
Lie to Me: Abusing the Mobile Content Sharing Service
for Fun and Profit

Guosheng Xu
Siyi Li

Beijing University of Posts and
Telecommunications

Beijing, China

Hao Zhou
The Hong Kong Polytechnic

University
Hong Kong, China

Shucen Liu
Beijing University of Posts and

Telecommunications
Beijing, China

Yutian Tang
ShanghaiTech University

Shanghai, China

Li Li
Monash University

Monash University, Australia

Xiapu Luo
The Hong Kong Polytechnic

University
Hong Kong, China

Xusheng Xiao
Case Western Reserve University

Cleveland, United States

Guoai Xu
Beijing University of Posts and

Telecommunications
Beijing, China

Haoyu Wang
Huazhong University of Science and

Technology
Wuhan, China

ABSTRACT
Online content sharing is a widely used feature in Android apps.
In this paper, we observe a new Fake-Share attack that adversaries
can abuse existing content sharing services to manipulate the dis-
played source of shared content to bypass the content review of
targeted Online Social Apps (OSAs) and induce users to click on the
shared fraudulent content. We show that seven popular content-
sharing services (including WeChat, AliPay, and KakaoTalk) are
vulnerable to such an attack. To detect this kind of attack and
explore whether adversaries have leveraged it in the wild, we pro-
pose DeFash, a multi-granularity detection tool including static
analysis and dynamic verification. The extensive in-the-lab and
in-the-wild experiments demonstrate that DeFash is effective in de-
tecting such attacks. We have identified 51 real-world apps involved
in Fake-Share attacks. We have further harvested over 24K Sharing
Identification Information (SIIs) that can be abused by attackers. It
is hence urgent for our community to take actions to detect and
mitigate this kind of attack.

CCS CONCEPTS
• Security and privacy→ Software and application security; Soft-
ware security engineering.

KEYWORDS
OSAs, Content Sharing, Fake-Share Attack, Data-flow Analysis,
Secret Leakage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512151

ACM Reference Format:
Guosheng Xu, Siyi Li, Hao Zhou, Shucen Liu, Yutian Tang, Li Li, Xiapu
Luo, Xusheng Xiao, Guoai Xu, and Haoyu Wang. 2022. Lie to Me: Abusing
the Mobile Content Sharing Service for Fun and Profit. In Proceedings of
the ACM Web Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event,
Lyon, France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3485447.3512151

1 INTRODUCTION
Online content sharing has become a commonly used feature in
social platforms [1, 3, 39], where people would share the content of
interest (usually a website link) with friends, and their friends can
get this content by clicking on the link. To facilitate content sharing,
manywebsites or mobile apps provide the one-click content sharing
function so that users can click the share button to share the content
of interest without describing the content using their own language
or manually copying the content.

Content Sharing in Android Apps. Figure 1(a) illustrates an
example. After the user clicks the share button in an app, the corre-
sponding interface will pop up for users to select the Online Social
Apps (OSAs for short) that they want to share, such as WeChat
[14], Twitter [10] and WhatsApp [9]. In the past, Many developers
implemented one-click content sharing in their apps by directly
using Android’s Intent mechanism to open the target OSA. In this
way, the content that the user wants to share is embedded in the
Intent as text. After jumping to the target OSA, the content will
be automatically filled in its text input box, and users can click the
send button to send the content. While it simplifies the work for
developers to implement the content sharing function, it provides
little support for customizing the descriptions of the content since it
is not much different from manually copying the content and send-
ing it. Therefore, most OSAs provide the Software Development Kit
for Sharing (hereafter referred to as Share-SDK) for third-party
app developers to use. After obtaining the Sharing Identification
Information (SII for short) provided by the third-party app and the
content to be shared, it will generate a content description card as

3327

https://doi.org/10.1145/3485447.3512151
https://doi.org/10.1145/3485447.3512151
https://doi.org/10.1145/3485447.3512151

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Guosheng Xu and Siyi Li et al.

(a) sharing button (b) Description Card

Figure 1: The general process of content sharing.

shown in Figure 1(b). This type of description card usually displays
the source app of the shared content at the bottom. For example,
if it is the content shared from Weibo to WeChat, the source will
be displayed as Weibo. This method eliminates the need for users
to click the send button manually and can allow users to get more
information about what is shared.

Fake-ShareAttack.While this approach can provide customized
third-party ap description cards, upon closer investigation, we
found that the source app presented in the card may not be re-
liable. Most Share-SDKs only verify that the app identifier (APPID)
sent by the app is correct but do not verify whether the app is sending
its own app identifier or stealing another app’s identifier. Due to
the verification being implemented within the Share-SDKs, adver-
saries can easily exploit this type of vulnerabilities. We devise a
new type of attack to bypass the target OSA review and display
fake sources for the shared content, and refer to this type of attack
as the Fake-Share Attack. Our preliminary study suggests that
numerous popular Share-SDKs (including Wechat [14], QQ [11],
DingTalk [6], Yixin [16], Alipay [5], KakaoTalk [12] andWeibo [15])
are vulnerable to this type of attack (see Section 3). Users are more
likely to trust messages from sources they know thanmessages from
unknown sources, so adversaries can easily disguise the source of
the content shared from their malicious apps as the content shared
from a reputable app such as TikTok or Weibo. Similar to phishing
websites and emails, fake-share attacks can be used to achieve seri-
ous security consequences such as delivering drive-by-download
malware, malicious advertising, financial scams, etc.

To detect Fake-Share Attack and explore whether adversaries
have exploited it in the wild, we present to the community a pro-
totype tool called DeFash, which can detect Fake-Share Apps that
exploit the Share-SDKs to perform Fake-Share Attacks on the apps
(See Section 4). DeFash can strike an excellent balance between
performance and accuracy in identifying Fake-Share attacks and
consists of three main components: static data stream analysis, SII
match detection, and dynamic SII capture. Experimental results,
either through in-the-lab experiments with carefully crafted bench-
mark apps or in-the-wild experiments containing real-world An-
droid apps, show that our approach effectively detects Fake-Share
apps (See Section 5). Specifically, in our experiments, we have

identified 51 apps that target WeChat for fake content sharing. All
of them are claimed to be “money-making apps” that induce users
to share content with spam ads and censored images (e.g., porn and
gambling images). Besides, we have harvested over 24,000 SIIs from
Android apps, including many popular apps, which adversaries can
abuse to perform Fake-Share attacks.

In summary, this paper makes the following major contributions:
• We identify and demonstrate the feasibility of Fake-Share
Attack, a novel type of attack to tamper with the shared
source display in the shared content description card. To
the best of our knowledge, this paper is the first work that
reveals this kind of attack. We show that numerous popular
Share-SDKs are vulnerable to Fake-Share Attack.

• We propose DeFash, a multi-granularity detection tool that
can identify Fake-Share Attack. We craft a benchmark and
evaluate the performance of DeFash on it. Experiment re-
sults suggest that DeFash can achieve 100% accuracy. Then
we used DeFash to scan 1,785 apps that contain sharing func-
tions and found 51 real-world fraudulent apps that perform
Fake-Share Attacks on the shared contents.

• We analyzed over 73,014 Android apps from the Huawei app
market and collected more than 24,000 SIIs that can be lever-
aged to implement Fake-Share Attack, which means that
adversaries can easily abuse the identities of many popular
apps. It reveals the severity of this kind of attack.

2 CONTENT SHARING IN MOBILE APPS
2.1 Content Sharing without Share-SDK
Content sharing is a process of communication between two apps
in the Android system. A simple way for content sharing is to con-
struct an Intent to open target OSA directly. This method directly
uses Android’s cross-app launch function StartActivity, which
is suitable for all apps. However, it only implements a simple jump
and text auto-fill function but does not display the source and other
descriptions of the shared content.

2.2 Content Sharing with Share-SDK
To achieve a better user experience, many OSAs will provide a
shared content display in the form of a description card, as shown
in Figure 1(b). The card body will display the title, thumbnail, and
other information of the shared content, and the source app will be
displayed at the bottom of the card. This form allows users to obtain
more information about the shared content to decide whether to
click the link. Moreover, many third-party apps (especially news
apps) also hope that users can share the contents from their apps
to OSAs using the description card because it can better promote
their apps through the shared source display function. In order
to implement sharing function in the form of a description card,
developers need to access the Share-SDK provided by the OSA
and share content according to the process given in the official
document. Take WeChat SDK as an example, as illustrated in Code
Snippet 1, the app first needs to register itself to Share-SDK (line
1-line 2) and then collects specific information about the content to
be shared to construct a sharing package (line 4-line 11) and finally
invokes the sendReq function in Share-SDK to share. If the sendReq
function is executed correctly, the system will automatically jump

3328

Lie to Me: Abusing the Mobile Content Sharing Service
for Fun and Profit WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

to the WeChat contact (friend) selection interface and send the
shared content in the form of a description card. Otherwise, it will
stay at the original interface, or a pop-up window will remind the
user of the sharing error.

1 s h a r e a p i = WXAPIFactory . createWXAPI (this , APP_ID) ;
2 s h a r e a p i . r e g i s t e rApp (APP_ID) ;
3
4 WXWebpageObject page = new WXWebpageObject () ;
5 page . webpageUrl = sh a r eU r l ;
6 WXMediaMessage message = new WXMediaMessage (page) ;
7 message . t i t l e = s h a r e T i t l e ;
8 message . d e s c r i p t i o n = sha reCon ten t ;
9 message . thumbData = null ;
10 SendMessageToWX . Req l o c a l R e q = new SendMessageToWX . Req () ;
11 l o c a l R e q . message = message ;
12
13 s h a r e a p i . sendReq (l o c a l R e q) ;

Code Snippet 1. Content sharing with Share-SDK

Other OSA platforms adopt a similar sharing process. For ex-
ample, KaKaoTalk is a famous Korean social networking platform.
Developers first need to submit their apps to the KaKaoTalk devel-
oper platform for reviewing and then get an app unique identifier
APPID. If the developer wants to access the content sharing func-
tion, they need to store this unique identifier in the .xml file in
a given format and wait for Share-SDK to take it. When the user
clicks the share button, similar to WeChat, the app needs to cre-
ate a new object FeedTemplate and package the content related
informations to be shared into it, and then pass this FeedTemplate
to the LinkClient.instance.defaultTemplate method for con-
tent sharing. Our extensive investigation suggests that most of the
Share-SDKs work similarly.

Figure 2: Content sharing with WeChat Share-SDK

3 ABUSING THE SHARE-SDK
3.1 Potential Risks in Share-SDKs
As shown in Figure 1(b), description cards usually automatically
display the source app of the shared content, which has become
the primary basis for users to determine whether the shared links
are reliable or not because content from reliable apps is usually
harmless. However, is the source of the shared content shown on the
description card always credible? Taking WeChat as an example, we
first analyze the operation of Share-SDK during the entire content
sharing process and display it in Figure 2.

1○ When the developer calls createWXAPI and creates a shareapi
object with APPID and current Context as parameters, the
member variables context and APPID of shareapi will be
initialized to these two parameters.

2○ In sendreq, the sharing environment would be checked first,
e.g., whether WeChat is installed on this device. Then, it
uses the member variable APPID to get a Uniform Resource
Identifier Var3.m.

3○ In com.tencent.mm.sdk.a.a.a1, it creates an Intent object
and uses the package name of the current app as the value
of the “_mmessage_appPackage” key, and the Uri containing
the APPID as the value of the “_mmessage_content” key.
After filling in other necessary data, it uses this Intent as a
parameter of startActivity to jump to WeChat.

We read the developer documentation of WeChat [14] and found
that after WeChat received and parsed the particular format Intent,
it performed the following two-step authentication based on the
APPID and PackageName in the Intent. It is necessary to verify that
the app has been submitted on Wechat open platform and has the
qualification to share the content to WeChat.

• Check1: WeChat server will first query the APPID in the
open platform, that is, to confirm that the APPID is legal and
the corresponding app has passed the review of the open
platform. Then it will query the package name of the app
corresponding to this APPID, and check whether the package
name matches the PackageName in the Intent.

• Check2: The server will query the app’s signature from the
app information submitted to the open platform and then
compare it with the one obtained from the local device to
ensure that these two signatures are consistent.

When the two-step verification has been passed, WeChat will
use the AppName corresponding to the APPID on the open platform
as the source of content sharing and display it in the description
card. We found that even though these two verification schemes
took place on the WeChat server, its verification entirely relies on
the PackageName and APPID passed initially by the current app
through the Intent. Therefore, if we send a fake but matching
PackageName and APPID to the WeChat server, The WeChat
server cannot verify the true identity of the current app.

3.2 Fake-Share Attack
Based on our previous analysis, we found that the verification of
WeChat relies on two key parameters (i.e., PackageName and APPID),
whichwe call them Sharing Identification Information (SII). As
the SII is constructed locally, we come up with a possible attack
scenario: if we modify the SII of the fraudulent app itself to the SII
of other popular apps, and then we can modify the source of content
sharing displayed in the description card, which is the Fake-Share
Attack proposed in this paper. Through this attack, fake sharing
source can be shown on the description card of target OSA to cheat
the message receiver. Therefore, a malicious app developer may
use this attack method to modify the source of the link shared
from the malicious app as another trusted app, which will trick
OSA users into clicking the Shared link (maybe a malicious link).
1This is an obfuscated method name as the sample app (including its embeddedWeChat
Share-SDK) has been obfuscated by its developers.

3329

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Guosheng Xu and Siyi Li et al.

When this type of apps share content to OSA, we refer to the source
displayed in the description card as the victim app. We will show
how this attack is performed in detail (Section 3.3) and demonstrate
the feasibility of performing this kind of attack (Section 3.4).

3.3 Performing Fake-Share Attack
We next propose two methods to perform the Fake-Share Attack.

1 ap i = WXAPIFactory . createWXAPI (new ContextWrapper (
Ma inAc t i v i t y . th i s) {

2 @Override
3 public S t r i n g getPackageName () {
4 return " com . t e n c en t . mobi leqq " ;
5 }
6 } , " wxf0a80d0ac2e82aa7 ") ;

Code Snippet 2. Overriding the getPackageName

3.3.1 Overriding the GetPackageName Method. As shown in Fig-
ure 2- 3○, when constructing the Intent, it first uses the method
Context.getPackageName to get the package name of the applica-
tion. Therefore, one way to implement the Fake-Share attack is to
override the Context.GetPackageName method so that the Share-
SDK gets a fake PackageName (the package name of the victim appli-
cation) from the Context instead of the current package name. Thus,
we first create a proxy Class of type ContextWrapper for the origi-
nal Context Class, as shown in line 1 of Code Snippet 2. Then we
override the getPackageName method in the proxy Class to return
the package name of the victim app, e.g., “com.tencent.mobileqq”
(see line 4 in Code Snippet 2). Finally, we register this proxy Class
and the APPID of the victim app into the Share-SDK.

After initializing the Share-SDK according to the steps men-
tioned above, the malicious app can construct the content sharing
packet and call the sharing interface provided by the Share-SDK.
Till now, Fake-Share Attack can be successfully implemented. This
type of method presupposes that the Share-SDK uses the method
Context.GetPackgeName to get the package name of the current
application and register it. Since this method does not require mod-
ification of the code in the Share-SDK, it can easily bypass the
built-in Share-SDK defense methods (for example, some SDKs use
integrity checking to check if the SDK has been tampered with).

1 I n t e n t l o c a l I n t e n t = new I n t e n t () ;
2 l o c a l I n t e n t . se tC lassName (" com . t e n c en t .mm" , " com . t e n c en t .mm

. p l ug i n . base . s t ub . WXEntryAct iv i ty ") ;
3
4 l o c a l I n t e n t . pu tEx t r a (" _mmessage_appPackage " ,

fake_packagename) ;
5 l o c a l I n t e n t . pu tEx t r a (" _mmessage_content " , " we ix in : / /

s endreq ? app id= " + f ake_app i d) ;
6 l o c a l A c t i v i t y . s t a r t A c t i v i t y (l o c a l I n t e n t) ;

Code Snippet 3. Construct a malicious Intent explicitely

3.3.2 Construct Malicious Intent Explicitly. The essence of shar-
ing via Share-SDK is to build an Intent in the current app in a
predefined format that can be parsed by the target OSA. After the
target OSA parses and implements the necessary authentication,
the information is displayed to the user in a description card. Based
on this observation, we devise a more general attack method. First,
we analyze the Intent passed to the target OSA via the Share-SDK
and parse the format of the Intent, and then manually construct the
Intent-based on this specific format. Our research shows that we

Table 1: The Identified OSAs with Vulnerable Share-SDKs.

Overriding GetPackageName Constructing Fake Intent
QQ

√ √

WeChat
√ √

DingTalk
√ √

Yixin
√ √

Alipay
√ √

KakaoTalk
√

Weibo
√

can easily obtain their SIIs from a number of popular apps and use
these SIIs to perform Fake-Share Attack (see Section 5.3). Code Snip-
pet 3 shows the process of constructing malicious Intent. As shown
in lines 4-5, we need to rewrite the values of the keys “_mmes-
sage_appPackage” and “_mmessage_content” in the Intent to the
PackageName and APPID of the victim’s app, and then use this
Intent as the parameter of startActivity to jump to the WeChat.

3.3.3 Attack implementation. We have created a lightweight demo
app to show the effectiveness of the proposed Fake-Share Attack.
First, we analyze the execution process of the target Share-SDK and
then parse the Intent sent to the target OSA through StartActivity,
and finally modify the Intent indirectly (by overriding the method
getPackageName) or directly (by constructing a malicious Intent
explicitly). In this way, the target OSA will parse the fake content
sharing source from the malicious Intent and display it. The pro-
posed Fake-Share Attack can successfully bypass the open platform
app review, as the malicious app does not even need to have its
own APPID to implement this attack.

3.4 Feasibility of the Attack
We next show whether popular Share-SDKs are vulnerable to this
kind of attack. We found that Fake-Share Attack can be imple-
mented on most OSAs that provide the functionality of sharing
content in the form of description card and showing the source
of sharing because most of these Share-SDKs need to construct
SII in the local app and further send it to the target OSA. The spe-
cific investigation step is as follows. Firstly, we manually collected
OSAs that include the content sharing functions and identified 35
commonly used OSAs. Secondly, we read the official documents of
these 35 OSAs and flag OSAs with Share-SDK released. Then we
manually analyze the operating mechanism of these Share-SDKs
and implement Fake-Share Attack on these OSAs using the two
kinds as mentioned above of attack methods. Finally, we apply the
aforementioned Fake-Share Attacks to those OSAs and experimen-
tally confirm that, as highlighted in Table 1, seven OSAs could
be successfully exploited. All of them can be abused by construct-
ing the malicious Intent, and five of them could be attacked by
simply overriding the GetPackageName. This kind of vulnerability
opens new attack surfaces for scammers and adversaries.

4 DEFASH: A HYBRID APPROACH FOR
IDENTIFYING FAKE-SHARE ATTACK

We proposed DeFash (Detection of Fake-Share Attack), a hybrid
approach that aims accurate detection of Fake-Share Attack. To
achieve the balance between accuracy and performance, Defash
is designed as a two-phase detection tool, which incorporates

3330

Lie to Me: Abusing the Mobile Content Sharing Service
for Fun and Profit WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

the coarse-grained and fine-grained detection phases. The coarse-
grained detection uses a hybrid approach that combines static data-
flow analysis and dynamic SII matching for identifying all suspi-
cious applications that may conduct fake sharing attacks. In the
fine-grained detection phase, DeFash will automatically run the
suspicious app to trigger the content sharing feature and capture
the SII used for sharing to confirm whether the suspicious app has
implemented Fake-Share Attack.

Figure 3: The working process of DeFash.

Figure 3 illustrates the detailedworking process of DeFash, which
is mainly made up of three modules: 1) Static Data-flowAnalysis,
2) SII Matching Detection and 3) Dynamic SII Capturing. We
will depict each module in the following.

4.1 Static Data-flow Analysis
If a malicious app pretends to be a popular app for content sharing
via Fake-Share Attack, it will inevitably use the SII of the famous
(victim) app to directly or indirectly construct a malicious Intent
(see Section 3.3). To perform data-flow analysis on the entire app,
we use Soot [13], a widely used Java code analysis tool. It com-
piles Java code into an intermediate representation (i.e., Jimple)
and builds an intra-procedure control flow graph based on it. To
further enable inter-procedure analysis, we take advantage of Flow-
Droid [17], a widely used static analysis framework to generate a
precise Inter-process Control Flow Graph (ICFG). Therefore, we
obtain the function call relationships in the program based on the
ICFG generated by FlowDroid and perform data flow analysis based
on Soot. Specifically, our static data-flow analysis includes back-
ward data-flow analysis (see section 4.1.1) and forward-backward
data-flow analysis (see section 4.1.2).

4.1.1 Backward data-flow analysis: from the Intent back to the data
source. By inheriting the BackwardFlowAnalysis Class in Soot,
we can automatically maintain the InSet and OutSet of each state-
ment in a given method backward after designing the state trans-
fer function. Taking WeChat ShareSDK as an example, we first
scan all methods in ICFG and find all statements related to the
construction of SII during content sharing through the keywords
“_mmessage_appPackage” and “_mmessage_content”. We set the
use domain variables of these statements to be live variables and
traversed the statements backward for live variable analysis.

After the backward data-flow analysis within the program, we
can find the statement where the live variable died and consider it

Figure 4: An example of backward data flow analysis.

initialized in this statement and then process the inter-procedural
data flow according to the following rules so that we can perform
the inter-procedural data-flow analysis:

• If it is a parameter assignment statement, we will identify all
callers of the current method in ICFG and set this parameter
as a live variable to continue to perform backward data-flow
analysis in callers.

• If it is an invoke statement with no parameters, we will
search for all return statements in the callee and set the
variables in these statements as live variables for backward
data-flow analysis in the callee.

• If it is a member variable assignment statement, we will
search for the initial value of this variable in the initialization
methods <init> and <clinit> of the class towhich this field
variable belongs.

Figure 4 shows an example. We start with the method putExtra,
perform the inter-procedure backward data-flow analysis in shareWX,
and find the variable to be initialized with the parameter arg1. Then,
we find the caller Onclick, and continue to trace to the GetAppId
method in step 4. After the member variable assignment statement
is analyzed in steps 5 and 6, we get the value of APPID in the
initialization field of ShareUtil Class.

4.1.2 Forward-backward data-flow analysis: identifying the match-
ing pair of APPID and PackageName. Since APPIDs used in Share-
SDKs generally follow a pre-defined format, we can find these
APPIDs from the bytecode according to this format and propose a
forward-backward data-flow analysis method. First, we scan the
bytecode to find the statements contains APPID in a pre-defined for-
mat2. We use these statements for forward data-flow analysis to find
all reachable StartActivity, and then use each StartActivity
as a starting point for backward data-flow analysis as described in
Section 4.1.1 to find the matching PackageName. If both APPID and
PackageName are stored in the bytecode, we can find the paired
APPID and PackageName in this way.

We process return statements and invoke statements reachable
by sensitive variables (APPID in this case) for inter-procedural
data-flow analysis according to the following rules:

• If it is an invoke statement, we will mark its sensitive param-
eters based on the variables in the InSet and use the sensitive
parameters as the starting point to perform forward data-
flow analysis on the callee.

2This format is “wx + 16 lowercase and numeric characters” for Wechat ShareSDK.

3331

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Guosheng Xu and Siyi Li et al.

• If it is a return statement, we will find all the callers of the
current method and the calling statement in ICFG and use
the defs of the calling statement as the starting point for
forward data-flow analysis.

After static data-flow analysis, we could flag whether a app is a
benign app, a confirmed Fake-Share app, or a suspicious app. If the
PackageName used for content sharing is not obtained through the
original GetPackageName during the backward data-flow analysis,
we will mark this app as suspicious. Further, if we can find the data
flow that involves malicious SII (i,e, SII that does not belong to the
current app) through the forward-backward analysis, we would
flag this app as a Fake-Share app. Otherwise, we consider this app
to be a benign app. Suspicious apps will be further analyzed using
the fine-grained analysis module of DeFash.

4.2 SII Matching detection
SII usually consists of verification information of the app itself, such
as the APPID that can uniquely identify the app. It is reasonable to
assume that if an app’s code or resource files contain SII from other
apps, the current appmay use that for malicious purposes (e.g., Fake-
Share Attack). We will further perform SII Matching detection for
these apps, a hybrid method to automatically flag these suspicious
apps. Specifically, this detection can be divided into the following
steps. Firstly, we scan each app’s code and resource files based on
regular expression matching to obtain all the APPIDs contained
in the app. Secondly, we combine each APPID contained in the
app and the app’s package name to form a pair of SII. Note that if
more than one APPID (e.g., n APPIDs) is found in the app, we will
compose n pairs of SIIs and mark them as temporary SIIs. Finally,
we develop a test app, which can implement content sharing using
temporary SII and record whether the sharing is successful. Due
to the authentication of OSAs, only the matching PackageName
and APPID can pass the authentication. We record the results of
each sharing to determine whether a temporary SII is correct. If an
app contains incorrect SII, we will flag it as a suspicious app. The
identified suspicious apps will be sent to the following fine-grained
analysis for confirmation.

4.3 Dynamic SII Capturing
The purpose of fine-grained detection is to determine whether the
suspicious app implements Fake-Share Attack, which can remove
the possible false positives flagged in the previous steps. We design
an automation testing scheme to automatically explore the sharing
buttons in the app for triggering content sharing and then monitor
whether the SII of the victim application is used in a fake sharing
attack. This process consists of two vital techniques: 1) Automate
Android app testing and 2) Dynamic instrumentation.

Automate Android app testing. To automatically explore and
click on share buttons, we use a depth-first search strategy. We will
keep exploring the clickable buttons on the activity until the depth
reaches a specified maximum, or we cannot continue exploring and
then return to the previous activity. We use DroidBot [7] to capture
the activity view and generate simulated click or slide actions.
We propose a keyword-based priority queue traversal method to
traverse the sharing operation activity effectively and quickly to
trigger. In detail, we have specified some particular keywords for

content sharing like “share” and “friend”. Then we set the traversal
priority of the views containing these keywords to the highest.

Dynamic instrumentation We use Frida [8] to monitor the
entire app runtime. Once the share operation is triggered, it captures
the SII used for sharing and checks if it matches the current shared
app. If it does not match, it indicates that the current app uses the
SII of another app (victim app) for content sharing, i.e., the current
app has implemented Fake-Share Attack.

5 EVALUATION
Our evaluation is driven by the following research questions (RQs):
RQ1 How does DeFash perform in the lab? No previous work is

aware of the Fake-Share attack, and no available benchmark
can be used to evaluate the effectiveness of DeFash. Thus,
we have to craft our own benchmark for evaluation.

RQ2 Whether the adversaries have leveraged the Fake-Share attack
and how does DeFash perform in the wild? Wewant to explore
real-world Fake-Share attacks and characterize them.

RQ3 How feasible is it to perform Fake-Share attacks? We want
to investigate it from the adversaries’ perspective to see
whether we can harvest the SIIs of popular apps and leverage
them to perform Fake-Share attacks.

5.1 RQ1: How does DeFash perform in the lab?
5.1.1 Craft the benchmark. In the absence of established bench-
marks in this research direction, we propose to create a benchmark
of Fake-Share attacks based on app repackaging. Real-world apps
have implemented different content sharing methods via connect-
ing with the Share-SDKs. Thus we first collect 9 benign content
sharing apps from the market and repackage them to create Fake-
Share apps. The WeChat open platform has reviewed these nine
apps we selected, and we confirm that they use their own SII for
content sharing. Specifically, our app repackaging process is as
follows: 1) First, we use Apktool [2] to extract the smali code from
the .apk file, and then manually analyze the code related to content
sharing and the storage location of the APPID used. 2) Second, we
change the execution mode of the app by modifying the smali code.
Specifically, we modify the original APPID to the APPID of the
victim app. For PackageName, we override the GetPackageName
method in the incoming Context or directly Modify the parameters
used by Putextra when constructing the Intent according to the
twomethods proposed in Section 3.3. For the original app, these two
methods will form corresponding copies respectively. 3) Finally, we
repackage the app and get the Fake-Share App. Since we used two
methods to change the PackageName in the previous step, a benign
app can be repackaged to generate two different Fake-Share apps.
Thus, we can build a benchmark with a total of 27 apps, including
18 Fake-Share apps and nine benign apps.

5.1.2 Result. We next report the accuracy and runtime perfor-
mance of DeFash on the created benchmark.

Accuracy of DeFash. Using the static data-flow analysis and
SII Matching detection, DeFash flags 22 suspicious apps in the
coarse-grained phase. Then, through fine-grained dynamic analysis,
DeFash can detect all 18 Fake-Share apps with 100% accuracy. For
the four benign apps that were falsely reported in the coarse-grained
stage, we further manually analyze them to pinpoint the reasons.

3332

Lie to Me: Abusing the Mobile Content Sharing Service
for Fun and Profit WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

We observe that FlowDroid cannot construct the ICFGs correctly,
leading to false positives. Nevertheless, our following fine-grained
dynamic analysis can remove these false positives. It suggests the
high accuracy of DeFash.

Time consumption. We further evaluate the runtime perfor-
mance of DeFash. Note that, in the dynamic analysis stage, we limit
the testing time of DeFash to 10 minutes. On average, it takes 292
seconds for DeFash to analyze each app. The most time-consuming
part is the dynamic app automation (211 seconds on average), as
we need to continuously generate click operations to explore the
sharing button on the UI in a depth-first search. Nevertheless, the
static data flow analysis and SII matching detection is quick (67
seconds and 9 seconds, respectively), which could help filter most
irrelevant apps and improve the overall performance. It meets our
goal to achieve the balance between accuracy and scalability.

Answer to RQ1:DeFash can detect Fake-Share Attack with 100%
accuracy in the benchmark we created. In terms of detection per-
formance, the average time consumed by coarse-grained detection
is only 76 seconds, while the time consumed by fine-grained de-
tection is 211 seconds on average.

5.2 RQ2: Fake-Share attack in the wild
5.2.1 Method. Next, we want to investigate whether Fake-Share
Attack is presented in thewild. Thus, we first use keywordmatching
to identify apps with content sharing functions from the appmarket.
We set a number of keywords (e.g., “news” and “share”) and crawled
apps that contain these keywords in app name or description. We
flag these apps as the candidate’s apps to have content sharing func-
tions. Second, We take advantage of Libradar++ [30, 38], a widely
used Android third-party library detection tool, to screen out all
apps that contain Share-SDKs. In addition, beyond the Share-SDK,
developers can also directly construct an Intent for content sharing
(see Section 3.3), so we further analyze the decompiled code and
resource files to identify apps that contain Sharing APPID. Finally,
we use DeFash to detect whether these apps have implemented
Fake-Share Attack.

Note that our dataset is from the Huawei Android app market,
andmost of the content-sharing apps have embeddedWechat Share-
SDK. Thus, our exploration in this paper is mainly focused on
WeChat Share-SDK. Nevertheless, as we detailed explained and
demonstrated in Section 3.4, this type of attack can be generalized
to other OSA Share-SDKs, and our approach can be adopted directly.

5.2.2 Result. In the first step, we crawled a total of 1,785 apps from
the Huawei App market. In the second step, taking advantage of
LibRadar++, we can identify 1,379 apps containing WeChat third-
party libraries, and we further detect 968 apps containing Wechat
APPID, resulting in a total of 1,493 apps. Finally, we use DeFash
to analyze these apps. Through coarse-grained detection, we get
342 suspicious apps. After fine-grained detection, we finally got 51
Fake-Share apps, whose fake sharing behaviors can be confirmed.

5.2.3 Analysis. We next analyze these 51 Fake-Share apps in detail.
What kinds of apps are they? We install these apps on smart-

phones and manually analyze them. We observe that all of them are
“money-making apps” that induce users for content sharing. They

Table 2: SIIs of the top-10 victim apps.
APPID PackageName count downloads(M)
wx64f9cf5b17af074d com.tencent.mtt 24 10830
wx020a535dccd46c11 com.UCMobile 22 6928
wx27a43222a6bf2931 com.baidu.searchbox 21 10670
wx50d801314d9eb858 com.ss.android.article.news 21 11046
wxc2ff198ba4a63f06 com.ijinshan.browser_fast 16 146
wxf0a80d0ac2e82aa7 com.tencent.mobileqq 15 6365
wx2fab8a9063c8c6d0 com.qiyi.video 13 5973
wx8b777d060608ec99 com.duokan.reader 13 43
wx299208e619de7026 com.sina.weibo 12 9707
wx60d9d5c44ca9386e com.qihoo.browser 10 202

induce users to share an article in the app to OSAs, and promise
that users can earn some money reward based on the amount of
link clicks for each article shared. We further investigate these links
that we are encouraged to share and observe that most of the links
contained a large number of ads, pornographic images, or videos.
Furthermore, we obtain the two links (before and after sharing) and
compare their content. We find that the article before sharing is
ad-free, but the app will automatically add extra ads or censored im-
ages (e.g., porn and gambling images) to the link after sharing. We
consider that the purpose of this behavior is to mislead users with
an ad-free article, making them believe that this article is harmless
and thus more willing to share it.

Which apps are the targets (victims)? We have observed
22 kinds of fake SIIs exploited by these 51 fraudulent apps. Ta-
ble 2 lists the top-10 most frequently occurring APPIDs stored in
Fake-Share App, the corresponding package names, and their num-
ber of downloads in the Huawei app market (which can indicate
their popularity). We found that all these victim apps are popular
apps with very high downloads in the market. Even the lowest
one “com.duokan.reader” has gained 43 Million downloads, while
the highest “com.ss.android.article.news” reaches 11,046 Million
downloads. It suggests that many popular apps have been exploited
to (indirectly) involved in the attacks, and their reputation would
be damaged in this way.

Answer toRQ2:Adversaries have already performed Fake-Share
attacks in the wild. We identify 51 Fake-Share apps in the wild,
and all of them are claimed to be “money-making apps” that
induce users to share content with spam ads or censored images.
All the target (victim) apps are quite popular in the market with
a large number of downloads.

5.3 RQ3: How feasible is it to perform
Fake-Share attacks in the wild?

5.3.1 Method. We next investigate the Fake-Share Attack from
the perspective of the adversaries – whether we can easily get the
SIIs of popular apps to implement the attack. To this end, we first
extract all available APPIDs in each app based on regular expression
matching, and then we combine these APPIDs with the package
name of the app to form a pair of temporary SIIs and try to share.
This is similar to the SII Matching Detection phase of DeFash. The
difference is that we will record all successfully shared SIIs in the
form of <PacakgeName, APPID>, as adversaries can abuse them to
implement Fake-Share Attack directly.

3333

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Guosheng Xu and Siyi Li et al.

5.3.2 Result. We crawled a total number of 73,014 popular Android
apps from the Huawei app market. Through static analysis, we
found that 27,708 apps contain WeChat APPID in their bytecode.
Through SII matching, we obtained 24,515 available SIIs, all of them
can be used by us to implement the Fake-Share Attack. For the top-20
apps in the Huawei app market, we have identified SIIs for 17 of
them. It suggests that SII leakage is a general issue that should be
raised awareness of our community.

Answer to RQ3: It is easy to extract SIIs from Android apps. We
have harvested SIIs from over 24,000 popular apps, which can be
abused by attackers to perform Fake-Share attacks. It shows the
weakness of SII protection in existing apps.

6 DISCUSSION
6.1 Mitigating the Issue
Wediscuss how tomitigate Fake-Share Attack from the perspectives
of content sharing service providers and app developers.

Content sharing service providers.OSA needs to re-examine
the security of the released Share-SDK. The fundamental factor lead-
ing to Fake-Share Attack is that the verification server completely
trusts the SII sent from third-party apps. Therefore, we proposed
two feasible solutions to mitigating the Fake-Share Attack. 1) The
first solution is that the description card of the shared content uses
the information content obtained after parsing the shared link (e.g.,
the title and the main domain of the page), i.e., it no longer trusts
any information transferred from third-party applications except
the link to be shared, just as Facebook or Twitter do, whose descrip-
tion cards show not the source application but the main domain
of the shared link. 2) The second solution is to design a complete
authentication mechanism.When the OSA server receives the pend-
ing SII from a third-party app during the content sharing process,
an additional authentication process needs to be designed to ensure
that the SII belongs to the current third-party app. For example,
the message should be signed with a secret key known only by the
app to which the SII belongs so that the server can verify it. This,
however, might rely on system-level support.

Android app developers. We show that the SIIs of many pop-
ular apps can be stolen by simple static analysis, so benign app
developers should store and use their own SIIs in a secure manner.
Unfortunately, many Share-SDK developer documents do not make
such suggestions for developers. An effective way to alleviate SII
leakage is to store these SIIs in the app’s private server and obtain
them through the network when needed. In order to prevent at-
tackers from capturing such information by capturing packets, it is
often a good practice to encrypt the traffic.

6.2 Limitations of DeFash
When DeFash performs static data flow analysis, it only analyzes
the Java bytecode. For the case of storing SII in native code or other
local sources, although we can track the corresponding data flow,
we cannot directly get the value of SII. This is one of the challenges
we need to address in the future. In addition, our dynamic analysis
module in DeFash only uses a simple keyword priority queue algo-
rithm. Although it is effective for a single type of app, exploring the
sharing button for more complex apps takes more time. We hope

to optimize the exploration strategy to reduce the time consump-
tion of triggering sharing in the future. Furthermore, although we
show that seven OSAs are vulnerable to the Fake-Share attack, our
exploration only identified real-world attacks targeting WeChat
Share-SDK due to the dataset limitation. Nevertheless, we have
demonstrated that it is a general issue in the ecosystem, and our
proposed method can be applied directly to detect such attacks.

7 RELATEDWORK
Secret Leakage Detection CredMiner [47] can programmatically
identify and recover developer credentials unsafely embedded in
Android apps which is similar to our work for mining SII from
other apps. Yang et al. [42] also found that there is a secret key leak-
age when developers implementations third-party in-app payment.
Sinha et al. [34] expose the possibility of malicious users stealing
API keys embedded in public code repositories, and Meli’s work
[31] on detecting privacy leakage of GitHub repositories further
suggests that developers’ secrets are not well protected. In addition,
other work on developer privacy mining includes HARVESTER
[33], CredScan [4], StringHound [22], ASTANA [20], etc.
Malicious/Gray Behaviors Analysis The Fake-Share Attack pro-
posed in this paper can be used for spam advertising, spreading
malicious links, and other malicious purposes. A large number of
papers in our community were focused on Mobile malware de-
tection [24–28, 32, 35–37, 40, 41, 43–46]. Besides, there are cur-
rently many studies on these apps that contain fraudulent behav-
iors [18, 19, 21, 29]. FraudDroid [21] analyses apps dynamically to
collect runtime network traffics, which are then leveraged to check
against a set of heuristic-based rules for identifying fraudulent ad
behaviors. In addition, researchers have also discovered some new
apps that use social engineering methods to perform scams, such
as the fraudulent dating apps [23].

8 CONCLUSION
In this paper, we uncover a novel attack that against online social
apps named Fake-Share Attack. It can bypass online social apps’
review of third-party apps, share content (usually links) to online
social apps, and display fake sources in the description card to
induce users to click. We have designed DeFash, a multi-granularity
tool to detect this type of attack. Extensive experiments have shown
that DeFash is effective in detecting Fake-Share apps. By applying
DeFash to the app market, we have identified 51 Fake-Share apps
and over 24,000 SIIs of popular apps that adversaries can abuse.
Our observations in this paper suggest that our community should
invest more effort into detecting and mitigating this kind of attack.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Founda-
tion of China (grants No.62072046, 61873069, 62102042), Hong
Kong RGC Project (No.PolyU15224121), Shanghai Pujiang Pro-
gram (No.21PJ1410700), the NSF (grants CCF-2046953 and CNS-
2028748), the ARC Discovery Early Career Researcher Award (DE-
CRA) project DE200100016 and a Discovery project DP200100020.
Guosheng Xu and Siyi Li are co-first authors. Guoai Xu and Haoyu
Wang (haoyuwang@hust.edu.cn) are co-corresponding authors.

3334

Lie to Me: Abusing the Mobile Content Sharing Service
for Fun and Profit WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] 2017. Content sharing: what content people share and why. https://www.i-

scoop.eu/content-sharing-content-people-share/. (2017).
[2] 2020. ApkTool:A tool for reverse engineering Android apk files. https:

//ibotpeaches.github.io/Apktool/. (2020).
[3] 2020. Content sharing and storytelling: why and how people share con-

tent. https://www.i-scoop.eu/content-marketing/content-sharing-storytelling/.
(2020).

[4] 2020. Getting started with Credential Scanner (CredScan).
https://secdevtools.azurewebsites.net/helpcredscan.html. (2020).

[5] 2021. Alipay open platform documentation: third-party application. https:
//opendocs.alipay.com/isv. (2021).

[6] 2021. DingTalk Sharing Introduction. https://developers.dingtalk.com/document/
mobile-app-guide. (2021).

[7] 2021. DroidBot:a lightweight test input generator for Android. https://github.
com/honeynet/droidbot. (2021).

[8] 2021. Frida:Dynamic instrumentation toolkit for developers, reverse-engineers,
and security researchers. https://frida.re/. (2021).

[9] 2021. How to link to whatsapp from a different app. https://faq.whatsapp.com/
iphone/how-to-link-to-whatsapp-from-a-different-app. (2021).

[10] 2021. Overview:Twitter Developer. https://developer.twitter.com/en/docs/twitter-
for-websites/embedded-tweets/overview. (2021).

[11] 2021. Tencent Open Platform. https://wiki.open.qq.com/wiki/. (2021).
[12] 2021. This document introduces the Messaging API. https://developers.kakao.

com/docs/latest/en/message/common. (2021).
[13] 2021. Using Soot? Let us know about it! https://github.com/soot-oss/soot. (2021).
[14] 2021. WeChat Android developer documentation: sharing and favorite func-

tions. https://developers.weixin.qq.com/doc/oplatform/Mobile_App/Share_and_
Favorites/Android.html. (2021).

[15] 2021. Weibo open platform: mobile application. https://open.weibo.com/
development/mobile. (2021).

[16] 2021. Yixin Open Platform: Development Documents. http://open.yixin.im/
document. (2021).

[17] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[18] Geumhwan Cho, Junsung Cho, Youngbae Song, and Hyoungshick Kim. 2015.
An empirical study of click fraud in mobile advertising networks. In 2015 10th
International Conference on Availability, Reliability and Security. IEEE, 382–388.

[19] Jonathan Crussell, Ryan Stevens, and Hao Chen. 2014. Madfraud: Investigating
ad fraud in android applications. In Proceedings of the 12th annual international
conference on Mobile systems, applications, and services. 123–134.

[20] Martijn de Vos and Johan Pouwelse. 2021. ASTANA: Practical String Deob-
fuscation for Android Applications Using Program Slicing. arXiv preprint
arXiv:2104.02612 (2021).

[21] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F Bissyandé, Tianming Liu,
Guoai Xu, and Jacques Klein. 2018. Frauddroid: Automated ad fraud detection
for android apps. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 257–268.

[22] Leonid Glanz, Patrick Müller, Lars Baumgärtner, Michael Reif, Sven Amann,
Pauline Anthonysamy, and Mira Mezini. 2020. Hidden in plain sight: Obfuscated
strings threatening your privacy. In Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security. 694–707.

[23] Yangyu Hu, HaoyuWang, Yajin Zhou, Yao Guo, Li Li, Bingxuan Luo, and Fangren
Xu. 2018. Dating with scambots: Understanding the ecosystem of fraudulent
dating applications. arXiv preprint arXiv:1807.04901 (2018).

[24] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini,
Ilia Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting concept
drift in malware classification models. In 26th {USENIX} Security Symposium
({USENIX} Security 17). 625–642.

[25] Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2019. Rebooting Research on
Detecting Repackaged Android Apps: Literature Review and Benchmark. IEEE
Transactions on Software Engineering (TSE) (2019).

[26] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Haipeng Cai, David
Lo, and Yves Le Traon. 2017. Automatically locating malicious packages in
piggybacked android apps. In The 4th IEEE/ACM International Conference on
Mobile Software Engineering and Systems (MobileSoft 2017).

[27] Jialiu Lin, Shahriyar Amini, Jason I Hong, Norman Sadeh, Janne Lindqvist, and
Joy Zhang. 2012. Expectation and purpose: understanding users’ mental models
of mobile app privacy through crowdsourcing. In Proceedings of the 2012 ACM
conference on ubiquitous computing. 501–510.

[28] Tianming Liu, Haoyu Wang, Li Li, Guangdong Bai, Yao Guo, and Guoai Xu. 2019.
Dapanda: Detecting aggressive push notifications in android apps. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 66–78.

[29] Wei Liu, Yueqian Zhang, Zhou Li, and Haixin Duan. 2016. What you see isn’t
always what you get: A measurement study of usage fraud on android apps.
In Proceedings of the 6th Workshop on Security and Privacy in Smartphones and
Mobile Devices. 23–32.

[30] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. Libradar: Fast and
accurate detection of third-party libraries in android apps. In Proceedings of the
38th international conference on software engineering companion. 653–656.

[31] Michael Meli, Matthew R McNiece, and Bradley Reaves. 2019. How Bad Can It
Git? Characterizing Secret Leakage in Public GitHub Repositories.. In NDSS.

[32] Omid Mirzaei, Guillermo Suarez-Tangil, Jose M de Fuentes, Juan Tapiador, and
Gianluca Stringhini. 2019. Andrensemble: Leveraging api ensembles to charac-
terize android malware families. In Proceedings of the 2019 ACM Asia Conference
on Computer and Communications Security. 307–314.

[33] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016.
Harvesting Runtime Values in Android Applications That Feature Anti-Analysis
Techniques.. In NDSS.

[34] Vibha Singhal Sinha, Diptikalyan Saha, Pankaj Dhoolia, Rohan Padhye, and
Senthil Mani. 2015. Detecting and mitigating secret-key leaks in source code
repositories. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories. IEEE, 396–400.

[35] Haoyu Wang, Jason Hong, and Yao Guo. 2015. Using text mining to infer the
purpose of permission use in mobile apps. In Proceedings of the 2015 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing. 1107–1118.

[36] Haoyu Wang, Yuanchun Li, Yao Guo, Yuvraj Agarwal, and Jason I Hong. 2017.
Understanding the purpose of permission use in mobile apps. ACM Transactions
on Information Systems (TOIS) 35, 4 (2017), 1–40.

[37] Haoyu Wang, Hongxuan Liu, Xusheng Xiao, Guozhu Meng, and Yao Guo. 2019.
Characterizing Android app signing issues. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 280–292.

[38] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li
Li, Juan Tapiador, Jingcun Cao, and Guoai Xu. 2018. Beyond google play: A
large-scale comparative study of chinese android app markets. In Proceedings of
the Internet Measurement Conference 2018. 293–307.

[39] Lorraine YC Wong and Jacquelyn Burkell. 2017. Motivations for sharing news
on social media. In Proceedings of the 8th International conference on social media
& society. 1–5.

[40] Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan Xiong, Fengyuan
Xu, Haoyu Wang, Peng Gao, Zhuotao Liu, Feng Xu, et al. 2019. DeepIntent:
Deep icon-behavior learning for detecting intention-behavior discrepancy in
mobile apps. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2421–2436.

[41] Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. 2019. Droidevolver: Self-
evolving android malware detection system. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 47–62.

[42] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing Wang, Yueheng Zhang,
and Dawu Gu. 2017. Show Me the Money! Finding Flawed Implementations of
Third-party In-app Payment in Android Apps.. In NDSS.

[43] Xinli Yang, David Lo, Li Li, Xin Xia, Tegawendé F Bissyandé, and Jacques Klein.
2017. Characterizing malicious Android apps by mining topic-specific data flow
signatures. Information and Software Technology (2017).

[44] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun
Zhang, Mi Zhang, and Min Yang. 2020. Enhancing State-of-the-art Classifiers
with API Semantics to Detect Evolved AndroidMalware. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. 757–770.

[45] Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawende Bissyande, Jacques
Klein, and John Grundy. 2021. On the Impact of Sample Duplication in Machine
Learning based Android Malware Detection. ACM Transactions on Software
Engineering and Methodology (TOSEM) (2021).

[46] Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization
and evolution. In 2012 IEEE symposium on security and privacy. IEEE, 95–109.

[47] Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang. 2015. Harvesting developer
credentials in android apps. In Proceedings of the 8th ACM conference on security
& privacy in wireless and mobile networks. 1–12.

3335

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://opendocs.alipay.com/isv
https://opendocs.alipay.com/isv
https://developers.dingtalk.com/document/mobile-app-guide
https://developers.dingtalk.com/document/mobile-app-guide
https://github.com/honeynet/droidbot
https://github.com/honeynet/droidbot
https://frida.re/
https://faq.whatsapp.com/iphone/how-to-link-to-whatsapp-from-a-different-app
https://faq.whatsapp.com/iphone/how-to-link-to-whatsapp-from-a-different-app
https://developer.twitter.com/en/docs/twitter-for-websites/embedded-tweets/overview
https://developer.twitter.com/en/docs/twitter-for-websites/embedded-tweets/overview
https://wiki.open.qq.com/wiki/
https://developers.kakao.com/docs/latest/en/message/common
https://developers.kakao.com/docs/latest/en/message/common
https://developers.weixin.qq.com/doc/oplatform/Mobile_App/Share_and_Favorites/Android.html
https://developers.weixin.qq.com/doc/oplatform/Mobile_App/Share_and_Favorites/Android.html
https://open.weibo.com/development/mobile
https://open.weibo.com/development/mobile
http://open.yixin.im/document
http://open.yixin.im/document

	Abstract
	1 Introduction
	2 Content Sharing in Mobile Apps
	2.1 Content Sharing without Share-SDK
	2.2 Content Sharing with Share-SDK

	3 Abusing the Share-SDK
	3.1 Potential Risks in Share-SDKs
	3.2 Fake-Share Attack
	3.3 Performing Fake-Share Attack
	3.4 Feasibility of the Attack

	4 DeFash: a hybrid approach for identifying Fake-Share Attack
	4.1 Static Data-flow Analysis
	4.2 SII Matching detection
	4.3 Dynamic SII Capturing

	5 EVALUATION
	5.1 RQ1: How does DeFash perform in the lab?
	5.2 RQ2: Fake-Share attack in the wild
	5.3 RQ3: How feasible is it to perform Fake-Share attacks in the wild?

	6 Discussion
	6.1 Mitigating the Issue
	6.2 Limitations of DeFash

	7 related work
	8 conclusion
	Acknowledgments
	References

