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Abstract—POI (point-of-interest) recommendation as an im-
portant type of location-based services has received increasing
attention with the rise of location-based social networks. Al-
though significant efforts have been dedicated to learning and
recommending users’ next POIs based on their historical mobility
traces, there still lacks consideration of the discrepancy of users’
check-in time preferences and the inherent relationships between
POIs and check-in times. To fill this gap, this paper proposes a
novel recommendation method which applies multi-task learning
over historical user mobility traces known to be sparse. Specif-
ically, we design a cross-graph neural network to obtain time-
aware user modeling and control how much information flows
across different semantic spaces, which makes up the inadequate
representation of existing user modeling methods. In addition, we
design a check-in time prediction task to learn users’ activities
from a time perspective and learn internal patterns between POIs
and their check-in times, aiming to reduce the search space to
overcome the data sparsity problem. Comprehensive experiments
on two real-world public datasets demonstrate that our proposed
method outperforms several representative POI recommendation
methods with 8.93% to 20.21% improvement on Recall@1, 5, 10,
and 9.25% to 17.56% improvement on Mean Reciprocal Rank.

Index Terms—Location-based Services, Location-based Social
Networks, POI Recommendation, Multi-Task Learning, Cross-
Graph Neural Network, Time-aware User Modeling

I. INTRODUCTION

Location-based services have become increasingly popular

with the rapid growth of location-based social networks (LB-

SNs) [1]–[3], such as GoWalla1, Foursquare2 and JiePang3.

User mobility traces accumulated in these online platforms of-

fer valuable opportunities for understanding human dynamics,

which is a fundamental ingredient for developing smart ser-

vices [4]–[8]. Both customers and service providers can benefit

from personalized Point-Of-Interest (POI) recommendation

services. For customers, high-quality POI recommendation can

*Corresponding author.
1https://blog.gowalla.com/
2https://foursquare.com/
3https://jiepang.app/

Fig. 1. Examples of spare user mobility traces (check-in POIs and check-in
timeslots).

help them find interesting spots when they are in unfamiliar

areas. For service providers, POI recommendation service can

increase the exposure of their services so as to achieve more

profits. POI recommendation is an important type of location-

based services which aims to predict a user’s next location

based on user’s historical check-in sequence. POI recommen-

dation is important to both users and service providers, and

has thus attracted growing attention from researchers in recent

years. Many existing efforts have been devoted for better POI

recommendations [9]–[13].

Traditional methods capture user mobility patterns using

hand-crafted features, such as historical visit counts [14].

These methods, while exploiting static features of check-in

histories, ignore sequential patterns of user mobility traces.

More recently, researchers attempt to leverage deep learning
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Fig. 2. The timeslot distribution of most check-ins for users in Gowalla
dataset.

techniques such as Recurrent Neural Networks (RNNs) and

their variants like Gated Recurrent Unit (GRU) [15] and Long

Short-Term Memory (LSTM) [16] to model user mobility

traces [17]. To deal with sparse or incomplete mobility traces,

existing works strive to incorporate spatiotemporal factors

into RNN architectures [18]. For example, Huang et al. [5]

have fed the spatiotemporal contextual information into an

attention-based LSTM network. Yang et al. [19] have used

spatiotemporal contexts of POIs to search past hidden states

with a RNN architecture.

In order to alleviate the data sparsity problem, some

researchers incorporate the contextual information into the

recommendation method [20]. For example, IRenMF [21]

recommends new POIs close to the POIs visited before based

on geographical neighborhood characteristics considering item

collaborative signals. Specifically, IRenMF constructs a label

matrix to assist recommendations by adding the weighted sum

of neighboring POIs’ ratings to each POI. Zhao et al. [7]

proposed a two-stage framework to recommend locations for

meteorological observation stations leveraging the factors of

functions of architecture and building cost from multi-source

urban big data. However, despite their promising results, we

argue that they still suffer from two major limitations:

1) Limitation 1: Lack of considering time-aware user em-
bedding. Most existing works on next POI recommenda-

tion only use descriptive features, such as ID or attributes,

to build embedding function without considering internal

interactions of the entities. These interactions are only used

to define the objective function of model training [19]. In

other words, although these methods have introduced a lot

of additional information (geography, time, category, etc)

accumulated in LBSN to assist recommendation, the cor-

relation between these entities is ignored in the embedding

stage, only obtaining suboptimal embedding representa-

tions. To alleviate this issue, some recent methods attempt

to inject user-POI interactions [22], [23] or geographical

influence [24] to capture highly non-linear representations

of terms. While existing methods overlook the users’

preferences of check-in times when modeling users, we

argue that it is an essential factor to obtain sufficient

user embeddings. For example, as illustrated in Figure 1,

the first user prefers to check-in in the afternoons and

evenings (15:00-0:00). In contrast, the second user prefers

to check-in in the mornings (5:00-12:00). As a preliminary

study, we summarized the distribution of users’ check-in

times (presented in hour-long timeslots) in the Gowalla

dataset [19]. As shown in Figure 2, not all users have

the same preferences of check-in times. Approximately

3,000 users prefer to check-in around midnight, while only

around 1,000 users prefer to check-in in the early morning

(e.g., 4:00 or 5:00). This observation further suggests the

significance of taking users’ time preferences into account

in user embedding.

2) Limitation 2: Lack of considering inherent relationships
between POIs and check-in times. We observed that

different POIs have inherent relationships with their usual

check-in times. For instance, restaurants may have more

check-ins during lunchtime and dinner time, while most

of the nightclubs’ check-ins happen late in the evening.

Most existing methods ignore the inherent patterns between

POIs and check-in times. A recent method [25] predicts the

time interval between successive check-ins. Our empirical

analysis shows that the average time between successive

check-ins is more than two days (cf. Table I). As check-

in data is very sparse, it is challenging to capture user

preferences accurately in this way. We argue that taking

the patterns between POIs and check-in times into account

can reduce the search space so as to overcome data sparsity

problem and produce better POI recommendations.

To address the above limitations, in this paper, we propose

a POI recommendation method with a cross-graph neural net-

work in a multi-task learning manner. Specifically, we design

a cross-graph neural network to jointly learn user embeddings

in different semantic relations (user-POI interaction graph

and user-timeslot graph) and automatically control how much

information flows across two semantic spaces (to address
Limitation 1). In addition, we exploit a multi-perspective self-

attention to adaptively learn comprehensive preferences of user

mobility traces. Finally, when we predict the next POI, we

also predict the check-in timeslot according to users’ check-

in timeslot sequences, and learn internal association patterns

between POIs and timeslots, aiming to reduce the search space

to overcome the data sparsity problem (to address Limitation
2).

The main contributions of this paper can be summarized as

follows:

• We design a cross-graph neural network to learn time-

aware user embeddings in different semantic relations (user-

POI interactions and user-timeslot interactions) and auto-

matically control how much information flows across two

semantic spaces by sharing cross-graph information.
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• We design a check-in timeslot prediction task to predict the

check-in time and learn the inherent association patterns

between POIs and check-in timeslots as an auxiliary of the

next POI recommendation.

• We conduct comprehensive experiments on two real-world

public datasets, which demonstrate that our method can

outperform various existing representative methods with at

least 8.93% to 20.21% improvement on Recall@{1, 5, 10}
and at least 9.25% to 17.56% improvement on MRR.

II. RELATED WORK

Many researchers have invested many efforts on the task of

POI recommendation [5]–[7], [26]. Generally speaking, exist-

ing works can be divided into two categories: conventional

POI recommendation and successive POI recommendation.

A. Conventional POI Recommendation

Conventional POI recommendation mainly considers var-

ious contextual information including geographical distance

[26], temporal information [14], [27] and social influence [28],

[29] to estimate similarity for location prediction. Zhang et

al. [26] proposed a geographical location recommendation

method utilizing geographical influence, called iGeoRec. They

adopted a probabilistic method to personalize the geographical

influence as a personal distribution for each user and predict

the probability of a user visiting any new location by this

distribution. Yang et al. [28] construct a location-based social

graph and exploit the graph embedding technique to learn

feature vectors for entities. Then they rank a POI according to

its similarity with user and time in the feature space. Gao et

al. [14] present a social-historical model to explore the user’s

check-in behavior in LBSNs, which integrates the social and

historical effects and assesses the role of social correlation.

Yuan et al. [30] define a time-aware POI recommendation

problem and develop a collaborative recommendation model

incorporating temporal information and geographical informa-

tion. Xie et al. [31] propose a generic graph-based embed-

ding model for POI recommendation. They jointly capture

the sequential effect, geographical influence, temporal cyclic

and semantic effect in a unified way by embedding four

corresponding relational graphs (POI-POI, POI-Region, POI-

Time, and POI-Word) into a shared low dimensional space.

B. Successive POI Recommendation

Unlike conventional POI recommendations, successive POI

Recommendation focuses on capturing sequential patterns

of user’s recent check-ins attaching importance for location

prediction. Markov chains based methods [32]–[34] assume

that the next item is conditioned on only the previous item.

They obtain recommendation results by successfully charac-

terizing short-range item transition. Rendle et al. [32] present

a factorized personalized Markov chain (FPMC) model that

subsumes both a common Markov chain and the normal matrix

factorization. In addition, they also introduce an adaption of

the Bayesian Personalized Ranking (BPR) framework for se-

quential data. Zhang et al. [33] employ Personalized Ranking

Metric Embedding (PRME) to extend FPMC by modeling

user-location and location-location distance in two different

vector spaces. Zhao et al. [35] utilize the personalized Markov

chain into the historical user check-ins and take the user’s

movement constraint into account for POI recommendation.

Nowadays, many researchers attempt to utilize Recurrent

Neural Networks (RNNs) to deal with successive POI recom-

mendation, as it shows promising performance for extracting

sequential information [5], [36]. In order to make full use

of time and geographic information, many studies try to

incorporate spatiotemporal factors into RNN architectures. For

example, Liu et al. [18] extended RNN and propose a novel

method called Spatial-Temporal Recurrent Neural Networks

(STRNN). They model local temporal and spatial contexts in

each layer with time-specific transition matrices and distance-

specific transition matrices. Zhao et al. [37] proposed a new

spatiotemporal gated network (STGN) by enhancing long-

short term memory network (LSTM). They design spatiotem-

poral gates to capture the spatiotemporal relationships between

successive check-ins. Kong et al. [38] combined spatial-

temporal influence into LSTM and propose a Spatial-Temporal

Long-Short Term Memory (ST-LSTM) model. Further, they

utilize a hierarchical extension of the proposed model (named

HST-LSTM) to model the contextual historic visit information

in an encoder-decoder manner. Huang et al [5] presented

an attention-based spatiotemporal LSTM network for next

POI recommendation. They incorporated the spatiotemporal

contextual information into the LSTM network at the each

step and leveraged an attention mechanism to consider the

different importances of POIs. Yang et al. [19] proposed a

novel method, named Flashback, which exploits spatiotempo-

ral contexts to weight historical hidden states. Then they use

the weighted average of historical hidden states as the final

representation of the user mobility trace for recommendation.

III. PROBLEM FORMULATION

We denote the existence of a user’s check-in by 0 and 1 for

otherwise. Suppose we have L users U = {u1, u2, ..., uL}, M
POIs P = {p1, p2, ..., pM} and N timeslots T = {t1, t2, ...
, tN}. We define the user-POI interaction matrix and user-

timeslot interaction matrix as XL×M = {xup|u ∈ U, p ∈ P}
and Y L×N = {yut|u ∈ U, t ∈ T}, respectively, with a binary

value at each entry. xup = 1 presents an observed check-in of

user u in POI p. yut = 1 indicates an observed check-in of

user u in timeslot t. We denotes the user mobility traces as

S, then the user u’s check-in POI sequence can be defined as

Sp,u = {pu1 , pu2 , ..., pus | pui ∈ P}, where s is the length of the

sequence. Based on the above definition, the problem of POI

recommendation can be defined as follows:

Input: User set U , POI set P , timeslot set T , user-POI

interaction matrix X , user-timeslot interaction matrix Y and

user mobility trace set S.

Output: The probability that user u will interact with next

POI p and the probability that user u will check in at the

timeslot t.
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IV. METHODOLOGIES

In this section, we illustrate the details of our proposed

method for next POI recommendation. The objective of our

method is to predict the probability distribution of the user’s

next check-in by optimizing an objective function, which

includes two terms, i.e., POI prediction error term and timeslot

prediction error term. The overall architecture of our proposed

model is illustrated in Figure 3.

A. Cross-Graph Neural Network Component

The cross-graph neural network component can transfers

graph information across different semantic spaces (i.e., user-

POI interaction graph and user-time interaction graph) through

common entities. We argue that cross-graph information can

automatically control how much information flow across dif-

ferent semantic spaces and is beneficial for personalized user

modeling, which is overlooked by previous works. In this

study, we split a day to 24 hours (e.g., 24 timeslots), then we

aggregate cross-graph information (user-POI interaction graph

and user-timeslot interaction graph) and mitigate the semantic

gap to achieve time-aware user embeddings for different users.

Formally, give two interaction graphs, i.e., user-POI interac-

tion graph Gup(Vup, Eup) and user-timeslot interaction graph

Gut(Vut, Eut). Vup denotes a set of nodes consisting of both

user nodes and POI nodes, and Eup refers to a set of edges

showing user-POI interactions. Vut denotes a set of nodes,

including both user nodes and timeslot nodes, and Eut refers

to a set of edges presenting user-timeslot interactions. The

architecture of the two interaction graphs is shown in the

second block of Figure 3.

We use U ,P, T ,D to represent the matrices of initial

user embeddings, POI embeddings, timeslot embeddings and

distance embeddings, respectively, which has the same em-

bedding size. A user’s check-in is generally affected by the

distance between two neighboring locations [39]. We calculate

the spatial distance using the GPS coordinates of two neigh-

boring POIs, and round the distance into integer (e.g., 3.15 →
3) same as in [40].

Inspired by [41], we only use the neighborhood aggregation

to capture complicated topology and higher-order connectivity

in LBSNs, as shown in the third block of Figure 3. We ignore

the self-connections of nodes because the layer combination

operation essentially captures the same effect. Firstly, after

obtaining the user-POI interaction matrix X , the adjacency

matrix of user-POI graph can be easily expressed as follows:

Aup =

[
0 X
X� 0

]
. (1)

To model latent features of user-POI interactions, we

construct an embedding propagation layer updates a node

embedding based on the aggregations of its neighbors, and

recursively perform such neighborhood aggregation to capture

high-order connectivities in linear time complexity. The neigh-

borhood aggregation process from the current layer to the next

layer can be defined as:[U(l1)
P(l1)

]
= Âup

[U(l1−1)

P(l1−1)

]
(2)

Uup =

l1∑
i=0

αup
i U(i), Pup =

l1∑
i=0

αup
i P(i) (3)

where Âup = D
− 1

2
up AupD

− 1
2

up , Dup is the degree matrix of

Aup, l1 is the number of layers in graph neural network. We

combine features learned at each layer to achieve the final

user feature matrix Uup and POI feature matrix Pup in user-

POI interaction graph to avoid over-smoothing [42]. The αup
i

denotes the importance of the i-th layer feature in consti-

tuting the final embedding. Learning the layer combination

coefficient is technically viable, such as using an attention

network. However, we find that learning αi on the training data

does not improve the performance while increasing the model

complexity. So we exploit the same importance to combine

embeddings of each layer, e.g., αi =
1

l1+1 .

Similar to user-POI interaction graph, the adjacency matrix

of the user-timeslot graph can be expressed as follows:

Aut =

[
0 Y
Y� 0

]
. (4)

Similar to the operation of equation 3-4, after propagation-

based embeddings, the feature matrix of users, timelots are

obtained as follows:[U(l1)
T(l1)

]
= Âut

[U(l1−1)

T(l1−1)

]
(5)

Uut =
l1∑
i=0

αut
i U(i), Tut =

l1∑
i=0

αut
i T(i) (6)

where Âut = D
− 1

2
ut AutD

− 1
2

ut , Dut is the degree matrix of

Aut. Uut and Tut are user feature matrix and timeslot feature

matrix in user-timeslot interaction graph, respectively.

In the process of neighborhood aggregation, we do not intro-

duce nonlinear activation function and feature transformation

matrix, because these operations directly inherited from GCN

[43], [44] will bring no benefits, but negatively increases the

difficulty for model training on recommendation tasks [41].

Finally, the complexity of this part in our method is only

equivalent to the standard matrix factorization (MF).

The previous studies pay little attention on the fusion of user

presentations under different semantic spaces. Automatically

controlling information flow across different semantic spaces

is meaningful for modeling personalized representations with

different relationships. We use a gate mechanism to control

how much information flows across two semantic spaces and

update user embeddings:

U∗ = gate(Uup,Uut) = g ∗ Uup + (1− g) ∗ Uut) (7)
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Fig. 3. A sample illustration of our proposed model. Blue nodes are user nodes, pink nodes are POI nodes, and yellow nodes are timeslot nodes. ⊕ denotes
the concatenation operation.

where Uup and Uut are feature matrices of users in Gup and

Gut after l1-th layer propagation. g is the gate mechanism,

which is computed as:

g = σ(Wg(Concat(Uup,Uut)) + bg) (8)

where σ is the sigmoid activation function constraining the

output values within the range of 0 to 1, Wg , bg , are trainable

parameters.

After the above operations, the final user U∗, POI Pup and

timeslot Tut embedding matrices are obtained, which can be

passed to the downstream layers.

B. Multi-perspective Self-Attention Component

In this section, we introduce the Transformer [45] encoder

to replace the RNN architecture that is commonly used in

many existing works shown in the forth block of Figure 3. we

utilize the self-attention to consider multi-perspective relations

of check-ins. The embeddings of each entity in the check-ins is

the sum of corresponding POI, timeslot, distance and position

embeddings:

ei = pi + ti + di + posi (9)

where pi ∈ Pup is the embedding of POI pi, ti ∈ Tut is the

embedding of timeslot ti, di ∈ D is the embedding of distance

di between pi−1 and pi, pos denotes the position embedding

of the POI i in the check-in sequence. We use ei to denote

the updated embedding of POI pi, which will be acted on

downstream layers.

Then we adopt l2-layer Transformer [45] encoder to encode

the embedding matrix of the check-in sequence into contextual

representations Hl = Transformerl(Hl−1), l ∈ [1, l2]. The

detail of each Transformer layer is defined by:

Zl = LN(MHA(Hl−1) +Hl−1) (10)

Hl = LN(FFN(Zl) + Zl) (11)

where MHA denotes a multi-headed self-attention mechanism,

LN representd a layer normalization, and FFN indicates a

two-layer feed forward network. Sl denotes the output of

the l-th Transformer. When encoding a POI, we need to

consider the influence of other POIs in the sequence on it.

The propagation rule of a multi-headed self-attention in the

l-th layer Transformer is defined as follows:

Qi = Hl−1W
Q
i , Ki = Hl−1W

K
i , Vi = Hl−1W

V
i (12)

headi = Softmax(
QiK

T
i√

dk
)Vi (13)

Žl = Concat(head1, head2, ..., headn)W
O
l (14)

where the output of the previous layer Hl−1 ∈ R
|S|×dh

is linearly projected to query (Q), key (K) and query (Q)

matrices via three weight matrices WQ
i ,WK

i ,WV
i ∈ R

dh×dk ,

respectively. dh is the hidden size, dk is the dimension of a

head, n indicates the number of heads. After concatenating

the feature vectors of all heads, the output of a multi-headed

self-attention Žl in the l-th layer Transformer is achieved.

WO
l ∈ R

dh×dh is a learnable weight matrix.

Finally, we use the average representation Z̄ of all POIs in

the same check-in sequence to represent the entire sequence.

C. Multi-Task Learning Component

Different locations have inherent patterns with different

timeslots. In addition, users’ check-in sequence also contains

users’ activities in time perspective, while existing methods

ignore the explicit modeling of check-in timeslots. Due to the

sparse user mobility traces, we predict the timeslot (a day can

be divided into 24 timeslots) of the next check-in rather than

the time interval.

We concatenate the vector of check-in sequence with the

vector of the user. Then we put them into two fully connected

layers:

Ŷp = ρ(FC1(Concat(U∗u , Z̄))) (15)

Ŷt = ρ(FC2(Concat(U∗u , Z̄))) (16)

where FC1 and FC2 are two fully connected layers, contain-

ing M and 24 units, respectively (because the number of POIs
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is M and there are 24 hours in a day). Ŷp and Ŷt denote the

prediction for the next POI and check-in timeslot, respectively,

ρ denotes a softmax function, U∗u represents the feature vector

of user u. The loss function of the next POI prediction task is

defined as the cross-entropy error over all labeled user check-

in POI sequences:

Lp = −
Cs,p∑
k

F1∑
f

Yp,kf ln Ŷp,kf (17)

where Cs,p is the set of check-in POI sequence indices that

have POI labels, and F1 is the dimension of the output features

in FC1, which is equal to the number of POIs (M ). Yp is the

POI label indicator matrix.

Similar to the next POI prediction task, we define the loss

function of the next check-in timeslot task as follows:

Lt = −
Cs,t∑
k

F2∑
f

Yt,kf ln Ŷt,kf (18)

where Cs,t is the set of check-in timeslot indices that have

labels for check-in timeslots, and F2 = 24 is the dimension

of the output features in FC2, which is equal to the number

of timeslots. Yt is the label indicator matrix for check-in

timeslots.

The final loss function for the multi-task learning is the sum

of two prediction tasks:

Lloss = Lp + Lt + λ‖Θ‖2 (19)

where Θ contains all trainable parameters in the model. λ
is the L2 regularization coefficient, which is used to prevent

overfitting.

TABLE I
STATISTICS OF DATASETS

Dataset Gowalla Foursquare
Number of users 52,979 46,065
Number of POIs 121,851 69,005
Number of check-ins 3,300,986 9,450,342
Density 0.0511% 0.2973%
Average time between 51.28 hours 58.59 hours
successive check-ins (2.13 days) (2.44 days)
Collection period 2009/02-2010/10 2012/04-2014/01

V. EXPERIMENTS

In this section, we conduct comprehensive experiments

on two real-world public datasets to evaluate our proposed

method for the next POI recommendation over sparse user

mobility traces.

A. Dataset

We evaluate our proposed method on two widely used

check-in datasets [19] collected from two popular location-

based social networks: Gowalla and Foursquare, respectively.

Some basic statistics of the dataset are demonstrated in Table

I. We split all user mobility traces into 80% for training and

20% for testing chronologically. For each sample, we truncate

sequences of the same length (20 by default). In each check-in

POI sequence for a user u, Sp,u = {pu1 , pu2 , ..., pus | pui ∈ P},
where s is the sequence length, the next POI is used as a label.

Similar to check-in POI sequences, each corresponding check-

in timeslot sequence is also processed in a consistent manner.

For fair comparison, we keep the same data preprocessing and

experimental settings as [19].

B. Methods for Comparison

Currently, there are many methods based on different

technical principles for the next POI recommendation. For

this reason, we select some representative methods from 4

categories for comparison to demonstrate the effectiveness of

our proposed method.

MF-based Methods:

• WRMF [46]: This method utilizes matrix factorization to

learn user preferences on POIs.

• BPR [29]: It learns user preferences on POIs by optimizing

a pairwise ranking loss.

Feature-based Methods:

• MFT [14]: This method ranks POIs according to users’

historical check-in counts and timeslots on POIs.

• LBSN2Vec [28]: It exploits the graph embedding technique

to learn feature vectors of the user, time, and POI, and ranks

a POI through estimating its similarity with user and time.

Markov-Chain-based Methods:

• FPMC [32]: It includes a common Markov chain and a

normal matrix factorization model that factorizes the tensor

of transition cube.

• PRME [33]: It captures personalized POI transition patterns

through learning user and POI embeddings.

• TribeFlow [34]: It captures the transition matrix in an

implicit space by utilizing a semi-Markov chain model.

Spatiotemporal RNNs:

• STRNN [18]: It extends RNN and models local temporal

and spatial contexts in each layer with time-specific transi-

tion matrices and distance-specific transition matrices.

• STGN [37]: It enhances LSTM by introducing spatiotempo-

ral gates to capture the spatiotemporal relationships between

successive check-ins.

• Flashback [19]: This method explicitly exploits spatiotem-

poral contexts to search past hidden states for the next POI

recommendation.

C. Evaluation Metrics

We evaluate our method versus other methods in terms of

two widely used metrics: Recall@N (R@N, N ∈ {1, 5, 10})
and MRR. For each user, Recall@N indicates what percentage

of her interacted next POI can emerge in the top-N recom-

mended POIs. MRR is the Mean Reciprocal Rank, which

takes the position of the first correctly recommended POIs

into account.
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TABLE II
RECALL AND MRR OF OUR METHOD COMPARED WITH VARIOUS REPRESENTATIVE METHODS.

Methods Gowalla Foursquare
R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

WRMF 0.0112 0.0260 0.0367 0.0178 0.0278 0.0619 0.0821 0.0427
BPR 0.0131 0.0363 0.0539 0.0235 0.0315 0.0828 0.1143 0.0538
MFT 0.0525 0.0948 0.1052 0.0717 0.1945 0.2692 0.2788 0.2285
LBSN2Vec 0.0864 0.1186 0.1390 0.1032 0.2190 0.3955 0.4621 0.2781
FPMC 0.0479 0.1668 0.2411 0.1126 0.0753 0.2384 0.3348 0.1578
PRME 0.0740 0.2146 0.2899 0.1503 0.0982 0.3167 0.4064 0.2040
TribeFlow 0.0256 0.0723 0.1143 0.0583 0.0297 0.0832 0.1239 0.0645
STRNN 0.0900 0.2120 0.2730 0.1508 0.2290 0.4310 0.5050 0.3248
STGN 0.0624 0.1586 0.2104 0.1125 0.2094 0.4734 0.5470 0.3283
Flashback 0.1158 0.2754 0.3479 0.1925 0.2496 0.5399 0.6236 0.3805
Ours 0.1321 0.3306 0.4182 0.2263 0.2743 0.5982 0.6793 0.4157
Improve 14.08% 20.04% 20.21% 17.56% 9.90% 10.80% 8.93% 9.25%

D. Experimental Settings

We use an Adam optimizer [47] to optimize the parameters

in the model. Since there are so many hyper-parameters, we

can not analyze all these hyper-parameters, so we list the value

ranges of some common hyperparameters. The learning rate

is searched in {1e-2, 5e-3, 1e-3, 5e-4, 1e-4}. The dropout rate

from {0.1, 0.2, 0.3} and the L2 regularization coefficient from

{1e-4, 1e-5, 1e-6, 1e-7, 1e-8} are used to prevent overfitting. l1
and l2 are searched in {1, 2, 3, 4}. We set the same dimension

searched in {16, 32, 48, 64, 80, 96, 112, 128} for embeddings.

Finally, the learning rate is set to 0.001, the batch size is set

to 200 on Gowalla dataset and 350 on Foursquare dataset, the

λ is set to 1e-7, the embedding size is set to 80 on Gowalla

dataset and 48 on Foursquare dataset, the dropout rate is set to

0.2, the number of layers is set to l1 = 3 for cross-graph neural

network and l2 = 3 for Transformer encoder, the number of

self-attention heads is set to n = 4. The experiments are

run on a GPU of Nvidia RTX 2080 Ti. The algorithms are

implemented by leveraging the deep learning library PyTorch4.

E. Experimental Results

The comparison results of our method and other represen-

tative methods are shown in Table II. The optimal results are

marked in bold and the underlined values are the suboptimal

results.

STRNN and STGN outperform MFT and FPMC, which

demonstrates the stronger ability of the RNN architectures

in capturing sequential patterns of user mobility traces.

LSBN2Vec captures relevant information in location-based so-

cial networks through graph embedding technique. It achieves

the best recommendation accuracy in all non-RNN based

methods, reflecting the importance of side information for the

next POI recommendation. However, they fail to go beyond

the Flashback model, which takes advantage of searching past

hidden states from the spatiotemporal perspective to further

enhance the next POI recommendation. Finally, we observe

that our method consistently and significantly outperforms

all representative methods. Specifically, compared with the

4https://pytorch.org/

second-best performing model (Flashback), Our method shows

an improvement of 17.56% and 9.25% on MRR, in Gowalla

and Foursquare datasets, respectively.

Our method outperforms all these methods for three major

reasons. Firstly, we design a cross-graph neural network to

integrate user-POI preferences with user-timeslot preferences

in the same semantic space by sharing cross-graph information

and automatically controlling the propagation of information

flow. Secondly, our method can adaptively capture comprehen-

sive preferences of user check-ins through a multi-perspective

self-attention component. Thirdly, our method introduces an

additional check-in timeslot prediction task, which helps

predict users’ check-in time, and learn inherent association

patterns between POIs and check-in timeslots, as the effective

auxiliary of next POI recommendation.

In addition, we also observe that the experimental results

reported on Foursquare dataset are better than the results on

Gowalla dataset. The major reason is that Gowalla dataset is

more sparse, and the data sparsity declines the recommenda-

tion accuracy.

F. Ablation Study

In order to understand how each component contributes to

the recommendation accuracy of our proposed method, includ-

ing personalized time-aware user modeling with cross-graph

neural network, multi-perspective self-attention, and check-in

timeslot prediction task, we perform an ablation analysis in

Table III. In (1), we adopt the GCN to learn the user em-

beddings and POI embeddings through User-POI interactions

(UP). In (2), we adopt the GCN to learn embeddings of users,

POIs and timeslots through user-POI graph and User-Timeslot

graph (UT), and use the sum of learned user embeddings as

the final user embeddings. In (3), we design a Cross-graph (C)

neural network to control how much information flows across

two graphs. In (4), we introduce a Multi-Perspective (MP)

self-attention module to explore comprehensive preferences of

users. In (5-8), we incorporate the Multi-Task (MT) learning

into (4) with a different number of layers in graph neural

network and Transformer encoder an the same time.
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TABLE III
THE ABLATION ANALYSIS ON GOWALLA AND FOURSQUARE DATASETS.

Architecture Gowalla Foursquare
R@5 MRR R@5 MRR

(1) UP 0.2360 0.1536 0.4809 0.3221

(2) UP-UT 0.2625 0.1769 0.5205 0.3588

(3) C-UP-UT 0.2774 0.1828 0.5366 0.3691

(4) C-UP-UT-MP 0.2980 0.2087 0.5604 0.3886

(5) C-UP-UT-MP-MT (l = 1) 0.3290 0.2249 0.5889 0.4067

(6) C-UP-UT-MP-MT (l = 2) 0.3287 0.2239 0.5878 0.4034

(7) C-UP-UT-MP-MT (l = 3) 0.3306 0.2263 0.5982 0.4157
(8) C-UP-UT-MP-MT (l = 4) 0.3300 0.2254 0.5943 0.4109

From the results shown in Table III, we have some observa-

tions. In (1), GCN shows the great ability in feature learning

only with user-POI interactions, which has been proved in

previous works [41], [48]. In (2), by integrating user-timeslot

interactions into user modeling, the performance obtains fur-

ther improvements (e.g., UP-UT vs. UP), which indicates the

time information plays a critical role in user modeling. In (3),

we design a cross-graph neural network to jointly learn user

representations in different semantic spaces and automatically

control how much information flows across two semantic

spaces for personalized user modeling. The performance is

further improved than simply adding user representations.

In (4), we try to capture multi-perspective preferences of

user interests, which achieves better results. In (5-8), by

adding check-in timeslot prediction task into the model, our

method obtains large performance gains on both datasets,

which indicates the users’ activities of time perspective and

the internal association patterns between timeslots and POIs

are conducive for better POI recommendations. Explicitly

modeling the check-in timeslot of the user can provide a

significant supplementary for better next POI recommendation.

G. Hyper-parameter Study

We analyze the effect of two hyper-parameters: the regular-

ization coefficient λ and the embedding size d.

1) Impact of Regularization Coefficient λ: The impacts of λ
on Gowalla and Foursquare datasets are shown in Figure 4. We

can observe that our method is relatively insensitive to λ. Even

when λ is set to 0, our method can still perform very well,

which shows that our method is less prone to overfitting and

easy to train and regularize. The optimal values for Gowalla

and Foursquare are 1e − 7 and 1e − 6, respectively. When λ
is larger than 1e − 5, the performance drops quickly, which

indicates that too strong regularization will have a negative

impact on the training of the model.

2) Impact of Embedding Size d: We also study the impact

of the embedding size of features. From Figure 5, we can ob-

serve that a small dimension of embedding size is not sufficient

to express the latent features of users and POIs. By increasing

the dimension of embedding size, the model has more capacity

to model the complex features. The recommendation accuracy

first improves and then becomes steady when the embedding

size is searched in {16, 32, 48, 64, 80, 96, 112, 128}. The op-

(a) (b)

Fig. 4. Impact of regularization coefficient λ on Gowalla and Foursquare
datasets.

(a) (b)

Fig. 5. Impact of hidden size d on Gowalla and Foursquare datasets.

timal settings of embedding size on Gowalla and Foursquare

are close to 80 and 48, respectively.

H. Training Efficiency

Flashback is the sub-optimal method, which outperforms

STRNN, STGN, LBSN2Vec, PRME, and other baseline meth-

ods. Therefore, we evaluate and compare the training effi-

ciency of our method with Flashback in terms of the training

speed (time taken for one epoch of training). To make a fair

comparison, we set the same hyper-parameters, especially the

batch size and sequence length. All experiments are conducted

on a GPU of Nvidia RTX 2080 Ti. Two methods are executed

20 epochs, and we report the average training cost, which is

shown in Table IV.

TABLE IV
THE TRAINING TIME PER EPOCH COMPARISON ON TWO DATASETS IN

TERMS OF SECONDS

Gowalla Foursquare

Flashback 89.702s 263.383s
Ours 48.472s 147.201s
Improve 85.06% 78.93%

From the results in Table IV, we can observe that our

method yields the fastest training speed on all datasets.

Flashback assigns weights to all past hidden states based on

spatiotemporal factors, increasing the accuracy of recommen-

dation while bringing substantial computational overhead. The

time complexity of this operation is O(N2), according to the

original code provided by [19]. In all, compared with Flash-

back, our proposed method can significantly reduce training
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costs while improving the recommendation accuracy. Specifi-

cally, the gains of training efficiency reach about 85.06% and

78.93% on Gowalla and Foursquare datasets, respectively.

VI. DISCUSSION

A. Impact on industry and academia

From the industry’s perspective, high-precision POI recom-

mendations can help develop smart city applications providing

users with interesting tour route guidance, which helps to

enhance user engagement and promote consumption. Our

method can generate high-precision POI recommendations

with low computational overhead, providing a brand-new

solution for the industry to provide users with personalized

location recommendation services.

From academia’s perspective, POI recommendation is a

trending and essential research topic, with the rapid growth of

LBSNs. User mobility traces accumulated in online platforms

offer valuable opportunities for understanding human dynam-

ics. Our method provides a new exploration, especially for

learning time-aware user modeling, exploring users’ activities

in time perspective, and mining internal association patterns

between POIs and timeslots.

B. Threats to Validity

Threats of internal validity are related to errors in our

implementation and personal bias in the data processing.

To avoid implementation errors, we have carefully checked

our experiment steps and parameter settings. Specifically, we

conduct an ablation study to verify the effectiveness of several

key designs in our method. We also conduct a hyper-parameter

study to analyze the effect of two important hyper-parameters,

and other hyper-parameters are selected by using a grid search.

To avoid the personal biases of data processing, we implement

the same data processing as [19].

Threats of external validity are related to our experimental

datasets’ quality and the generalizability of our experiment

results and findings. To guarantee the quality of our datasets,

we have adopted two widely used check-in datasets collected

from two popular LBSNs, e.g., Gowalla and Foursquare. In

order to guarantee the generalizability of our experiment re-

sults and findings, We have selected ten representative methods

from four categories to compare with our method. Through

verifying the results reported by our method, we conclude that

our method can obtain better POI recommendation accuracy

than all other methods, 33.06% on Recall@5 and 22.63%

on MRR in Gowalla dataset, and 59.82% on Recall@5 and

41.57% on MRR in Foursquare dataset. In comparing training

efficiency, we conduct the experiments on the same Linux

system with a single GPU of Nvidia RTX 2080 Ti.

VII. CONCLUSION AND FUTURE WORK

This paper presented a novel POI recommendation method

which includes a cross-graph neural network component, a

multi-perspective self-attention component, and a multi-task

learning component. Specifically, we use the cross-graph neu-

ral network to jointly learn time-aware user embeddings and

control how much information flows across different semantic

spaces, which makes up the inadequate representation of

existing user modeling methods. Then we utilize a multi-

perspective self-attention component to capture comprehensive

preferences of users. Finally, we design a check-in time

prediction task to learn users’ activities from a time perspective

and learn internal patterns between POIs and their check-in

times, aiming to reduce the search space to overcome the

data sparsity problem. Comprehensive experimental results

in comparisons with representative methods on two real-

world public datasets have successfully demonstrated that our

method can achieve better recommendation accuracy with

much less training costs.
As part of our future work, we plan to consider time-aware

POI-POI complementarities to generate POI sequences with

specific timestamps to provide users with personalized tour

arrangements.
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