
Dissecting Mobile Offerwall Advertisements:
An Explorative Study

Guosheng Xu1, Yangyu Hu1, Qian Guo1, Ren He1, L i L i 2, Guoai Xu1∗, Zhihui Han3, and Haoyu Wang1

1Beijing University of Posts and Telecommunications, Beijing, China
2Monash University, Australia

3CNCERT, Beijing, China

Abstract—Mobile advertising has become the most popular
monetizing way in the Android app ecosystem. Offerwall, as a
new form of mobile ads, has been widely adopted by apps, and
a number of ad networks have provided such services. Although
new to the ecosystem, offerwall ads have been criticized for being
aggressive, and the contents disseminated are prone to security
issues. However, to date, our community has not proposed any
studies to dissect such issues related to offerwall ads. To this
end, we present the first work to fill this gap. Specifically,
we first develop a robust approach to identify apps that have
embedded with offerwall ads. Then, we apply the tool to 10K
apps and experimentally discover 312 offerwall apps. We go one
step further to characterize them from several aspects, including
security issues. Our observation reveals that offerwall ads could
indeed be manipulated by hackers to fulfill malicious purposes.

Index Terms—Offerwall, Mobile Advertising, Android, Pay-per
Install, Malware

I. INTRODUCTION

Mobile apps have seen widespread adoption in recent years.

The number of apps in Google Play has exceeded 2.7 million

mark as of August 2019 [1]. A recent study [2] suggested

that the app monetization scheme evolves during the evolution

of the mobile app ecosystem – the number of paid apps

has decreased significantly in Google Play, while mobile

advertising is getting more and more popular. Indeed, mobile

advertisements have been widely adopted by app developers

to make profits from their freely released apps. It is estimated

that the overall market volume of mobile advertising would

achieve 243 billion US dollars by 2022 [3].

Mobile ads can be displayed in different forms. In general,

there are three common ways to display mobile ads: 1) Banner
ad is located in the top or bottom of the screen; 2) Interstitial
ad is square and located in the center of the screen; 3) Full-
screen ad fills the whole screen. In these forms, the ad views

are either embedded in the UI of apps or popped up during

execution. A number of previous studies have analyzed the se-

curity and privacy behaviors of traditional mobile advertising,

including ad fraud detection [4]–[6], malicious ad content [7],

[8], and privacy escalation of ad libraries [9], [10], etc.

With the evolution of mobile advertising, new forms of ads

are emerging, with the goal of attracting more user clicks.

Offerwall ad is such a popular type innovated for mobile

advertising in recent years. An offerwall ad is a UI page

that appears within the hosting app that offers users rewards

or different incentives in exchange for spending money. For

*Corresponding author

Fig. 1. A Motivating Example of Mobile Offerwall Advertisement.

example, Figure 1 shows a motivating example of offerwall ads

from the third-party library “Adwo”, which can award mobile

users in-game currency in exchange for downloading other

apps (i.e., incentive installs). Unlike other kinds of mobile ads,

offerwall ads are particularly effective and convenient because

the advertising comes right to the user, usually in the form

of a landing page, and they do not have to go out of their

way to click a banner or separate ad view. Thus, a number of

popular ad networks (e.g., Tapjoy, Airpush, and Chartboost)

have provided such kind of ad forms in their released ad SDKs

and allow developers to create an offerwall and insert it into

the apps they developed.

Despite being effective in attracting ad-based revenues,

offerwall ad is criticized for being aggressive, as it completely

interrupts the behavior of mobile app and cannot be ignored

by users. Also, as most of offerwall ads charge on pay-

per-download basis (e.g., offer virtual rewards in exchange

for downloading free apps), which may provide a way for

developers to manipulate the app ranking in app markets.

As a result, it is reported [11] in May 2019 that Apple

started banning offerwall ads that incentivized rewards for app

downloads. For example, apps that have embedded Tapjoy ad

SDK would be rejected by Apple.

518

2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)

978-1-7281-8913-0/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS51102.2020.00072

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:31:05 UTC from IEEE Xplore. Restrictions apply.

Besides the aggressive ad behaviors, the contents dissemi-

nated (i.e., downloaded apps) in the offerwall ads are possible

to introduce security issues. Many advertisers (developers) rely

on such kinds of incentive installs to promote their apps and

help boost their app rankings, so do the malicious developers
and attackers. It is quite possible that attackers can leverage
such kinds of app promotion channel to distribute malicious
apps and infect unsuspicious users.

This paper. To the best of our knowledge, the mobile offer-

wall ads have not been systematically studied, and it is unclear

to us the issues introduced by offerwall ads in the wild. To this

end, we propose to perform the first characterization study of
mobile offerwall ads. We seek to uncover the characteristics

of mobile offerwall ads from two aspects. We first propose

to identify mobile offerwall ads, and collect apps that take

advantage of them. We then propose to study aggressive and

malicious behaviors in mobile offerwall ads.

Unfortunately, it is not straightforward to achieve the afore-

mentioned objectives. Indeed, as the ad libraries (SDKs)

provided by ad networks usually provide different forms of

mobile ads (e.g., banner ads and offerwall ads), it is non-trivial

for us to identify which kinds of mobile ads were actually used

in the corresponding apps. To resolve this challenge, we first

provide a robust semi-automated method to identify offerwall
apps, deemed as such apps that embedded offerwall ads. We

have manually analyzed over 60 mobile advertising networks

to select the ones that provide offerwall advertising services

and then summarized the key characteristics by analyzing the

provided developer documents. In this way, we have created a

detector to accurately identify apps that have offered offerwall

ads. We then applied the detector to over 10K Android apps

that were flagged containing mobile ads, and from which we

have identified over 300 apps that use 20 kinds of offerwall

ad services. Based on this dataset, we further characterize

the offerwall ads from various aspects. We have observed the

following main findings in this paper:

• Offerwall ad services have exposed security and pri-
vacy issues. Most of the studied offerwall ad services

have accessed into undocumented permissions, suggest-

ing that these offerwall services could take advantage of

these permissions to covertly access sensitive data. Over

90% of the offerwall apps were flagged as malware by

at least one anti-virus engine on VirusTotal.

• Offerwall ad services could be maliciously used to
deliver malware. By looking into the apps distributed

over offerwall ad services, we have identified porn apps

and gambling apps, indicating no censorship applied by

such ad services to control the apps to be distributed

(and hence may distribute malware). Furthermore, a large

portion of the distributed apps are not with their latest

versions, and they could contain bugs and vulnerabilities.

To the best of our knowledge, this is the first work proposed

to systematically study the behaviors of mobile offerwall ad-

vertisements. We have proposed an automated tool to identify

offerwall-related apps and revealed various interesting findings

based on a thorough investigation of such apps reported by our

tool. Our experimental results suggest that offerwall ads could

be manipulated by hackers to fulfill malicious purposes. We

believe that our efforts can positively contribute to bringing

the awareness of user and developer, attracting the focus of

the research community and, and promoting best operational

practices across app store operators and regulators.

II. DETECTING OFFERWALL APPS

As mobile offerwall ads have not yet been systematically

explored in existing studies, there is no existing dataset of

offerwall apps that we can study. Furthermore, the character-

istics of offerwall ad services have been generally unknown

as well, which made it hard for us to identify offerwall apps

in the wild. One major challenge we face here is that, as

ad networks usually provide various kinds of mobile ads for

app developers in the form of ad libraries, it is hard for us

to know whether the developers have invoked the offerwall

ads in their apps. Thus, we cannot directly adopt existing ad

library detection tools to identify offerwall apps. To fill this

gap, we first propose a robust semi-automated approach to

identify offerwall apps.

Fig 2 presents the working process of our approach for

identifying offerwall apps. First, we collect 62 most popu-

lar mobile ad networks in both China and worldwide from

AppBrain [1] and LibRadar [12], [13], and manually browse

their websites and library documents to confirm whether

they provide offerwall ad services. For the mobile advertisers

who offer offerwall ad services, we manually download their

developer documentations and corresponding SDKs to summa-

rize exclusive characteristics from multiple perspectives. Note
that, we especially focus on the features that could be used
to differentiate the offerwall ads and other types of mobile
ads. After that, we leverage a two-phase detection technique

to check the summarized characteristics against large-scale

market apps, in order to identify offerwall apps. We now give

more detail about these processes.

A. Analyzing the Static Features of Offerwall Ad Services

1) Collecting Offerwall Ad Services: Here, we resort to the

ad libraries labeled by AppBrain [1] and LibRadar [12]. We

harvest 62 popular mobile ad networks in total. By manually

analyzing the content of their websites, we have identified

29 mobile ad networks that provide offerwall ad services,

as shown in the Table I. Then, in the following, to perform

automated detection of offerwall apps, we further analyze the

features of such offerwall ad services.

2) Summarizing the Static Features: We download and ana-

lyze their developer documentation and corresponding SDKs.

For each offerwall ad service, we extract its characteristics

from four perspectives, including its package name, the con-

figuration features defined in the Android Manifest file, and

the API features in the code, as shown in Table I.

(1) Package Name. We first extract the package name of

each ad network that provides offerwall ad services. Note that

the package name could not be simply used as the features to

519

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:31:05 UTC from IEEE Xplore. Restrictions apply.

App
Repository

Offerwall
App

Candidates

Offerwall
Apps

Advertiser
developer
documentation

Extracting Features

Offerwall
SDK

Features

Coarse-grained
Detection

Package Level
Features

Fine-grained
Detection

Manifest Features

API Features

Decompile

AndroidManifest

Smali Code

Resource Files

Fig. 2. Our approach to identify offerwall apps.

identify offerwall ads since Android apps can be obfuscated.

Indeed, the package names would be obfuscated to meaning-

less strings (e.g., a.b.c). However, we could combine it with

the existing third-party library detection tools to filter offerwall

app candidates. State-of-the-art third-party library detection

tools (e.g., LibRadar [12]) could perform obfuscation-resilient

detection of third-party libraries. Thus, in our detection, we

have combined LibRadar with the package names we labeled

to first identify apps that have embedded with such libraries.

(2) Multiple Ad Types. Some ad networks simply provide

an SDK for different types of ads (e.g., banner ads, video ads,

and offerwall ads), and apps need to invoke different methods

in the SDK to show appropriate ads. As shown in Table I, 12

ad networks belong to such a category. Therefore, for those

advertisements, we need to extract fine-grained features to

identify offerwall apps.

(3) Configuration Features in the Manifest To obtain and

show the ads, offerwall ad services generally require apps to

declare typical activities, services, and permissions in the file

of AndroidManifest.xml. We extract features of these typical

declarations from the app manifest file, as shown in column

3 of Table I.

(4) API Features Apps show offerwall ads by invoking

corresponding APIs. Thus, we further extract the strings of

the offerwall-related APIs from the developer documentation

as features, as shown in column 4 of Table I.

B. TWO-PHASE Offerwall App Identification

Based on the summarized features we propose a two-phase

method to identify offerwall apps from a large number of apps

hosted in app markets. As shown in Figure 2, in order to

achieve fast identification of offerwall apps, we first performed

coarse-grained detection by detecting whether the offerwall ad

SDKs are used. We take advantage of LibRadar [12] to identify

third-party libraries used in Android apps, to decompile the

app and confirm whether it has used the offerwall ad SDKs.

However, as shown in column 5 of Table I, 12 advertisers

provide the same SDK for different types of ads. For these

advertisers, we conduct a fine-grained offerwall app identifi-

cation based on the features we summarized in Table I.

III. CHARACTERIZING OFFERWALL ADVERTISING

After introducing the prototype tool for automatically de-

tecting offerwall apps, we further propose to investigate the

mobile offerwall ads to better understand their characteristics.

In this work, we seek to achieve this purpose by answering

the following three research questions (RQs):

• RQ1: Will the offerwall ad services introduce security
and privacy issues? As previous work suggested that

third-party services are largely invisible to users, it is

important to characterize the security and privacy aspects

of offerwall ad services. Besides, there is also a need

to understand how many of them would be flagged as

adware or malware by existing anti-virus engines.

• RQ2: What are the contents disseminated over offerwall
ad services? Are there any malicious contents? We

are interested in the contents (apps) disseminated over

the offerwall ad services. More specifically, since we do

not know if the apps promoted through offerwall ads

are trustworthy, it is also worthwhile to characterize the

disseminated apps.

A. Dataset

To answer the aforementioned three research questions, we

need to first collect a set of apps embedded with offerwall

ads. However, since offerwall apps have never been explored

before, our community does not have such a dataset readily

for analyses. To this end, we resort to our own efforts to

collect such a dataset by applying our tool to a dataset of

10K Android apps collected from Google Play and Chinese

third-party markets [13], [14].

Eventually, we are able to obtain 312 offerwall apps. Ta-

ble II shows the distribution of the apps we identified. Out of

the 29 advertisers mentioned above, we eventually obtained

312 apps covering 20 advertisers. Some apps integrate more

than one offerwall ad services. Specifically, five offerwall ad

services have been invoked by more than 50 apps, and an

offerwall ad service provided by advertiser “DOMOB” has

been invoked by 99 apps.

B. RQ1: Security Analysis of Offerwall Apps

We then perform a general security analysis on the collected

offerwall ad services and offerwall apps. We first investigate

520

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:31:05 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE FEATURES SUMMARIZED IN THIS PAPER TO IDENTIFY ANDROID OFFERWALL SDKS.

Ad Network (URL)
Package Level

Feature
Manifest Feature API Feature Multiple Ad Types

Paymentwall (https://www.paymentwall.com) com/paymentwall/pwunifiedsdk activity.OfferwallActivity NA �

Airpush (https://airpush.com) com/sgppnqgub/bmvjlevxs323254 SmartWallActivity
airPlay.startSmartWallAd

airPlay.startAppWall
�

Adscend Media (http://adscendmedia.com) com/adscendmedia ui.OffersActivity OffersActivity.* �

ironSource (https://www.ironsrc.com)
com/ironsource/mediationsdk

/sdk/OfferwallListener
controller.ControllerActivity
controller.InterstitialActivity

IronSource.showOfferwall
IronSource.setOfferwallListener

�

Tyroo (http://www.tyroo.com) com/tyroo/tva/sdk
activities.DiscoverActivity
activities.AdViewActivity

NA �

Chartboost (https://www.chartboost.com) com/chartboost/sdk sdk.CBImpressionActivity NA �

DOMOB (https://www.domob.cn) cn/dow/android cn.dow.android.Dservice NA �

Youmi (https://www.youmi.net)
com/youmi/android
net/youmi/android

NA
showOffersWall

showOffersWallDialog
�

IMmob (http://www.immob.cn) cn/immob/sdk
net.DownloadService

service.GetLocationService
AppChangeBrocastreceiver

AdType.WALL �

Guomob (http://www.guomob.com) cn/gm/tasklist
gm.tasklist.AlertActivity

gm.tasklist.Service01
gm.tasklist.MyBrocastReciver

OpenIntegralWall �

Yijifen (http://www.yijifen.com) com/eadver/offer/sdk
sdk.util.AdScoreService
sdk.view.EadverReceiver

sdk.view.WallActivity
RecommendWallSDK �

WAPS (http://www.waps.cn) cn/waps NA
showAppOffers

showGameOffers
�

Miidi (https://www.miidi.net) net/midi/wall/sdk sdk.MyWallActivity
AdWall

showAppOffers
showAppOfferNoScore

�

BillionMobi (http://www.chinazmob.com) com/zy/phone
sdk.SDKActivity

service.BootReceiver
service.ZYService

NA �

WQMobile (http://weiqiandongmei.lofter.com) com/wqmobile/sdk
csdk.WQActionHandler

sdk.WQBrowse
openAdWall �

Kuguo (http://www.kuguopush.com) com/pkfg
pkfg.k.MyKAActivity
pkfg.k.MyKBActivity
pkfg.k.MyKReceiver

showKuguoSprite �

Dianjoy (http://www.dianjoy.com) com/dlnetwork
dlnetwork.DevNativeActivity
dlnetwork.DevNativeService

NA �

iMopan (http://www.imopan.com) com/imopan/ad sdk.ProxyService NA �

AppDriver (http://www.appdriver.com.cn) net/adways/appdriver2 offerWall.OfferWallActivity AppdriverManager() �

Mobsmar (http://www.mobsmar.com) com/ZMAD
score.ScoreActivity

score.PopDetailActivity
score.PackageInstallService

NA �

JUZI (http://www.juzichuanmei.com) com/JUZI JUZI APPID NA �

Tapjoy (http://www.tapjoy.cn) com/tapjoy
TJAdUnitActivity

mraid.view.ActionHa
NA �

Adhub (http://adhub.com.cn/index.html) com/hubcloud/adhubsdk adhubsdk.AdActivity NA �

Dianmoney (http://www.dianmoney.com) com/dc/wall
dc.wall.DcActivity

dc.wall.AC
dc.wall.DC

NA �

Adwo (http://www.adwo.com) com/adwo/adsdk NA NA �

Chance (http://www.chance-ad.com) com/chance
chance.ads.AdActivity

engine.ChanceAdService
chance publisherid

NA �

Baidu (http://e.baidu.com/product) com/baidu/appx
uikit.BDActivity

app download.CompleteReceiver
NA �

Tencent (https://e.qq.com/ads/?from=02 PINPAI 145) com/qq/e
comm.DownloadService

ads.ADActivity
NA �

Datouniao (http://www.datouniao.com) com/datouniao/AdPublisher
AdsOffersWebView
service.AdsService

NA �

how offerwall ad services request permissions to access sensi-

tive information. As previous work suggested that permission

escalation was found in Ad libraries, we seek to investigate

whether the offerwall ad services have permission escalation

behaviors. Then, we rely on VirusTotal [15], a widely used

521

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:31:05 UTC from IEEE Xplore. Restrictions apply.

TABLE II
OVERALL RESULT OF APP IDENTIFICATION

Ad Network # Apps # (%) AV-rank≥ 1 # (%) Adware

DOMOB 99 87(87.9%) 84(84.8%)
BillionMobi 96 86(89.6%) 82(85.4%)
Dianmoney 89 85(95.5%) 80(89.9%)
Datouniao 87 77(88.5%) 73(83.9%)
WAPS 78 74(94.9%) 72(92.3%)
Youmi 48 40(83.3%) 40(83.3%)
IMmob 39 36(92.3%) 32(82.1%)
Guomob 38 30(78.9%) 27(71.1%)
Mobsmar 27 25(92.6%) 24(88.9%)
Miidi 20 18(90.0%) 16(80.0%)
Yijifen 13 11(84.6%) 10(76.9%)
Adscend Media 5 5(100.0%) 3(60.0%)
Tapjoy 5 2(40.0%) 2(40.0%)
AppDriver 3 3(100.0%) 3(100.0%)
Dianjoy 2 2(100.0%) 2(100.0%)
chartboost 2 1(50.0%) 1(50.0%)
JUZI 1 1(100.0%) 1(100.0%)
Chance 1 1(100.0%) 1(100.0%)
Tencent 1 0(0.0%) 0(0.0%)
WQMobile 1 1(100.0%) 1(100.0%)

Total 312 297(95.2%) 239(76.6%)

anti-virus service to understand whether these offerwall ad

services would be flagged as malicious by anti-virus engines.

1) RQ1.1: Permission Analysis: Previous work [16] has

suggested that permission misuse is prevalent in the third-party

libraries of mobile apps. As third-party libraries share permis-

sions with the host apps, ad libraries can take advantage of the

sensitive permissions requested by the host apps to covertly

access sensitive data. To ensure these undocumented uses do

not cause the application to crash, ad libraries can dynamically

check if they have some specific sensitive permissions or catch

a thrown SecurityException.

Permission Classification. Thus, we have classified the

permissions related to each offerwall ad SDK into three

categories as previous work [16]: 1) required permissions,

each ad library specifies the permissions it requires to operate;

2) optional permissions, the ad library will further specify a

number of optional permissions that the ad library can take

advantage of, in order to deliver more targeted advertising;

and 3) undocumented permissions, which are the permissions

that libraries would trigger at runtime but without specifically

declaring them in the document. As the permissions in An-

droid apps have shared between the custom code and third-

party libraries, ad libraries may check the permissions of host

apps, and then take advantage of these permissions.

Approach to identify permission misuse. We first in-

vestigate how offerwall ad services request sensitive per-

missions. For each offerwall ad service, by reviewing the

SDK documentation, we have obtained a list of required

and optional permissions. Then, we perform static analysis

to extract the permissions each library used in practice in the

apps we harvested by checking the permission-related sensitive

APIs. PScout has provided an internal mapping between API

Fig. 3. Distribution of Apps according to AV-Rank.

methods and required permissions [17]. By comparing the used

permissions and required permissions, we could then get the

list of undocumented permissions.

Result. Table III presents the experimental results. Most

offerwall ad services require access permissions like “INTER-

NET”, “READ PHONE STATE”, “ACCESS NETWORK

STATE” and “ACCESS WIFI STATE”. However, 12 of the

20 (60%) studied offerwall ad services have accessed to un-

documented permissions. The “Datouniao” and “WQMobile”

offerwall libraries are particularly noteworthy among the set

we analyzed because they utilized four undocumented per-

missions, including “ACCESS FINE LOCATION” and “AC-

CESS COARSE LOCATION”. This result suggests that these

offerwall services could take advantage of these permissions

to covertly access sensitive data. As long as the host apps

have declared the relevant sensitive permissions, such mobile

offerwall services could leverage them to access sensitive data

without the knowledge of mobile users.

2) RQ1.2: Malware Presence: We further seek to explore

whether the offerwall apps would be reported as malware or

adware by existing anti-virus engines. To this end, we upload

all the 312 apps to VirusTotal [15], an online analysis service

that aggregates more than 60 anti-virus engines. As previous

studies [18], [19] have shown that some anti-virus engines

may not always report reliable results, thus we analyzed the

result grouped by how many engines (AV-rank) flag an app as

malware, in order to cope with such potential false positives.

Overall Results. Fig 3 shows the overall detection results.

Remarkably, as shown in Table II, around 95% (297 apps)

of the collected apps are flagged by at least one anti-virus

engine. When using 10 as the threshold of AV −Rank, around

76% of the apps (237 apps) are labeled much more than that.

Especially, around 21% apps (66 apps) are flagged as malware

by more than 20 anti-virus engines. This result shows that most

of the offerwall apps are identified as malicious apps.

Malware Category and Malware Family. We find the

malware categories mainly correspond to 4 types: Adware

(77%), Trojan (65%), Android-PUP (43%), and Android-PUA

(27%). As shown in Table II, it is interesting to observe that

76.6% of the apps (239 apps) are identified as Adware [20]

by at least one anti-virus engines. However, 44 offerwall apps

in our dataset failed to be identified, even if some of them use

the same offerwall ad services with identified offerwall apps.

We then use AVClass [21] to extract the family name (label)

522

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:31:05 UTC from IEEE Xplore. Restrictions apply.

TABLE III
OFFERWALL AD SDK PERMISSION USAGE AS SPECIFIED IN THEIR ONLINE DOCUMENTATION, AD LIBRARIES MAY REQUIRE A PERMISSION (R) OR

DECLARE IT OPTIONAL, BUT USE IT IF AVAILABLE (O). WORRYINGLY, SOME AD LIBRARIES CHECK FOR AND USE UNDOCUMENTED PERMISSIONS (X).

Ad Library IN
T

E
R

N
E

T

R
E

A
D

P
H

O
N

E
S

T
A

T
E

V
IB

R
A

T
E

A
C

C
E

S
S

W
IF

I
S

T
A

T
E

G
E

T
T

A
S

K
S

A
C

C
E

S
S

N
E

T
W

O
R

K
S

T
A

T
E

W
R

IT
E

E
X

T
E

R
N

A
L

S
T

O
R

A
G

E

A
C

C
E

S
S

F
IN

E
L

O
C

A
T

IO
N

A
C

C
E

S
S

C
O

A
R

S
E

L
O

C
A

T
IO

N

W
A

K
E

L
O

C
K

B
L

U
E

T
O

O
T

H

R
E

A
D

E
X

T
E

R
N

A
L

S
T

O
R

A
G

E

C
H

A
N

G
E

C
O

N
F

IG
U

R
A

T
IO

N

M
O

U
N

T
U

N
M

O
U

N
T

F
IL

E
S

Y
S

T
E

M
S

S
Y

S
T

E
M

A
L

E
R

T
W

IN
D

O
W

PA
C

K
A

G
E

U
S

A
G

E
S

T
A

T
S

R
E

S
T

A
R

T
PA

C
K

A
G

E
S

R
E

C
E

IV
E

B
O

O
T

C
O

M
P

L
E

T
E

D

D
O

W
N

L
O

A
D

W
IT

H
O

U
T

N
O

T
IF

IC
A

T
IO

N

DOMOB R R O O O O O
BillionMobi R R R R X R R O O
Dianmoney R O O O R O O O
Datouniao R R X X R O X X

WAPS R R X R R R O
Youmi R R X R R R R O
iMmob R R X R X R O R R X

Guomob R R X R X R O O O
Mobsmar R R R R O R O O O

Miidi R O O R O R R
Yijifen R R X R O R O

Adscend Media R R X
Tapjoy R O R R X X X

AppDriver R R X R R R O O
Dianjoy R R X O R R O

Chartboost R R R R O
JUZI R R R O R O

Chance R R R R R R R O
Tencent R R O R O R R

WQMobile R R X R R R X X X

of each identified malware. The “youmi” and “gappusin”

families are among the most popular ones, i.e., more than

40% (126) apps (or 25% (78) of malicious apps) belong to

them. Nevertheless, we find that family names are not always

accurate. In our dataset, we only have 48 apps leveraged the

Youmi ad library, while there are 126 apps are labeled as such.

This result suggests that existing anti-virus engines cannot well

detect and categorize offerwall ad services.

Table IV lists the top 10 malware according to their AV-

Rank. For example, the app “cn.fiker.moreMoney” was flagged

by 30 anti-virus engines (“gappusion” family [22]), which

is actually a trojan that aiming at stealing users’ sensitive

information. As another example, app “com.rrxszkj”, which

has embedded the WAPS library, was reported as belonging

to the “Youmi” family.

C. RQ2: Characterizing the Disseminated Contents

To answer the second research question, we hence study

the contents (i.e., apps) disseminated by these offerwall apps,

i.e., what kinds of apps were disseminated over the offerwall

ads, and whether this specific app distribution channel could

be maliciously exploited. We manually installed all the 312

offerwall apps on real Android devices to check whether the

services embedded in these apps are still available. We found

that 33 out of the 312 apps have stopped services, and we

cannot obtain any content from them. At last, 279 apps can

still work properly on real smartphones.

1) Approach.: For the remaining 279 offerwall apps, we

design an approach to automatically interact with offerwall

apps so as to harvest the apps promoted via these offerwall

ad services as much as possible. Considering that offerwall

ad services will help users to automatically download the

promoted apps when starting a task, we simulate the process

of completing tasks to obtain the apps. However, existing

automated testing approaches have the limitation of low

UI coverage so that it can hardly extract all the promoted

apps [23] [24]. Furthermore, if we select script-based auto-

mated testing methods, it will take a considerable amount of

time to write test scripts for each app manually. Therefore, we

523

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:31:05 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
TOP 10 MALICIOUS APPS THAT HAVE EMBEDED MOBILE OFFERWALL ADVERTISEMENT SERVICES ACCORDING TO AV-RANK.

Package name MD5 AV-Rank Reported family Advertiser

cn.fiker.moreMoney 2a0c02cbaa7b8c2c65870c550b5fa9e8 30 gappusin Datouniao
com.kuaizhuan.omgorgtwob 23cc77cba667a1ed5ca1b1c4c3888c96 29 youmi IMmob;WAPS;Youmi;BillionMobi;Dianmoney
com.dou.zhuandou2 02ba039548a017690ec173bcb68754d4 27 youmi Youmi;Dianmoney;Datouniao
com.terry.makemoney 7d6be65530a60108dae968b8a1bd834a 27 youmi Tapjoy;Youmi

com.dconn.tuiqianer 28661a95e0ea31cef727705f0cf391f1 26 youmi
Yijifen;WAPS;Miidi;Youm;BillionMobi;

AppDriver;Mobsmar;Datouniaoi
com.rrxszkj c1d12497cc4efd44e7ebe1ff71263d6d 26 youmi WAPS
com.sdy.douzhuan c213f6f027 af0a40a87f70b85f2dfedf 26 gappusin WAPS
com.meituo.zhuanjifenbao a9cbff1d64520020ab1819bfa717d1cd 25 gappusin Yijifen;WAPS;Miidi;BillionMobi;Dianmoney
com.bruceliu.androidmoney 9a536e4ddbfe4e4fe81f53818089d926 25 youmi WAPS
com.jing.zhuanfengle d02ea0243bca24ffa4e5b60f3f43ec4d 25 gappusin IMmob;WAPS

TABLE V
DISSEMINATION APPS IN OFFERWALL.

offerwall # Apps # Pkgs (# unique pkgs)
AV-rank (#pkgs)

#pkgs not released in markets #pkgs are not the latest version≥ 1 ≥ 10

Youmi 126 21 (18) 14 1 6 8
WAPS 305 15 (13) 8 1 12 0
Dianjoy 158 6 (3) 3 1 0 4
Dianmoney 17 17 (12) 10 2 1 4
Datouniao 238 6 (5) 2 1 0 5
BillionMobi 418 21 (16) 9 6 4 8

TABLE VI
MALICIOUS APPS DISTRIBUTED IN OFFERWALL APPS.

package AV-rank advertiser

com.expflow.reading 17 Datouniao
me.mizhuan 17 Youmi
com.goldmf.GM 17 BillionMobi
com.cool.ddz 17 Dianmoney
com.anroid.mylockscreen 14 BillionMobi
com.flowerlive.qp 14 Dianmoney
com.xyue.xy 13 BillionMobi
com.andbase.y 11 BillionMobi
com.sgjr.sg 11 BillionMobi
com.inke.gaia 14 Dianjoy
com.sup.android.superb 12 BillionMobi
com.ledexiang.game.ninenine 11 WAPS

propose an improved semi-automated method to generate the

test scripts so as to improve the efficiency of app extraction.

Specifically, our proposed method is based on the following

findings: the operating process of completing tasks in each

offerwall apps is similar (click the widget of a task in the

task list, click the install button, go back and continue to

choose the next task). To convert the process of downloading

all the promoted apps into the corresponding test script, for

each offerwall app, we need to get into the UI of displaying

offerwall ads, and then extract two values: a coordinate in the
widget of the first task, and the height of the task widget. Based

on the two extracted values, we can calculate a coordinate

in other task widgets directly by linear superposition, as

the height of each task widget is the same. Moreover, we

predefined the starting and ending coordinates to help in

scrolling down the task list, so as to ensure that all of the

promoted apps will be downloaded.

We generate the testing script for each of the offerwall apps

(279 apps in total), and convert the script into the “input”

operation command [25], which is provided by “Android

command-line” for simulating interaction with UI. Consid-

ering that offerwall ad services may show different apps on

different offerwall apps, to optimize ad recommendation. We

generate the testing script for all the apps, even though they

may use the same offerwall ad service. For each app, we run

the testing script once a day in a week duration.

2) Result.: Eventually, We collect 1,262 APKs from 6

offerwall ad services, as shown in Tab V. Among the collected

apps, we found that many of them are redundant ones, which

have been promoted on multiple platforms for many times. By

comparing the package name of the 1,262 APKs, we obtain 67

unique apps (as shown in column 3 in Tab V). Note that some

of them are published on more than one offerwall service, for

example, three distinct apps which are published on “Youmi”

can also be found on other offerwall services.

Malware Presence. We upload all the 1,262 APKs that are

collected from offerwall apps to VirusTotal to examine how

many of them are flagged by existing anti-virus engines. The

experimental result suggests that 69% of the downloaded apps

are labeled as malware by at least one anti-virus engine (as

shown in column 4 in Tab V). When using the threshold of

“AV-Rank >= 10”, around 18% of the downloaded apps are

labeled as such (as shown in column 5 in Tab V). Remarkably,

as shown in Table VI, four apps (e.g., com.goldmf.GM,

com.cool.ddz, me.mizhuan, com.expflow.reading, which are

promoted by Youmi, BillionMobi, Dianmoney, and Datouniao,

respectively) are labeled by 17 anti-virus engines.

Release Channels. We further check whether these apps are

published in popular app markets (e.g., Google Play, popular

Chinese app markets). As shown in column 6 in Tab V,

we found that 23 apps (34%) cannot be found by directly

package name matching, which indicates that these apps have

524

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:31:05 UTC from IEEE Xplore. Restrictions apply.

not ever been published to these markets, or they were already

removed [26], [27]. We further manually analyze these apps,

and found that 6 of them are labeled as malware, 2 of

them are scam financial apps (e.g., com.xyue.xy, com.sgjr.sg),

and 12 of them are gambling apps (e.g., com.flowerlive.qp,

com.ruiqugames.buyuqianpao, com.school.gdcp365). This re-

sult suggests that a considerable number of apps distributed

over the offerwall ad services may contain inappropriate con-

tents, indicating that advertisers may have missed the chance

to gatekeep the apps disseminated over their ad networks.

Up-to-date versions. For the other 44 apps which can

be found in markets, we verify whether it is the latest

version by comparing the hashing value of the latest

apps downloaded directly from the markets (as shown in

column 7 in Tab V). We found that 29 apps (66%) are

not the latest version. For example, by the time of our

study, the app “com.ninexiu.sixninexiu” disseminated over

offerwall “Youmi” (d0c8feb711f8cd790c78a1d16bf3cf81)

has the version number “3.8.0.1”, while the

official app in the market is with version “3.9.4.6”

(330eb27a6008725e80865a52eace4f42).

IV. DISCUSSIONS

Implications. Our findings suggested that offerwall ad

services could be used to deliver malicious and illegal contents

to mobile users, leading to a poor user experience that harms

the reputation of hosting apps. We argue that app markets and

regulators should introduce new automated tools to identify

such apps and regulate the apps disseminated in them. The

features we summarized and the tool we created in this paper

are our initial step towards filling this gap. We hence appeal to

the community for putting more efforts into exploring this new

research direction. From the perspective of app developers, to

improve trustworthiness in the ecosystem, as well as to miti-

gate the possibility of cheating users, developers should resort

to certified third-party platforms to implement their offerwall

ads or implementing other types of mobile ads. From the

perspective of mobile users, they should pay more attention to

the apps that have embedded offerwall advertisement libraries

and avoid downloading apps from them, as demonstrated by

the fact that many of the disseminated apps are malware.

Limitations. Our work still faces several limitations that

could be further improved. First, the features we used to

identify the offerwall services and offerwall ads were manually

crafted, which is straightforward and conservative. It is quite

possible that we have missed some of the offerwall services.

On the other hand, the number of offerwall apps we studied in

this paper is not large enough, i.e., we have considered only

312 apps with 20 offerwall ad services. However, we believe

that our approach can be easily extended to take into account

more apps. We take that as our future work.

V. RELATED WORK

A. Mobile Ad Library Detection and Analysis

The majority of research studies targeting the mobile ad

ecosystem are actually focused on ad libraries. One line of

work focuses on identifying ad libraries [12], [28]–[33]. For

example, LibRadar [12] and LibD [29] are both clustering-

based approach to identify third-party libraries. AdDetect [32]

is a machine-learning based approach to identify ad libraries.

The other line of work focuses on the security and privacy

issues of ad libraries [9], [10], [16], [34], [35]. These studies

suggested that ad libraries may perform privacy escalation

behaviors due to the shared permission mechanism between

custom code and third-party libraries, and a number of studies

focus on separating libraries and app code.

B. The Security Analysis of Mobile Advertisements

A few research studies were focused on analyzing the

malicious behaviors related to mobile advertisement, including

fraudulent behaviors that entice users to click ads or push

notifications [4]–[6], [36], [37], and the devious contents that

displayed in the ad loading contents and landing pages [38].

For example, Liu et al. [4] have investigated static placement

frauds on Windows Phone via analyzing the layouts of apps.

Crussell et al. [5] have developed an approach for automat-

ically identifying click frauds (fake impressions and clicks).

Dong et al. [6] have studied the new kinds of dynamic ad fraud.

However, to the best of our knowledge, no previous studies

have detailed characterized the security issues in the offerwall

ads. Compared with other types of mobile ads, offerwall ads

are more aggressive and posing great security threats, i.e.,

users are required to download malicious apps.

C. Malicious Web Advertising Analysis

Malicious ads have been extensively studied in the context

of web advertising (or often referred to as web malvertising).

Cova et al. [39] and Lu et al. [40] proposed to detect drive-

by-download attack and malicious Javascripts that embedded

in the advertising. Stringhini et al. [41] and Mekky et al. [42]

used the properties of HTTP redirections to identify malicious

advertisement behavior. Although these approaches have stud-

ied malicious ads from one way to another, the security issues

in the offerwall ads have not been well studied.

VI. CONCLUSION

In this paper, we performed the first explorative study of

mobile offerwall advertisements. We first proposed a semi-

automated approach to identify offerwall services and of-

ferwall apps. Then, we applied the tool to analyze over

10K Android apps and identified over 300 offerwall apps.

Leveraging these apps, we go one step deeper to dissect the

security and privacy behaviors of their offerwall ads. The

experimental results suggest that (1) offerwall ad services have

accessed to undocumented permissions, and (2) offerwall ad

services could be maliciously used to deliver malware.

ACKNOWLEDGMENT

This work is supported by the National Key Research and

Development Program of China (grant No.2017YFB0801903),

and the National NSF of China (grants No.61702045).

525

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:31:05 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Number of Android Applications,” 2019, https://www.appbrain.com/
stats.

[2] H. Wang, H. Li, and Y. Guo, “Understanding the evolution of mobile
app ecosystems: A longitudinal measurement study of google play,” in
The World Wide Web Conference. ACM, 2019, pp. 1988–1999.

[3] “Mobile Advertising Market,” 2019, https://www.alliedmarketresearch.
com/mobile-advertising-market.

[4] B. Liu, S. Nath, R. Govindan, and J. Liu, “{DECAF}: Detecting and
characterizing ad fraud in mobile apps,” in 11th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 14), 2014,
pp. 57–70.

[5] J. Crussell, R. Stevens, and H. Chen, “Madfraud: Investigating ad fraud
in android applications,” in Proceedings of the 12th annual international
conference on Mobile systems, applications, and services. ACM, 2014,
pp. 123–134.

[6] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G. Xu, and
J. Klein, “Frauddroid: Automated ad fraud detection for android apps,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2018, pp. 257–268.

[7] V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. Riley, “Are
these ads safe: Detecting hidden attacks through the mobile app-web
interfaces.” in NDSS, 2016.

[8] R. Shao, V. Rastogi, Y. Chen, X. Pan, G. Guo, S. Zou, and R. Riley,
“Understanding in-app ads and detecting hidden attacks through the
mobile app-web interface,” IEEE Transactions on Mobile Computing,
vol. 17, no. 11, pp. 2675–2688, 2018.

[9] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile
Networks. ACM, 2012, pp. 101–112.

[10] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid: Privilege sepa-
ration for applications and advertisers in android,” in Proceedings of the
7th ACM Symposium on Information, Computer and Communications
Security. Acm, 2012, pp. 71–72.

[11] “Devs lose out on thousands of dollars as Apple cracks down
on offerwall ads,” 2019, https://www.pocketgamer.biz/news/70610/
devs-lose-thousands-of-dollars-as-apple-cracks-down-on-offerwall-ads/.

[12] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: fast and accurate
detection of third-party libraries in android apps,” in Proceedings of
the 38th International Conference on Software Engineering Companion,
2016, pp. 653–656.

[13] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li,
J. Tapiador, J. Cao, and G. Xu, “Beyond google play: A large-scale
comparative study of chinese android app markets,” in Proceedings of
the Internet Measurement Conference 2018. ACM, 2018, pp. 293–307.

[14] L. Li, J. Gao, M. Hurier, P. Kong, T. F. Bissyandé, A. Bartel, J. Klein, and
Y. Le Traon, “Androzoo++: Collecting millions of android apps and their
metadata for the research community,” arXiv preprint arXiv:1709.05281,
2017.

[15] “VirusTotal,” 2019, https://www.virustotal.com.
[16] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Inves-

tigating user privacy in android ad libraries,” in Workshop on Mobile
Security Technologies (MoST), vol. 10. Citeseer, 2012.

[17] W. Y. A. Kathy, F. Yi, H. Zheng, and L. David, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012,
pp. 217–228.

[18] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in NDSS 2014.

[19] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis
of current android malware,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer,
2017, pp. 252–276.

[20] “Adware,” 2019, https://www.malwarebytes.com/adware/.
[21] e. a. Sebastián, Marcos, “Avclass: A tool for massive malware labeling.”

in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2016.

[22] “Android/Gappusin.A — ESET Virusradar,” 2019, https://www.
virusradar.com/en/Android Gappusin.A/description.

[23] H. Zhu, X. Ye, X. Zhang, and K. Shen, “A context-aware approach for
dynamic gui testing of android applications,” in Computer Software and
Applications Conference (COMPSAC), 2015 IEEE 39th Annual, vol. 2.
IEEE, 2015, pp. 248–253.

[24] N. I. Azim T, “Targeted and depth-first exploration for systematic testing
of android apps,” in ACM SIGPLAN Notices. ACM, 2013, pp. 641–660.

[25] “Command-line Tool,” 2019, https://developer.android.com/studio/test/
command-line.

[26] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are android apps
removed from google play? a large-scale empirical study,” in The 15th
International Conference on Mining Software Repositories (MSR 2018),
2018.

[27] H. Wang, J. Si, H. Li, and Y. Guo, “Rmvdroid: Towards a reliable
android malware dataset with app metadata,” in Proceedings of the
16th International Conference on Mining Software Repositories, 2019,
p. 404–408.

[28] L. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon, “An investigation
into the use of common libraries in android apps,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1. IEEE, 2016, pp. 403–414.

[29] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and
W. Huo, “Libd: scalable and precise third-party library detection in
android markets,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). IEEE, 2017, pp. 335–346.

[30] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection
in android and its security applications,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 356–367.

[31] H. Wang and Y. Guo, “Understanding third-party libraries in mobile app
analysis,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). IEEE, 2017, pp. 515–516.

[32] A. Narayanan, L. Chen, and C. K. Chan, “Addetect: Automated detection
of android ad libraries using semantic analysis,” in 2014 IEEE Ninth
International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP). IEEE, 2014, pp. 1–6.

[33] L. Li, T. Riom, T. F. Bissyandé, H. Wang, J. Klein, and Y. Le Traon,
“Revisiting the impact of common libraries for android-related investi-
gations,” Journal of Systems and Software (JSS), 2019.

[34] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated:
An empirical study of third-party library updatability on android,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 2187–2200.

[35] A. G. Aritz, G. C. Jose, C. Angel, C. Maria, and C. R. Ruben, “Large-
scale analysis of user exposure to online advertising on facebook,” IEEE
Access, vol. 7, pp. 11 959–11 971, 2019.

[36] F. Dong, H. Wang, L. Li, Y. Guo, G. Xu, and S. Zhang, “How do
mobile apps violate the behavioral policy of advertisement libraries?”
in Proceedings of the 19th International Workshop on Mobile Computing
Systems & Applications, 2018, pp. 75–80.

[37] T. Liu, H. Wang, L. Li, G. Bai, Y. Guo, and G. Xu, “Dapanda: Detecting
aggressive push notifications in android apps,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 66–78.

[38] T. Liu, H. Wang, L. Li, X. Luo, F. Dong, Y. Guo, L. Wang, T. F. Bis-
syande, and J. Klein, “Maddroid: Characterising and detecting devious
ad content for android apps,” in Proceedings of the Web Conference
2020 (WWW’20), 2020.

[39] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-
by-download attacks and malicious javascript code,” in Proceedings of
the 19th international conference on World wide web. ACM, 2010, pp.
281–290.

[40] L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “Blade: an attack-agnostic
approach for preventing drive-by malware infections,” in Proceedings of
the 17th ACM conference on Computer and communications security.
ACM, 2010, pp. 440–450.

[41] G. Stringhini, C. Kruegel, and G. Vigna, “Shady paths: Leveraging
surfing crowds to detect malicious web pages,” in Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 133–144.

[42] H. Mekky, R. Torres, Z.-L. Zhang, S. Saha, and A. Nucci, “Detecting
malicious http redirections using trees of user browsing activity,” in
IEEE INFOCOM 2014-IEEE Conference on Computer Communications.
IEEE, 2014, pp. 1159–1167.

526

Authorized licensed use limited to: Monash University. Downloaded on March 11,2022 at 11:31:05 UTC from IEEE Xplore. Restrictions apply.

