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Abstract—App updates and repackaging are recurrent in the
Android ecosystem, filling markets with similar apps that must
be identified and analyzed to accelerate user adoption, improve
development efforts, and prevent malware spreading. Despite
the existence of several approaches to improve the scalability of
detecting repackaged/cloned apps, researchers and practitioners
are eventually faced with the need for a comprehensive pairwise
comparison to understand and validate the similarities among
apps. This paper describes the design of SimiDroid, a framework
for multi-level comparison of Android apps. SimiDroid is built
with the aim to support the understanding of similarities/changes
among app versions and among repackaged apps. In particular,
we demonstrate the need and usefulness of such a framework
based on different case studies implementing different analyzing
scenarios for revealing various insights on how repackaged apps
are built. We further show that the similarity comparison plugins
implemented in SimiDroid yield more accurate results than the
state-of-the-art.

I. INTRODUCTION

Android OS has attracted a considerable number of devel-
opers and users in recent years. App markets are thus now
filled with millions of diversified Android apps offering similar
functionalities. While many of such apps are revised versions
of one another that are distributed by the same developers
to meet user requirements on updated functionalities or to
adapt to third-party market opportunities, a large proportion
of apps however represent cloned or repackaged versions built
by third party developers to redirect advertisement revenues or
to efficiently construct and spread malware [1].

The literature has recently proposed a large body of works
dealing with the detection of cloned/repackaged apps in the
Android ecosystem [2]-[4]. Such works generally output a
verdict (Yes/No) on whether an app is a repackaged version
of another, without actionable details on how the decision
was made and where the similarity lies. Yet, there is a
need in the research, development and even user communities
for understanding the differences among app versions. For
example, market maintainers and users often need to identify
what has been modified in the latest app release, in order
to ensure that the updated code is in line with the “what’s
new” descriptions. Developers can benefit from casual impact
analyses assessing whether some specific modifications may
impact app ratings. Finally, researchers can build change
recommendation approaches by mining app versions, and
propose detection approaches for locating malicious payloads
in repackaged malware samples.

Unfortunately, the state-of-the-art on repackaged/clone app
detection builds on internal heuristics are tedious to replicate,
while the associated prototype tools are not available for
furthering research in these directions [5]. Most of repack-
aged app detection works [3], [6] indeed do not come with
reusable tools for the research community. To the best of
our knowledge, Androguard [7] and FSquaDRA [8] are the
main publicly available tools for app similarity analysis. The
former performs pairwise comparison at the Dalvik bytecode
level while the latter conducts its similarity analysis based
on resource files. Both approaches however do not offer any
explanation on the differences among similar apps, thus failing
to provide opportunities for further analysis.
Detecting repackaged apps is a challenging endeavour. In
recent years, the community has focused on meeting market
scalability requirements with approaches that leverage fast
resource-based similarity comparisons or machine learning
techniques. Nevertheless, the results of such approaches must
eventually be vetted and further broken down via a pairwise
comparison of suspicious repackaging pairs.
In this work, we propose to fill the gap in repackaged app
research by designing and prototyping a framework for auto-
mated, comprehensive, multi-level identification of similarities
among apps with facilities for explaining the differences and
similarities. SimiDroid is designed as a plugin-based frame-
work integrating various comparison methods (e.g., code-
based comparison at the statement level or at the component
level, and resource-based comparison). By considering various
aspects in a pairwise similarity check, SimiDroid offers oppor-
tunities for a fine-grained comprehension of app updating and
repackaging scenarios.
Overall, in this paper, we make the following contributions:
e We present the design of SimiDroid, contributing with
a reusable tool to the community for detecting similar
Android apps and explaining the identified similarities at
different levels which can be further enriched via plugin
implementations. SimiDroid is publicly available at [9].

e We have implemented several similarity comparison
methods as plugins for the current release of SimiDroid.
These methods are borrowed from descriptions in
the state-of-the-art literature, covering code-based and
resource-based similarity comparisons.

« Finally, we investigate a number of case studies on real-

world apps to demonstrate the suitability of SimiDroid in
providing explanation hints for different usage scenarios.
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Fig. 1. An Overview of the Working Process of SimiDroid.
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Our objective is to provide to the community an extensible
framework for supporting the comprehension of similarities
among Android apps. The framework aims at contributing to
answer to questions such as “to what extent app X and app Y
are similar?” and “what are the changes that have been applied
to app X in order to build app Y?”. We expect the answers to
these questions to consider different aspects of Android app
packages and to propose different granularity of details.

We design SimiDroid as a plugin-based system which can
independently load various comparison techniques at different
levels. As introduced earlier, SimiDroid implements pairwise
comparison schemes to dissect the similarities and differences
among suspected updates of app pairs. Figure 1 illustrates
the overall working process in SimiDroid. Two apps are
provided as inputs and SimiDroid yields a similarity profile
and some explanation hints as output. The similarity profile
summarizes similarity facts relating to the similarity scores at
different levels. The explanation hints highlight the detailed
changes revealing the differences among the apps (e.g., string
encryption has been applied).

SimiDroid works in three steps by first extracting the
necessary features, then based on them to generate a similarity
profile for the compared two apps, and finally to mine changes
for providing hints for analysts to explain the similarities
(or dissimilarities). We now detail these three steps in Sec-
tion II-A, Section II-B, and Section II-C respectively.
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key/value concrete example:
key: setSortOrderSummary()

value: {InvokeStmt, AssignStmt|0, InvokeStmt|2131099690}

Fig. 2. The Working Process of a Plugin of SimiDroid. The key/value
Concrete Example is Extracted from App FFE44A, for which We will Provide
more Details on how the Value is Formed in Fig. 3.

A. Feature Extraction

A plugin implements a similarity computation approach by
providing heuristics for extracting the features that it considers
for comparing apps. In general, a SimiDroid plugin provides
a representation of an app as a set of key/value mappings of

Method-based Comparison

$r3 = $rl.getEntry(Q; $r3 = $ri.getEntry();
InvokeStmt == InvokeStmt
$r2[0] = $r3; $r2[e] = $r3;
AssignStmtl0 == AssignStmt|0
$r4 = $r0.getString(2131099690,52); $r4 = $r0.getString(2131034217,32);

= 131034217

Components Comparison

activity:bander. fileman. TextViewer

activity:bander. fileman.TextViewer
android.intent.action.EDIT:android.intent.action. VIEW == idi 9

android.intent.action.EDIT:android.intent.action.VIEW

Resources Comparison

res/layout/main.xml
[E40448C6ECED431A2FCC20017CCDE920 I=

res/layout/main. xml
0240F5D10CA2140B9D3866247A2FE5D3

Fig. 3. Examples on Method-based, Component-based, and Resource-based
Comparison. The Compared Two Apps are FFE44A (Left) and 1CA20C
(Right). The Code Snippet Shown in the Method-based Comparison block
is Extracted from Method setSortOrderSummary().

the selected features. Figure 2 illustrates the case of a plugin
considering code statements as features.

With this schema, SimiDroid offers a straightforward way
for practitioners to integrate new plugins implementing com-
parisons that take into account a variety of app aspects. In
practice, there are a few classes that could be extended (over-
riding some methods) to integrate the plugin logic (i.e., how
features are extracted) into the framework. Currently, we have
developed three different plugins in SimiDroid implementing
similarity computation following the aspects suggested by
the literature: method-based comparison, component-based,
and resource-based comparison. Fig. 3 showcases pairwise
comparison results on these aspects, for which we now detail
them as follows:

MPlugin - Method-based comparison: The first plugin
implements a common similarity computation method based
on app code, at the level of methods. We design the feature
extraction of this plugin to yield method signatures and ab-
stract representations of statements. The latter representations
are derived from statement’s type (e.g., if-statement,
invoke-statement) instead of the exact statement string.
These features have been introduced in previous work [1] not
only to implement fast pairwise comparison but also to be
resilient, to some extent, to obfuscation, i.e, the comparison
will not be impacted in cases where variable names differ but
will be impacted in cases where code structure changes (e.g.,
hide the real method call through reflection [10]). MPlugin
further extracts all constants (numbers and strings) as features
for comparison.

The first block of Fig. 3 presents a concrete example
on how method values (statement types in particular) are
formed and compared. By considering constant strings/num-
bers, SimiDroid is capable of identifying fine-grained changes.
For example, as shown in Fig. 3, SimiDroid spots that the
constant number in the getString() method call is different
between the pair of apps, giving hints for analysts on where
to focus to understand the motivation behind the change (e.g.,
the value of $r4 could eventually be changed).

CPlugin - Component-based comparison: The second plu-
gin extracts app features at the component level, where
key/value mappings are inferred from component names,
and other Android package information that are component
capabilities including action, which describes the type of



behaviour matched by the component (e.g., MAIN component)
and category, which specifies what the component represents
(e.g., LAUNCHER). CPlugin, although it appears to offer a
higher-level overview than MPlugin, can be leveraged to better
understand the types and capabilities of malicious piece of
code injected into piggybacked apps [1].

The second block of Fig. 3 presents a concrete example on
how components are compared. This comparison will identify
changes in the capabilities reported of an existing or a new
component, providing hints to further the analysis when there
is a suspicion on the mismatch between one app behaviour
and the capability exposed by the other. For example, if the
LAUNCHER component is switched from one component to
another, there is a hint of piggybacked app writer that intends
to divert user attention for triggering malicious code execution.

RPlugin - Resource-based comparison: The third plugin
builds on resource file comparisons to detect similar apps.
The assumption in the literature is that, during repackaging
and cloning, these files are unlikely to be modified. Although,
some recent experiments have shown that resource files can
be manipulated during app repackaging, such modifications
are generally not extensive. The feature extraction process
generates key/value mappings using hash values of the files’
content. RPlugin can thus identify when a resource file has
been ‘“compromised” (e.g., as shown in the third block of
Fig. 3, the resource files share the same name but have
different hashes).

B. Similarity Comparison

At the end of the feature extraction step, for a given pair of
Android apps (app1, appz), SimiDroid conducts the similarity
comparison on top of the two sets of extracted key/value
mappings (map; and maps). The computation is implemented
in SimiDroid to quantify and qualify the extent of similarity
between the pair of apps. We adopt the following four metrics
to measure similarity:

o identical, when a given key/value entry is matched
exactly the same in both maps. For example, given
key, € keys(map;), we consider it as identical as long
as it exists also in maps and its value is exactly the same
between the two compared maps, (i.e., map[key,| =
mapz[keys)).

« similar, when a given key/value entry slightly varies from
one app to the other in a pair, more specifically when
the key is the same but values differ. For instance, given
an entry from app; with key key, € keys(map;), we
consider it to be similar to an entry from apps when
key, exists also in map- but its value is different from
the one in map; (i.e., map;[key,] # maps[key.)).

« new, when a given key/value entry exists only in mapy
but not in map; . Thus, given a key key, € keys(maps),
we consider it as new as long as it does not exist in map;
(i.e., key, & keys(mapy)).

o deleted, when a given entry existed in map;, but is no
longer found in maps. For instance, give a key key, €

keys(mapy), we consider it as deleted as long as it does
not exist in maps (i.e., key, & keys(maps)).

Based on these metrics, we can now compute the similarity
score of the given two apps (appi, appz) using Formula 1.
Given a pre-defined threshold ¢, which can be computed based
on a set of known repackaging pairs, it is then possible to
conclude with confidence that the given two apps are similar
(i.e., similarity > t).

identical identical

ilarity —
similarity max{total T ew’ total — deleted}

(N
where

total = identical + similar + deleted + new 2)

We remind the readers that this similarity comparison step is
generic and common to all plugins. Thus, plugin developers do
not need to modify the implementation of this step for support-
ing the similarity analysis of their plugins. However, in order
to explain beyond the current metrics, which illustrates what
entries are kept, modified, newly added or deleted, developers
are enabled to extend this step as well for performing more
fine-grained similarity analyses and therefore providing more
detailed explanations.

C. Changes Mining

Finally, SimiDroid attempts to mine the changes, based on
the generated similarity profile, to provide hints for analysts
to quickly identify and thus explain the similarities between
compared Android apps. This changes mining module can-
not be fulfilled without the support of plugins integrated to
SimiDroid. Plugin developers are expected to provide neces-
sary auxiliary code in order to support this module to hunt for
changes. These auxiliary code can be added before or after
the similarity comparison. In order to achieve that, SimiDroid
provides callback methods for plugin developers to implement
(i.e., pre-comparison callback for such auxiliary code that
needs to be executed before the similarity comparison and
post-comparison callback for such auxiliary code that needs to
be executed after the comparison). As an example, in order to
perform a similarity analysis without considering the appear-
ance of common libraries for our method-based comparison
plugin, we implement a pre-comparison callback to exclude
common libraries, where the pre-comparison callback will be
excluded before the similarity comparison is conducted.

In the current implementation of MPlugin (i.e., the Method-
based comparison plugin), we have implemented a post-
comparison callback for inferring the changes between two
similar methods. Information on those changes can provide
fine-grained explanations on what has been modified between
the considered pair of apps and, to some extent, why those
changes are made. As a use case, given a pair of similar apps
(a1 — az), where as is a piggybacked version of a; with some
malicious payloads injected, by inferring the changes between
similar methods, we would be able to understand how the
injected malicious payloads are triggered.



Consider the example depicted in Listing. 1 representing a
code snippet extracted from an Android app whose sha256
starts with DB2CB6!. The added line (starting with ‘+ sym-
bol) is actually a hook, i.e., a piece of code injected to trigger
the malicious payload, during execution of original benign
code (here from an app whose sha256 starts with FFDESB).
This example illustrates that the malicious payloads could be
triggered by a single method call. By following the execution
path of this hook, analysts can locate the malicious payload
and understand the grafted malware behaviour.

For CPlugin (i.e., the Component-based plugin implemen-
tation), we have also implemented a post-comparison callback
to check if the newly added components have shared the same
capabilities as such of the original components. Doing so is
indeed suspicious since there is no need for a benign app
to implement several components with the same capabilities
(e.g., two PDF reader components in the same app). Consider
again the piggybacked app (DB2CB6) whose code excerpt was
provided in the previous example. The analysis has revealed
that this app has declared two broadcast receivers (cf. lines 1
and 8 of Listing 2) to be notified of both PACKAGE_ADDED
and CONNECTIVITY_CHANGE events. In other words, when
one of these two events comes, both components (receivers)
will be triggered to handle the events. Such a behaviour is
suspicious as in a typical development scenario, there is no
need for a duplication of event listening.
l|class UnityPlayerProxyActivity extends Activity {
2| protected void onCreate (Bundle) {

3 specialinvoke $r0.onCreate ($rl);
4|+ staticinvoke <com.gamegod.touydig: void
init (android.content.Context)> ($r0);

$r2 = newarray (java.lang.String) [2];
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Listing 1. A Hook Example (from app DB2CB6).

receiver: "com.kuguo.ad.MainReceiver"
intent-filter
action: "android.intent.action.PACKAGE_ADDED"
data: "package"
intent-filter
action: "android.net.conn.CONNECTIVITY_CHANGE"

receiver: "net.crazymedia.iad.AdPushReceiver"
intent-filter
action: "android.intent.action.PACKAGE_ADDED"
data: "package"
intent-filter
action: "android.net.conn.CONNECTIVITY_ CHANGE"
intent-filter
action: "android.intent.action.BOOT_COMPLETED"
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}

Listing 2. An Example of Duplicated Component Capabilities.
D. Implementation

SimiDroid, along with the current MPlugin, CPlugin and
RPlugin plugins, are implemented in Java. MPlugin, the
method-based comparison plugin, is implemented on top of
Soot, a framework for analyzing and transforming Java and
Android apps [11]. Code statements in MPlugin are processed
at the Jimple code level, an intermediate representation (IR)
provided by Soot in default. The transformation from Android

IThrough this paper, we uniquely name an app with the first six letters of
its sha256.

bytecode to Jimple code is done by Dexpler [12], which
has now been integrated into Soot as a plugin. CPlugin,
the component-based comparison plugin, leverages the axml/
library to directly extract component information from the
compressed Android Manifest file in order to facilitate the
extraction process.

III. EVALUATION

Our evaluation addresses the following research questions:

e RQI: Can the prototype implementation of SimiDroid
detect similar apps in a set of real-world apps?

e RQ2: How does SimiDroid compare with existing tools?

e RQ3: What is the extent of details that SimiDroid can
provide to support comprehension of similarities within
a pair of apps ?

A. RQI: Detection

For a start, we acknowledge that the similarity analysis
explored by SimiDroid is focused on pairwise comparison,
and thus cannot scale to market datasets [1]. For example, for
the 2 million apps available on Google Play, there are Cg*loﬁ
candidate pairs to compare. Therefore, we emphasize at this
point that the objective of SimiDroid is not to identify all the
similar apps among a large set of apps, but rather to confirm
suspicions on a pair of apps and provide details, at different
levels, for supporting explanations on their similarity.

We evaluate the detection ability of SimiDroid using an
established comprehensive benchmark [1] of piggybacked
apps with about 1,000 pairs of apps: each pair is formed
by an original benign app and its counterpart piggybacked
malware (i.e., a malware built by grafting a malicious payload
to the original benign app). The assessment thus consists in
computing the capability of SimiDroid to identify each pair
in the set. This evaluation is performed based on each of the
plugins integrated in SimiDroid.
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Fig. 4. Distribution of Similarity Scores Computed through Method-based,
Component-based, and Resource-based Comparisons.

Fig. 4 shows the distribution of similarity scores that
SimiDroid computes for Method-based, Component-based and
Resource-based comparisons, where the median values are
0.9996, 12, and 0.8661 respectively?.

2Roughly speaking, over 50% of the pairs have no modification at the
component level.

3 Note that on some corner case apps, a plugin may fail to compute the
similarity of a given pair (e.g., fail to extract features). We have dropped such
pairs from the results.



By far, the similarity scores based on resource-based com-
parison are lesser than that provided by code-based approaches
(including both method and component based comparisons).
Using Mann-Whitney-Wilcoxon (MWW) tests, we further
confirm that the difference of similarity scores between
resource-based and code-based comparison is statistically sig-
nificant . This finding is also in line with recent findings in the
literature [1], revealing that resource files can be extensively
manipulated during piggybacking.

Both method and component based comparisons have
achieved high similarity scores (cf. Fig. 4), suggesting that
app cloning will unlikely modify the app code in an invasive
manner. This finding is also in line with the practice of
repackaging and code reuse where repackagers have shown
to pay the least efforts in code changes, to allow easier
automation of the repackaging process.

The scores of component-based comparison is slightly
higher than the scores computed through method-based com-
parison. This indicates that in contrast to methods, component
capabilities are even rarely changed during app cloning. In-
deed, in our experiments, 85% of investigated pairs do not
modify the component capabilities of the original apps.

In order to present a fair comparative study, we also com-
pute the similarity scores via SimiDroid for a set of 1000 pairs
of Android apps, which are randomly selected from Google
Play. Since the selection is conducted randomly, we therefore
expect that for these pairs the similarity results reported by
SimiDroid would be low. Indeed, the median similarities are O,
0, and 0 for Method-based, Component-based, and Resource-
based comparisons respectively, showing that SimiDroid is
capable of flagging similar (or dissimilar) Android apps.

B. RQ2: Comparison

We compare SimiDroid against available implementa-
tion of two state-of-the-art works, namely AndroGuard [7]
and FSquaDRA [8], covering respectively code-based and
resource-based similarity analysis.

AndroGuard. AndroGuard is probably the first available
tool presented to the community for detecting the similarity
of two Android apps. Like with MPlugin in SimiDroid, the
similarity of AndroGuard is computed at the method level
and is calculated based on the same four metrics leveraged
by SimiDroid (cf. Section II-B). However, the comparison
between the content of two methods are different. Instead
of comparing all the statements inside a given method, An-
droGuard leverages state-of-the-art compressors to compute
the similarity distance between two methods. AndroGuard
currently uses the Normalized Compression Distance (NCD).

FSquaDRA. FSquaDRA is an approach that detects repack-
aged Android apps based on the resource files available in
app packages. It performs a quick pairwise comparison with

4The reported p-value indicates that the difference is significant at a
significance level a = 0.001. Because p-value < «, there is one chance in a
thousand that the difference between the compared two datasets is due to a
coincidence.

an attempt to measure how many identical resource files are
shared by a candidate pair of apps.

We run both AndroGuard and FSquaDRA on the same
benchmark (= 1,000 pairs that we have used in previous
RQ. Fig. 5 comparatively plots the distribution of similarity
scores calculated by SimiDroid, AndroGuard, and FSquaDRA,
respectively. The similarity results computed by the state-of-
the-art works are also in line with the conclusions reached
previously in answering RQI: code-based similarity results
(i.e., AndroGuard) are generally better than resource-based
similarity results (i.e., FSquaDRA). We have also confirmed
that the differences are significant using MWW tests at the
significance level of 0.001.
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Fig. 5. Comparison Results among the Similarity Scores of SimiDroid (Code-
based), AndroGuard, and of SimiDroid (Resource-based), FSquaDRA.

As shown in Fig. 5, the median value of SimiDroid is
slightly higher than the median value of AndroGuard, although
the difference between the two is not statistically significant
when checked with MWW tests (i.e., p-value > 0.001).
In order to compare the precision of these two code-based
similarity analysis tools, we plan to manually compare the
results yielded by these two apps. To this end, we randomly
select ten pairs for manual investigation. Table I enumerates
the randomly selected pairs.

In this work, instead of manually investigating all the
methods, which needs a lot of efforts and is hard to perform
in practice, we decide to focus only on the reported similar
methods. Those similar methods are actually quite suitable for
our purpose, as they have embraced the exact changes between
the compared two apps. As shown in Table I, 8 out of 10
of the selected app pairs share the same number of similar
methods (per pair) by both AndroGuard and SimiDroid. We
then manually investigate the cases of app pairs where the
reported numbers of similar methods differ by AndroGuard
and SimiDroid. We found that this is mainly due to false
negative results of AndroGuard, which has failed to report a
similar method for both cases. We now provide more details
for these two candidate pairs.

Case Study 1: FFDES8B — DB2CB6. For this app pair,
SimiDroid reports two similar methods while AndroGuard
reports only one similar method. The two similar methods
reported by SimiDroid are onCreate() in class UnityPlay-
erProxyActivity and onDestroy() in class UnityPlayerActiv-
ity. We have shown in Listing 1 as a motivating example
that the first similar method, namely onCreate(), has in-
deed been manipulated to trigger the execution of package
com.gamegod.touydig. Now we present the code snippet of



TABLE I
THE RANDOMLY SELECTED TEN PIGGYBACKING PAIRS AND THEIR CODE-BASED SIMILARITY RESULTS YIELDED BY ANDROGUARD AND SIMIDROID.

AndroGuard SimiDroid
Original ~ Piggybacked | Identical Similar New  Deleted Score Identical ~ Similar New  Deleted Score
FFDESB DB2CB6 618 1 875 0 99.84% 1043 2 1300 0 99.81%
2326A8 7D6D97 1422 0 1727 0 100.00% 2445 1 4384 0 99.96%
E2CEED E9BSEE 264 5 1178 0 98.14% 390 5 2299 0 98.73%
8C23C6 SADAE7 92 1 950 0 98.92% 124 1 1730 0 99.20%
AO0087E 296792 3143 1 276 0 99.97% 7090 1 460 0 99.99%
1B8441 172F27 3965 1 834 0 99.97% 8488 1 1300 0 99.99%
00C381 2DC271 905 1 294 0 99.89% 1418 1 460 0 99.93%
93E50D 664F22 1225 1 1210 0 99.92% 2042 1 2786 0 99.95%
9E49AE 29A23A 1386 1 1000 0 99.93% 2172 1 1892 0 99.95%
321DA9 86E88F 829 1 184 0 99.88% 1390 1 474 0 99.93%
1|//Case Study 1: Pair (FFDE8B, DB2CB6)

2|class UnityPlayerActivity extends Activity { C. RQ3: Support for Comprehending Repackaging/Cloning

3| protected void onDestroy () { changes

4 $r0 := Q@this: UnityPlayerActivity;

5| specialinvoke $r0.<Activity: void We now investigate the enabling potential of SimiDroid

onDestroy()>(); i for comprehending the details in Android app similarities.

6|+ staticinvoke <touydig: wvoid .

destroy (Context) > (5r0) ; To the best of our knowledge, little work has focused on
7| $r2 = $r0.<UnityPlayerActivity: UnityPlayer a>; sSystematizing the explanation of similarities among apps.

g virtualinvoke $r2.configurationChanged(Srl); On top of the detection module (i.e., feature extraction plu-
1003 }retum' gin + similarity comparison plugin), a change mining module
11|//Case Study 2: Pair (2326A8, 7D6D97) implements specified analyses (before or after the comparison)
12|class SocialPluginUnityActivity extends for providing insights into the nature and potential purpose

UnityPlayerActivity { . . .

13| public void onCreate (android.os.Bundle) | behind the changes. Those analyses are specified by leveraging
14 $r0 := @this: SocialPluginUnityActivity; archived knowledge from the literature and can be extended
15 Srl := @parameter(O: android.os.Bundle; by practitioners based on their manual investigation findings.
16 specialinvoke $r0.onCreate (bundle) ($rl); . . .
17|+ virtualinvoke $r0.dywtsbn (); We now enumerate and discuss several analysis directions that
18 return; ) are currently implemented in SimiDroid and that have been
ég * public void dywtsbn() {... ...} used 1) to characterize suspicious intent in repackaging, ii) to
21 ;/Case Study 3: Pair (EF2BDA, 87880D) recognize symptoms of piggybacking, iii) to hint on malicious
22|class Start extends Activity ({ payload code, or iv) to measure the impact of library code in
23| void callAdds() { app similarity computation.

24 Srl = S$r0.<Start: AdView adView>;
25|- virtualinvoke
$rl.setAdUnitId("al522d5¢390a573"); TABLE II
26|+ virtualinvoke $rl.setAdUnitId(String) ( EXPLANATION STATISTICS.
"ca-app-pub-8182614411920503/1232098473") ;
27|} } Explanation Type  #. of Pairs  #. of Times
Constant String Mismatch 110 476
Listing 3. Illustrative code snippets extracted from real Android apps. Constant Number Mismatch 122 2,447
New Method Call 523 2,259
Library Impact 422 422
Duplicated Component Capability 611 60,312
the second similar method, namely onDestroy(), in Listing 3, Resource File Rename 160 994

where one statement (line 6) has been added to the original
app. The purpose of this injection is to clean the changes due
to the execution of injected malicious payloads, which are
triggered by the first similar method onCreate() (cf. Listing 1).

Case Study 2: 2326A8 — 7D6D97. For this candidate
pair, AndroGuard reports no similar method while SimiDroid
yields one similar method, which is onCreate() of class
SocialPluginUnityActivity. Through manual investigation, as
shown in Listing 3, we confirm that onCreate() of class So-
cialPluginUnityActivity is indeed a similar method which has
been tampered with to insert a call to dywtsbn(), implemented
as part of the newly injected payload within the same class as
onCreate().

1) Constant String Replacement:
Online documentation of advertisement integration into An-
droid app exposes how ad revenues is forwarded on the basis
of an ad ID tied to the app owner. We have implemented
an analysis in SimiDroid that focuses on changes related to
constant string replacement: we focus on cases where only
the string varies while the associated code statement (i.e.,
statement type and statement context method) does not vary.
This analysis hinted on a suspected case of a redirection in ad
revenues, illustrated by the following case study.

Case Study 3: EF2BDA — 87880D (Redirect ad revenue).
When repackaging app EF2BDA into 87880D, attackers have
also changed the ad ID (‘al1522d5¢390a573° in EF2BDA) to



match their own (line 36 in Listing 3) on the call to API
method setAdUnitld(), so as to redirect the revenue generated
by app EF2BDA.

The constant string replacement analysis has also allowed to
confirm obfuscation of code to prevent repackaging detection.
In addition to constant strings, SimiDroid also harvests the re-
placement of constant numbers between similar methods. The
method-based comparison in Fig. 3 has actually demonstrated
the case where a constant number in a method of app FFE44A
is updated in app /CA20C, leading eventually to a change
in the selected entry. As shown in Table II, SimiDroid has
identified 476 cases (within 110 pairs) where constant strings
are replaced and 2,447 cases (within 122 pairs) where constant
numbers are replaced among the evaluated benchmark pairs
(nearly 1000).

2) New Method Call:

A new method call in a cloned app code is a relevant starting
point for tracking a potential injected payload. Indeed, repack-
agers, as established in a previous study [1], often modify
existing code to insert a single method call for triggering
the redirection of control flow from the execution of original
benign code into the newly added (likely malicious) code.
Listing 3 shows examples of such method call insertions
identified by SimiDroid at key points of an Android program,
i.e., when an activity is created/launched (line 18) or when it
must be stopped/destroyed (line 6). Actually, SimiDroid has
found 2,259 cases (within 523 pairs) where new method call
is introduced during repackaging (cf. Table II).

3) Library Impact:

As shown by Li et al., the presence of common libraries can
cause both false positives and false negatives when attempting
to detecting repackaged/cloned apps [13]. We have specified a
change analysis after the identification of similarities to further
differentiate changes within libraries from those within app
core code. We thus use a library exclusion filter based on a
whitelist of libraries borrowed from [13]. Among the analyzed
pairs, SimiDroid reports different similarity scores for 422
pairs when common libraries are excluded (cf. Table II). This
analysis further allows to avoid false positives and to reduce
the rate of false negatives in making a detection decision on
whether two apps constitute a repackaging pair.

Case Study 4: 29C2D4 — 287198 (False Positive). By
considering common libraries, the similarity of these two apps
is 86%. Giving a threshold of 80%, we have reasons to believe
that these two apps are cloned from one another. However,
after excluding common libraries, the similarity of these two
apps falls down to 0, demonstrating that a naive similarity
analysis could be misled by common libraries and yield false
positive results.

Case Study 5: F3BI117 — 25BC25 (False Negative). After
excluding common libraries, the similarity of these two apps
reaches to 84%, leading to a decision that these apps constitute
a repackaging pair (if we consider also 80% as the threshold).
Comparing to the case where libraries are considered (47%
similarity score), one would have missed the chance to suspect
the pair of apps, resulting in a false negative result.

4) Duplicated Component Capabilities:

Building on findings in the literature [14], we identify hints
on repackaging in similar apps by focusing on duplication
in Manifest entries. In particular, duplicated component ca-
pabilities can be taken as a symptom to quickly confirm
piggybacking as it is indeed suspicious for a normal benign
app, developed from scratch, to implement several components
that listen to a same event, or that can realize a same action
(e.g., play videos). In our experiments, we have shown (cf.
Listing 2 example) fine-grained changes in 611 piggybacking
apps presenting such a symptom, in contrast to their original
counterparts.

Case Study 6: 3FC49C — AO2FES8 (Duplicated Capa-
bilities). When analyzing this pair, SimiDroid yields surpris-
edly 45,682 duplicated capability cases, which are mainly
contributed by action android.intent.action. VIEW, which has
been declared in total 243 times for 213 components (A3,; =
45,156).

IV. RELATED WORK

The related work of this paper lies mainly in two folds:
1) identifying similar Android apps and 2) explaining similar
Android apps. We now detail them in Section IV-A and
Section IV-B, respectively.

A. Identifying Similar Android Apps

Similarity identification of Android apps, which is also
referred by literature works as repackaged/cloned apps iden-
tification (or reuse/plagiarize detection), has been recurrently
addressed by state-of-the-art works. As an example, Android-
SOO [15] leverages the string offset order symptom to quickly
flag if a given Android app is repackaged. Similarly, Li et al.
show that duplicated permissions and duplicated capabilities,
which can be extracted from the Android manifest file, could
be also taken as reliable symptoms to achieve the same pur-
pose [1]. Excepting symptom-based approaches, researchers
also rely on dynamic analysis to identify similar Android apps
(e.g., DroidMarking [16]).

Another recent direction of detecting similar Android apps
is to leverage machine learning based techniques. Indeed, both
supervised learning [17]-[19] and unsupervised learning [20]—
[22] have been investigated by state-of-the-art works. As
an example of supervised learning, DroidLegacy [18] takes
the frequency of API calls as features to conduct 10-fold
cross validation for the purpose of automatically classifying
malware samples, including repackaged ones. As an example
of unsupervised learning, ResDroid [20] adopts a clustering-
based approach to coarsely group similar Apps into same
clusters, so as to reduce the computing space of other fine-
grained comparison approaches.

All the aforementioned approaches, which detect similar
apps in a way that they do not need the knowledge of original
apps. The results of those approaches, however, also need to
be vetted through a comprehensive pairwise comparison (e.g.,
to confirm the final accuracy). Actually, like SimiDroid, the



majority work in detecting similar Android apps at the moment
are still based on pairwise similarity comparison [3], [6], [13].

However, these approaches do not provide a means for
analysts to quickly explain how and why the compared two
apps are similar (or dissimilar). SimiDroid is thus presented
to fill this gap, aiming for not only detecting similar Android
apps but also explaining why a given two apps are similar (or
dissimilar).

B. Explaining Similar Android Apps

To the best of our knowledge, there is no systematized
work on explaining similarities in Android apps. However,
there do have several works that perform manual or em-
pirical understanding related to similarity of Android apps.
The most advanced work is presented recently by Li et al.,
who have empirically dissected the piggybacking processes of
Android apps [1]. Unfortunately, their empirical investigations
are mainly done in manual and there is no supporting tool
associated. Our work, namely SimiDroid, can actually be
leveraged to support their findings.

Despite the piggybacking processes, researchers are also
interested in understanding code reuse in Android markets.
Indeed, Ruiz et al. [23], [24] have empirically investigated
thousands of apps across five different categories, in an attempt
to understand the code reuse (in class level) of Android apps.
Li et al. [13] and Linares-Vasquez et al. [25] have investigated
the Android reuse studies in the context of library usages.
As experimentally illustrated by Li et al., the appearance of
common libraries could cause both false positives and false
negatives for detecting piggybacked apps.

The objective of this paper is to provide a generic frame-
work for automated, comprehensive, and multi-level identifi-
cation of similarities (or reuses) among apps. Our work, along
with other plugins, can be taken as a keystone for supporting
the replication of existing similarity-based studies and for
facilitating the development of new similarity-based studies.

V. CONCLUSION

We introduce a new framework, SimiDroid, for supporting
researchers and practitioners in the analysis of similar apps.
SimiDroid integrates plugins implementing the extraction of
features, at different level, for the computation of pairwise
similarity scores. This framework is targeted at confirming
that two apps are indeed similar and at detailing not only the
similarity points but also the modifications in changed code.

Using a benchmark of piggybacking pairs, we have shown
how SimiDroid is accurate in detecting similar apps, and
the extent to which it can support the analysis of changes
performed by malicious app writers when repackaging a
benign app. With this framework, we contribute to supporting
the community in the realisation of extensive studies on app
similarities to further experiment in their fast, accurate and
scalable approaches.
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