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FOCUS: BLOCKCHAIN AND SMART CONTRACT ENGINEERING

 BLOCKCHAIN, ORIGINALLY KNOWN 
as block chain, is an ingenious in-
vention to deploy undeniable sys-
tems for recording data changes 
among different parties in a veri-
fiable and permanent way. The data 
changes are essentially grouped into 
blocks that are further linked using 

cryptography (i.e., the cryptographic 
hash of a given block is stored by 
its immediate subsequent block). 
One thing that makes blockchain so 
promising to the practitioners, who 
have investigated millions of dollars 
in building the blockchain infra-
structure, could be the innovation of 
smart contracts. Indeed, smart con-
tracts provide means for the partici-
pants to execute a contract (such as 

exchanging money and shares) in a 
transparent, conflict-free manner. 
In this article, we limit ourselves to 
the Ethereum blockchain platform, 
which is the second most popular 
blockchain platform. The reason 
why we choose Ethereum instead of 
other blockchain platforms is that 
Ethereum weighs smart contracts as 
its strategic opportunity and posi-
tions itself as the Internet of the fu-
ture. The smart contracts running 
on the Ethereum platform are usu-
ally written via the so-called Solid-
ity programming language, which 
is a super typed JavaScript-like lan-
guage with the inclusion of impor-
tant object-oriented features, such 
as inheritance.

 At the end of 2018, there were al-
ready over a million smart contracts 
deployed on Ethereum, counting 
for a total of more than 100 million 
Ether, the fundamental token of op-
eration in Ethereum, or more than 
US$1.5 billion (i.e., each Ether is 
worth more than US$150 at the time 
of writing). Unfortunately, where 
there is money, there are attack-
ers following. Indeed, hackers have 
launched the infamous DAO attack1

and have stolen at least US$60 mil-
lion from the Ethereum blockchain 
platform. More recently, the team 
behind the Parity Ethereum software 
client reveals that a critical code flaw 
(also known as the Parity Freeze)2

has led to the freezing of around 
US$160 million worth of Ether.

 The fact that a security problem 
would lead to millions of dollars in 
losses shows that it is essential to 
test smart contracts properly before 
releasing them. Indeed, state-of-the-
art testing approaches have been 
proposed to mitigate potential se-
curity issues of smart contracts. For 
example, Jiang et al.3 propose a pro-
totype tool called ContractFuzzer, 

On the Need of 
Understanding 
the Failures of 
Smart Contracts
 Dabao Wang , Monash University

 Kui Liu , Nanjing University of Aeronautics and Astronautics

 Li Li , Monash University

// When the execution of smart contracts fails, 

the transaction will not be recorded to provide 

hints for analysts to improve their automated 

analyzers. To mitigate this, we present 

ExecuWatch to watch the execution of smart 

contracts and report the execution details. //

Digital Object Identifier 10.1109/MS.2020.3003921
Date of current version: 20 August 2020

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:32:55 UTC from IEEE Xplore.  Restrictions apply. 



50 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BLOCKCHAIN AND SMART CONTRACT ENGINEERING

which applies fuzz testing to detect 
vulnerabilities in smart contracts. 
Unfortunately, state-of-the-art ap-
proaches ignore the failed test cases 

that could provide useful infor-
mation for generating promising 
test cases. Indeed, various con-
straints can hinder the deployment 

or execution of smart contracts. If 
those constraints are not met, na-
ïve fuzzing techniques could not 
bypass those constraints and sub-
sequently may result in wasted fuzz-
ing efforts. Therefore, there is a 
need to characterize the failures of 
smart contracts to achieve effec-
tive fuzzing.

E xisting smart contract IDEs, 
such as Remix provide debugging 
features that allow developers to ex-
ecute the contracts step by step, so 
as to comprehend the contract fail-
ures, if any. However, such debug-
ging processes are known to be time 
consuming, and most importantly, 
cannot be automated, which is none-
theless essential to achieve effective 
fuzzing. Indeed, it is nontrivial to 
automatically locate the failures of 
smart contracts under testing. The 
Ethereum virtual machine does not 
provide possible means to record the 
execution status of smart contracts, 
especially when a given smart con-
tract is failed. Indeed, developers 
usually use what is termed the event
system to log the execution of smart 
contracts. When the execution of 
a smart contract fails, all of the ex-
ecution status (even the already trig-
gered events) will be rollbacked. As 
a result, when integrating execution 
feedback to improve fuzz testing ap-
proaches, there is a strong need to 
comprehend the failures caused by 
the consumed test cases.

I n this article, we present a proto-
type tool called ExecuWatch, which 
leverages a code instrumentation 
approach to record the execution 
details of smart contracts, includ-
ing the results of unsuccessfully ex-
ecuted contracts. (ExecuWatch is 
publicly available at https://bitbucket
.org /PanicWoo/execuwatch.) We 
further leverage ExecuWatch to lo-
cate failures in smart contracts. 

LISTING 1. A SIMPLIFIED 
EXAMPLE OF A SMART 
CONTRACT WRITTEN IN 
SOLIDITY.

   0    pragma solidity ^0.4.24;
   1   contract Demo {
   2  mapping(address => bool) inLedger;
   3  mapping(address => uint256) balanceLedger;
   4  uint256 max_bet_amount = 1000;
   5  uint256 min_bet_amount = 100;
   6  uint256 bonus_rate = 20;
   7  event redeem_result(uint8 _guess, uint8 redeem_code);
   8   event result(address player, uint256 total_bonus, uint256 lost_amount);
   9  event ReceiveFrom(uint, address);
10
11  constructor() public payable {...}
12  function () public payable{...}
13  function random(uint8 seed) public view returns (uint8) {...}
14  function bet(uint8 _guess, address player, uint256
     _amount, uint8 play_times) public payable {
15    uint256 total_bonus = 0;
16    uint256 lost_amount = 0;
17    uint256 bonus = bonus_rate * _amount;
18    require(inLedger[player], “Caller is not in the member list.”);
19    for(uint8 i = 0; i <= play_times; i++) {
20   emit result(player, total_bonus, lost_amount);
21   if (_guess == random(i)) {
22       player.transfer(bonus);
23       total_bonus = bonus + total_bonus;
24    }
25    else {
26      balanceLedger[player] -= _amount;
27      lost_amount = lost_amount + _amount;
28    } }
29    emit result(player, total_bonus, lost_amount);
30    } }
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When the execution of a given smart 
contract fails, ExecuWatch goes 
through the execution details to au-
tomatically locate the position where 
the failure happens, aiming at help-
ing practitioners better understand 
the reasons behind the failure so 
as to invent promising strategies to 
overcome such failures. Experimen-
tal results show that our approach 
is effective in logging the execu-
tion status of smart contracts and 
locating the failures of failed smart 
contracts. We also experimentally 
demonstrate that our approach helps 
invent effective fuzz approaches for 
testing smart contracts. Fuzz testing 
has been recurrently leveraged to au-
tomatically test software for identi-
fying unexpected behaviors, crashes, 
and potential security issues.5,6

Motivation
We now reinforce the importance of 
this article through a concrete ex-
ample. Listing 1 illustrates a simpli-
fied example of a real-world smart 
contract written in Solidity. This ex-
ample defines a contract named Demo
(line 1), which declares a field inLedger
(line 2), one event named result (line 8), 
one constructor method (line 11), 
and three public methods defined via 
the function keyword (line 12, line 13 
and lines 14–30).

Although Solidity is similar to 
other programming languages, it 
has introduced several unique fea-
tures that are worth highlighting. 
First, since there is no explicit “log-
ging” mechanism introduced in So-
lidity, “events” are usually used to 
record the execution status of smart 
contracts. Second, observant read-
ers may have already noticed that 
there is a public method declared 
without giving an explicit name 
(line 12). This method is known 
as the fallback method, which will 

be triggered when the contract is 
called, but no methods match the 
calling signature. Third, modifi-
ers of methods (such as public and 
payable) are defined at the end of 

arguments. The modifier paya b l e
indicates that the method is al-
lowed to receive Ethers (the cur-
rency in the Ethereum ecosystem) 
from other contracts.

T raditional fuzzing involves gen-
erating random inputs, including un-
expected or even invalid test cases, 
to explore the given software under 
testing. Unfortunately, due to vari-
ous language features included in 
Solidity, it is less effective to use tra-
ditional fuzz testing to test Etherum 
smart contracts. Take Listing 1 as 

an example. With a naïve fuzzing 
strategy, all of the randomly gen-
erated test cases may fail to pass 
the method bet(). The main reason 
causing the failure of the fuzzing 

approach is related to the specific 
require-related methods. The require
statements define constraints that 
the value of the parameter expres-
sions must be fulfilled.

Furthermore, smart contracts 
need to be first deployed on block-
chains (or equivalent virtual ma-
chines that allow the emulation of 
contract deployment) before being 
executed. When addresses of other 
contracts are involved, to success-
fully run the smart contract, the re-
ferred addresses need to be valid as 

FIGURE 1. The working process of ExecuWatch.
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 The fact that a security problem 
would lead to millions of dollars in 
losses shows that it is essential to 

test smart contracts properly before 
releasing them.
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well (e.g., the corresponding smart 
contracts need to be deployed on the 
same blockchain).

The aforementioned challenges 
show that it is nontrivial to test smart 
contracts with straightforward fuzz-
ing. We argue that it would be more 
practical to consider the execution 
results (specifically, failures) as feed-
back to improving the fuzz testing ap-
proach. Unfortunately, it is difficult 

in practice to achieve this purpose 
as there is no means that can effec-
tively collect the execution feedback 
of smart contracts under the current 
Ethereum execution environment. 
Indeed, when a smart contract fails 
to be executed, all of the execution 
details, including the already fired 
events, will be rolled back. There-
fore, to achieve effective fuzzing, it 
is necessary to effectively record the 

execution results of smart contracts, 
even if their executions are failed.

Approach
In this article, we design and imple-
ment a prototype tool, ExecuWatch, 
aiming at tracking the execution 
status of smart contracts (including 
failed ones), so as to help practitio-
ners understand the failures of smart 
contracts, which are essential for ef-
fective fuzzing. Figure 1 illustrates 
the working process of ExecuWatch 
that consists of two main steps: code 
instrumentation and failure locating.

Code Instrumentation
The first step aims at injecting log-
ging statements into the original 
smart contracts to record their ex-
ecution statuses. By taking a smart 
contract as input, this step first lever-
ages a lightweight static analysis ap-
proach to infer 1) what information 
to log and 2) where to inject logging 
statements. Based on the outputs of 
the static analysis approach, this step 
then applies a dedicated code rewriter 
to inject the previously inferred log-
ging statements. As a result, this step 
will output a new smart contract that 
contains richer debugging informa-
tion while being semantically equiv-
alent to the original input contract. 
Listing 2 demonstrates such an exam-
ple of instrumented code. All the ‘+’ 
indicated lines are injected to record 
the execution status (inferred in this 
module to log) of line 22 in Listing 1.

Failure Locating
The second step is to locate the fail-
ure position. When the execution of 
a smart contract fails, the whole ex-
ecution will be rollbacked to the ini-
tial state, and the emitted events will 
be emptied.4 In other words, even 
with the injected logging statements, 
if the contracts’ execution fails, we 

LISTING 2. THE 
INSTRUMENTED 
CONTRACT CODE FOR 
LINE 22 IN LISTING 1. 
THE LOG* FUNCTIONS ARE 
PREDEFINED (AND ALSO 
INJECTED) BY EXECUWATCH 
TO RECORD THE EXECUTION 
RUNTIME.
14    function bet(uint8 _guess, address player, uint256  
      _amount, uint8 play_times) public payable {
15       //…Hide previous lines
16       player.transfer(bonus);
17    +  if (targetLineNum == 9) {
18    +    logstring(’Line’, “total_bonus = bonus + total_bonus;”);
19    +    //logging global variables
20    +    loguint(’_guess’,_guess);
21    +    logaddress(’player’,player);
22    +    loguint(’_amount’,_amount);
23    +    loguint(’play_times’,play_times);
24    +    loguint(’total_bonus’,total_bonus);
25    +    loguint(’lost_amount’,lost_amount);
26    +    loguint(’bonus’,bonus);
27    +    return;
28    +  }
29       total_bonus = bonus + total_bonus;
30    }
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still cannot obtain the execution sta-
tuses of smart contracts. To this end, 
we invent a novel divide-and-conquer 
(D&C) strategy to bypass this chal-
lenge. The idea of D&C is to split 
the function to enable partial test-
ing of the function, allowing the col-
lection of partial execution statuses. 
For example, given a contract func-
tion that fails to be fully executed, 
we can divide the function into two 
parts with each part contains half of 
the statements. If the first-half state-
ments can be successfully executed, 
we will be able to harvest their ex-
ecution records, and we are sure that 
the failure location is at the second-
half statements. In practice, this pro-
cess will be automatically iterated 
until the failure point is located.

Evaluation
We now briefly detail the experiments 
that we carry out to assess Execu-
Watch for locating and understand-
ing failures in smart contracts. In this 
article, we resort to real-world smart 
contracts deployed on Etherum block-
chains to evaluate the performance of 
ExecuWatch. In particular, we collect 
smart contracts deployed from May 
to December 2018 on Etherscan, one 
of the leading block explorers in the 
community, and randomly select 100 
smart contracts to fulfill our evalua-
tion data set.

To  investigate the locating failure 
capability of ExecuWatch, we should 
ideally apply our approach to such 
smart contracts that have known 
failures with actual test inputs. Un-
fortunately, as smart contract re-
search is at an earlier stage, our 
community (both practitioners and 
researchers) has not prepared such a 
ground truth to support our ex-
periments. To this end, we conduct 
an experiment with a naïve fuzzing 
approach to automatically explore 

the execution of deployed smart con-
tracts. For the sake of simplicity, 
we implement our fuzzing approach 
based on the strategy of Contact-
Fuzzer, which is proposed by Jiang 
et al.2 for detecting vulnerabilities in 
smart contracts. In this article, all of 
the contracts are deployed and tested 
on a test blockchain set up via Geth, 
a golang implementation of Ethe-
reum blockchain (see https://geth
.ethereum.org/docs/.) 

We apply the naive fuzzing ap-
proach to explore the 100 randomly 

selected smart contracts, containing 
326 public functions. The fuzzing 
test for each function lasts 10 min. 
In total, more than 30,000 test cases 
are generated and tested, among 
which over half of them cannot pass 
the execution. By default, there will 
be no execution status generated 
for the failed cases, which could 
lead to difficulties in understand-
ing those failures. With the help of 
ExecuWatch, all of the executions, 
including the failed ones, have their 
execution details recorded. This evi-
dence shows that ExecuWatch is in-
deed effective for “watching” the 
execution of smart contracts.

We then look at the capability of 
ExecuWatch for pinpointing the lo-
cation of failures, aiming at provid-
ing hints for users and developers 
to quickly understand the reasons 

behind such failures. To this end, 
we randomly select 100 failed ex-
ecutions and manually go through 
all of them to check if the reported 
location is indeed relevant to the 
failure causes (e.g., the referred ex-
ternal contract, for which its address 
is hardcoded, is not deployed on the 
blockchains). Additionally, our in-
depth investigation shows that 76% 
of them are correct results, illustrat-
ing that our approach is also useful 
in helping users understand the fail-
ures of smart contracts.

Implication and 
Discussion
When we manually check the located 
failure statements, we find that a sig-
nificant number of them are caused 
by invalid test inputs. This is ex-
pected, as we have only leveraged a 
naïve fuzz testing approach to explore 
the contracts. Indeed, many failures 
are related to unsatisfied constraints 
(e.g., require() statements as shown 
in Listing  1), for which we believe a 
“smarter” fuzzing approach would by-
pass. To this end, based on the outputs 
of ExecuWatch, we go one step further 
to refine our approach by introducing 
a constraint-aware fuzzing approach. 
To this end, we first extract the relat-
 ed constraints from a smart contract 
before generating the inputs for test-
ing. This simple improvement en-
ables us to successfully pass more than 

This evidence shows that 
ExecuWatch is indeed effective for 
“watching” the execution of smart 

contracts.
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10% of smart contracts (i.e., between 
our simple constraint-aware fuzz-
ing approach and the naïve fuzzing 
approaches), illustrating that Execu-
Watch could be useful for guiding the 
development of fuzzing approaches. 
ExecuWatch enables an automated 
feedback mechanism when execut-
ing smart contracts, which could be 
essential toward developing effective 
fuzzing approaches. Indeed, fuzz-
ing tools can leverage the feedback 
(i.e., execution runtime) yielded by 
ExecuWatch to dynamically update 
their test case generation strategy 
so as to generate more effective test 
cases, and subsequently lead to higher 
code coverages.

I n this article, we presented to 
the community a prototype 
tool called ExecuWatch, which, 

to the best of our knowledge, is the 
first approach proposed for record-
ing the execution details of smart 
contracts that, by default, are im-
possible to harvest if the execution 
fails. Furthermore, for such con-
tracts with failures, ExecuWatch 
adopts a failure-locating module 
to pinpoint the location of the fail-
ures. The failure locations provide 
useful hints that could help users, 
developers, or analysts quickly un-
derstand the reasons behind them. 
We further demonstrate that our 
approach is useful in supporting the 

development of advanced fuzzing 
approaches. As of our future work, 
based on ExecuWatch, we plan to 
implement such an advanced fuzz-
ing approach to effectively test 
smart contracts.
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