
Poster: On Vulnerability Evolution in Android Apps
Jun Gao1, Li Li2, Pingfan Kong1, Tegawendé F. Bissyandé1, Jacques Klein1

1 Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
2 Faculty of Information Technology, Monash University, Australia

ABSTRACT
In this work, we reconstruct a set of Android app lineages which
each of them represents a sequence of app versions that are histor-
ically released for the same app. Then, based on these lineages,
we empirically investigate the evolution of app vulnerabilities,
which are revealed by well-known vulnerability scanners, and sub-
sequently summarise various interesting findings that constitute a
tangible knowledge to the community.
ACM Reference Format:
Jun Gao1, Li Li2, Pingfan Kong1, Tegawendé F. Bissyandé1, Jacques Klein1
. 2018. Poster: On Vulnerability Evolution in Android Apps. In ICSE ’18
Companion: 40th International Conference on Software Engineering Compan-
ion, May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3183440.3194968

1 INTRODUCTION
Vulnerabilities of mobile apps, in general, and of Android apps,
have been studied from various perspectives in the literature. Secu-
rity researchers have indeed provided comprehensive analyses [1]
of specific vulnerability types, establishing how they could be ex-
ploited and to what extent they are spread in markets at the time
of study. The community has also contributed to improve the secu-
rity of the Android ecosystem by developing security vulnerability
finding tools [2] and by proposing improvements to current secu-
rity models [3]. Unfortunately, whether these efforts have actually
impacted the overall security of Android apps, remains an unan-
swered question. Along the same line of questions, little attention
has been paid to the evolution of vulnerabilities in the Android
ecosystem: which vulnerabilities developers have progressively
learned to avoid? have there been trends in the vulnerability land-
scape? Answering these questions could allow the community to
focus its efforts to build tools that are actually relevant for devel-
opers and market maintainers to make the mobile market safer for
users.

Investigating the evolution of vulnerabilities in Android apps is
however challenging. In the quasi totality of apps available in the
marketplace, the history of development is a fleeing data stream:
at a given time, only a single version of the app is available in the
market; when the next updated version is uploaded, the past version
is lost. A fewworks [4, 5] involving evolution studies have proposed
to “watch” a small amount of apps for a period of time to collect
history versions. Such studies are however often biased towards

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3194968

excessively popular apps, which are written by highly-skilled and
experienced teams. In this work, we set to perform a large scale
investigation on how vulnerabilities evolve in Android apps.

2 EXPERIMENT SETUP
2.1 Terminology
An apk represents a released package of an app. All apks in our
dataset are uniquely identified based on their hash. App version is
used in our work to refer to a specific apk released in the course of
development of an app. We then use both terms (apk and version)
interchangeably. Finally, we define an app lineage as the consecu-
tive series of its versions. In this work, a lineage may include only a
subset of the apks that the app developers have released since our
dataset, although massive, is not exhaustive.

2.2 App Dataset
AndroZoo currently hosts a dataset of over 5.5 millions distinct app
packages (apks) from markets including the official Google Play
store. According to its own description [6], apks are continuously
collected to keep up with the evolution of apps in the Android
ecosystem. API is provided to the community to download.

We now describe the process (illustrated in Figure 1) which we
have unfolded to re-construct app lineages from AndroZoo’s data
heap. We consider four steps to (1) first conservatively identify
unique apps, and (2) then link and order their app versions (i.e.
apks) into a set of lineages. The objective is to maximize precision
(i.e., a lineage will only contain apks which are actually different
versions of the same app) even if recall may be penalized (i.e., not
all apk versions might be included in a lineage). Indeed, missing a
few versions will not threaten the validity of our study as much as
linking together unrelated apps.

Extraction of 
App IDs

App Clustering
by Certificate

App Clustering 
by Market

Sorting Apps 
by Version

…
…

..

Figure 1: App Lineages Re-construction Process.

To avoid toy apps, we set a threshold of at least 10 apks before
considering a lineage in our study. Overall, we were able to identify
28,564 lineages: the median size of the selected lineages is 13 apks
and the total number of apks are 465,037.

2.3 Vulnerability Scanning
Vulnerabilities, also known as security-sensitive bugs, can be stati-
cally detected based on rules modeling vulnerable code patterns.

https://doi.org/10.1145/3183440.3194968
https://doi.org/10.1145/3183440.3194968


ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Jun Gao et al.

They are typically diverse in the components that are involved, the
attack vector that is required for exploitation, etc. In this work, we
focus on selecting common vulnerabilities with a severity level that
justifies that they are highlighted in security reports and in previous
software security studies. Before enumerating the vulnerabilities
considered in our work, we describe the vulnerability scanning
tools (a.k.a. scanners) that we rely upon to statically scan Android
apps.

We stand on three state-of-the-art, open source and actively used
scanners: FlowDroid, AndroBugs, and IC3.
• FlowDroid [7] – In the literature on Android, FlowDroid has
imposed itself as a highly reputable framework for static taint
analysis. It has been used in several works for tracking sensitive
data flows which can be associated to private data leaks. The tool
is still actively maintained.

• AndroBugs [8] was first presented at the BlackHat security
conference, after which the tool was open sourced. This static
scanner was successfully used to find vulnerabilities and other
critical security issues in Android apps developed by several
big players: it is notably credited in the security hall of fame of
companies such as Facebook, eBay, Twitter, etc.

• IC3 [9] is a state-of-the-art static analyzer focused on resolv-
ing the target values in intent message objects used for inter-
component communication. The tool, which is maintained at
Penn State University, can be used to track unauthorized Intent
reception, Intent spoofing attacks, etc.
Table 1 summarises the vulnerability checks that we focus on,

in accordance with the capabilities of selected scanners. Overall,
we consider 10 vulnerability types. Although, the scanners report
various alarms, we carefully selected those that represented vulner-
abilities in app with a high level of criticality if exploited.

Table 1: List of Considered Vulnerabilities.
Type Vulnerability checking description Scanner

Security features

SSL_Security

SSL Connection AndroBugs
SSL Certificate Verification AndroBugs
SSL Implementation (Verifying Host Name in Fields) AndroBugs
SSL Implementation (Verifying Host Name in Custom Classes) AndroBugs
SSL Implementation (WebViewClient for WebView) AndroBugs
SSL Implementation (Insecure component) AndroBugs

Encryption Base64 String Encryption AndroBugs
KeyStore KeyStore Protection AndroBugs

Permissions, privileges, sandbox, access-control
Permission App Sandbox Permission AndroBugs
IntentFilter Unauthorized Intent Reception IC3

Injection flaws

Command Runtime Command AndroBugs
Runtime Critical Command AndroBugs

WebView WebView RCE Vulnerability AndroBugs
Fragment Fragment Vulnerability AndroBugs

Data and Communication Handling
Intent Intent Spoofing IC3
Leak Sensitive Data Flow FlowDroid

2.4 Methodology
Each of the vulnerability scanners outputs its analysis results in
an ad-hoc format. We build dedicated parsers to automatically
extract relevant information for our study. For the evolution study,
we consider the analysis results for consecutive apk pairs in the
lineages that we have re-constructed. Vulnerable pieces of code

are extracted at the method and class levels following the locations
indicated by the vulnerability scanners. These vulnerable pieces
of code are collected and released as a valuable artefact for the
community. Finally, we collect information on fix changes in a
simple, although potentially coarse-grained, manner: given the
analysis results for an apk v1 and its successor v2 in a lineage, we
track the differences in terms of vulnerability locations; when a
given vulnerability type is identified in a location but is no longer
reported at the same location, we compute the change diff between
the two apk versions and refer to it as vulnerability fix changes.

3 RESULTS
Our investigation into the vulnerability evolution in Android apps
has revealed several interesting findings:

• Our analyses did not uncover any vulnerability bubble in the
history of app markets. Instead, we note that vulnerabilities
have always been widespread among apps and across time.

• Our large scale investigation of app lineages shows that
apps do not get safer as they get updated: in general most
vulnerabilities survive developer updates, and often times,
new vulnerabilities are introduced by updated code.

• Vulnerability regressions occur in Android apps. This sug-
gests an opportunity for the community to port regression
testing techniques to address vulnerabilities detection during
app updates.

• Third-party library code threatens the app security. This find-
ing suggests that more focus should be given on the analysis
of libraries towards a safer ecosystem. Market maintainers
could draw policies rejecting apps using non-vetted libraries.

• Vulnerable apks could be updated into malicious versions
later in the app lineage.

REFERENCES
[1] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre

Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. Static analysis of android
apps: A systematic literature review. Information and Software Technology, 2017.

[2] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. Iccta: Detecting inter-component privacy leaks in android apps. In Proc.
of the 37th Intl. Conference on Software Engineering-Volume 1, pages 280–291. IEEE
Press, 2015.

[3] Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih, Kangjie Lu, Cong Zheng, Ruian
Duan, Yeongjin Jang, Byoungyoung Lee, Chenxiong Qian, et al. Toward engineer-
ing a secure android ecosystem: A survey of existing techniques. ACM Computing
Surveys (CSUR), 49(2):38, 2016.

[4] Vincent F Taylor and Ivan Martinovic. To update or not to update: Insights from
a two-year study of android app evolution. In Proc. of the 2017 ACM on Asia
Conference on Computer and Communications Security, pages 45–57. ACM, 2017.

[5] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein. Accessing
inaccessible android apis: An empirical study. In The 32nd Intl. Conference on
Software Maintenance and Evolution (ICSME 2016), 2016.

[6] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F Bissyandé, Alexandre
Bartel, Jacques Klein, and Yves Le Traon. Androzoo++: Collecting millions of
android apps and their metadata for the research community. arXiv preprint
arXiv:1709.05281, 2017.

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[8] Yu-Cheng Lin. Androbugs framework: An android application security vulnera-
bility scanner. In Blackhat Europe 2015, 2015.

[9] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick Mc-
Daniel. Composite constant propagation: Application to android inter-component
communication analysis. In Proc. of the 37th Intl. Conference on Software
Engineering-Volume 1, pages 77–88. IEEE Press, 2015.


	Abstract
	1 Introduction
	2 Experiment Setup
	2.1 Terminology
	2.2 App Dataset
	2.3 Vulnerability Scanning
	2.4 Methodology

	3 Results
	References

