared
without giving an explicit name
(line 12). This method is known
as the fallback method, which will

be triggered when the contract is
called, but no methods match the
calling signature. Third, modifi-
ers of methods (such as public and
payable) are defined at the end of

arguments. The modifier paya b l e
indicates that the method is al-
lowed to receive Ethers (the cur-
rency in the Ethereum ecosystem)
from other contracts.

T raditional fuzzing involves gen-
erating random inputs, including un-
expected or even invalid test cases,
to explore the given software under
testing. Unfortunately, due to vari-
ous language features included in
Solidity, it is less effective to use tra-
ditional fuzz testing to test Etherum
smart contracts. Take Listing 1 as

an example. With a naïve fuzzing
strategy, all of the randomly gen-
erated test cases may fail to pass
the method bet(). The main reason
causing the failure of the fuzzing

approach is related to the specific
require-related methods. The require
statements define constraints that
the value of the parameter expres-
sions must be fulfilled.

Furthermore, smart contracts
need to be first deployed on block-
chains (or equivalent virtual ma-
chines that allow the emulation of
contract deployment) before being
executed. When addresses of other
contracts are involved, to success-
fully run the smart contract, the re-
ferred addresses need to be valid as

FIGURE 1. The working process of ExecuWatch.

Code
Instrumentation

Smart
Contracts

Failure Locating

Failure
Insights

Automated
Deployment

Fuzzing

 The fact that a security problem
would lead to millions of dollars in
losses shows that it is essential to

test smart contracts properly before
releasing them.

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:32:55 UTC from IEEE Xplore. Restrictions apply.

52 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BLOCKCHAIN AND SMART CONTRACT ENGINEERING

well (e.g., the corresponding smart
contracts need to be deployed on the
same blockchain).

The aforementioned challenges
show that it is nontrivial to test smart
contracts with straightforward fuzz-
ing. We argue that it would be more
practical to consider the execution
results (specifically, failures) as feed-
back to improving the fuzz testing ap-
proach. Unfortunately, it is difficult

in practice to achieve this purpose
as there is no means that can effec-
tively collect the execution feedback
of smart contracts under the current
Ethereum execution environment.
Indeed, when a smart contract fails
to be executed, all of the execution
details, including the already fired
events, will be rolled back. There-
fore, to achieve effective fuzzing, it
is necessary to effectively record the

execution results of smart contracts,
even if their executions are failed.

Approach
In this article, we design and imple-
ment a prototype tool, ExecuWatch,
aiming at tracking the execution
status of smart contracts (including
failed ones), so as to help practitio-
ners understand the failures of smart
contracts, which are essential for ef-
fective fuzzing. Figure 1 illustrates
the working process of ExecuWatch
that consists of two main steps: code
instrumentation and failure locating.

Code Instrumentation
The first step aims at injecting log-
ging statements into the original
smart contracts to record their ex-
ecution statuses. By taking a smart
contract as input, this step first lever-
ages a lightweight static analysis ap-
proach to infer 1) what information
to log and 2) where to inject logging
statements. Based on the outputs of
the static analysis approach, this step
then applies a dedicated code rewriter
to inject the previously inferred log-
ging statements. As a result, this step
will output a new smart contract that
contains richer debugging informa-
tion while being semantically equiv-
alent to the original input contract.
Listing 2 demonstrates such an exam-
ple of instrumented code. All the ‘+’
indicated lines are injected to record
the execution status (inferred in this
module to log) of line 22 in Listing 1.

Failure Locating
The second step is to locate the fail-
ure position. When the execution of
a smart contract fails, the whole ex-
ecution will be rollbacked to the ini-
tial state, and the emitted events will
be emptied.4 In other words, even
with the injected logging statements,
if the contracts’ execution fails, we

LISTING 2. THE
INSTRUMENTED
CONTRACT CODE FOR
LINE 22 IN LISTING 1.
THE LOG* FUNCTIONS ARE
PREDEFINED (AND ALSO
INJECTED) BY EXECUWATCH
TO RECORD THE EXECUTION
RUNTIME.
14 function bet(uint8 _guess, address player, uint256
 _amount, uint8 play_times) public payable {
15 //…Hide previous lines
16 player.transfer(bonus);
17 + if (targetLineNum == 9) {
18 + logstring(’Line’, “total_bonus = bonus + total_bonus;”);
19 + //logging global variables
20 + loguint(’_guess’,_guess);
21 + logaddress(’player’,player);
22 + loguint(’_amount’,_amount);
23 + loguint(’play_times’,play_times);
24 + loguint(’total_bonus’,total_bonus);
25 + loguint(’lost_amount’,lost_amount);
26 + loguint(’bonus’,bonus);
27 + return;
28 + }
29 total_bonus = bonus + total_bonus;
30 }

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:32:55 UTC from IEEE Xplore. Restrictions apply.

SEPTEMBER/OCTOBER 2020 | IEEE SOFTWARE 53

still cannot obtain the execution sta-
tuses of smart contracts. To this end,
we invent a novel divide-and-conquer
(D&C) strategy to bypass this chal-
lenge. The idea of D&C is to split
the function to enable partial test-
ing of the function, allowing the col-
lection of partial execution statuses.
For example, given a contract func-
tion that fails to be fully executed,
we can divide the function into two
parts with each part contains half of
the statements. If the first-half state-
ments can be successfully executed,
we will be able to harvest their ex-
ecution records, and we are sure that
the failure location is at the second-
half statements. In practice, this pro-
cess will be automatically iterated
until the failure point is located.

Evaluation
We now briefly detail the experiments
that we carry out to assess Execu-
Watch for locating and understand-
ing failures in smart contracts. In this
article, we resort to real-world smart
contracts deployed on Etherum block-
chains to evaluate the performance of
ExecuWatch. In particular, we collect
smart contracts deployed from May
to December 2018 on Etherscan, one
of the leading block explorers in the
community, and randomly select 100
smart contracts to fulfill our evalua-
tion data set.

To investigate the locating failure
capability of ExecuWatch, we should
ideally apply our approach to such
smart contracts that have known
failures with actual test inputs. Un-
fortunately, as smart contract re-
search is at an earlier stage, our
community (both practitioners and
researchers) has not prepared such a
ground truth to support our ex-
periments. To this end, we conduct
an experiment with a naïve fuzzing
approach to automatically explore

the execution of deployed smart con-
tracts. For the sake of simplicity,
we implement our fuzzing approach
based on the strategy of Contact-
Fuzzer, which is proposed by Jiang
et al.2 for detecting vulnerabilities in
smart contracts. In this article, all of
the contracts are deployed and tested
on a test blockchain set up via Geth,
a golang implementation of Ethe-
reum blockchain (see https://geth
.ethereum.org/docs/.)

We apply the naive fuzzing ap-
proach to explore the 100 randomly

selected smart contracts, containing
326 public functions. The fuzzing
test for each function lasts 10 min.
In total, more than 30,000 test cases
are generated and tested, among
which over half of them cannot pass
the execution. By default, there will
be no execution status generated
for the failed cases, which could
lead to difficulties in understand-
ing those failures. With the help of
ExecuWatch, all of the executions,
including the failed ones, have their
execution details recorded. This evi-
dence shows that ExecuWatch is in-
deed effective for “watching” the
execution of smart contracts.

We then look at the capability of
ExecuWatch for pinpointing the lo-
cation of failures, aiming at provid-
ing hints for users and developers
to quickly understand the reasons

behind such failures. To this end,
we randomly select 100 failed ex-
ecutions and manually go through
all of them to check if the reported
location is indeed relevant to the
failure causes (e.g., the referred ex-
ternal contract, for which its address
is hardcoded, is not deployed on the
blockchains). Additionally, our in-
depth investigation shows that 76%
of them are correct results, illustrat-
ing that our approach is also useful
in helping users understand the fail-
ures of smart contracts.

Implication and
Discussion
When we manually check the located
failure statements, we find that a sig-
nificant number of them are caused
by invalid test inputs. This is ex-
pected, as we have only leveraged a
naïve fuzz testing approach to explore
the contracts. Indeed, many failures
are related to unsatisfied constraints
(e.g., require() statements as shown
in Listing 1), for which we believe a
“smarter” fuzzing approach would by-
pass. To this end, based on the outputs
of ExecuWatch, we go one step further
to refine our approach by introducing
a constraint-aware fuzzing approach.
To this end, we first extract the relat-
 ed constraints from a smart contract
before generating the inputs for test-
ing. This simple improvement en-
ables us to successfully pass more than

This evidence shows that
ExecuWatch is indeed effective for
“watching” the execution of smart

contracts.

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:32:55 UTC from IEEE Xplore. Restrictions apply.

54 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BLOCKCHAIN AND SMART CONTRACT ENGINEERING

10% of smart contracts (i.e., between
our simple constraint-aware fuzz-
ing approach and the naïve fuzzing
approaches), illustrating that Execu-
Watch could be useful for guiding the
development of fuzzing approaches.
ExecuWatch enables an automated
feedback mechanism when execut-
ing smart contracts, which could be
essential toward developing effective
fuzzing approaches. Indeed, fuzz-
ing tools can leverage the feedback
(i.e., execution runtime) yielded by
ExecuWatch to dynamically update
their test case generation strategy
so as to generate more effective test
cases, and subsequently lead to higher
code coverages.

I n this article, we presented to
the community a prototype
tool called ExecuWatch, which,

to the best of our knowledge, is the
first approach proposed for record-
ing the execution details of smart
contracts that, by default, are im-
possible to harvest if the execution
fails. Furthermore, for such con-
tracts with failures, ExecuWatch
adopts a failure-locating module
to pinpoint the location of the fail-
ures. The failure locations provide
useful hints that could help users,
developers, or analysts quickly un-
derstand the reasons behind them.
We further demonstrate that our
approach is useful in supporting the

development of advanced fuzzing
approaches. As of our future work,
based on ExecuWatch, we plan to
implement such an advanced fuzz-
ing approach to effectively test
smart contracts.

Refer ences
1. M . del Castillo, “The DAO attacked:

Code issue leads to $60 million ether

theft,” Coindesk, June 18, 2016.

[Online]. Available: https://www

.coindesk.com/dao-attacked-code

-issue-leads-60-million-ether-theft

2. R . O’Leary, “Parity team publishes

postmortem on $160 million ether

freeze,” Coindesk, Nov. 15, 2017.

[Online]. Available: https://www

.coindesk.com/parity-team-publishes

-postmortem-160-million-ether-freeze

3. B. Jiang, Y. Liu, and W. K. Chan,

“Contractfuzzer: Fuzzing smart

contracts for vulnerability detec-

tion,” in Proc. 33rd ACM/IEEE Int.

Conf. Automated Software Engi-

neering, 2018, pp. 259–269. doi:

10.1145/3238147.3238177.

4. E therium, “Ethereum state

transition function.” Accessed on:

Oct. 2019. [Online]. Available:

https://ethereum.org/whitepaper

/#ethereum-state-transition-function.

5. T . D. Nguyen, L. H. Pham, J. Sun,

Y. Lin, and Q. T. Minh, Sfuzz: An

efficient adaptive fuzzer for solid-

ity smart contracts, 2020. [On-

line]. Available: https://arxiv.org/

pdf/2004.08563.pdf

6. Q . Zhang, Y. Wang, J. Li, and

S, Ma, “Ethploit: From fuzzing to

efficient exploit generation against

smart contracts,” in Proc. IEEE 27th

Int. Conf. Software Analysis,

Evolution and Reengineering

(SANER), 2020, pp. 116–126.

doi: 10.1109/SANER48275.2020

.9054822.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

 DABAO WANG is a Ph.D. student in the Faculty of Informa-

tion Technology, Monash University, Melbourne, Australia.

His current research interests include searchable encryption,

database security, and trusted enclave. Wang received a bach-

elor’s degree with honors in computer science from Monash

University. Contact him at dabao.wang@monash.edu.

 KUI LIU is an associate professor in the Nanjing University of

Aeronautics and Astronautics, China. His research interests

include automated program repair, automated fault localiza-

tion, deep learning, and empirical software engineering. Liu

received a Ph.D. from the University of Luxembourg in 2019.

He is a Member of IEEE and a corresponding author of this

article. Contact him at kui.liu@nuaa.edu.cn.

 LI LI is an ARC DECRA Fellow, assistant professor, and Ph.D.

supervisor in the Faculty of Information Technology, Monash

University, Melbourne, Australia. His research interests include

mobile software engineering and security. Li received a Ph.D.

from the University of Luxembourg in 2016. He is a Member of

IEEE and a corresponding author of this article. Contact him at

li.li@monash.edu.

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:32:55 UTC from IEEE Xplore. Restrictions apply.

