
Predicting Crash Fault Residence via Simplified Deep Forest
Based on A Reduced Feature Set

Kunsong Zhao†, Jin Liu†∗, Zhou Xu‡∗, Li Li§, Meng Yan‡, Jiaojiao Yu†, Yuxuan Zhou¶
†School of Computer Science, Wuhan University, Wuhan, China

‡School of Big Data and Software Engineering, Chongqing University, Chongqing, China
§Faculty of Information Technology, Monash University, Melbourne, Australia

¶College of Engineering and Computer Science, Syracuse University, Syracuse, USA

Abstract—The software inevitably encounters the crash, which
will take developers a large amount of effort to find the fault
causing the crash (short for crashing fault). Developing automatic
methods to identify the residence of the crashing fault is a
crucial activity for software quality assurance. Researchers have
proposed methods to predict whether the crashing fault resides
in the stack trace based on the features collected from the stack
trace and faulty code, aiming at saving the debugging effort
for developers. However, previous work usually neglected the
feature preprocessing operation towards the crash data and
only used traditional classification models. In this paper, we
propose a novel crashing fault residence prediction framework,
called ConDF, which consists of a consistency based feature
subset selection method and a state-of-the-art deep forest model.
More specifically, first, the feature selection method is used
to obtain an optimal feature subset and reduce the feature
dimension by reserving the representative features. Then, a
simplified deep forest model is employed to build the classification
model on the reduced feature set. The experiments on seven
open source software projects show that our ConDF method
performs significantly better than 17 baseline methods on three
performance indicators.

Index Terms—Crash localization; stack trace; deep forest;
feature subset selection

I. INTRODUCTION

Software has become a popular service, which plays an
indispensable part in our daily life. However, as the increase of
the impacts of software complexity and many uncertainties, it
is inevitable to occur faults during the process of software
development. Since the faults in the software can trigger
software crashes, it is vital to predict the residence of faults
causing the crash (short for crashing faults) and then fix them,
which is a hot issue for software quality assurance in recent
years [1].

When a program unit crashes, the software automatically
generates a crash report which consists of the stack trace to
record the exception information of this unit at this time,
such as the function invocation information. This kind of
information is useful to identify the root cause of the crashing
fault. Predicting whether the crashing faults locate in the
stack trace or not can help the developers save the debugging
effort. For example, if a crashing fault locates inside the stack
trace, developers just need to focus on the corresponding code
recorded in the stack trace. Otherwise, if a crashing fault

* Corresponding authors: jinliu@whu.edu.cn, zhouxullx@cqu.edu.cn

locates outside the stack trace, developers have to spend a
great amount of effort checking the function invocation graph,
which involves in inspecting many lines of code. The goal
of the crashing fault residence prediction task is to identify
whether the crashing fault locates inside the stack trace or
not, expecting to promote the debugging process.

Researchers have recently begun to focus on the topic of
crashing fault residence prediction. Gu et al. [2] proposed to
extract the features from the stack trace and faulty code for
this task. They proposed an automatic method called CraTer
for this purpose. More specifically, they extracted 89 features
from the stack trace and source code to characterize the crash
instances. For each crash instance, if the code information of
the crashing fault exactly matches the information recorded in
the stack trace, this crash instance is deemed as inside the stack
trace, otherwise, outside the stack trace. Finally, they applied
some traditional machine learning classifiers to conduct the
experiments. Following Gu et al.’s work, Xu et al. [3] proposed
an imbalance learning method with kNN classification, and
Xu et al. [4] developed a cross project model with logistic
regression classifier to predict the residence of crashing faults.

However, the aforementioned work neglected the selection
process for representative features and only used traditional
classifiers for their purpose. In general, the prediction perfor-
mance of a classification task is highly correlated with the
feature quality of the crash data and the employed classifica-
tion methods. Thus, it is crucial to apply feature engineering
techniques to preprocess the crash data to obtain the optimal
feature subset (or feature representation) and employ effective
classification models to achieve satisfactory performance. In
this work, we propose a novel method that consists of a feature
subset selection method and a state-of-the-art classification
model for the crashing fault residence prediction task. More
specifically, we apply the Consistency-based feature subset
selection method (Con) to reserve a smallest feature subset
that has the same discriminability as the original feature set.
After the feature selection process, a simplified Deep Forest
(DF) method is applied to the reduced feature set to build the
classification model for the crashing fault residence prediction.
DF generates a decision tree ensemble approach with a cascade
structure, which enhances the ability of representation learning
for high-dimensional features via a multi-grained scanning
method [5]. As the crash data after feature reduction only

ar
X

iv
:2

10
4.

01
76

8v
1

 [
cs

.S
E

]
 5

 A
pr

 2
02

1

contains low-dimensional features, we apply the simplified
version of DF without the multi-grained scanning to build
our prediction model to identify the residence of the crashing
faults. In this work, we call our crashing fault residence pre-
diction method ConDF as it consists of two main techniques,
i.e., Con method for feature subset selection (i.e., feature
reduction) and the simplified DF method for classification
model construction.

To evaluate the effectiveness of our proposed ConDF
method for the crashing fault residence prediction task, we
conduct experiments on seven open source software projects
with three indicators. The experimental results show that
ConDF achieves average F-measure for crash instances inside
the stack trace of 0.722, average F-measure for crash instances
outside the stack trace of 0.942, and average MCC of 0.681.
In addition, ConDF obtains significantly better performance
than 17 baseline methods on all three indicators.

We highlight the main contributions of this paper as follows:

• We propose a novel compositional method, called ConDF,
that combines a feature subset selection method and
an advanced deep forest model for the crashing fault
residence prediction task.

• We apply the consistency-based feature subset selection
method to pick up the most representative features of the
crash data. In addition, we are the first to introduce the
deep forest model to predict the residence of the crashing
faults.

• We employ crash data from seven open source projects
as benchmark dataset and evaluate our ConDF method
using three indicators. The results of sufficient empirical
evaluations show that the performance of our proposed
ConDF method presents significant superiority compared
with 17 baseline methods.

The remainder of this paper is organized as follows. Section
II introduces the related work. Section III describes the detail
of our proposed ConDF method. Section IV describes our
experimental setup. Section V reports the experimental results.
Section VI describes the potential threats to validity of our
work. Finally, Section VII concludes our work and presents
future work.

II. BACKGROUND AND RELATED WORK

As the aim of our work is to predict whether the crashing
faults locate in the frame of the stack trace or not based on
the part of features extracted from stack trace information, we
first present the background of stack trace and analyze some
previous related studies about crash reproduction and crash
localization based on stack traces. As we employ a feature
selection technique for data preprocessing and a deep forest
for classifier construction in the first and second stage of our
method respectively, we present some related work involving
in feature selection and deep forest for software engineering
tasks individually.

A. Stack Trace Analysis

When the software crashes, the system automatically throws
the exceptions. The stack trace records the information of
these exceptions, such as the function invocation sequence
related to the exception and the corresponding type, which
helps developers analyze where the program goes wrong and
reduces the cost of the efforts of developers. The stack trace
consists of multiple frame objects, in which the first frame
records the type of exception and other frames record the
information of function invocation.

Chen et al. [6] proposed a STAR framework, which ex-
tracted the crash information such as the exception types,
names, and line numbers from the stack traces and combined
a backward symbolic execution with a sequence composition
technique to reproduce crashes. Their experiments on three
projects showed that STAR successfully exploited 59.6% of
crashes. Nayrolles et al. [7] [8] proposed a novel crash
reproduction approach, called JCHARMING, which extracted
exception information from the stack traces and detected the
buggy crashes using model checking. Their experiments on 10
open source software systems showed that JCHARMING was
impactful in reproducing bugs from different systems. Xuan
et al. [9] proposed an approach, called MUCRASH, which
extracted the classes from the stack traces and reproduced the
crashes via test case mutation. Their experiments on 12 crashes
showed that MUCRASH reproduced the same stack trace on
7 out of 12 crashes. Soltani et al. [10] proposed a post-failure
method, called EvoCrash, which used the stack traces to guide
the search process of the genetic algorithm to reduce the search
space and eliminate limitations of replicating crashes in the
real world. Their empirical study on three projects showed that
EvoCrash could replicate 82% of real-world crashes. Sabor et
al. [11] proposed a new approach that generated feature vectors
from the collected stack traces, and then combined categorical
features to predict the bug severity. They also used a cost-
sensitive KNN method to release the issue of imbalanced
data. Their experiments on Eclipse project showed that this
approach could improve the prediction accuracy. Soltani et al.
[12] proposed a benchmark of real-world crashes extracted
from the stack traces, called JCrashPack, which contains 200
crashes derived from seven Java projects. Their empirical study
showed the effectiveness of search-based crash reproduction
method on real-world crashes.

Recently, there are many studies using stack traces for crash
localization, which is related to our work. Wu et al. [13]
proposed a method, called CrashLocator, using the information
of the static call graph from the stack trace to locate crashes.
Their results on real-world Mozilla crash data showed the
effectiveness of this method. Wong et al. [14] developed a
new tool, called BRTracer, employing the segmentation of
source code files and the stack trace analysis of bug reports
to identify buggy files. Their results on Eclipse, AspectJ,
and SWT showed that BRTracer could achieve performance
improvement of bug localization. Moreno et al. [15] developed
a new static technique, called Lobster, which calculated the

similarity between code elements and source code from the
stack traces. The experimental results on 14 projects showed
that Lobster improved the effectiveness of Lucene-based bug
localization in most cases. Gong et al. [16] proposed a
framework, which used the distance reweighting and test
coverage reweighting techniques to locate post-release crashes
based on stack traces. They conducted experiments on two
versions of Firefox project and the results showed that their
method could locate more than 63.9% of crashing faults
by examining 5% of functions. Wu et al. [17] proposed an
automatic method, called ChangeLocator, which used features
derived from crash reports and the historical fixed crashes
to locate the crash-inducing changes. Their experiments on
six versions of NetBeans project showed that ChangeLocator
significantly outperformed the comparative methods.

B. Feature Selection in Software Engineering

The goal of feature selection methods is to choose an
optimal feature subset to replace original ones by reserving the
most representative features and removing the useless features
for improving the performance of the machine learning model.
Previous researchers introduced feature selection methods to
relieve the issues in software engineering, such as software
defect prediction and software effort estimation.

The objective of the software defect prediction task is to
predict defective-prone software modules for software qual-
ity assurance. Liu et al. [18] proposed a feature selection
framework, called FECAR, which used feature clustering
based on FF-Correlation measure and ranking relevant fea-
tures based on FC-Relevance measure for software defect
prediction task. Their results on Eclipse and NASA datasets
showed the effectiveness of their method. Chen et al. [19]
proposed a data preprocessing method which applied feature
selection, threshold-based clustering, and random sampling
techniques for defect prediction. Their results on NASA and
Eclipse datasets showed that this method offered a solution
for preprocessing cost-effective data. Liu et al. [20] proposed
a FECS method, which used feature clustering and feature
selection with three different search strategies. Their results
on NASA and Eclipse datasets showed the effectiveness of
this method for fault prediction with noises. Ni et al. [21]
proposed a defect prediction method, called MOFES, which
took both minimizing the number of selected features and
maximizing the performance of models into account. Their
experiments on RELINK and PROMISE datasets showed
that MOFES provides a direction on collecting high-quality
datasets for software defect prediction task. Cui et al. [22]
proposed a novel feature selection method NFS, which applied
the correlation-based feature subset selection and calculated
the similarity of features to extract the useful features. They
conducted experiments on 10 defect projects and the results
showed the feasibility of the NFS method. Manjula et al.
[23] proposed a hybrid approach which combined the genetic
algorithm and the deep neural network for feature learning and
classification. Their results on PROMISE dataset showed that
this method performed better than the comparative methods for

predicting defects. In addition, Xu et al. [24] and Ghotra et
al. [25] conducted empirical studies to investigate the impacts
of feature selection on the performance of defect prediction
models.

The objective of the software effort estimation is to estimate
the number of resources consumed in the process of software
development to assist the project management. Azzeh et al.
[26] proposed a fuzzy logic based feature subset selection
method for improving the accuracy of software effort esti-
mation model. They conducted experiments on ISBSG and
Desharnais datasets and the results showed that their method
performed significantly better than the hill climbing, forward
subset selection, and backward subset selection. Oliveira et
al. [27] proposed a genetic algorithm based method to select
the optimal feature subset and optimize the model parameters
at the same time for software effort estimation task. They
conducted experiments on six datasets and the results showed
that their method considerably reduced the number of original
features and improved the performance of machine learning
models. Shahpar et al. [28] employed a genetic algorithm to
select useful features for software effort estimation task. Their
experimental results on Desharnais, Maxwell, and CCOMO81
datasets showed that genetic algorithms are effective for
improving the accuracy of the model. Hosni et al. [29]
investigated the impact of Correlation based Feature Selection
(CFS) and RReliefF for the effort estimation accuracy of het-
erogeneous ensembles with four machine learning techniques.
They conducted experiments on six datasets and the results
showed that CFS ensembles achieved better performance than
RReliefF ensembles. Liu et al. [30] proposed a greedy feature
selection method, called LFS, to guarantee the appropriateness
of case based reasoning for software effort estimation task.
They conducted experiments on six datasets and the results
showed that the feature subset selected by LFS made effective
estimation compared with a randomized baseline method.

Different from the above studies, we use the feature subset
selection method to select an optimal feature subset from the
crash data, expecting to build a high-quality training set.

C. Deep Forest in Software Engineering

Deep forest [5] is a recently proposed forest-based ensemble
method that consists of a multi-grained scanning and a cascade
structure. Compared with deep neural networks, deep forest
could obtain competitive performance on both large-scale
and small-scale data with fewer hyper-parameters. Recently,
two previous studies have used it to solve the problem of
defect prediction in software engineering. Zhou et al. [31]
made the first attempt to build a deep forest based model
for software defect prediction task by using z-score method to
process the original features. The results on 25 projects showed
that their method was more effective to identify defective
software modules in terms of area under the receiver operating
characteristic curve indicator. Zheng et al. [32] employed an
improved deep forest method based on data augmentation
and autoencoder techniques for predicting software defects.
They conducted experiments on Eclipse project and the results

showed that their approach achieved better performance than
original deep forest method. In this work, we are the first
to introduce the deep forest model into the crashing fault
residence prediction task.

III. METHOD

A. Overview

Figure 1 demonstrates an overview of our proposed ConDF
method, which consists of a feature reduction stage and a clas-
sification model construction stage. More specifically, in step
1, we first select the important features from the original crash
data as the candidate feature subset with consistency-based
feature selection technique (short for Con). As a result, we can
obtain a reduced feature set. In step 2, we apply a simplified
deep forest technique (short for DF) to the reduced feature set
for building the prediction model to identify whether the new
crash instances reside in the stack trace or not. Before running
our ConDF method, we first standardize the crash data with z-
score method [33] which normalizes the features with a mean
value of zero and a variance of one. Below, we introduce the
details of the used Con and the DF techniques, individually.

B. Feature Reduction with Feature Subset Selection Method
Con

The objective of the feature subset selection or feature
reduction stage is to single out the most useful features. For
this purpose, in the first step, we apply the Con technique
to select the feature subset. Con introduces the consistency
measure as the criterion to evaluate the selected feature subset.
The consistency is equal to 1 minus inconsistency which is
defined as the proportion of the inconsistent samples in the
total number of samples. The inconsistent instances are the
ones that have the same feature value but different class labels
[34] [35]. More specifically, Con calculates the consistency
between a feature subset and class labels. It reserves a smallest
set of features that has the same consistency as the whole
feature set. In other words, the selected feature subset can
distinguish classes as if with the whole feature set. Moreover,
Con is a multivariate measure method which examines a subset
of features at a time, and has low time complexity by using a
hashing mechanism to calculate the inconsistency rate [35].
Here, we take an example to show how to calculate the
inconsistency. Assume that there are two different classes (i.e.,
C1 and C2) in the whole feature set F . For a given feature
subset S from F , there are NS instances with s different
values (NS = P1 + P2 + · · · + Ps), in which the instance
numbers in Pi(1 ≤ i ≤ s) with label C1 and C2 are N1

and N2 (N=N1+N2) individually. If N1 is the largest, the
inconsistency rate of value Pi is defined as InPi = N−N1

NS
.

Then, the inconsistency can be defined as the sum of the
inconsistency rate among all values. After the processing of
Con technique, we obtain an optimal feature subset as the
candidate by removing the redundant and irrelevant features
[34].

C. Model Construction with Simplified DF Classifier

DF [5] is a novel decision tree ensemble approach inspired
by the layer-by-layer structure in deep neural networks. It
introduces different types of forests (such as random forests
and completely-random tree forests) to learn the feature di-
versity. During the training process, the initial features of
each instance are used many times to obtain the augmented
features. DF has the potential for both representation learning
and classification with a cascade structure. The ability of
representation learning is enhanced by a multi-gained scanning
technique. It is suitable to process high-dimensional features,
such as image and sequence data. On the one hand, our crash
data inherently does not have a large number of features. On
the other hand, after the processing of feature selection, our
crash data only contains low-dimensional features. Therefore,
we apply the simplified version of deep forest only with the
cascade structure to build the prediction model in this work.
The cascade structure consists of many levels, and each level
includes many forests. For an input vector, the forest produces
the class distribution by averaging all estimation of the class
to which it belongs. DF can obtain promising performance
with relatively lower computational costs and fewer hyper-
parameters compared with deep neural networks [5].

In the second step of our ConDF method, we input features
selected by the previous step into the first level of the cascade
structure. The output results from the previous level and the
original features are taken as the input for the next level of
the cascade structure. The number of cascade levels can be au-
tomatically determined by terminating the training procedure
when there is no performance improvement [5]. Here, we give
an example to demonstrate the process of our ConDF. For the
data of one project, we use Con method to select K features
from the training set where the selected features have the same
consistency as the original feature set. Note that, the same
features are reserved for the test set. The processed training
set is input into DF for model training. More specifically, the
reserved features are input in the first level of the cascade
forest of the DF. After the processing of the first level, we
can obtain 2M features. Then these features are concatenated
with the initial K features, (i.e., K + 2M features as shown
in Fig. 1), and input as a whole to the next level. After this
iteration process is completed, ConDF predicts the label of
each instance in the test set.

IV. EXPERIMENTAL SETUP

A. Dataset

In this work, we employ a publicly available benchmark
dataset collected by Gu et al. [2] that includes 7 Java
projects to evaluate the performance of our proposed ConDF
method, including Apache Commons Codec, Apache Com-
mons Collections, Apache Commons IO, Jsoup, JSqlParser,
Mango, and Ormlite-Core. Codec contains the implemen-
tations of encoders and decoders for various formats. Colle
builds new interfaces and implementations with many power-
ful data structures to facilitate the development of most Java

K
-d

im

Average

Maximal

P
r
ed

ic
ti

o
n

 R
e
su

lt
s

Cascade Forest

Level 1 Level 2 Level N

Forest

Forest

Forest

Forest

K+2M-dim

Forest

Forest

Forest

Forest

K+2M-dim

Forest

Forest

Forest

Forest

K+2M-dim

Forest

Forest

Forest

Forest

2M-dim

Model Construction Stage

Feature Subset Selection Stage

Original Feature Set

Candidate Feature

Subset

Z-score Normalization

Feature Selection based on

Consistency Measure

Fig. 1. An overview of our ConDF method

TABLE I
THE BASIC STATISTICS OF SEVEN PROJECTS

Project URL Version # Mutants # Crashes # InTrace # OutTrace % Ratio
Apache Commons Codec (Codec) https://github.com/apache/commons-codec 1.10 2901 610 177 433 29.0%
Apache Commons Collections (Colle) https://github.com/apache/commons-collections 4.1 6650 1350 273 1077 20.2%
Apache Commons IO (IO) https://github.com/apache/commons-io 2.5 3337 686 149 537 21.7%
Jsoup https://github.com/jhy/jsoup/ 1.11.1 2657 601 120 481 20.0%
JSqlParser (JSqlP) http://github.com/JSQLParser/JSqlParser 0.9.7 8757 647 61 586 9.4%
Mango https://github.com/jfaster/mango 1.5.4 5149 733 53 680 7.2%
Ormlite-Core (Ormli) http://github.com/j256/ormlite-core 5.1 3563 1303 326 977 25.0%

packages and applications. IO provides many input and output
related classes, such as streams, readers, writers, and files,
to simplify the development of IO functionality. Jsoup is a
HTML parsing tool that contains the convenient interfaces to
directly parse URL and other contents from real-world HTML.
JSqlP provides the simple solutions for many databases, which
parses SQL statements and transforms them into a traversable
hierarchy of Java classes. Mango is a high-performance
distributed based object relational mapping framework that
simplifies the uses of relational database for object-oriented
applications. Ormli contains the lightweight functionality for
supporting Java database connectivity. The basic statistics of
these projects is described in Table I, including the URL of
GitHub repository (URL), the Version, the total number of
mutants generated by projects (# Mutants), the number of
the kept mutants (# Crashes), the number of crash instances
inside the stack trace (# InTrace) and outside the stack trace
(# OutTrace), and the ratio of # InTrace to # Crashes (%
Ratio). The main steps for collecting this benchmark dataset
are described as follows: (1) Crash generation. The PIT
system1 is used to generate single-point mutations with 7
default mutators2 to simulate the real-world crashes. Then, the
mutations that maybe not produce crashes are filtered out using
the following rules: the mutation passes all test cases and only

1PIT: http://pitest.org/
2Mutators: http://pitest.org/quickstart/mutators/#INCREMENTS

the AssertionFailedError, ComparisonFailure, or test case is
contained in exception stack traces. (2) Feature extraction. In
order to characterize the crashes, 89 features are extracted from
the stack trace and the source code by Spoon3 . These features
belong to 5 groups, including features related to the Stack
Trace (ST), features extracted from the Top Class/functions
and the Bottom Class/function in the frame (TC and BC), and
features Normalized by LOC (i.e., lines of codes) from TC and
BC (NTC and NBC). Table II briefly describes the definitions
of these features. (3) Labeling crashes. There are three major
components in the frame of the stack trace, i.e., class name,
function name, and line number. If the location of a crashing
fault exactly matches the three components of any one frame
in the stack trace, the crash instance is deemed to reside in the
stack trace and labeled as ‘InTrace’, otherwise, ‘OutTrace’.

B. Performance Indicators

As the goal of this work is to predict a crash instance as
‘InTrace’ or ‘OutTrace’, it is a binary classification problem.
In this work, we employ F-measure and Matthews Correlation
Coefficient (MCC) as indicators to evaluate the performance
of our ConDF framework for identifying the crashing fault
residence. We first introduce four basic terms widely used in
the binary classification scenarios. True Positive (TP) means
the number of crash instances labeled as ‘InTrace’ that are pre-
dicted as ‘InTrace’. False Positive (FP) means the number of

3Spoon: http://spoon.gforge.inria.fr/

TABLE II
THE DEFINITIONS OF 89 FEATURES

Feature Description
Feature Set ST - features related to the stack trace
ST01 Type of the exception in the crash
ST02 Number of frames of the stack trace
ST03 Number of classes in the stack trace
ST04 Number of functions in the stack trace
ST05 Whether an overloaded function exists in the stack trace
ST06 Length of the name in the top class
ST07 Length of the name in the top function
ST08 Length of the name in the bottom class
ST09 Length of the name in the bottom function
ST10 Number of Java files in the project
ST11 Number of classes in the project
Feature Set TC and BC - features extracted from the top (bottom) class/function in the frame
TC01(BC01) Number of local variables
TC02(BC02) Number of fields
TC03(BC03) Number of except constructor functions
TC04(BC04) Number of imported packages
TC05(BC05) Whether the class is inherited from others
TC06(BC06) LOC of comments
TC07(BC07) LOC
TC08(BC08) Number of parameters
TC09(BC09) Number of local variables
TC10(BC10) Number of if-statements
TC11(BC11) Number of loops
TC12(BC12) Number of for statements
TC13(BC13) Number of for-each statements
TC14(BC14) Number of while statements
TC15(BC15) Number of do-while statements
TC16(BC16) Number of try blocks
TC17(BC17) Number of catch blocks
TC18(BC18) Number of finally blocks
TC19(BC19) Number of assignment statements
TC20(BC20) Number of function calls
TC21(BC21) Number of return statements
TC22(BC22) Number of unary operators
TC23(BC23) Number of binary operators
Feature Set NTC and NBC - features normalized by LOC from Feature Set TC and BC
NTC01(NBC01) TC08/TC07(BC08/CBC07)
NTC02(NBC02) TC09/TC07(BC09/CBC07)
...
NTC16(NBC16) TC23/TC07(BC23/CBC07)

instances labeled as ‘OutTrace’ that are predicted as ‘InTrace’.
False Negative (FN) means the number of instances labeled as
‘InTrace’ that are predicted as ‘OutTrace’, and True Negative
(TN) means the number of instances labeled as ‘OutTrace’
that are predicted as ‘OutTrace’. The F-measure for crash
instances with label ‘InTrace’, short for FInTrace, is defined
as the following formula.

FInTrace =
2× Precision× Recall

Precision + Recall
(1)

where Precision= TP
TP+FP and Recall= TP

TP+FN . F-measure is a
trade-off between Precision and Recall. In terms of the F-
measure for crashing faults with the label ‘OutTrace’, we can
obtain the similar expressions TPO (=TN), FPO (=FN), FNO

(=FP), and TNO (=TP). Then, the F-measure for crashing
faults with label ‘OutTrace’, short for FOutTrace, is defined
as the following formula.

FOutTrace =
2× PrecisionO × RecallO
PrecisionO +RecallO

(2)

where PrecisionO= TPO

TPO+FPO
and RecallO= TPO

TPO+FNO
.

MCC is a correlation coefficient considering TP, FP, FN,
and TN, which is always used to measure the performance
of binary classification. MCC for crashing faults with label
‘InTrace’ is defined as the following formula.

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3)

...

...

...

The first stage of Scott-Knott ESD

1 1, , 2

Method Rankings

2 6, , 7

p 3, , 3

... ...

50 Values

of Indicator

...

Method 1

S
co

tt
-K

n
o

tt
 E

S
D

1 2

Method Ranking

2 7

p 3

... ...

Project 7

50 Values

of Indicator

Method p

The second stage of Scott-Knott ESD

50 Values

of Indicator

...

Method 1

S
co

tt
-K

n
o

tt
 E

S
D

1 1

Method Ranking

2 6

p 3

... ...

Project 1

50 Values

of Indicator

Method p

S
co

tt
-K

n
o

tt
 E

S
D

1 1

Method
Final

Ranking

2 6

p 3

... ...

Fig. 2. The process of Scott-Knott ESD test

According to the correlation between TN, TP, FN, FP and
TNO, TPO, FNO, FPO, MCC for crash instances with label
‘InTrace’ is the same as MCC for crash instances with label
‘OutTrace’.
FInTrace and FOutTrace range from 0 to 1. MCC ranges from

-1 to 1. The larger indicator value indicates better performance.
MCC = -1 means the worst prediction and MCC = 1 means
the perfect prediction. MCC = 0 denotes that the performance
is equal to random prediction.

C. Data Partition

In this work, we employ the stratified sampling technique
to generate the training set and test set. More specifically,
for each project, the training set contains half instances of the
crash data with label ‘InTrace’ and ‘OutTrace’, and the test set
contains the remaining ones. The stratified sampling technique
makes the proportions of crash data with label ‘InTrace’ and
‘OutTrace’ in the training set and test set are the same as that
in the original one. To alleviate the bias of random partition,
we repeat this process 50 times and report the corresponding
average values and standard deviations with each indicator.

D. Parameter Settings

In this work, we need to specify two parameters, the number
of forests M in each level of the cascade structure and the
number of trees in each forest. For the first parameter, we
construct the deep forest in which each level of the cascade
consists of four random forests and four completely-random
tree forests, i.e., we set M as 8. In addition, we set each forest
with 500 trees. The settings for these two parameters follow
the work in [5]. Note that, the number of features retained in
the first stage is determined by Con technique automatically.

E. Statistic Test

In this work, we apply a state-of-the-art statistical test
method, called Scott-Knott Effect Size Difference (Scott-
Knott ESD) [36], to analyze the significant differences be-
tween our ConDF method and the comparative methods.
Different from the original Scott-Knott test, Scott-Knott ESD

applies the log-transforming to correct the non-normal distri-
bution of inputs and merges the groups with a negligible effect
size of differences. Fig. 2 illustrates the analysis process of this
test, which contains two stages. In the first stage, Scott-Knott
ESD takes the 50 random indicator values of each method on
each project as input. The output is the ranking value of each
method on each project. In the second stage, this test method
takes the output from the first stage as input and the output is
the final ranking of each method across all projects. The low
ranking means that the corresponding method achieves better
indicator values. The methods with distinct colors mean that
they are significantly different with a significance level α =
0.05.

V. EXPERIMENTAL RESULTS

A. RQ1: Is the prediction performance of our proposed
ConDF method better than that of ensemble based methods?

Motivation: As the DF technique used in the second step of
our proposed framework is a cascade forest ensemble method,
thus our ConDF method is a novel kind of the ensemble
based method. Ensemble learning improves the performance
by integrating multiple weak classifiers as a stronger classifier.
This question is designed to investigate whether our ConDF
framework with DF is better than some ensemble based meth-
ods with the Con method in the performance improvement for
predicting crashing fault residence.

Methods: To answer this question, we choose five ensemble
based methods, including Bagging (Bag), Balanced Bagging
(BBag), Adaptive Boosting (AdaB), Random Under-Sampling
with AdaB (RUSB), and Balanced Random Forest (BRF),
and combine these methods with Con for comparison, short
for ConBag, ConBBag, ConAdaB, ConRUSB, and ConBRF,
respectively. In addition, we add the state-of-the-art method
CraTer [2] for the crash fault residence prediction task as the
basic method for comparison.

TABLE III
THE AVERAGE FInTrace OF CONDF, OTHER ENSEMBLE BASED METHODS

WITH CON, AND THE STATE-OF-THE-ART METHOD

Project ConBag ConBBag ConAdaB ConRUSB ConBRF CraTer ConDF

Codec 0.668(0.07) 0.661(0.06) 0.625(0.10) 0.565(0.09) 0.703(0.06) 0.612(0.06) 0.678(0.09)
Colle 0.627(0.04) 0.596(0.03) 0.724(0.04) 0.639(0.06) 0.713(0.03) 0.520(0.09) 0.774(0.04)

IO 0.714(0.04) 0.666(0.04) 0.743(0.05) 0.691(0.07) 0.727(0.04) 0.651(0.10) 0.763(0.05)
Jsoup 0.521(0.09) 0.514(0.07) 0.503(0.12) 0.438(0.09) 0.538(0.06) 0.473(0.07) 0.521(0.13)
JSqlP 0.720(0.06) 0.575(0.10) 0.672(0.13) 0.581(0.17) 0.528(0.08) 0.496(0.14) 0.684(0.19)

Mango 0.671(0.15) 0.498(0.21) 0.675(0.18) 0.584(0.17) 0.510(0.18) 0.418(0.19) 0.761(0.10)
Ormli 0.701(0.04) 0.683(0.03) 0.853(0.08) 0.779(0.10) 0.829(0.06) 0.710(0.10) 0.870(0.03)

Average 0.660(0.06) 0.599(0.07) 0.685(0.10) 0.611(0.10) 0.650(0.12) 0.554(0.10) 0.722(0.10)

TABLE IV
THE AVERAGE FOutTrace OF CONDF, OTHER ENSEMBLE BASED

METHODS WITH CON, AND THE STATE-OF-THE-ART METHOD

Project ConBag ConBBag ConAdaB ConRUSB ConBRF CraTer ConDF

Codec 0.871(0.02) 0.839(0.03) 0.869(0.03) 0.841(0.03) 0.853(0.03) 0.768(0.07) 0.879(0.03)
Colle 0.917(0.01) 0.862(0.02) 0.939(0.01) 0.913(0.01) 0.914(0.02) 0.738(0.12) 0.950(0.01)

IO 0.925(0.01) 0.880(0.02) 0.936(0.01) 0.922(0.01) 0.909(0.02) 0.852(0.12) 0.940(0.01)
Jsoup 0.899(0.02) 0.841(0.04) 0.895(0.04) 0.868(0.03) 0.833(0.04) 0.790(0.10) 0.909(0.03)
JSqlP 0.975(0.01) 0.936(0.03) 0.969(0.01) 0.959(0.01) 0.917(0.04) 0.881(0.13) 0.975(0.01)

Mango 0.979(0.01) 0.913(0.07) 0.975(0.02) 0.959(0.03) 0.923(0.05) 0.835(0.18) 0.982(0.02)
Ormli 0.907(0.01) 0.860(0.02) 0.954(0.02) 0.934(0.02) 0.937(0.02) 0.85(0.09) 0.960(0.01)

Average 0.925(0.04) 0.876(0.03) 0.934(0.04) 0.914(0.04) 0.898(0.04) 0.816(0.05) 0.942(0.03)

TABLE V
THE AVERAGE MCC OF CONDF, OTHER ENSEMBLE BASED METHODS

WITH CON, AND THE STATE-OF-THE-ART METHOD.

Project Bag BalBag AdaB RUSB BalRF CraTer ConDF

Codec 0.544(0.08) 0.515(0.07) 0.512(0.11) 0.419(0.10) 0.572(0.08) 0.427(0.10) 0.567(0.10)
Colle 0.552(0.05) 0.483(0.04) 0.672(0.05) 0.560(0.06) 0.638(0.04) 0.384(0.13) 0.735(0.04)

IO 0.642(0.05) 0.568(0.06) 0.687(0.06) 0.621(0.08) 0.648(0.05) 0.545(0.14) 0.712(0.05)
Jsoup 0.433(0.10) 0.377(0.10) 0.424(0.13) 0.319(0.11) 0.410(0.08) 0.315(0.11) 0.472(0.14)
JSqlP 0.711(0.06) 0.541(0.10) 0.653(0.13) 0.550(0.18) 0.498(0.08) 0.447(0.17) 0.685(0.18)

Mango 0.669(0.15) 0.482(0.21) 0.662(0.19) 0.562(0.18) 0.496(0.18) 0.391(0.20) 0.761(0.10)
Ormli 0.611(0.05) 0.570(0.04) 0.810(0.09) 0.721(0.10) 0.772(0.08) 0.610(0.13) 0.833(0.04)

Average 0.595(0.09) 0.505(0.06) 0.631(0.12) 0.536(0.12) 0.576(0.11) 0.446(0.10) 0.681(0.11)

R
an

ki
ng

s

0.
7

2.
3

3.
9

5.
5

CraTer ConBBag ConRUSB ConBag ConBRF ConAdaB ConDF
(a) FInTrace

R
an

ki
ng

s

0.
9

4.
0

5.
6

CraTer ConBBag ConBRF ConRUSB ConBag ConAdaB ConDF
(b) FOutTrace

R
an

ki
ng

s

0.
9

2.
5

5.
6

7.
2

CraTer ConBBag ConRUSB ConBRF ConBag ConAdaB ConDF
(c) MCC

Fig. 3. Scott-Knott ESD test for ConDF, other ensemble based methods with
Con, and the state-of-the-art method.

Results: Table III, IV, and V report the results of the
indicator values for our ConDF method and the 6 comparative
methods in terms of FInTrace, FOutTrace, and MCC, individ-
ually, including the average values of the 50 random runs
and the corresponding standard deviations in the brackets. In
terms of FInTrace, ConDF obtains better performance on 4
out of 7 projects compared with the 6 baseline methods. The
average FInTrace value by our ConDF method over all projects
achieves improvements by 9.4%, 20.5%, 5.4%, 18.2%, 11.1%,
and 30.3% compared with ConBag, ConBBag, ConAdaB,
ConRUSB, ConBRF, and CraTer, individually. In terms of
FOutTrace, ConDF obtains better performance on 6 out of 7
projects compared with the 6 baseline methods. The average
FOutTrace value by our ConDF method over all projects
achieves improvements by 1.8%, 7.5%, 0.9%, 3.1%, 4.9%, and
15.4% compared with the 6 baseline methods, individually. In
terms of MCC, ConDF obtains better performance on 5 out of
7 projects compared with the 6 baseline methods. The average
MCC value by our ConDF method over all projects achieves
improvements by 14.5%, 34.9%, 7.9%, 27.1%, 18.2%, and
52.7% compared with the 6 baseline methods, individually.
Overall, our proposed ConDF method obtains the best av-
erage value and achieves average improvements by 15.8%,

5.6%, and 25.9% in terms of FInTrace, FOutTrace, and MCC,
individually.

Fig. 3 visualizes the corresponding statistical test results for
our ConDF method and the 6 comparative methods in terms
of all three indicators. This figure illustrates that our ConDF
method always ranks the first and has significant differences
compared with the baseline methods in terms of all indicators.

Answer: Our proposed ConDF method performs signifi-
cantly better than the comparative ensemble based methods
with feature selection method Con and the state-of-the-art
method CraTer for predicting crashing fault residence in terms
of all three indicators.

TABLE VI
THE AVERAGE FInTrace OF CONDF AND CON COMBINING OTHER

CLASSIFIERS

Project ConDT ConSVM ConLR ConRF ConNN ConDF

Codec 0.684(0.07) 0.414(0.07) 0.549(0.05) 0.143(0.08) 0.601(0.04) 0.678(0.09)
Colle 0.744(0.06) 0.455(0.05) 0.565(0.03) 0.110(0.08) 0.543(0.03) 0.774(0.04)

IO 0.721(0.06) 0.718(0.04) 0.713(0.03) 0.448(0.07) 0.691(0.04) 0.763(0.05)
Jsoup 0.501(0.08) 0.271(0.09) 0.445(0.06) 0.101(0.09) 0.403(0.06) 0.521(0.13)
JSqlP 0.657(0.14) 0.701(0.06) 0.745(0.05) 0.600(0.26) 0.714(0.07) 0.684(0.19)

Mango 0.570(0.10) 0.430(0.11) 0.635(0.08) 0.167(0.14) 0.570(0.08) 0.761(0.10)
Ormli 0.821(0.04) 0.657(0.03) 0.651(0.03) 0.236(0.12) 0.651(0.03) 0.870(0.03)

Average 0.671(0.10) 0.521(0.16) 0.615(0.10) 0.258(0.18) 0.596(0.10) 0.722(0.10)

TABLE VII
THE AVERAGE FOutTrace OF CONDF AND CON COMBINING OTHER

CLASSIFIERS

Project ConDT ConSVM ConLR ConRF ConNN ConDF

Codec 0.870(0.03) 0.834(0.01) 0.826(0.02) 0.831(0.01) 0.834(0.02) 0.879(0.03)
Colle 0.937(0.01) 0.906(0.01) 0.908(0.01) 0.889(0.00) 0.893(0.01) 0.950(0.01)

IO 0.925(0.01) 0.931(0.01) 0.924(0.01) 0.902(0.01) 0.912(0.01) 0.940(0.01)
Jsoup 0.875(0.03) 0.893(0.01) 0.881(0.01) 0.890(0.00) 0.877(0.02) 0.909(0.03)
JSqlP 0.947(0.07) 0.976(0.00) 0.975(0.01) 0.972(0.01) 0.976(0.01) 0.975(0.01)

Mango 0.968(0.01) 0.970(0.00) 0.974(0.01) 0.965(0.00) 0.973(0.01) 0.982(0.02)
Ormli 0.941(0.01) 0.906(0.01) 0.897(0.01) 0.868(0.01) 0.884(0.01) 0.960(0.01)

Average 0.923(0.03) 0.917(0.05) 0.912(0.05) 0.902(0.05) 0.907(0.05) 0.942(0.03)

TABLE VIII
THE AVERAGE MCC OF CONDF AND CON COMBINING OTHER

CLASSIFIERS

Project ConDT ConSVM ConLR ConRF ConNN ConDF

Codec 0.561(0.10) 0.297(0.05) 0.378(0.06) 0.136(0.06) 0.440(0.05) 0.567(0.10)
Colle 0.684(0.07) 0.421(0.05) 0.485(0.04) 0.135(0.08) 0.440(0.04) 0.735(0.04)

IO 0.650(0.07) 0.659(0.04) 0.639(0.04) 0.431(0.06) 0.605(0.05) 0.712(0.05)
Jsoup 0.383(0.09) 0.258(0.07) 0.334(0.06) 0.121(0.10) 0.292(0.08) 0.472(0.14)
JSqlP 0.624(0.16) 0.715(0.05) 0.727(0.06) 0.615(0.25) 0.713(0.06) 0.685(0.18)

Mango 0.546(0.11) 0.468(0.18) 0.618(0.09) 0.232(0.18) 0.571(0.09) 0.761(0.10)
Ormli 0.764(0.05) 0.580(0.04) 0.554(0.03) 0.258(0.09) 0.536(0.04) 0.833(0.04)

Average 0.602(0.11) 0.485(0.16) 0.534(0.13) 0.275(0.17) 0.514(0.13) 0.681(0.11)

TABLE IX
THE AVERAGE FInTrace OF CONDF AND OTHER FEATURE SELECTION

METHODS USING DF CLASSIFIER

Project CSDF IGDF GRDF ReFDF CFSDF DF ConDF

Codec 0.647(0.10) 0.664(0.08) 0.669(0.09) 0.573(0.11) 0.656(0.09) 0.615(0.08) 0.678(0.09)
Colle 0.766(0.04) 0.760(0.04) 0.768(0.07) 0.715(0.05) 0.776(0.03) 0.729(0.03) 0.774(0.04)

IO 0.715(0.07) 0.722(0.07) 0.716(0.06) 0.714(0.09) 0.710(0.09) 0.743(0.05) 0.763(0.05)
Jsoup 0.471(0.12) 0.468(0.13) 0.474(0.12) 0.539(0.13) 0.516(0.13) 0.437(0.11) 0.521(0.13)
JSqlP 0.659(0.21) 0.555(0.32) 0.604(0.27) 0.678(0.21) 0.581(0.28) 0.718(0.15) 0.684(0.19)

Mango 0.681(0.09) 0.662(0.13) 0.688(0.10) 0.345(0.16) 0.767(0.06) 0.608(0.12) 0.761(0.10)
Ormli 0.781(0.06) 0.779(0.06) 0.810(0.05) 0.790(0.06) 0.838(0.05) 0.737(0.05) 0.870(0.03)

Average 0.674(0.10) 0.659(0.10) 0.676(0.10) 0.622(0.14) 0.692(0.11) 0.655(0.10) 0.722(0.10)

R
an

ki
ng

s

0.
5

1.
9

4.
6

6.
0

ConRF ConSVM ConNN ConLR ConDT ConDF
(a) FInTrace

R
an

ki
ng

s

0.
3

1.
8

3.
3

4.
9

6.
4

ConRF ConNN ConDT ConLR ConSVM ConDF
(b) FOutTrace

R
an

ki
ng

s

0.
4

1.
8

3.
2

4.
7

6.
1

ConRF ConSVM ConNN ConLR ConDT ConDF
(c) MCC

Fig. 4. Scott-Knott ESD test for ConDF and Con combining other classifiers.

TABLE X
THE AVERAGE FOutTrace OF CONDF AND OTHER FEATURE SELECTION

METHODS USING DF CLASSIFIER

Project CSDF IGDF GRDF ReFDF CFSDF DF ConDF

Codec 0.865(0.03) 0.868(0.03) 0.873(0.03) 0.845(0.04) 0.874(0.03) 0.852(0.03) 0.879(0.03)
Colle 0.948(0.01) 0.946(0.01) 0.949(0.01) 0.942(0.01) 0.952(0.01) 0.940(0.01) 0.950(0.01)

IO 0.930(0.01) 0.932(0.01) 0.926(0.02) 0.930(0.01) 0.929(0.02) 0.936(0.01) 0.940(0.01)
Jsoup 0.905(0.01) 0.905(0.02) 0.908(0.01) 0.913(0.01) 0.911(0.03) 0.901(0.01) 0.909(0.03)
JSqlP 0.974(0.01) 0.970(0.01) 0.972(0.01) 0.976(0.01) 0.971(0.01) 0.977(0.01) 0.975(0.01)

Mango 0.979(0.01) 0.979(0.01) 0.980(0.01) 0.964(0.01) 0.985(0.00) 0.976(0.01) 0.982(0.02)
Ormli 0.937(0.01) 0.935(0.02) 0.941(0.02) 0.938(0.02) 0.950(0.01) 0.926(0.01) 0.960(0.01)

Average 0.934(0.04) 0.934(0.04) 0.936(0.03) 0.930(0.04) 0.939(0.04) 0.930(0.04) 0.942(0.03)

B. RQ2: How effective our ConDF method is compared with
other classifiers with the feature selection method Con?

Motivation: Since our crashing fault residence prediction
task is a classification problem, the prediction performance is
related to the used classifiers. In this work, we apply the DF
method as the classifier. This question is designed to explore
whether the feature selection method Con with DF classifier
is more effective to achieve better performance than that with
other classifiers.

Methods: To answer this question, we choose five widely
used classifiers, including Decision Tree (DT), Support Vector
Machine (SVM), Logistic Regression (LR), Random Forest
(RF), and Nearest Neighbor (NN), and combine them with

TABLE XI
THE AVERAGE MCC OF CONDF AND OTHER FEATURE SELECTION

METHODS USING DF CLASSIFIER

Project CSDF IGDF GRDF ReFDF CFSDF DF ConDF

Codec 0.525(0.11) 0.545(0.09) 0.554(0.09) 0.432(0.13) 0.547(0.10) 0.476(0.09) 0.567(0.10)
Colle 0.723(0.04) 0.716(0.05) 0.730(0.07) 0.683(0.04) 0.742(0.04) 0.679(0.04) 0.735(0.04)

IO 0.655(0.07) 0.666(0.08) 0.651(0.07) 0.656(0.09) 0.651(0.10) 0.687(0.05) 0.712(0.05)
Jsoup 0.421(0.10) 0.421(0.11) 0.432(0.10) 0.488(0.12) 0.471(0.13) 0.387(0.09) 0.472(0.14)
JSqlP 0.665(0.20) 0.556(0.32) 0.609(0.26) 0.681(0.21) 0.585(0.28) 0.722(0.14) 0.685(0.18)

Mango 0.686(0.08) 0.671(0.12) 0.699(0.09) 0.354(0.15) 0.770(0.06) 0.621(0.10) 0.761(0.10)
Ormli 0.731(0.06) 0.726(0.07) 0.758(0.06) 0.741(0.06) 0.794(0.06) 0.678(0.05) 0.833(0.04)

Average 0.629(0.11) 0.614(0.10) 0.633(0.11) 0.576(0.14) 0.651(0.11) 0.607(0.12) 0.681(0.11)

● ●
●

●
●

●

●

R
an

ki
ng

s

1.
0

2.
6

4.
2

5.
8

7.
4

ReFDF DF IGDF CSDF GRDF CFSDF ConDF
(a) FInTrace

● ●
● ●

●

●

●

R
an

ki
ng

s

0.
7

2.
5

4.
2

5.
9

7.
7

DF IGDF ReFDF CSDF GRDF CFSDF ConDF
(b) FOutTrace

● ● ●
●

●

●

●

R
an

ki
ng

s

0.
9

2.
6

5.
9

7.
6

DF ReFDF IGDF CSDF GRDF CFSDF ConDF
(c) MCC

Fig. 5. Scott-Knott ESD test for ConDF and other feature selection methods
using DF classifier.

the feature selection method Con as the comparative methods.
The five baseline methods are short for ConDT, ConSVM,
ConLR, ConRF, and ConNN, individually.

Results: Table VI, VII, and VIII report the results of the
indicator values for our ConDF method and the 5 compar-
ative methods in terms of FInTrace, FOutTrace, and MCC,
individually. In terms of FInTrace, ConDF achieves better
performance on 5 out of 7 projects compared with the 5
baseline methods. The average FInTrace value by ConDF
obtains performance improvements by 7.6%, 38.6%, 17.4%,
179.8%, and 21.1% compared with ConDT, ConSVM, ConLR,
ConRF, and ConNN, individually. In terms of FOutTrace,
ConDF achieves better performance on 6 out of 7 projects
compared with the 5 baseline methods. The average FOutTrace

value by ConDF obtains performance improvements by 2.1%,
2.7%, 3.3%, 4.4%, and 3.9% compared with the 5 baseline
methods, individually. In terms of MCC, ConDF achieves
better performance on 6 out of 7 projects compared with
the 5 baseline methods. The average MCC value by ConDF
obtains performance improvements by 13.1%, 40.4%, 27.5%,
147.6%, and 32.5% compared with the 5 baseline methods,
individually. Overall, our proposed ConDF method obtains
the best average value and achieves average improvements by
52.9%, 3.3%, and 52.2% in terms of FInTrace, FOutTrace, and
MCC, individually.

Fig. 4 visualizes the corresponding statistical test results for
our ConDF method and the 5 baseline methods in terms of all
three indicators individually. This figure illustrates that ConDF
ranks the first and achieves significantly better performance
than all 5 baseline methods in terms of all indicators.

In addition, we also perform the efficiency analysis of
the DF model compared with the 5 baseline classifiers. In

the experiment, we find that Con runs very fast and its
computational time can be almost negligible, thus, we only
record the running time of the DF method and the other
five classifiers, including the model training and classification
time for one data partition. We find that the five classifiers
only take a few seconds on all seven projects, while our
DF method takes about average 20 seconds among seven
projects. The reason that DF spends more time than traditional
classifiers is that DF need to construct the cascade structure
in which each level consists of many forests. Although the
computational time is larger than the traditional classifiers,
DF can significantly improve the performance in crashing
faults residence prediction task compared with the 5 classic
classifiers. In addition, our experiments are conducted on a
workstation with Intel(R) Core(TM) i7-4790 CPU with 3.60
GHz × 4. With the subsequent upgrade of the computer
configuration, the execution time of the DF method will be
further reduced, and the efficiency of our ConDF method can
be further improved.

Answer: The used feature selection method Con with DF
classifier significantly outperforms the comparative methods
that combine Con with other typical classifiers. It implies that
the feature subset selected by Con is more appropriate for
DF classifier to obtain better performance for crashing fault
residence prediction task.

C. RQ3: Are the selected features by Con more effective for
performance improvement than that by other feature selection
methods?

Motivation: In this work, we use the feature selection
method Con, which selects the feature subset with the same
discriminability as the original crash data. This question is
designed to explore whether the features obtained by the Con
method are more effective than that by other feature selection
techniques to improve the performance of DF classifier for
crashing fault residence prediction task.

Methods: To answer this question, we employ five widely
used feature selection techniques, including Chi-Square (CS),
Information Gain (IG), Gain Ratio (GR), ReliefF (ReF),
and Correlation-based Feature Subset selection (CFS), and
combine them with the DF model as the comparative methods.
The first four methods are typical feature ranking methods and
the last one is a feature subset selection method. For the feature
ranking methods, we follow the previous studies [37] [38] to
select the 15% top ranked features as the candidate which is
input into the DF model. For the last method, the number of
retained features is determined by itself automatically. The five
baseline methods are short for CSDF, IGDF, GRDF, ReFDF,
and CFSDF, respectively. We select the method that only uses
the DF classifier without feature selection as the most basic
method for comparison.

Results: Table IX, X, and XI report the results of the
indicator values for our ConDF method and the 6 comparative
methods in terms of FInTrace, FOutTrace, and MCC, individu-
ally. In terms of FInTrace, ConDF achieves better performance
on 4 out of 7 projects compared with the 6 baseline methods.

The average FInTrace value by ConDF obtains performance
improvements by 7.1%, 9.6%, 6.8%, 16.1%, 4.3%, and 10.2%
compared with CSDF, IGDF, GRDF, ReFDF, CFSDF, and
DF, individually. In terms of FOutTrace, ConDF achieves
better performance on 3 out of 7 projects compared with
the 6 baseline methods. The average FOutTrace value by
ConDF obtains performance improvements by 0.9%, 0.9%,
0.6%, 1.3%, 0.3%, and 1.3% compared with the 6 baseline
methods, individually. In terms of MCC, ConDF achieves
better performance on 3 out of 7 projects compared with the 6
baseline methods. The average MCC value by ConDF obtains
performance improvements by 8.3%, 10.9%, 7.6%, 18.2%,
4.6%, and 12.2% compared with the 6 baseline methods,
individually. Overall, our proposed ConDF method obtains
the best average value and achieves average improvements by
9.0%, 0.9%, and 10.3%, in terms of FInTrace, FOutTrace, and
MCC, individually.

Fig. 5 visualizes the corresponding statistical test results
for our ConDF method and the 6 baseline methods in terms
of all three indicators individually. This figure illustrates that
ConDF ranks the first and performs significantly better than
all baseline methods in terms of all indicators.

Moreover, we record the number of features selected by
Con. The first four baseline methods reserve 15% of the
original features, i.e., 14 features, for all projects. CFSDF and
our proposed ConDF method reserve 6 and 8 features across
these projects on average, respectively. From this point of
view, our methods can select relatively few but representative
features to achieve better performance. In addition, different
from the first four feature ranking based methods that measure
the relative importance of each feature towards the labels with
a statistical value, our Con method is a feature subset selection
method that calculates the consistency between a feature
subset and labels. It is because that Con is a multivariate
measure technique as it measures the merit of a subset of
features at a time.

Answer: The feature subset selected by the Con method is
more effective for the DF classifier to achieve better crashing
fault residence prediction performance compared with the
feature subsets selected by other classic feature selection
methods.

VI. THREATS TO VALIDITY

A. Threats to Internal Validity

Threats to internal validity are the potential implementation
faults of the methods in our experiments. To reduce the
threats, we carefully implement the functions that we need
based on the deep forest source code provided by the original
authors. Meanwhile, we take full advantage of the off-the-shelf
implementation by the scikit-learn library and WEKA toolkit
to implement the used feature selection method and other
comparative methods for minimizing the underlying faults.

B. Threats to External Validity

Since we conduct experiments on a publicly available
benchmark dataset which includes seven open source Java

projects, the threats to external validity focus on generalizing
our results to the projects developed with other languages. In
addition, as the simulative crashes with single-point mutation
are generated by using the program mutation testing tool, such
generated crashes do not fully reveal the realistic ones. Thus,
we need to conduct extra experiments on real-world crashes
and with large-scale data to verify the generalization of our
results.

C. Threats to Construct Validity

The threats to construct validity concentrate on the rea-
sonability of the used performance evaluation indicators and
statistical test method. We employ 3 commonly-used indi-
cators to evaluate the prediction performance of our ConDF
method for crashing fault residence prediction, which makes
our assessment more comprehensive. In addition, we apply a
state-of-the-art statistic test method, called Scott-Knott ESD
test, to conduct the analysis of significant differences between
ConDF and other comparative methods, which makes our
evaluation more reliable.

VII. CONCLUSION

In this work, we propose a novel composite method, called
ConDF, to predict whether the crashing fault resides inside
the stack trace or not. ConDF first employs a consistency-
based feature subset selection method to reduce the fea-
ture dimension by reserving the important and representative
features to replace the original feature set. Meanwhile, the
simplified version of deep forest method is used to build
the classification model. We evaluate the performance of
our ConDF method on seven open source software projects
with three indicators. The results illustrate that our proposed
ConDF method performs significantly better than five ensem-
ble based methods with our feature selection method, five
typical classifiers with our feature selection method, six classic
feature selection methods (containing a method without feature
processing) with DF classifier, and the state-of-the-art method
CraTer for predicting the crashing fault residence. We release
our experimental scripts and the used benchmark dataset at
https://github.com/sepine/ConDF.

In the future, we plan to apply our ConDF method to
projects developed in other programming languages and with
real-world crashes. In addition, we plan to consider the class
imbalanced issue of the crash data into the process of model
building.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China under Grants (No. 61972290), the Na-
tional Natural Science Foundation of China (No.62002034),
the Fundamental Research Funds for the Central Universi-
ties (Nos.2020CDCGRJ072 and 2020CDJQY-A021), China
Postdoctoral Science Foundation (No.2020M673137), and
the Natural Science Foundation of Chongqing in China
(No.cstc2020jcyj-bshX0114).

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering
(TSE), vol. 42, no. 8, pp. 707–740, 2016.

[2] Y. Gu, J. Xuan, H. Zhang, L. Zhang, Q. Fan, X. Xie, and T. Qian, “Does
the fault reside in a stack trace? assisting crash localization by predicting
crashing fault residence,” Journal of Systems and Software (JSS), vol.
148, pp. 88–104, 2019.

[3] Z. Xu, K. Zhao, M. Yan, P. Yuan, L. Xu, Y. Lei, and X. Zhang,
“Imbalanced metric learning for crashing fault residence prediction,”
Journal of Systems and Software (JSS), vol. 170, p. 110763, 2020.

[4] Z. Xu, T. Zhang, Y. Zhang, Y. Tang, J. Liu, X. Luo, J. Keung, and X. Cui,
“Identifying crashing fault residence based on cross project model,” in
Proceedings of the 30th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2019.

[5] Z. Zhou and J. Feng, “Deep forest: Towards an alternative to deep neural
networks,” in Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI), 2017, pp. 3553–3559.

[6] N. Chen and S. Kim, “Star: Stack trace based automatic crash re-
production via symbolic execution,” IEEE Transactions on Software
Engineering (TSE), vol. 41, no. 2, pp. 198–220, 2014.

[7] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, and A. Larsson, “Jcharming:
A bug reproduction approach using crash traces and directed model
checking,” in Proceedings of the 22nd IEEE International Conference
on Software Analysis, Evolution, and Reengineering (SANER). IEEE,
2015, pp. 101–110.

[8] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, and A. Larsson, “A bug
reproduction approach based on directed model checking and crash
traces,” Journal of Software: Evolution and Process (JSEP), vol. 29,
no. 3, p. e1789, 2017.

[9] J. Xuan, X. Xie, and M. Monperrus, “Crash reproduction via test case
mutation: let existing test cases help,” in Proceedings of the 10th Joint
Meeting on Foundations of Software Engineering (FSE), 2015, pp. 910–
913.

[10] M. Soltani, A. Panichella, and A. Van Deursen, “A guided genetic
algorithm for automated crash reproduction,” in Proceedings of the 39th
IEEE/ACM International Conference on Software Engineering (ICSE).
IEEE, 2017, pp. 209–220.

[11] K. K. Sabor, M. Hamdaqa, and A. Hamou-Lhadj, “Automatic prediction
of the severity of bugs using stack traces and categorical features,”
Information and Software Technology (IST), p. 106205, 2019.

[12] M. Soltani, P. Derakhshanfar, X. Devroey, and A. Van Deursen, “A
benchmark-based evaluation of search-based crash reproduction,” Em-
pirical Software Engineering (EMSE), vol. 25, no. 1, pp. 96–138, 2020.

[13] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlocator: locating
crashing faults based on crash stacks,” in Proceedings of the 23rd
International Symposium on Software Testing and Analysis (ISSTA),
2014, pp. 204–214.

[14] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei,
“Boosting bug-report-oriented fault localization with segmentation and
stack-trace analysis,” in Proceedings of the 30th IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2014, pp. 181–190.

[15] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen, “On the use of stack
traces to improve text retrieval-based bug localization,” in Proceedings
of the 30th IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2014, pp. 151–160.

[16] L. Gong, H. Zhang, H. Seo, and S. Kim, “Locating crashing faults based
on crash stack traces,” arXiv preprint arXiv:1404.4100, 2014.

[17] R. Wu, M. Wen, S.-C. Cheung, and H. Zhang, “Changelocator: locate
crash-inducing changes based on crash reports,” Empirical Software
Engineering (EMSE), vol. 23, no. 5, pp. 2866–2900, 2018.

[18] S. Liu, X. Chen, W. Liu, J. Chen, Q. Gu, and D. Chen, “Fecar: A feature
selection framework for software defect prediction,” in Proceedings of
the 38th IEEE Annual Computer Software and Applications Conference.
IEEE, 2014, pp. 426–435.

[19] J. Chen, S. Liu, W. Liu, X. Chen, Q. Gu, and D. Chen, “A two-stage data
preprocessing approach for software fault prediction,” in Proceedings of

[20] W. Liu, S. Liu, Q. Gu, X. Chen, and D. Chen, “Fecs: A cluster based
feature selection method for software fault prediction with noises,”

the 8th International Conference on Software Security and Reliability
(SERE). IEEE, 2014, pp. 20–29.
in Proceedings of the 39th IEEE Annual Computer Software and
Applications Conference, vol. 2. IEEE, 2015, pp. 276–281.

[21] C. Ni, X. Chen, F. Wu, Y. Shen, and Q. Gu, “An empirical study
on pareto based multi-objective feature selection for software defect
prediction,” Journal of Systems and Software (JSS), vol. 152, pp. 215–
238, 2019.

[22] C. Cui, B. Liu, and G. Li, “A novel feature selection method for software
fault prediction model,” in Proceedings of the 65th Annual Reliability
and Maintainability Symposium. IEEE, 2019, pp. 1–6.

[23] C. Manjula and L. Florence, “Deep neural network based hybrid
approach for software defect prediction using software metrics,” Cluster
Computing, vol. 22, no. 4, pp. 9847–9863, 2019.

[24] Z. Xu, J. Liu, Z. Yang, G. An, and X. Jia, “The impact of feature se-
lection on defect prediction performance: An empirical comparison,” in
Proceedings of the 27th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2016, pp. 309–320.

[25] B. Ghotra, S. McIntosh, and A. E. Hassan, “A large-scale study of the
impact of feature selection techniques on defect classification models,”
in Proceedings of the 14th International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 146–157.

[26] M. Azzeh, D. Neagu, and P. Cowling, “Improving analogy software
effort estimation using fuzzy feature subset selection algorithm,” in
Proceedings of the 4th International Workshop on Predictor Models in
Software Engineering, 2008, pp. 71–78.

[27] A. L. Oliveira, P. L. Braga, R. M. Lima, and M. L. Cornélio, “Ga-based
method for feature selection and parameters optimization for machine
learning regression applied to software effort estimation,” Information
and Software Technology (IST), vol. 52, no. 11, pp. 1155–1166, 2010.

[28] Z. Shahpar, V. Khatibi, A. Tanavar, and R. Sarikhani, “Improvement
of effort estimation accuracy in software projects using a feature
selection approach,” Journal of Advances in Computer Engineering and
Technology, pp. 31–38, 2016.

[29] M. Hosni, A. Idri, and A. Abran, “Investigating heterogeneous ensem-
bles with filter feature selection for software effort estimation,” in Pro-
ceedings of the 27th International Workshop on Software Measurement
and 12th International Conference on Software Process and Product
Measurement, 2017, pp. 207–220.

[30] Q. Liu, J. Xiao, and H. Zhu, “Feature selection for software effort
estimation with localized neighborhood mutual information,” Cluster
Computing, vol. 22, no. 3, pp. 6953–6961, 2019.

[31] T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, “Improving defect
prediction with deep forest,” Information and Software Technology (IST),
vol. 114, pp. 204–216, 2019.

[32] W. Zheng, S. Mo, X. Jin, Y. Qu, Z. Xie, and J. Shuai, “Software defect
prediction model based on improved deep forest and autoencoder by
forest,” in Proceedings of the 31st International Conference on Software
Engineering and Knowledge Engineering (SEKE), 2019, pp. 419–540.

[33] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-project defect
prediction using a connectivity-based unsupervised classifier,” in Pro-
ceedings of the 38th IEEE/ACM International Conference on Software
Engineering (ICSE). IEEE, 2016, pp. 309–320.

[34] H. Liu, R. Setiono et al., “A probabilistic approach to feature selection-a
filter solution,” in ICML, vol. 96. Citeseer, 1996, pp. 319–327.

[35] M. Dash, H. Liu, and H. Motoda, “Consistency based feature selection,”
in Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2000, pp. 98–109.

[36] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“An empirical comparison of model validation techniques for defect
prediction models,” IEEE Transactions on Software Engineering (TSE),
vol. 43, no. 1, pp. 1–18, 2016.

[37] S. Shivaji, E. J. Whitehead Jr, R. Akella, and S. Kim, “Reducing features
to improve bug prediction,” in Proceedings of the 24th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2009, pp. 600–604.

[38] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, “Reducing features
to improve code change-based bug prediction,” IEEE Transactions on
Software Engineering (TSE), vol. 39, no. 4, pp. 552–569, 2012.

	I Introduction
	II Background and Related Work
	II-A Stack Trace Analysis
	II-B Feature Selection in Software Engineering
	II-C Deep Forest in Software Engineering

	III Method
	III-A Overview
	III-B Feature Reduction with Feature Subset Selection Method Con
	III-C Model Construction with Simplified DF Classifier

	IV Experimental Setup
	IV-A Dataset
	IV-B Performance Indicators
	IV-C Data Partition
	IV-D Parameter Settings
	IV-E Statistic Test

	V Experimental Results
	V-A RQ1: Is the prediction performance of our proposed ConDF method better than that of ensemble based methods?
	V-B RQ2: How effective our ConDF method is compared with other classifiers with the feature selection method Con?
	V-C RQ3: Are the selected features by Con more effective for performance improvement than that by other feature selection methods?

	VI Threats to Validity
	VI-A Threats to Internal Validity
	VI-B Threats to External Validity
	VI-C Threats to Construct Validity

	VII Conclusion
	References

