A Comparative Study of Smartphone and Smartwatch Apps

Xiao Chen
Faculty of Information Technology
Monash University
Clayton, Australia
xiao.chen@monash.edu

Chunyang Chen
Faculty of Information Technology
Monash University
Clayton, Australia
chunyang.chen@monash.edu

ABSTRACT

Despite that our community has spent numerous efforts on analyz-
ing mobile apps, there is no study proposed for characterizing the
relationship between smartphone and smartwatch apps. To fill this
gap, we present to the community a comparative study of smart-
phone and smartwatch apps, aiming at understanding the status
quo of cross-phone/watch apps. Specifically, in this work, we first
collect a set of cross-phone/watch app pairs and then experimen-
tally look into them to explore their similarities or dissimilarities
from different perspectives. Experimental results show that (1) Ap-
proximately, up to 40% of resource files, 30% of code methods are
reused between smartphone/watch app pairs, (2) Smartphone apps
may require more than twice as many as permissions and adopt
more than five times as many as user interactions than their watch
counterparts, and (3) Smartwatch apps can be released as either
standalone (can be run independently) or companion versions (i.e.,
have to co-work with their smartphone counterparts), for which
the former type of apps tends to require more permissions and
reuse more code, involve more user interactions than the latter
type. Our findings can help developers and researchers understand
the ecosystem of smartwatch apps and further gain insight into
migrating smartphone apps for smartwatches.

KEYWORDS

Android, smartwatch, mobile software engineering, static code
analysis

ACM Reference Format:

Xiao Chen, Wanli Chen, Kui Liu, Chunyang Chen, and Li Li. 2021. A

Comparative Study of Smartphone and Smartwatch Apps. In The 36th
ACM/SIGAPP Symposium on Applied Computing (SAC °21), March 22-26,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC °21, March 22-26, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8104-8/21/03...$15.00
https://doi.org/10.1145/3412841.3442023

Wanli Chen
Faculty of Information Technology
Monash University
Clayton, Australia
wanli.chen@monash.edu

1484

Kui Liu
College of Computer Science and
Technology
Nanjing University of Aeronautics
and Astronautics
Nanjing, China
kuiliu@nuaa.edu.cn

LiLi
Faculty of Information Technology
Monash University
Clayton, Australia
lili@monash.edu

2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 10 pages.
https://doi.org/lo.l145/3412841.3442023

1 INTRODUCTION

The Smartwatch market is booming. Many app developers and ser-
vice providers have provided smartwatch versions for their smart-
phone apps. Indeed, the world has witnessed more than 79 million
smartwatches sold in 2018 [3], making it the most popular wearable
devices in the market. Due to its accessibility, people can check and
send messages, get notifications, answer phone calls without ac-
cessing their phones. Not only smartphone vendors (e.g., Apple and
Samsung) and other technology companies (e.g., Fitbit, Garmin) en-
tered into the smartwatch market, traditional watch manufacturers
such as Fossil and Casio also joined the smartwatch race.

Despite the increasing momentum of the smartwatch market
(especially in terms of the number of smartwatch devices available
in the ecosystem), the number of existing smartwatch apps is far
less than that of smartphone apps. Indeed, compared with over
2.5 million Android apps and 1.8 million iOS apps published on
Google Play and Apple App Store for smartphones, respectively,
the numbers of Wear OS (i.e., a version of Android OS designed for
smartwatches) apps and WatchOS (i.e., the operating system for
the Apple Watch) apps for smartwatches are only around 4,000 and
15,000, respectively [11].

Taking the considerable potential of smartwatch’s market share
into consideration, we felt that it is quite strange to observe the
aforementioned massive difference between the number of smart-
phone and smartwatch apps. The rationale is not clear at the mo-
ment, although app developers would have liked to offer the same
app for multiple mobile platforms in order to attract as many users
as possible [16]. To the best of our knowledge, developing the smart-
watch version of a smartphone app may not be straightforward.
The user’s requirements for a smartphone app and a smartwatch
app might be different. Users may expect a complete set of features
from a smartphone messaging app, such as text and video chat,
file transfer, etc. However, due to the limited screen size and hard-
ware capability (e.g., lack of a camera) on the smartwatch, users
may only use it to access prompt messages and reply with voice
input. It might not be a wise choice as well to copy the onscreen

https://doi.org/10.1145/3412841.3442023
https://doi.org/10.1145/3412841.3442023

354
B Smartwatch
[Smartphone

30 A

25 A
2 204
p=}
o
o

15 A

101

5-

0_

< S . o O > e < S 2D [o o > [e
< & & O R P O S oi\& & 58 58
,(§\”1/ 9‘('\" 6\(\ boc' R Q('\\(' 9?. \‘d\/ Q‘\Q \~/{\® $®'b 6(\OQ Q/b © ((\Q \{7\ Oé /bq'b/l' b‘d \\é\ @Q’ b\)(' Qs}é 9,\?\
N O X9 o, o &
o S« SIS & & & o C& S
Q & <« ® & Q\Q;\ & N ¥ X
o
W~ O < Q
<&

Figure 1: Category Distribution of 200 Most Popular Smartphone and Smartwatch Apps on Google Play.

keyboard and complicated User Interface (UI) design directly from
the smartphone app to its smartwatch version.

Unfortunately, despite a significant amount of efforts the com-
munity has spent on analyzing mobile apps, including the compar-
ative studies of cross-platform apps [4], the community has not
yet explored the realm of comparing smartphone and smartwatch
apps. It is still unknown why some apps have been published with
smartwatch versions while others are not. For such smartphone
apps with smartwatch counterparts, it is also not clear (1) whether
their implemented functions are identical or not? and (2) should all
the features of smartphone apps be migrated to their smartwatch
counterparts? Towards answering the aforementioned questions,
there is a strong need to understand the current status quo of the
relationship between smartphone and smartwatch apps.

To this end, we present to the community a comparative study of
smartphone and smartwatch apps, aiming at providing an overview
of the status quo of cross-phone/watch apps. To fulfill this goal,
we first resort to various resources (including the official Google
Play store and an alternative Android app market APKMirror?) to
harvest and build a dataset of phone/watch app pairs, i.e., the same
app implemented for Smartphone and Smartwatch devices. By consid-
ering all the apps collected, we are able to construct a dataset with
223 app pairs. After that, we employ a mixed-methods approach
using both quantitative and qualitative analyses to experimentally
characterize these app pairs. For example, we empirically compare
their non-code and code level similarities and investigate their
differences in managing user interactions.

With this comparative study, we aim at providing the commu-
nity an overview of the status quo of the cross-phone/watch apps,
helping practitioners and researchers better understand the current
development of cross-platform apps (i.e., not only between Android
and iOS systems but also between smartphone and smartwatch
devices). Notably, we expect our study to be useful for different

!https://www.apkmirror.com

1485

stakeholders in the mobile ecosystem to understand the similari-
ties and dissimilarities between smartphone and smartwatch app
pairs, so as to support them in deciding if it is necessary to intro-
duce smartwatch app versions for their smartphone apps (or vice
versa). Furthermore, by comparing the implementation details of
phone/watch app pairs, the findings of our study could also be
helpful to gain insights into the challenges faced by app developers
in migrating smartphone apps to smartwatch versions.
The contributions of this paper include:

e We collected 223 pairs of Android Smartphone and Smart-
watch app pairs from the Google Play and alternative app
stores. Our dataset is publicly available [1].
We conducted quantitative and qualitative analyses on the
app pairs from various aspects, including non-code (e.g.,
metadata, resources, etc.) and code (e.g., components, meth-
ods, user interactions, etc.) levels.
Our empirical findings could be beneficial towards develop-
ing an automatic smartphone-to-smartwatch app migration
strategy.

The remainder of the paper is organized as follows. Section
2 presents the motivation and preliminary results of our study.
Section 3 describes the design of the experiments, including data
collection, data characteristics and research questions. Section 4
presents the results and findings of our empirical study, followed by
the implications and the threats to validity of the study discussed in
Section 5. Section 6 reviews related works, and section 7 conclude
the paper.

2 MOTIVATION AND PRELIMINARY STUDY

Due to the differences in the accessibility, smartphones and smart-
watches play different roles in people’s daily lives. Smartphones
have been intensively involved in our daily life and are used for
completing routine tasks such as communicating with friends and
paying bills. Smartwatches, on the other hand, are designed for on-
the-go tasks, such as a quick response to a message. Therefore, it

To preview webpage? Enable now

(a) Smartphone.

Helld .

all

I my v
qwertyuiop
asdfghijk.l
zxcvbnm

])

(b) Smartwatch.

Figure 2: Three steps are needed on a smartphone to send an SMS while two more steps are needed to achieve the same purpose on a smartwatch,

despite the fact that the same app (i.e., Messages App) is leveraged.

could be different on how people use these devices. We retrieve the
metadata of the 200 most popular apps on smartphone and smart-
watch, respectively, from the Google Play Store and present their
category distributions in Figure 1. Interestingly, the most popular
apps on two platforms fall into different categories. For example,
the most popular category in the smartwatch market is Personal-
ization, which counts 17% of the top apps. In contrast, only 2% of
the top smartphone app falls in this category. For Health & Fitness
and Sport categories, the related smartwatch apps overwhelm the
smartphone apps as well. On the other side, the smartphone has
much more apps of 14 categories than smartwatch. These empirical
results show that there is indeed a difference between the preferred
usage scenarios of smartphone and smartwatch apps. This evidence
further suggests that certain apps should receive higher priorities
to be migrated from smartphone to smartwatch.

Except the quantitative difference of smartphone and smartwatch
apps, smartphone apps present qualitative differences against smart-
watch apps in various aspects as we observed in the preliminary
case study, despite smartphone and smartwatch apps are developed
using the same programming language (i.e., Java or Kotlin) and run
on the same operating system (i.e., Android). For example, due to
the differences in hardware capability and screen size, the users’
interaction logic in smartphone and smartwatch is quite different.
As a preliminary case study shown in Figure 2, it illustrates that
the steps of sending an SMS using the smartphone version and
smartwatch version of a Text Messaging app are totally different.
With limited screen size, the smartwatch version takes more steps
to locate the contact and select the input source in Figure 2(b)). As a
result, smartphone apps and smartwatch apps may require different
testing strategies to test the code’s correctness. In other words, the
existing dynamic app analyzers developed for testing smartphone
apps may not be readily reusable for testing smartwatch apps. It
can also foresee that the functionalities in two scenarios would
be different due to the difference in computational power. These
differences observed in this preliminary study motivate us to deeply
exploit how the apps on the smartphone and the smartwatch differ
from each other, so as to obtain valuable findings and insights for

1486

helping practitioners to easily implement smartwatch apps as well
as adequately proceed smartwatch app analysis.

3 EXPERIMENTAL DESIGN

In this section, we present the research questions of our empirical
study (cf. Section 3.1), the dataset we used for answering these
questions (cf. Section 3.2), and the characteristics of the harvested
dataset (cf. Section 3.3).

3.1 Research Questions

The empirical study aims to find out the similarities and differences
between the smartphone version and smartwatch version of the
same mobile apps. Specifically, we would like to investigate their
relationship by answering the following research questions:

¢ RQ1 [Non-Code]: How similar are the disassembled re-
source files between smartphone/watch app pairs?

e RQ2 [Code (Syntax)]: To what extent is the code of smart-
phone apps similar to their smartwatch counterparts?

e RQ3 [Code (User Interaction)]: How are user interactions
varied between smartphone/watch app pairs?

3.2 Data Collection

To the best of our knowledge, our community has not released
public datasets containing smartwatch apps that we can directly
reuse to fulfill our experiments. We have to collect smartwatch apps
from scratch. In this work, we decide to collect smartwatch apps
from both the official Google Play store and an alternative app store
named APKMirror.

Google Play dataset: It is challenging to collect smartwatch
apps from Google Play, as there is no information on their app de-
tails pages that indicates whether the app has a smartwatch version.
Fortunately, Google Play maintains a list of the top 200 most popular
smartwatch apps. Therefore, we collected the listed 200 smartwatch
apps and also downloaded their smartphone counterparts.

APKMirror dataset: APKMirror archives Android apps for var-
ious devices (e.g., phone, watch, TV, etc.) as well as their historical
versions. Through a keyword search, more than 1,700 results were

I Standalone
3 Companion

Figure 3: The counts of collected standalone and companion apps
by category

returned with “Wear OS” in their names. We then filtered out the
historical versions, and finally, 95 phone/watch app pairs were
collected.

The two datasets were merged with duplicates removed. Even-
tually, the dataset for this study consists of 223 phone/watch app
pairs.

3.3 Data Characteristics

Table 1 presents the count and average file size of the collected app
pairs by category. Categories that have less than three apps were
included in the Others category. It is observed that the size of smart-
watch apps are much smaller than their smartphone counterparts,
indicating a possible reduction of resources and functionalities in
the smartwatch version. This hypothesis is further confirmed and
detailed in Section 4.

Our manual investigation further discovers that smartwatch
apps can be released as either standalone or companion apps. The
former type of apps does not require a smartphone counterpart to
function while the latter type of apps do require a smartphone-side
app to operate. This feature is declared by a boolean value of the
compulsory metadata com.google.android.wearable.standalone in
the Android Manifest file. Out of the total 223 app pairs collected,
145 are standalone apps and 78 are companion apps. While the
average size of smartwatch apps (i.e., 5.71 MB) is far smaller than the
smartphone versions (i.e., 21.80 MB), the size differences between
standalone and companion smartwatch apps are also tremendous.
The average file size of the standalone watch apps (i.e., 6.78 MB) is
approximately twice as large as the companion watch apps (i.e., 3.72
MB). A further breakdown of the apps into categories is illustrated
in Figure 3. Apps in Personalization, Tools, and Weather categories
are tend to be used independently, while more Communication,
Finance, Sports and Travel & Local apps require to pair with the
smartphone to function.

4 RESULTS

We now present our experimental results for the aforementioned
research questions, respectively.

1487

Table 1: Dataset characteristics.
Average Size (MB)

Category Count Smartphone Smartwatch
Personalization 38 17.12 5.82
Health & Fitness 31 30.44 5.97
Tools 26 14.36 5.42
Productivity 23 12.74 3.28
Communication 15 27.92 10.45
Sports 10 26.65 10.10
Finance 9 27.94 3.69
Weather 9 21.05 3.37
Travel & Local 8 31.14 2.60
Music & Audio 7 26.62 6.87
Lifestyle 6 23.53 9.38
Maps & Navigation 6 30.14 5.50
Business 3 33.12 3.57
Education 3 11.33 5.81
Medical 3 12.58 2.32
News & Magazines 3 32.87 3.03
Shopping 3 24.04 7.71
Others 20 18.78 5.18
ALL 223 23.47 5.56

4.1 RQ1: Non-Code Similarity

We firstly investigate the similarities of the resources and the de-
clared permissions between phone/watch app pairs. Resources are
the non-code assets that can be accessed by the application code,
such as images, string values, etc. We try to find out to what extent
smartwatch counterparts reuse the resources in their smartphone
versions or vice versa. To this end, we compare the file names and
the hash values of the file contents in both versions. If an identical
file name and its hash value are found in both versions, we identify
it as a reused resource file. Figure 4 illustrates the percentage of
resource files that have been reused across both smartphone and
smartwatch versions. There are, on average, 40% of resource files
being reused when developing cross-platform apps. We further in-
spect the types of these files and discover that the most commonly
reused file types are PNG (e.g., Ul widgets) and XML (e.g., Ul layouts
and string values), constituting 49.5% and 12.1% of the total reused
files, respectively.

Among various resource files included in an Android app, there
is a special file named AndroidManifest.xml, the configuration file
responsible for defining app features such as permissions. App per-
mission system is a front-line mechanism to protect the privacy of
Android users. Android apps must declare the permissions in the
manifest file before accessing sensitive user data (such as location
and contact list), as well as certain system features (such as Inter-
net and camera). In Android security framework, the permissions
are grouped into various levels based on their riskiness, which in-
clude normal, signature, and dangerous. We leverage Android Asset
Packaging Tool % (AAPT) to extract the declared permissions.

Zhttps://developer.android.com/studio/command-line/aapt2

Table 2: Top 15 permissions in observed app pairs

Permissions in Smartphone Apps Percentage Permissions in Smartwatch Apps Percentage
INTERNET 96.0% WAKE_LOCK 83.0%
WAKE_LOCK 94.2% INTERNET 65.0%
ACCESS_NETWORK_STATE 93.3% ACCESS_NETWORK_STATE 59.6%
c2dm.permission.RECEIVE 78.0% VIBRATE 49.8%
VIBRATE 70.9% vending.BILLING 27.4%
vending.BILLING 65.5% ACCESS_FINE_LOCATION 27.4%
BIND_GET_INSTALL_REFERRER_SERVICE 64.1% RECEIVE_BOOT_COMPLETED 24.2%
RECEIVE_BOOT_COMPLETED 61.0% c2dm.permission.RECEIVE 21.5%
WRITE_EXTERNAL_STORAGE 60.5% ACCESS_COARSE_LOCATION 19.3%
ACCESS_FINE_LOCATION 57.4% WRITE_EXTERNAL_STORAGE 19.3%
FOREGROUND_SERVICE 51.6% wearable.permission.RECEIVE_COMPLICATION_DATA 18.4%
READ_EXTERNAL_STORAGE 47.5% BODY_SENSORS 17.0%
ACCESS_WIFI_STATE 46.6% BIND_GET_INSTALL_REFERRER_SERVICE 16.6%
ACCESS_COARSE_LOCATION 42.6% ACCESS_WIFI_STATE 15.2%
BLUETOOTH 33.2% PROVIDE_BACKGROUND 14.3%

I Standalone
3 Companion

— =

- -

0.4 0.6 0.8 1.0

Fraction of Identical Resource Files

0.0 0.2
Figure 4: Distribution of the number of permissions in smartphone
and smartwatch apps by category.

Table 2 illustrates the top 15 most frequently used permissions
in smartphone and smartwatch apps. While most of the permis-
sions in the table are classified as normal permissions, only five
permissions ACCESS_FINE_LOCATION, ACCESS_COARSE_LOCATION,
WRITE_EXTERNAL_STORAGE, READ_EXTERNAL _STORAGE, and BODY_
SENSORS are listed as dangerous permissions that require the users
to manually grant the permissions at run-time. These permissions
are required to access the precise and approximate location of the
device, write to and read from external storage, and access data
from device’s in-built sensors. As reported in the table, although
there is little difference in the top permission list on both platforms,
the number of apps that requested these permissions varies signifi-
cantly. For instance, Internet is one of the most used permissions
both in smartphone and smartwatch apps that allows the apps to
open network sockets. There are 96.0% of the smartphone apps
that have requested the Internet permission, while this number
is decreased to 65.0% in smartwatch apps. We reviewed the smart-
phone apps that do not require Internet permission and found
that these apps are compass apps, password manager apps, and
watch face apps that do not retrieve information from the Internet.
It is worth mention that two apps do not require Internet access

1488

in the smartphone version but added it in the smartwatch version.
Through manual analysis, we found that both apps are watch face
apps, whose smartwatch versions have added new features of re-
trieving weather data from the Internet and displaying it on the
watch face.

The dangerous permissions ACCESS_FINE_LOCATION and ACCESS
_COARSE_LOCATION allow an app to access the location of the device,
which are very sensitive and always attract significant attention
when prompt to the users. It is interesting to find that there are
136 apps requested at least one of the location permissions in their
smartphone versions and 93 of them removed the access to location
from their smartwatch versions. The reasons for removing the ac-
cess to location is that the corresponding functions are deleted from
the smartwatch version. For example, an SMS app can send out the
user’s current location in the text message, while this function is
removed from the smartwatch version. The reason may be to save
battery life of the smartwatch.

Another dangerous permission that has been requested by many
smartwatch apps is BODY_SENSORS. This permission allows an app
to access data from sensors that the users uses to measure what
is happening inside their body, such as heart rate. The apps that
require this permission mainly fall in Health & Fitness and Person-
alization categories. While it seems more legitimate for the apps
in the former category to access the sensor data, Personalization
apps do not have a convincing reason to access these data. After re-
viewing the Personalization apps that requested the BODY_SENSORS
permission, we found that all of them are watch face apps that
display the health data, such as the steps walked on the day, as an
additional feature.

Permissions in Smartphone and Smartwatch apps. The av-
erage number of permissions found in a smartphone app is 17,
which is more than twice as the permissions found in a smartwatch
app with an average of 7 permissions declared. Figure 5 shows a
break down of the permission distribution by category. It can be
observed that, in all categories, the permissions in phone apps are
approximately twice as many as the ones in watch apps. Apps in
most categories exhibit a similar number of permissions declared in

50 4 B Smartphone
3 Smartwatch

w
.g 40 A
a
€
< 30
o
bS]
g 20
Qo
E i
3
Z 10 é I'.T['I %

0 @

. N
PO - RS S I S -)
2 > Q & 2 P <5 <0 2 e

RY \s 9 S AT © 4 &

S B 2 AN & N
& & N & < &

§ A\ \2@’0 < &

Figure 5: Distribution of the number of permissions in smartphone
and smartwatch apps by category.

40 ——
_ B Smartphone
351 [Smartwatch
2 30
o
@ 25
£
2 20
—
o
5 151
Q
g 10 A
=z
5 1
o] J

Standalone Companion

Figure 6: Distribution of the number of permissions in the stan-
dalone and companion apps.

each of them (i.e., 9~25 and 2~12 in their phone versions and watch
versions, respectively). However, apps from the Communication
category requires more than twice as many as permissions (i.e.,
35 in the smartphone version, and 15 in the smartwatch version)
on average in each of them. We took an in-depth look at the apps
from the Communication category, and found that some permis-
sions, such as writing and reading contacts, sending and receiving
SMS/MMS, making phone calls, reading and writing the badges
(i.e., showing the count of messages in the app icon), accessing
the camera, and recording the voice are much intensively used in
communication apps than other categories, and these permissions
are highly related to the core functionalities of the communication
apps such as sending/receiving messages, making phone calls, etc.
The permissions that have been most frequently removed from the
smartwatch versions in all categories are in-app billing, receiving
notification when the system finishes booting, accessing location,
writing to external storage, and accessing WiFi states. This result is
also aligned with the observations that on smartwatch apps, power-
intensive functions such as getting location information are usually
removed.

Permissions in Standalone and Companion Apps. Figure
6 shows the average number of permissions in standalone and

1489

companion smartwatch apps. The average numbers of permissions
in standalone and companion apps are 9 and 5 per app, respectively,
demonstrating that standalone apps tend to use more permissions
than the companion apps. Actually, companion apps can hand
over functions such as getting/authenticating accounts, reading
sync settings/stats, and accessing location data to their smartphone
counterpart, hence, they do not require such permissions on their
own. On the other hand, standalone apps need to request these
permissions to function independently.

Answer to RQ1

e 40% resource files are reused when developing cross-
platform apps.

e More than twice as many as permissions are required in
the smartphone apps than their smartwatch counterparts.

o Standalone watch apps tend to require more permissions
than companion watch apps.

4.2 RQ2: Code Similarity (Syntax)

Developing a smartwatch app can be as complex as developing a
brand new app from scratch, or it can be as simple as copy and
paste the code from their smartphone counterparts. The smart-
phone version and smartwatch version of an app usually have
similar functionalities, however, due to the differences in hardware
capacity, tasks that can be carried out on the smartwatch and the
smartphone are different. Therefore, investigating how similar/dif-
ferent the code is in both platforms helps researchers and developers
better understand the relationships between smartphone apps and
smartwatch apps, and also is a preliminary but essential step to-
wards developing any smartphone-to-smartwatch app migration
strategy.

We investigate the similarity of code in smartphone and smart-
watch app pairs from both the component and the method levels.
Android components are the core building blocks of an Android
app, which have well defined life cycles. The components include
Activity (i.e., a User Interface with back-end class to handle the
action performed on User Interface), Service (i.e., a back-end class
with no User Interface), Broadcast Receiver (i.e., a component re-
ceives and handles broadcast intents from the Android system or
other apps), and Content Provider (i.e., a component stores shared
data of an app that can be accessed by other apps). The methods
are the code blocks to perform certain actions, and will be executed
when it is invoked. Comparing the component and the method level
similarities can well indicate the code similarity between app pairs.

We leverage SimiDroid [18], a tool that compares the pairwise
similarities and differences between Android apps. SimiDroid firstly
processes the app pairs and represents them in a set of key/value
mappings. Depending on the comparison level (i.e., component or
method), different features are extracted to form their own keys and
values. For component-based comparison, SimiDroid extracts the
component name as the key, and other information (e.g., action, data,
and category) that represents the characteristics of a component as
the value. In method-based comparison, SimiDroid transforms code
statements into an intermediate representation named Jimple [28].
Method names are then used as the keys, and types of the statements

1.01 I Standalone
3 Companion
0.8
L 0.6 1
o
L)
2]
€
» 0.4
0.2
00 - l ——

Component Method

Figure 7: SimiScore of the standalone and companion app pairs

(i.e., if-statement, assign-statement) are used as the values. The
extracted key/value mapping pairs (map1, mapz) are then compared
based on the following metrics: (1) identical, where there is an
exact match between compared key/value pairs; (2) similar, where
the compared pairs have the same key but different value; (3) new,
where the key exists only in map; (i.e., the component/method only
exists in the smartwatch version); and (4) deleted, where the key
only exists in maps (i.e., the component/method only exists in the
smartphone version). Finally, the similarity score is calculated as:

identical identical

similarity = max ,
y {total —new total — deleted

where
total = identical + similar + new + deleted

Table 3 shows the average number of each component category
in a smartphone app and a smartwatch app. The result suggests
that the number of components in a smartphone app is much larger
than that in a smartwatch app. This is in line with the intuition that
the smartphone apps are usually more complex than a smartwatch
app, given their differences in hardware capacities. Specifically, the
number of Ul screens (i.e., activities) in a smartwatch app is approx-
imately a quarter of that in a smartphone app, while the number of
functions running in the background (i.e. services) in a smartwatch
app is approximately a half of that in a smartphone app. This result
indicates that though an app’s smartwatch version reduced both
the number of activities and services, it tends to remove more fore-
ground activities than background services. One possible reason
may be that from the developers’ perspective, compared with the
limited computational power, the screen size of the smartwatches
may have more impact on how users use the apps.

A further look into the smartwatch apps shows that the number
of components in the standalone apps is much greater than the
companion apps. The reason could be that the standalone apps
would need to run all the functions on its own, while the companion
apps can hand over some tasks to their smartphone counterparts
and reduce its complexity.

Figure 7 presents the similarity score between the smartphone
and smartwatch app pairs. The similarity score indicates the frac-
tion of identical components and methods between the smartphone
and the smartwatch versions. As reported, the standalone app pairs
has higher similarity score than the companion app pairs. There
are, on average, 43% components in the standalone smartwatch

1490

1.0 B Component
3 Method
0.8 1
® 0.6 H
o
O
2]
£
» 0.4
0.2 1 !
0.0 A
Q & N o QL O . o] >
6\‘\9 ,06‘ &oo QO(* '6‘\0 ob\ ’b&\o .Q,‘v ?’Qb \9("
SR F &S S e
S NS L o S
Q¢ ((\@ & o {& '8\
& N Y P N

Figure 8: SimiScore of app pairs by category.

Table 3: Average number of components in smartphone apps and
smartwatch apps.

Activity Service Broadcast Content

Y Receiver Provider
Phone — 42 17 12 5
Standalone 15 8 3 1
Watch Companion 7 4 2 1

apps and their smartphone counterparts are identical. This number
is decreased to 32% for the companion app pairs. Similar trends can
be discovered in the method-level comparison, where 36% and 19%
of the methods are directly copied from the smartphone apps to
their smartwatch version of standalone and companion app pairs,
respectively. This observation suggests that despite the differences
in the hardware and functionality, certain amount of code can be mi-
grate from the smartphone version to the smartwatch without any
alteration. A standalone smartwatch app is usually a mini version
of a smartphone app to some extent, which tends to have identi-
cal functions of its smartphone version, therefore has more code
reused from the smartphone version. On the other hand, instead of
performing the same task, a companion smartwatch app may work
as an assistant to the smartphone counterpart, therefore is likely to
have less identical methods than the standalone ones.

Table 4 shows a detailed view of average percentage of identical,
similar, and new components/methods of a smartwatch app com-
pared with its smartphone counterpart. Despite the components and
methods that are identical in both apps, most other components and
methods are newly added (i.e., with a different component/method
name) rather than modified from existing ones. This finding indi-
cates that developers either exact the same component/method or
write completely new component/method, rather than modify part
of the code inside a component/method.

Figure 8 shows a breakdown of component/method similarities
into different app categories. The component and method level
similarities in all categories do not exhibit huge differences, ex-
cept for the apps in Personalization category, whose method-level
SimiScore is significantly higher than the other categories. After

103

B Smartphone
[Smartwatch
@
[=
8 2
3 10 4
2
c
%
>
w
—
o
9] 1
g 10!
£
3
2
100_
Roallite) 2 2 (2 ¢ N & > & 4
&° &o\% S Y OO O ¢ R AR
S &8 & R &
F VS S S & & O
& & & & & s
& &V S e
% RS >
g L&
¥ ®

Figure 9: Average number of top 12 user-input event-listeners in
each smartphone and smartwatch app (y-axis in log scale)

reviewing all the Personalization app pairs, we find that most func-
tions provided by both versions are identical. This phenomenon
only appears in Personalization apps because their functions are rel-
atively simple (i.e., showing different watch face), therefore, there
is little difference in their smartphone and smartwatch versions.

e Smartwatch apps are much less complicated than their
smartphone counterparts in terms of User Interfaces and
functionalities.

e Approximate 40% components and 30% methods are
reused when developing cross-platform apps.

e Standalone watch apps reuse slightly more code (~6%)
than companion apps.

4.3 RQ3: Code Similarity (User Interactions)

Android is an event-driven system, and most of the back-end meth-
ods are triggered by user interaction. To discover the differences in
user interaction in smartphone and smartwatch apps, we analyze
the callback event management approaches in the apps.

An event listener contains a callback method that will be invoked
when users triggered specific widgets in the User Interface (UI). For
example, the OnClickListener is triggered when the user clicked a
widget in the UI (e.g., a button). Most event listeners are associated
with and triggered by user interactions. By analyzing the event
listeners in the apps, we are able to discover how the logic of users’
interaction differs in the apps. To retrieve the input event listeners
in an app, we decompile the bytecode to Java source code using
JADX 3, and search for the presence of event listeners of user input
provided in official Android documentation [2].

Figure 9 compares the top 12 user-input event-listeners in smart-
phone and smartwatch apps. As illustrated, click event is the mostly

involved user-input method on both smartphones and smartwatches.

Shttps://github.com/skylot/jadx

1491

10?

I Standalone
[Companion

101 4

Number of Event-Listener

100 4

Figure 10: Average number of top 12 user-input event-listeners
in each standalone and companion smartwatch app (y-axis in log
scale)

Table 4: Detailed Simidroid results.

Component Method
Identical Similar New Identical Similar New
Standalone 43.08% 1.03% 55.88% 33.44% 5.13% 61.43%
Companion 38.25% 2.44% 59.30% 26.23% 6.47% 67.31%

On average, each smartphone app has 265 OnClickListener reg-
istered, which is more than five times as many as the one reg-
istered in a smartwatch app (i.e., 51). Overall, phone apps have
more user-input event-listeners registered than watch apps, sug-
gesting that the number of user interactions on a smartwatch app
are much less than that on a smartphone app. An exception is the
OnScrollChangelistener, with on average one declared in smart-
phone apps and two in smartwatch apps. This is in line with the
observation that smartwatch has much smaller screen size, there-
fore requires users to scroll more commonly to see all of the content
on a page, for example, a long contact list.

Figure 10 presents the usage of the same event listeners in the
standalone and companion smartwatch apps. It is interesting to
find that the standalone apps always have more event listeners
registered than companion apps. For example, the average number
of OnClickListener on each standalone watch app is 60, while
this number decreases to 33 on companion apps. The reason may
be that some functions on companion apps are processed on the
smartphone counterpart, therefore requires less interactions with
users.

Answer to RQ3

e User interactions have been significantly reduced (i.e.,
five times less) in the smartwatch apps compared with
their smartphone counterparts.

e Standalone watch apps involve more (i.e., two times
more) user interaction than companion watch apps.

5 DISCUSSION

This section discusses implications of this study and promising
research directions. We also enumerate some potential threats to
validity in our findings.

Implication The findings of this study raise a number of issues
and opportunities for the research and practice communities.

Possibility of automatic migration. As unveiled in our empirical
results, approximately 25% to 35% of the code in the smartwatch
apps are directly copied from their smartphone version, and 40% of
the resources are reused in both versions. Given the gap in numbers
between the smartphone apps and smartwatch apps in the market
and the popularity of the smartwatch, there is a huge demand in
creating smartwatch versions of the smartphone apps. Creating
an automatic tool to migrate smartphone apps to smartwatch can
benefit the app developers and contribute to the ecosystem of An-
droid. Our empirical study can serve as a preliminary step in such
an automatic migration tool.

Smartwatch apps are more than only the “simplified” version of
smartphone apps. It has been commonly assumed that the smart-
watch version of an app is usually a simplification of the smartphone
version. Through analyzing the collected phone/watch app pairs,
we found that smartwatch apps may request additional permissions
(cf. RQ1) and add additional functions and new user interactions
(cf. RQ2) to their smartphone counterparts. The characteristics of
standalone and companion watch apps are also different, which
can suit different app developers’ requirements who want to create
a smartwatch version of their app.

Threat To Validity Our study is conducted based on limited
number of phone/watch app pairs, which may not be representative
for the whole smartwatch ecosystem. Nevertheless, the majority of
our dataset was collected from top 200 watch apps from the official
Google Play Store, which demonstrate the landscape in popular
apps. We plan to extend this work to analyze a more comprehen-
sive dataset of watch apps in our future work. Furthermore, static
analysis are known for its intrinsic vulnerability against code obfus-
cation, reflection, and dynamic loading [22]. Our analysis of code
similarity (cf. RQ2) is based on static analysis, therefore, may be
inaccurate it contains obfuscated code, java reflection, or dynamic
loading. However, code obfuscation are more likely to be found
in malware rather than benign apps [9]. Moreover, reflection and
dynamic loading will not affect the similarity comparison of ap-
plication code (e.g., if both apps calls DexClassLoader () in their
code for dynamic loading, it is also an indication of similarity).

6 RELATED WORK

Previous research have performed extensively studies on large-
scale analysis on the metadata and code of mobile apps. However,
the characteristics of smartwatch apps have not yet been well in-
vestigated. To the best of our knowledge, our work is the first
comparative analysis between an app’s smartphone version and
smartwatch version.

Metadata analysis. Large scale studies have been performed
on analyzing the metadata of mobile apps [13, 15, 19]. Ali et al.
[4] conducted a cross-platform study on apps’ iOS version and
Android version. They collected 80,169 pairs of iOS and Android

1492

apps and analyze the differences in user’s ratings and reviews of
the same app in Apple app store and Google Play store. Wang et
al. [30] characterized more than 1 million mobile app developers
and the apps they developed, across official Google Play store and
16 alternative app stores, and compared the developer’s behaviors
of developing, releasing, and maintaining the apps, as well as their
misbehavior. Tian et al. [27] investigated the factors of making a
high-rated apps compared with low-rated apps from Google Play
store. They identified 17 key factors that have most impact on the
app ratings, including the size of the app, the number of promotional
images, and the target SDK version, etc. Carbunar et al. [8] observed
160,000 apps on Google Play store over a period of six months. They
conducted temporal analysis on how the characteristics of these
apps changed with the increased number of downloads.

Code analysis. Many research efforts have been focused on
code level analysis of mobile apps [17, 22]. Syer et al. [26] presented
a comparative study of 15 open-source Android apps with 5 open-
source desktop applications on the code level. The issues have been
investigated include the size of the code bases and the time taken to
fix bugs in the projects. Similar works also studied the differences of
bug fix on iOS and Android [5, 6]. Chia et al. [10] conducted a cross-
platform study on usage of user-consent permissions in mobile
apps and web apps. The scope of this study includes facebook apps,
chrome extensions, and Android apps. Other works focused on
analyzing the evolution of Android permission model and usage.
Calciati et al. [7] studied over 14,000 releases of 227 Android apps,
focusing on the change in permission usage in each update of
the apps. A similar work [31] also include the study of Android
permission system itself (from API level 3 to 15), and pre-installed
apps from various vendors (HTC, Motorola, Samsung, and LG).
The analysis of how third-party libraries are used in Android apps
also attracts researcher’s attention. Some studies have shown that
third-party library are widely used in Android apps, and large
portion of these libraries have many issues such as outdated and
over-privileged [12, 23, 29]. Other code level analysis also include
the code reuse in mobile apps and third-party libraries [14, 20, 21,
24, 25].

7 CONCLUSION

In this work, we have conducted an exploratory study of the re-
lationship between the smartwatch and smartphone versions of
Android apps. In particular, we have analyzed the collected app
pairs from both non-code and code perspectives. Our experimen-
tal investigation finds that (1) Up to 40% of resource files (e.g.,
images, Ul layouts, etc.) and 30% of code are reused between smart-
phone/watch app pairs, (2) Smartphone apps may require more
than twice as many as permissions and adopt more than five times
as many as user interactions than their watch counterparts, and (3)
Smartwatch apps can be released as either standalone or companion
versions depending on whether they can function independently.
Standalone apps tend to request more permissions and reuse more
code than companion apps.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council (ARC)
under a Discovery Early Career Researcher Award (DECRA) project

DE200100016, and a Discovery project DP200100020. This work was
also partially supported by the National Natural Science Foundation
of China (Grant No.61802180), the Natural Science Foundation of
Jiangsu Province (Grant No.BK20180421), the National Cryptogra-
phy Development Fund (Grant No.MMJJ20180105).

REFERENCES

(1]

[10]

[11]
[12]

[13]

[14]

[15]

Comparative study of smartphone and smartwatch app pairs: Dataset. https:
//github.com/shell-coding/Phone-Watch- App-Pairs.

Input events overview. https://developer.android.com/guide/topics/ui/ui-events,
2019. [Accessed May 26, 2020].

Smartwatch shipments worldwide from 2018 to 2023. https://www.statista.com/
statistics/878144/worldwide-smart- wristwear- shipments-forecast/, 2019. [Ac-
cessed May 26, 2020].

Mohamed Ali, Mona Erfani Joorabchi, and Ali Mesbah. Same app, different app
stores: A comparative study. In MOBILESoft, pages 79-90. IEEE, 2017.

Wajdi Aljedaani, Meiyappan Nagappan, Bram Adams, and Michael Godfrey. A
comparison of bugs across the ios and android platforms of two open source
cross platform browser apps. In MOBILESoft, pages 76-86. IEEE, 2019.

Pamela Bhattacharya, Liudmila Ulanova, Iulian Neamtiu, and Sai Charan Koduru.
An empirical analysis of bug reports and bug fixing in open source android apps.
In 2013 17th European Conference on Software Maintenance and Reengineering,
pages 133-143. IEEE, 2013.

Paolo Calciati and Alessandra Gorla. How do apps evolve in their permission
requests? a preliminary study. In 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR), pages 37-41. IEEE, 2017.

Bogdan Carbunar and Rahul Potharaju. A longitudinal study of the google app
market. In Proceedings of the 2015 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining 2015, pages 242-249, 2015.

Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang
Xiang, and Kui Ren. Android hiv: A study of repackaging malware for evading
machine-learning detection. IEEE Transactions on Information Forensics and
Security, 15:987-1001, 2019.

Pern Hui Chia, Yusuke Yamamoto, and N Asokan. Is this app safe? a large scale
study on application permissions and risk signals. In Proceedings of the 21st
international conference on World Wide Web, pages 311-320, 2012.

J. Clement. App stores: number of apps in leading app stores 2020, May 2020.
Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. Keep me
updated: An empirical study of third-party library updatability on android. In
CCS, pages 2187-2200, 2017.

Jun Gao, Li Li, Pingfan Kong, Tegawendé F Bissyandé, and Jacques Klein. Should
you consider adware as malware in your study? In IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER 2019), 2019.

Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn Song.
Juxtapp: A scalable system for detecting code reuse among android applications.
In DIMVA, pages 62-81. Springer, 2012.

Yangyu Hu, Haoyu Wang, Ren He, Li Li, Gareth Tyson, Ignacio Castro, Yao
Guo, Lei Wu, and Guoai Xu. Mobile app squatting. In Proceedings of The Web
Conference 2020, pages 1727-1738, 2020.

1493

[16

[18

(19]

[20]

[21]

(23]

[24

[25

[26

[28

[29

(30]

(31]

Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. Real challenges in
mobile app development. In 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 15-24. IEEE, 2013.

Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques
Klein. Automated testing of android apps: A systematic literature review. IEEE
Transactions on Reliability, 2018.

Li Li, Tegawendé F Bissyandé, and Jacques Klein. Simidroid: Identifying and
explaining similarities in android apps. In 2017 IEEE Trustcom/BigDataSE/ICESS,
pages 136-143. IEEE, 2017.

Li Li, Tegawendé F Bissyandé, and Jacques Klein. Moonlightbox: Mining an-
droid api histories for uncovering release-time inconsistencies. In The 29th IEEE
International Symposium on Software Reliability Engineering (ISSRE 2018), 2018.
LiLi, Tegawendé F Bissyandé, and Jacques Klein. Rebooting research on detecting
repackaged android apps: Literature review and benchmark. IEEE Transactions
on Software Engineering (TSE), 2019.

Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An investigation
into the use of common libraries in android apps. In The 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER 2016), 2016.
Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Le Traon. Static analysis of android
apps: A systematic literature review. Information and Software Technology, 88:67—
95, 2017.

LiLi, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David Lo,
and Lorenzo Cavallaro. Understanding android app piggybacking: A systematic
study of malicious code grafting. IEEE Transactions on Information Forensics &
Security (TIFS), 2017.

Israel J Mojica, Bram Adams, Meiyappan Nagappan, Steffen Dienst, Thorsten
Berger, and Ahmed E Hassan. A large-scale empirical study on software reuse in
mobile apps. IEEE software, 31(2):78-86, 2013.

Israel] Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E Hassan.
Understanding reuse in the android market. In 2012 20th IEEE International
Conference on Program Comprehension (ICPC), pages 113-122. IEEE, 2012.

Mark D Syer, Meiyappan Nagappan, Ahmed E Hassan, and Bram Adams. Revis-
iting prior empirical findings for mobile apps: An empirical case study on the 15
most popular open-source android apps. In CASCON, pages 283-297, 2013.
Yuan Tian, Meiyappan Nagappan, David Lo, and Ahmed E Hassan. What are
the characteristics of high-rated apps? a case study on free android applications.
In 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 301-310. IEEE, 2015.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot: A java bytecode optimization framework. In CASCON
First Decade High Impact Papers, pages 214-224. 2010.

Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li Li,
Juan Tapiador, Jingcun Cao, and Guoai Xu. Beyond google play: A large-scale
comparative study of chinese android app markets. In IMC, pages 293-307, 2018.
Haoyu Wang, Xupu Wang, and Yao Guo. Characterizing the global mobile app
developers: a large-scale empirical study. In MOBILESoft, pages 150-161. IEEE,
2019.

Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. Permission
evolution in the android ecosystem. In Proceedings of the 28th Annual Computer
Security Applications Conference, pages 31-40, 2012.

https://github.com/shell-coding/Phone-Watch-App-Pairs
https://github.com/shell-coding/Phone-Watch-App-Pairs
https://developer.android.com/guide/topics/ui/ui-events
https://www.statista.com/statistics/878144/worldwide-smart-wristwear-shipments-forecast/
https://www.statista.com/statistics/878144/worldwide-smart-wristwear-shipments-forecast/

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20200106120622
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

