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Abstract—To share vulnerability information across separate
databases, tools, and services, newly identified vulnerabilities are
recurrently reported to Common Vulnerabilities and Exposures
(CVE) database. Unfortunately, not all vulnerability reports will
be accepted. Some of them might get rejected or be accepted
with disputations. In this work, we refer to those rejected or
disputed CVEs as invalid vulnerability reports. Invalid vulner-
ability reports not only cause unnecessary efforts to confirm
the vulnerability but also impact the reputation of the software
vendors. In this paper, we aim to understand the root causes
of invalid vulnerability reports and build a prediction model to
automatically identify them. To this end, we first leverage card
sorting to categorize invalid vulnerability reports, from which
six main reasons are observed for rejected and disputed CVEs,
respectively. Then, we propose a text mining approach to predict
the invalid vulnerability reports. Our experiments reveal that
the proposed text mining approach can achieve an AUC score
of 0.87 for predicting invalid vulnerabilities. We also discuss the
implications of our study: our categorization can be used to
guide new committer to avoid these traps; some root causes of
invalid CVEs can be avoided by using automatic techniques or
optimizing reviewing mechanism; invalid vulnerability reports
data should not be neglected.

Index Terms—invalid CVE, reason categorization, prediction
model

I. INTRODUCTION

Software vulnerabilities are exploitable flaws in software
systems that pose significant security risks to the host com-
puting systems [11]. Users are recurrently perplexed with the
software vulnerabilities, as it is inevitable for software to
confront vulnerabilities. When vulnerabilities are discovered
and verified, vulnerabilities are documented and exposed to
the public via a vulnerability database. One of the most
influential vulnerabilities databases is Common Vulnerabilities
and Exposures (CVE"), which is designed to allow different
vulnerability databases and other capabilities to be linked
together. CVE provides a standardized identifier for a given
vulnerability and maintains a huge list of common identifiers
for publicly known cybersecurity vulnerabilities. Though CVE
is a database, for convenience, it is also frequently used to
refer to a vulnerability report (i.e., each vulnerability report is
a CVE or CVE entry).

Researchers have investigated software vulnerabilities in
various directions. For example, some researchers are inter-
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ested in feature selection of a vulnerability per se [6], [28],
[29], [39] while others pay more attention to using text content
to dissect vulnerabilities [4], [11], [12], e.g., assessing in which
ways a system is more likely to be attacked [14], [34]. As an
example, Scandariato et al. [26] and Neuhaus et al. [22] focus
on revealing vulnerability locations for helping developers fix
software flaws. Actually, most of the current research studies
focus on exploring valid vulnerabilities, which are exposed
with valid scenarios that can indeed threaten the safety of the
software.

Different from all the aforementioned approaches, in this
work, we are interested in invalid vulnerability reports (i.e.,
rejected CVEs or such CVEs that are accepted with later
disputations followed by), which are usually submitted with
low quality descriptions and the corresponding vulnerabilities
cannot be easily verified, reproduced, or cannot really impact
the safety as the reports claim. The reason why we are
interested in invalid vulnerability reports is that these reports
may cause a lot of troubles to the ecosystem of CVEs. Indeed,
when a vulnerability report is submitted, a certain amount
of professional staffs need to be allocated to validate the
vulnerability. If it turns out that the vulnerability is an invalid
case, the efforts used to confirm this invalidity is actually
wasted. Even worse, it might be the case that the CVE is
rejected because of insufficient description to reproduce the
vulnerabilities, which unfortunately are valid vulnerabilities
in practice. These kinds of invalid CVEs, which will not
be patched because of their invalidity, will actually open
opportunities for attackers to exploit them. Moreover, although
invalid CVEs may not really introduce security threats to
the software, it might still impact its reputation. Indeed, as
argued by Telang et al. [33], software vendors are adversely
affected by security-related vulnerability announcements in
their products.

Because of the aforementioned reasons, we believe there is
a need to understand the root causes of invalid CVEs. Hence,
we need to first harvest a set of invalid CVEs. To this end, we
resort to the CVE database and crawl all its recorded entries.
Because CVEs are usually exposed with limited information,
we resort to the America National Vulnerabilities Database
(NVD?) to further collect (whenever possible) comments or
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notes attached to the CVEs when they are reviewed. The data
is recorded from 2002 in data feeds of NVD and we collect
all of them until the end of 2017. This step yields 99,934
independent CVE entries associated with at least 378 vendors
and 444 software products. Among the 99,934 CVEs, 5,442
of them (around 5%) are marked as invalid ones (e.g., via tags
“REJECTED” and “DISPUTED” attached by authority).

In this paper, based on the harvested invalid CVEs, we
conduct a manual exploratory study to understand the potential
reasons why they are turned to be invalid. We leverage the
open card sorting method to categorize rejected and disputed
CVEs that eventually lead to six reasons for rejecting and dis-
puting CVEs, respectively. The dominant reasons of rejecting
CVEs are due to duplication or failing to reproduce, while
the dominant reason of disputing CVE:s is that they cannot be
replicated.

After observing the root causes related to invalid CVEs,
in this work, we go one step deeper to automatically predict
whether a newly submitted CVE will be flagged as invalid.
We hence build a machine learning model that learns from the
whole dataset of invalid CVEs. The machine learning model
adopts several classic classification algorithms including naive
Bayes, multinomial naive Bayes, SVM and Random Forest.
We use AUC to evaluate the performance of the proposed
prediction models in our study because AUC is a threshold-
independent measure which has a clear statistical interpretation
and it is insensitive to data distribution [8], [36]. We evaluate
these classifiers on 10-fold cross-validation and time sequence
validation, i.e., we use data of the previous five years to
predict the validity of vulnerability reports in the next five
years. The experimental results show that our machine learning
model is quite effective for predicting whether a CVE will
be turned to invalid. Notably, the random forest classifier
achieves the best performance (over 0.8 AUC). Apart from
producing a prediction model, we are also interested in finding
discriminative features that could help in distinguishing valid
and invalid CVEs. Hence, we also present the top features
based on the information gain scores of all the features.

In summary, to the best of our knowledge, this is the
first work that investigates the significance of invalid CVEs
(rejected and disputed). The objective of this study is to
better understand how is a CVE candidate presented and
why is it turned to be invalid. We expect the insights learnt
from answering these questions can be used to guide new
committers to avoid these traps. The main contributions of
this paper are as follows:

1) We perform an exploratory study on invalid vulnerability
reports that are harvested from known CVEs. By lever-
aging a card sorting method, we manually categorize the
main reasons causing a CVE candidate be rejected or
disputed.

2) We build machine learning models to automatically pre-
dict the validity of a newly submitted CVE. Our experi-
mental results show that it is promising to automatically
predict whether a CVE will be turned to invalid. We also
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Fig. 1. Lifecycle of a CVE

present the top discriminative features that can help in
distinguishing valid and invalid CVEs.

The rest of the paper is structured as follows. In Sec-
tion II we describe the lifecycle of a CVE and concept of
invalid CVE. Section III presents data collection and dataset.
Section IV presents our empirical study results. Section V
presents our experiment on invalid CVE. Section VI discusses
the implications of our study and the threats to validity.
Section VII briefly reviews the related work. Section VIII
draws conclusions and presents future work.

II. BACKGROUND

In this section, we first introduce the mechanism of how a
CVE entry is generated and converted to different states, then
describe what is an invalid CVE entry.

A. Lifecycle of a CVE

Figure 1 presents the lifecycle of a CVE entry. Once
committers find a vulnerability in a software product, they
will submit a form to the CVE Numbering Authorities® — the
authority and the manager of CVE. Then this CVE entry will
be examined in a reserved state. If reviewers validate it, it will
be disclosed and exposed to the public; if it fails to pass the
test, it will be rejected with comments or not. Sometimes it
retains original description if the authority does not reserve
it for security purpose. After a CVE is exposed, it will alert
downstream companies and organizations to avoid or to fix this
vulnerability. However, if practice shows that this CVE entry
does not work as expectancy, or the disputer emerges, the CVE
will be sent back to the validating phase. At the same time, the
state of the CVE will be switched to “DISPUTED” and will be
exposed to the public as well. Then after rechecking, it will be
turned to be rejected or valid. Rejected CVE can be rechecked
and transit back to valid status as well. The disputation status
is a temporary phase before it was determined to be valid or
invalid. But some of them are suspended for a long time.

B. Invalid CVE

In our study, an invalid CVE entry refers to a non-qualified
vulnerability report and its corresponding vulnerabilities can-
not be verified, reproduced, or cannot really impact the safety
as the reports claim. In this paper, invalid CVE include rejected
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1k|CVE-2006-6967|Detail

REJECTED

CVE ID

This vulnerability has been rejected by the source.

Current Description

Tags and comments

QUICKINFO

CVE Dictionary Entry: CVE-2006-6967

** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultiDs: None. Reason: this candidate is solely about a configuration
that does not directly introduce security vulnerabilities, so it is more appropriate to cover under the Common Configuration
Enumeration (CCE). In addition, it describes standard behavior (publication of revocation lists) and as such does not cross

Original release date: 02/03/2007
Last revised: 02/26/2009
Source: US-CERT/NIST

privilege boundaries.|Notes: the former description is: "Check Point FireWall-1 allows remote attackers to obtain certificate

revocation lists (CRLs) and other unspecified sensitive information via an HTTP request for the top-level URI on the internal

Timestamp

certificate authority (ICA) port (18264/tcp)."[

Source: MITRE Last Modified: 02/03/2007 < View Analysis Description

Original description

Fig. 2. An excerpt of a CVE vulnerability report.

CVE and disputed CVE. Rejected CVE will cause unnecessary
troubles, e.g., wasting time to check and fix. Disputed CVE
will disturb exposures, as the vulnerabilities cannot be really
treated as a threat, and will also cause insignificant panic and
defamation of the vendors [33].

Figure 2 is an example of an invalid CVE entry we extract
from NVD. The index of this CVE is shown at the top and it is
sorted by the time it was represented. The tag “** REJECTED
*#” indicates this is an invalid CVE. The comment of this
invalid entry is used to judge the validation of the CVE and
gives its explanation. And the original description introduces
the vulnerability and how it works. Its original release date
and last modified date are also shown on the right side.

III. DATASET

In this section, we first present the steps we collect CVE
data, and then focus on invalid CVE data including identifying
and preprocessing of the CVE reports and the corresponding
data (i.e., description) to extract more information for further
research.

A. Data Collection

We collect all data from NVD?*, a superset of CVE database
and the time span of them is from 2002 to 2017. At the end
of 2017, the number of CVE entries is 99,934. These vulner-
abilities are discovered in a wide range of 36,436 products
among the categories of applications, operating systems and
hardware [11]. In addition, we find that there exist discarded
pages containing historical data that cannot be retrieved by
database search engine. It can only be accessed via an URL
using certain CVE index number (e.g. CVE-2013-7030). We
crawled pages of these rejected CVEs and got historical
information which includes timestamps like released time and
modified time. In the crawled data, we identified 5,442 invalid
CVE entries. The statistics of valid and invalid CVE are
presented in Table 1.

B. Data Preprocessing

We identify the invalid records in CVE for further in-
vestigation by the assigned label x+ REJECT xx and *=
DISPUTED =*. We mine these raw data step by step and
every step of processing will produce data for a certain
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TABLE 1
STATISTICS OF TOTAL CVE ENTRIES
Type # vulnerability | % vulnerability
3?;‘3;“}1 Invalid (total) ‘ff; 5442 3:2‘2‘2 5.46%
Valid 94301 94.54%
Total 99743

purpose. As shown in Table I, invalid CVE entries account
for up to 5%. However, due to technical and secure reasons,
in some cases, the CVE entries were rejected before they
are moved out of the “RESERVED” state and the original
details are discarded as well. We sent emails to the authority
of CVEs, but we found that they did not keep it in history, e.g.,
the metadata associated with the reserved state is discarded.
Furthermore, we find that many notes are annotated as follows:

** REJECT ** DO NOT USE THIS CANDIDATE NUM-
BER. ConsultIDs: none. Reason: The CNA or individual
who requested this candidate did not associate it with any
vulnerability during 20XX. Note: none

This kind of CVE does not have useful information to
identify the root causes and should also be discarded. We
identify these CVEs leveraging the heuristic rules as well
as manual inspection. As a result, around 80% of CVEs are
excluded in our work. We manually analyze the remaining
1,128 vulnerability reports to perform the characterization
study.

C. Data Analysis

Our study focuses on invalid (rejected and disputed) CVE
entries and we are interested in who are involved in invalid
CVEs. A CVE can only be rejected by the authority, while
condition is complicated in disputed CVEs: a CVE could be
disputed by the vendors because it is vendors’ duty to check
the vulnerabilities in the received reports and give feedback
timely; it could also be disputed by third parties, e.g., Red Hat
or Google Secure Team. Sometimes it will also be reported
by CVE authority itself. We inspect these data and list the
participants of these disputations in Table II. Most of these
disputations are raised by vendors, while sometimes by third
parties as well.

Table III shows the number and proportion of products and
vendors that the invalid CVEs have influenced. Since there
are lots of rejected CVE entries that have not been connected
with vendors and products before they are moved out of



STATISTICS OF INVOLVED VENDORS AND PRODUCTS

TABLE I

TABLE IV

STATISTICS OF THE REJECTED DATA

Participant | # of CVEs | % of CVEs
Vendor 317 51.21%
Third Party 229 37.00%
Authority 31 5.01%
Unknown 42 6.79%
TABLE III
STATISTICS OF INVOLVED VENDORS AND PRODUCTS
Type # of Vendors | # of Products
Invalid 378 444
Valid 17093 26174
Proportion | 2.20% 1.70%

“reserved” state, we cannot get the vendor names as well
as the products. For these invalid CVEs, we also find that
Microsoft, Symantec and PHP are very frequently mentioned
vendors while Windows, norton_antivirus are most frequently
mentioned products.

IV. EMPIRICAL STUDY FOR INVALID CVE
CATEGORIZATION

To better understand the reasons of invalid CVEs, we
conduct an empirical study based on our extracted data.
Considering the impact of invalid vulnerabilities and how they
were produced, we apply card sorting [3], [30] to categorize
the CVE entries into groups. Card sorting is widely used
to generate categories. In card sorting, participants create
category names and classify entries into them. There are two
phases in our card sort process: In the preparation phase,
we create one card for each of the CVE entries. In the
execution phase, cards are sorted into meaningful groups
with a descriptive title. The first and second authors worked
independently to label the card. For each card, we highlighted
the keyphrases that are related to the root causes, and they
categorized the cards with similar keyphrases into the same
group. The two annotators then worked together to make the
final agreement, and assigned a meaningful name to each of
the category identified. We use Fleiss Kappa® [9] to measure
the agreement between the two annotators. The overall Kappa
value is 0.67, which indicates substantial agreement between
the participants. In this way, we get six main categories for
both the rejected and disputed CVE entries, which is shown
in Table IV and V, respectively.

A. Categories of Rejected Vulnerabilities

Table IV shows six major categories of rejection reasons
and their corresponding distribution in our collected rejected
CVE. Duplication and withdrawn by further investigation
are the two dominant reasons. In the following paragraphs, we
discuss the detail of each category.

Duplicate: This category refers to different CVE entries
that describe the same or overlapped vulnerability. Being
aware of every vulnerability is scarcely possible because a
software product could be spread worldwide and independent

SFleiss Kappa of [0.01, 0.20], (0.20, 0.40], (0.40, 0.60], (0.60, 0.80] and
(0.80, 1] is considered as slight, fair, moderate, substantial, and almost perfect
agreement, respectively.

Rejected Reason Description #CVE %CVE

Duplicate same vulnerability with differ- | 642 56.91%
ent description

Xﬁ::diz\?ert)i/gation furlheAr %nvestigation invalidate 186 16.49%
the original CVE

Identified wrongly the vulnerability is multiple or | 79 7.00%
different identified

Lack of detail the vulnerability lacks essential 50 4.43%
authentic information

Configuration the report is about configura- | 30 2.66%
tion setting and should be in-
cluded in CCE

Out of scope the description is out of secure | 23 2.04%
scope

Others potential or trivial reasons 118 10.46%

organizations may confront and report the same vulnerabil-
ity. Thus, it will cause duplication problem. Some duplica-
tion is easy to understand but sometimes the situation is
complicated. For example, CVE-2013-6405 is a duplication
of CVE-2013-7263, CVE-2013-7264, CVE-2013-7265, and
CVE-2013-7281. There is one excerpt from the duplicated
CVE-2013-7263:

e “The Linux kernel ... obtain sensitive information from
kernel stack memory via a (1) recvfrom, (2) recvinmsg,
or (3) recvinsg ...”

The rest three CVE entries are about three differ-
ent functions named ‘“I2tp_ip_recvmsg”, ‘“pn_recvmsg”’,
“dgram_recvmsg”. They all have relevant potential dangers
about three system calls named “recvfrom”, ‘“recvmmsg”,
“recvmsg”, and they are all about the certain length of values
and unsafe kernel stack memory. Since CVE-2013-6405 is also
about these three system calls, it is unnecessary and is rejected.

Withdrawn by further investigation: This category refers to
the accepted CVEs which turned out to be invalid after further
investigation. In this category, some CVEs are rejected before
moved out from the “reserved” state. And some are accepted
at first, then in the future involved in disputation and rejected
eventually. A real vulnerability needs to be not only judged
by experts but also validated by industrial practitioners. Some
CVE entries are regarded as vulnerabilities and made known
to the public at first but fail to exert themselves eventually.
The following comment shows one example:

o “This was originally intended for a report about TCP
Wrappers and the hosts_ctl API function, but further
investigation showed that this was documented behavior
by that function. Notes: Future CVE identifiers might be
assigned to applications that misuse the API in a security-
relevant fashion.”

It shows a situation where a validated behaviour was mis-
takenly considered as a software flaw at first because the API
is in the form of the security function.

Identified Wrongly: This category refers to vulnerability
reports that are imprecisely proposed, which means that the
description of this CVE originally combines two or more
separated issues existing in other entries. one of the rejected
CVE CVE-2002-0192 has the following comment:



o “This candidate was published with a description that
identified a different vulnerability than what was identified
in the original authoritative reference. Notes: Consult CVE-
2002-0193 or CVE-2002-1564 to find the identifier for the
proper issue.”

It gives an example in which reviewers recommend people
not to refer to this wrongly identified entry but other appro-
priate CVE entries. In our data set, there are 7% of CVE that
are identified wrongly.

Lack of Detail: This category refers to vulnerability reports
which lack certain details or use ambiguous words. As a
result, reviewers cannot easily understand what the flaw is.
The description of CVE-2002-1918 is as follow:

o “Buffer overflow in Microsoft Active Data Objects (ADO) in
Microsoft MDAC 2.5 through 2.7 allows remote attackers to
have unknown impact with unknown attack vectors. NOTE:
due to the lack of details available regarding this issue,
perhaps it should be REJECTED.”

We can see that it uses two “unknown” to describe their
vulnerability. These words are very ambiguous so it is reason-
able to be rejected. The information this CVE gives cannot
support the conclusion that the “potential remote attack hazard
function” is a real vulnerability.

Configuration: This category refers to a CVE that describes
a configuration problem rather than a vulnerability. It is more
appropriate to be covered under the Common Configuration
Enumeration (CCE®) rather than CVE. For example, this prob-
lem is mentioned in CVE-2006-6967. In this CVE, committers
considered this vulnerability would lead to the exposure of
“unspecified sensitive information”. But it was rejected since:

e “This candidate is solely about a configuration that does
not directly introduce security vulnerabilities, so it is more
appropriate to cover under the Common Configuration Enu-
meration (CCE). In addition, it describes standard behavior
(publication of revocation lists) and as such does not cross
privilege boundaries ...”

Reviewers confirmed that the reported problem is an error
in configuration and is considered as a standard behaviour by
authority. Therefore, reports similar to this are all rejected for
“configuration” reason.

Out of Scope: This category refers to a CVE entry that does
not describe a vulnerability but a bug, designing flaw or feature
enhancement. CVE is defined to be publicly known cybersecu-
rity vulnerabilities. Its boundary is quite ambiguous so the out-
of-scope problem is usually inevitable. Once committers fail to
figure out the scope of CVE, they will regard the vulnerability
as a wrong problem. One of the cases is from the notes in
CVE-2013-0743: authority comments that the problem about
SSL certificates are not within the scope of CVE, stating that
“not a problem that is categorized as a vulnerability within
CVE”. Therefore, CVEs which are rejected with this kind of
comment are categorized to “out of scope”.
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TABLE V
STATISTICS OF THE DISPUTED DATA

Dispute Reason Description #CVE %CVE
cannot replicate the vulnerability cannot be | 162 26.17%
replicated
not vulnerability it- | the vulnerability is not | 124 20.03%
self caused by identified prod-
uct itself
not highly impact acknowledged vulnerabil- | 112 18.09%
ity that has limited influ-
ence
misguiding the report gives wrong in- | 61 9.85%
formation
legitimate the so-called vulnerability | 50 8.08%
behaviour is legitimate
out of scope not in security boundary 44 7.11%
others the reason is not given 66 10.66%

Others: vulnerability reports are rejected for trivial reasons,
e.g., systematical errors of NVD, losing essential information
leading to rejection, or some records are out of date and
substituted by new committers. Therefore, the significance of
these CVEs is very limited and we categorize them to others.

B. Categories of disputed vulnerabilities

Table V presents six major categories of disputed CVE
entries. Cannot replicate is the dominant reason. We will give
more explanations about each category in this section.

Cannot Replicate: This category refers to vulnerability re-
ports in which the reported vulnerabilities cannot be repro-
duced. There are different obstacles impeding the reproduc-
tion. To better explain it, we will give some examples.

The first one is CVE-2008-2956, which describes a “mem-
ory leak” vulnerability via a malformed XML. However, a
reviewer found that malformed XML gave little useful infor-
mation and stated: “I was never able to identify a scenario
under which a problem occurred and the original reporter
wasn’t able to supply any sort of reproduction details.” This
disability of reproduction is due to the lack of details.

Second, even if the information is sufficient when some
phases get wrong, it will also lead to reproducing failing.
In CVE-2007-2677, committers pointed out “multiple PHP
remote file inclusion vulnerabilities” while one vendor dis-
puted that “since the code is defined within a function that is
not called from within includes/language.php”. This is a kind
of situation where the key phrase — “call vulnerable function”
— does not work, so the vulnerability is impossible to replicate.

Last, some vulnerabilities are in the dynamic running en-
vironment and the vulnerability can only be reproduced in
an unstable way which successes once in several tries. CVE-
2005-4486 described a “SQL injection vulnerability”. But
the flaw was partly hidden and partly visible, which means root
cause has not been specifically identified. The vendor disputed
this and stated that “although they could be dynamically
generated through use of the product ... but this could not
be repeated for news.asp.”

Not Vulnerability Itself: This category refers to vulnerability
reports in which the reported vulnerabilities are actually under
protection or in other relevant products.

First, some CVE entries will declare a process to be unsafe
while the vendor points out that this is under the protection



mechanism. As in CVE-2008-6544, the original description
presented a “remote attack vulnerability” while CVE and
multiple third parties disputed this issue because “the files
contain a protection mechanism against direct request”.

Second, some reported vulnerabilities are not from the
identified product but other components. One of the cases is in
CVE-2006-1273: One version of Mozilla Firefox was reported
to allow remote attackers to cause a denial of service and then
trigger crashes. However, reviewers disputed it, since it was
running in the “IE Tab extension” and was “not an issue in
Firefox itself”.

Not Highly Impact: This category refers to vulnerability
reports in which the reported vulnerabilities are acknowledged
reluctantly but they are still disputed because the flaw and
consequence are not severe enough.

One example is that in CVE-2007-0253 “grsecurity patch”
was reported to be vulnerable but developers disputed that
“the function they claim the vulnerability to be in is a trivial
Junction, which can, and has been, easily checked for any
supposed vulnerabilities.” They also cited a past disclosure
that was not proven. In this CVE entry, the vulnerability is
disputed just to be a trivial function and will not influence the
whole product.

Another example is in CVE-2007-0050: A remote attack
vulnerability was reported but the vendor, as well as the third
parties, found that “there is a small time window of risk before
the installation is complete.”, so they dispute that “since the
variable is set before use”, the hazard only appeared in a very
short time and this little risk window was unlikely to affect a
lot.

Misguiding: This category refers to vulnerability reports
which misguide the reviewer and even lead to quarrel and re-
proach rather than the discussion of vulnerabilities themselves.
An example is CVE-2017-7397, which reported a “denial of
service” vulnerability. But the vendor disputed that “It has
been proved that this vulnerability has no foundation and it
is totally fake and based on false assumptions.” one of the
cases was that the disputer criticized that the CVE gives wrong
information.

And an extreme case is in CVE-2005-3497 which presented
a “SQL injection vulnerability” but got vendors’ strong refu-
tation, i.e., “this is 100% false reporting, this is a slander
campaign from a customer who had a vulnerability in his
SERVER, not the software.” However, follow-up investigation
strongly suggestd that the original report is correct. We can
see that sometimes the vendors will deny the vulnerability not
based on the fact but for some other reasons (e.g. reputation
or profit). Besides these, when vendors think committers are
not reliable, they will also dispute it.

Out of Scope: Similar to the category we identify in rejected
CVEs, disputed CVEs in this category refer to the CVE entry
that does not describe a vulnerability but a bug, designing flaw
or feature enhancement. For example, in CVE-2017-8912 and
CVE-2006-7141:

o “CMS Made Simple (CMSMS) 2.1.6 allows remote authen-
ticated administrators to execute arbitrary PHP code ...”

o “..when utl_file_dir is set to a wildcard value or “CREATE
ANY DIRECTORY to PUBLIC” privileges exist, allows

remote authenticated users to read and modify arbitrary
files ...”

However, the vendors of CMS commented CVE-2017-8912
as “A feature, not a bug.”. Reviewers commented CVE-2006-
7141 is not “an inherent vulnerability”. They are considered
out of security boundary and are involved in disputation.

Legitimate Behaviour: This category refers to vulnerability
reports which are disputed to be legitimate and totally under
control.

The first example is an directory traversal vulnerability
about “Cell Request Service” in HP Data Protector in CVE-
2014-5160. However, the vendor of the HP disputed that this
behavior is just “by design.”’. The second example is in
CVE-2006-6165 which reported that a “harmful environment
variables” allowed local users to gain privileges. But this was
disputed by a third party, stating that “it is the responsibility
of the application to properly sanitize the environment.”. In
this disputation, though the legacy potential harmful variables
do exist, it will be properly sanitized by application, so the
behaviour is also legitimate.

Besides these, some reported vulnerabilities can be under
actual business logic. One of the complicated disputations
between software vulnerability and business morality is in
CVE-2017-8769:

o “Facebook WhatsApp ... associated with a chat, even after
that chat is deleted. There may be users who expect file
deletion to occur upon chat deletion, or who expect
encryption ... ”

This CVE described an action that the source file will not be
deleted with its corresponding chat, but “Facebook Whatsapp”
did not “‘consider these to be security issues’ saying it is
reasonable because users may want to preserve it “regardless
of whether its associated chat is deleted.”. In this case, the
committers thought the user privacy may be strongly related
to software vulnerability while the vendor assumed it did not
matter, this kind of value divergence also lead to disputation.

Others: disputed vulnerability reports do not give specific
contents of disputation. Most of them just comment that
the vendor or a reliable third party has disputed this CVE.
Therefore details of these CVEs are unclear and we categorize
them to others.

V. INVALID CVE PREDICTION

The previous section summarizes our empirical investigation
on the manual exploration of invalid CVEs. In this section, we
present our approach to predict invalid CVEs.

A. Overall Framework

Figure 3 presents the overall framework of our proposed
approach. The whole framework includes two phases: model
building phase and prediction phase. As to our experiment
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Fig. 3. Framework of our prediction model

TABLE VI
STATICS OF CVE AFTER PREPROCESSING FOR EXPERIMENT
Type # vulnerability | % vulnerability
rejected . 167 0.18%
Tisputed Invalid 510 786 0.65% 0.83%
Valid 94153 99.17%
Total 94939

approach, the posterior information is not appropriate to be
included. To avoid getting posterior information, we separate
reviews and comments from original descriptions and exclude
CVE entries which contain only reviews and comments. As
shown in Table VI, after cleaning the data, we use prepro-
cessed data to build models.

For each CVE description, our framework tokenizes them,
removes stop words (e.g., a, the), stems them (e.g. reduces
them to their root forms), then represents them in the form
of a “bag of words” [2]. After we select textual features, our
framework next constructs a classifier based on the selected
textual features of the training CVE data. The model building
phase would compare and contrast the features of CVE that
are valid or invalid. In this paper, we investigate 4 text
mining techniques, i.e., random forest, SVM, naive Bayes
and multinomial naive Bayes. We also use a random guess
classifier as the baseline.

In the prediction phase the classifier is then used to predict
whether an unknown CVE is valid or not. For each of such
CVE, our framework first preprocesses and extracts textual
features from it, and represents it by using the features selected
in the model building phase. Next, these features are inputted
into the classifier in the classifier application step. This step
would output the prediction results, i.e., valid or invalid.

B. Feature Selection

Previous studies show that feature selection techniques
could improve the performance of text categorization [27],
[37] We use Information Gain (IG) to measure the num-
ber of bits of information required for predicting a la-
bel [35]. We denote a vulnerability reports collection as
VR = (W1, 5),(Va,Is),...,(VN,In), where V,, represents
the n*h vulnerability report and I,, represents whether this
is invalid (¢) or not (z), and the terms in V R,, are denoted as
VR, =<ti,ta,....,t|jyR,| >. For a term ¢ and label i, for a

vulnerability report, there would be four possible relationships:
(t,7) represents V; contains the term t, and it is invalid (i.e.
i). (t,4) represents V; contains the term t, and it is valid (i.e.
7). (1,1) represents V; does not contain the term t, and it is
invalid (i.e. ). (£,4) represents V; does not contain the term
t, and it is valid (i.e. 7). Then we can compute information
gain (IG). The information gain score of term ¢ and label 7 is
computed as:

ro

IGti) = > > p(t',z”)xzogpw# (1)

t/ 7
i efig) ' e{t,D) (t') xp(i)

After we apply the feature selection to compute the scores,
we rank these scores from high to low to generate a ranked
list. As different thresholds (i.e., 10%, 20%, 30%) are applied
to our experiments and the results have little variation, we
choose the top 10% of the total number of terms following
the previous work [15], [35] by default.

C. Evaluation Metrics

The entries are labelled respectively as ‘valid’ and ‘invalid’.
As introduced before, what we care more about are abnormal
cases, so we regard the ‘invalid’ as positive. In this study,
we use AUC to evaluate the effectiveness of the proposed
prediction models.

AUC: AUC is Area Under the ROC (Receiver Operating

Characteristic), a common measure to evaluate a prediction

model especially binary classifier [7], [8], [17], [19], [25]. In

the ROC curve, the true positive rate (TPR) is plotted as a

function of the false positive rate (FPR) across all thresholds.

It is also a widely used evaluation metric in past software

engineering studies [8], [36].

In summary, The reasons that we choose AUC are as
follows:

1) Common threshold-dependent measures like F1-measures
often rely on a probability threshold (e.g., 0.5) for con-
structing a confusion matrix, while AUC is independent
to the threshold. Therefore, we use AUC to avoid the
threshold setting problem. Some researchers also suggest
using threshold-independent measures (e.g., AUC) instead
of threshold-dependent measures such as Fl-measure. For
example, Lessmann et al. recommended AUC as the
primary accuracy indicator for comparative studies [19];
Tantithamthavorn et al. suggested to use AUC to avoid
conflicting conclusions [32].

2) While AUC is insensitive to imbalanced data [19] and our
dataset is imbalanced, the AUC is a better choice. AUC
is a more robust metric in front of class distribution than
other measures such as Fl-measure. It is unfair to compare
two prediction models in an unbalanced dataset using other
measures such as Fl-measure [21], [24].

3) The AUC has a clear statistical interpretation [19]. In our
approach, it can be explained that given a pair of valid
and invalid CVE, the AUC will evaluate the probability of
the situation in which the classifier gives higher scores to
invalid CVE than valid CVE.



There is also a threshold of the results that a functional
prediction with adequate classification performance requires
AUC score to be above 0.7 [25].

D. Experiment Results

Based on the collected CVE data and our proposed ap-
proach, we are interested to answer the following research
questions:

RQ1. Can we effectively predict invalid CVE?

Motivation: The emergence of invalid CVE is inevitable under
the current reviewing mechanism. We would like to effectively
predict whether a new commit of CVE will be involved in
a rejection. Therefore, we use original textual contents of
CVE in the database and apply different prediction models
to investigate whether it is feasible to build accurate models
that help to predict validity of CVE.

Approach: We use sci-kit learn tool [23] to implement the
prediction models with default parameters and a baseline
model, i.e. random guess prediction, is used to compare our
proposed prediction models. Considering the diversity of CVE
across 36,436 products, to give an overall insight, we use
stratified 10-fold cross-validation to evaluate the effectiveness
of the model. In the experiment, we applied oversampling
technique to handle imbalance data problem. Besides, we use
the same longitudinal data setup to simulate the usage of our
approach in practice [31], which means we keep the time
order of CVE committing to the database. According to the
time order and interval of 5 years, we divide our data into
three folds (2002-2007, 2008-2012, 2013-2017). Sequentially
we use the previous fold as training data to predict next fold.
The distributions of invalid and valid reports in 2002-2007,
2008-2012, and 2013-2017 are 509 vs. 28,309, 155 vs. 26,138,
and 122 vs. 39,706, respectively.

Results: Table VII, and Table VIII present the results of
AUC of each prediction model for 10-fold cross-validation
and time sequence validation, respectively. On 10-fold cross-
validation experiment, SVM achieves the best performance,
while random forest ranks the second. On time-series experi-
ment random forest achieves the best performance because its
AUC:s on all are much larger than those of the other prediction
models. We apply Wilcoxon signed-rank test and find that
there is no statistically significant difference between the
AUCs of random-forest and other classifiers in 10-fold-cross-
validation. Considering both experiments settings, all AUCs of
the random forest model are larger than 0.7, which indicates
promising performance [25]. Besides, random-forest has the
best performance in time-sequence-validation, which simulates
the usages of our approach in practice. We also use false
negative rate (FNR) to evaluate the risk of misclassification.
As we set the invalid reports as the positive class, FNR means
the rate of misclassification of valid to invalid which is truly
critical. FNRs of all models are less than 0.0001, indicating
low risk of misclassification. Therefore, our approach can
effectively predict whether a CVE will be turned to invalid.

TABLE VII
AUCS OF EACH PREDICTION MODEL IN TEN-FOLD CROSS-VALIDATION

Random  Naive  Multinomial SVM Random
Guess Bayes  Naive Bayes Forest
Average 0.500 0.753 0.773 0.818 0.793
TABLE VIII
AUCS OF EACH PREDICTION MODEL IN TIME SEQUENCE VALIDATION
Random  Naive  Multinomial SVM Random
Guess Bayes  Naive Bayes Forest
foldl pred. fold2 0.500 0.494 0.510 0.770 0.887
fold2 pred. fold3 0.500 0.497 0.497 0.536 0.872

RQ2. What are the most important features for discrimi-
nating invalid CVEs from valid ones?

Motivation: As our training data is text content, the features
are represented as term frequency corresponding to the number
of times terms appear in all of the descriptions. Although there
are lots of characteristics that affect a CVE to be invalid,
we are also interested in finding what kind of discriminative
features to what extent that could help in distinguishing valid
and invalid CVE.

Approach: Based on textual content, we extract thousands of
text features using term frequency. Then, we use information
gain as the features important values for each feature and rank
the them according to the information gain.

Results: We report the top 10 features sorted based on their
information gain scores in Table IX. We notice that the
information gain score is low (the highest possible value would
be 1), which represents that in such a huge corpus one feature
alone is not sufficient to classify valid CVE from invalid CVE.
Note that “reject” is not the label but usually used to describe
vulnerability action (e.g. “does not reject a negative value”).
As for “php”, the proportion of php-related reports in invalid
CVEs is larger than that in both valid CVEs and all CVEs.
Php files are frequent attacking targets (cf. CVE-2005-4349).
It induces rejection because of existent duplicate CVEs. This
demonstrates the necessity to investigate invalid vulnerability
reports so as to avoid such attempts (i.e., efforts wasted).
Some other features, such as “inclusion”, “allows” are good
indicators to identify invalid CVE because sometimes these
kinds of actions descriptions are not specific enough and are
rejected or disputed according to our empirical study.

VI. DISCUSSION

A. Implication

Our categories in the empirical study give reasons why
a CVE turns invalid and our prediction models achieve
promising performance. Based on these results, we discuss
the implications of our study.

First, Duplication and withdrawn by further investigation
easily lead to rejection. In software engineering, various
approaches have been proposed to detect duplicate bugs and
bug reports [16]-[18]. Duplication detection techniques can
also be used to help reduce the duplicate vulnerability reports,
which should be labelled invalid. In addition, there is no proof
that existing duplication detection approaches are practical for
vulnerability reports. Thus, it would be beneficial to know



TABLE IX
ToP-10 MOST DISCRIMINATIVE FEATURES BASED ON INFORMATION GAIN

SCORES
Invalid Information Gain Invalid Information Gain
reject 0.0270 attackers 0.0063
inclusion 0.0120 php 0.0062
file 0.0099 remote 0.0060
blocked 0.0084 allows 0.0053
directory 0.0068 arbitrary 0.0049

whether the current detection tools can detect duplication in
software vulnerability databases.

Also, in practice it is hard to identify the rejected CVEs due
to withdrawn by further investigation. One possible reason
is that there is a lack of effective communication tunnels.
Thus, researchers should also investigate how to build an
effective communication mechanism between committers and
reviewers (e.g., a new review system for vulnerability reports),
which will make a significant difference on the vulnerability
examination and verification.

Second, we also find that failing to replicate will induce
disputation. Once released, vulnerability reports will have a
wide influence. This gives the authority of CVE an implication
that carefully verifying a new-commit CVE is very important.
A vulnerability report should not be exposed before it is totally
replicated. Rejecting it before it comes to the public is much
better than be involved in disputation. Besides these, according
to our categories of invalid vulnerabilities, a guide for the new
committers can be created to avoid such traps.

Last but not the least, besides efforts of the authority of
CVE database, our proposed classifiers can also be extended to
predict what kind of CVE is more likely to be invalid. Though
by now there is a lot of reserved data, we are convinced that
given enough original details our data-driven approach can
play an important role in practice. Invalid vulnerabilities are
valuable to research. Researchers should not neglect invalid
vulnerability report data not only in CVE database but also in
other vulnerability databases.

B. Threats to Validity

Threats to internal validity relate to the bias of our card
sorting on invalid CVE and errors in our experiments. We have
manually checked the categories to ensure each is discussed
by two different people independently and reach a consensus.
We have also double checked our experiments and the datasets
collected from NVD, still, there could be errors that we do not
notice.

Threats to external validity relate to the generalizability of
our results. There are many reserved CVE that cannot be taken
into account. While there is a huge number of CVE that will
be invalid, but we can not have a whole look at them all
because they will be discarded for safety and reputation or
other reasons. In the future, we plan to reduce this threat
further by trying to collecting and analyzing more invalid CVE
from the CVE authority.

Threats to construct validity relate to the suitability of our
evaluation measures. In our approach, AUC is used to evaluate
the performance of prediction models. The AUC score is

widely used to evaluate the effectiveness of various software
engineering studies [17], [19]. As a threshold-independent
measure, AUC is recommended to measure the performance
of a classifier by many researchers [19], [32].

VII. RELATED WORK

Studies on Software Vulnerabilities. Software vulnera-
bilities have big impact on industrial companies, so they
proposes some rating systems to categorize software vulnera-
bilities. There are four major rating systems, i.e., Common
Vulnerability Scoring System(CVSS) 7, Microsoft Security
Bulletin Severity Rating System %, US-CERT Vulnerability
Notes Database ® and SANS Critical Vulnerability Analysis
Archive !9, They establish severity of vulnerabilities according
to a certain severity definition, which many works rely on.
Some studies are also done on designing vulnerability rat-
ing systems using information in vulnerability database (e.g.
NVD) [10], [20]. Our study is not about the exploration of
vulnerabilities severity rating or designing a rating system, but
to research the vulnerability validity.

Building a category system for existent vulnerabilities can
help people to identify vulnerabilities as well as to better orga-
nize and secure their products. Howard and Michael conduct a
research on the category improvement and make clear different
vulnerabilities [13]. Different from putting different kinds of
vulnerabilities in order, our research is conducted from the
perspective of whether a vulnerability report is valid or not and
the reasons behind it. This complements the existing evaluation
systems and gives more hints.

Prediction Model in Software Vulnerabilities. The body of
work on vulnerability prediction is smaller comparing to defect
prediction [12], [38]. Vulnerabilities are different from faults
in that vulnerabilities always represent abusive functionalities
instead of wrong or insufficient functionalities associated with
faults [5]. As the definition is more strict, the size of reported
vulnerabilities is much fewer than the reported faults in many
projects [1]. Our work on the invalid CVE can shed light on
what kind of reported vulnerability is less likely to take effect.

For the vulnerability prediction, a lot of studies have been
done with combinations of different features like software
metrics [26], code churn [28], developer activity metrics [6],
[22], [28], code complexity [29], etc. Zimmermann et al.
conducted a study on the correlation between vulnerabilities
and various features including churn, code complexity, depen-
dencies, code coverage, organizational measures and actual
dependencies [39]. Along with the features in low-level gran-
ularity, text mining is also used to predict vulnerabilities [12],
as it describes the vulnerabilities from a more macroscopic
view. Some researchers focus on how to recognize vulnerable
components [22], [26], or assess in which ways a system is
more likely to be attacked [14], [34]. Han et al. proposed

"https://www.first.org/cvss/

8https://technet. microsoft.com/zhcn/security/gg309177.aspx
“http://www.kb.cert.org/vuls/html/fieldhelp
10http://www.sans.org/newsletters/cva/



a deep learning based model to predict the severity of a
CVE based on CVSS [11]. Inspired by the previous work of
different predicting techniques in these studies, we propose
our prediction approach to predict the validity of invalid
vulnerability reports for a better vulnerability analysis.

VIII. CONCLUSION & FUTURE WORK

In this paper, we focus on invalid CVE, which will influence
the security, reputation and efficiency of vendors, downstream
companies and users. First, we contribute an invalid CVE
data set, which is intended to be ignored by researchers.
Then we conduct an empirical study to categorize the rejected
and disputed vulnerability reports and explain details for each
category. Finally, we apply several prediction models to predict
whether a CVE will be involved in invalid status and random
forest achieves the best AUC with more than 0.87. In the
future, we plan to improve the effectiveness of our proposed
tool further. We also plan to experiment with even more invalid
vulnerability reports from more security platforms.
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