
1

Rebooting Research on Detecting Repackaged
Android Apps: Literature Review and Benchmark

Li Li, Tegawendé F. Bissyandé, Jacques Klein

Abstract—Repackaging is a serious threat to the Android ecosystem as it deprives app developers of their benefits, contributes to
spreading malware on users’ devices, and increases the workload of market maintainers. In the space of six years, the research
around this specific issue has produced 57 approaches which do not readily scale to millions of apps or are only evaluated on private
datasets without, in general, tool support available to the community. Through a systematic literature review of the subject, we argue
that the research is slowing down, where many state-of-the-art approaches have reported high-performance rates on closed datasets,
which are unfortunately difficult to replicate and to compare against. In this work, we propose to reboot the research in repackaged app
detection by providing a literature review that summarises the challenges and current solutions for detecting repackaged apps and by
providing a large dataset that supports replications of existing solutions and implications of new research directions. We hope that
these contributions will re-activate the direction of detecting repackaged apps and spark innovative approaches going beyond the
current state-of-the-art.

Index Terms—Android, Repackaging, Clone, Literature Review, Benchmark.

F

1 INTRODUCTION

Mobile applications, especially Android apps, are straight-
forward to reverse engineer, copy and resubmit to mar-
kets [1]. The Android application packaging system indeed
relies on the ZIP open compression format to archive apps’
resource files and decompilable bytecode, making it easy
for anyone with the adequate tool support to unpack any
app, modify its contents, and repackage it. Repackaging is
thus a common threat to the Android ecosystem, where it
is used by plagiarists who clone apps from other developers,
e.g., in order to redirect advertisement revenue [1], [2], and
by malware writers who piggyback malicious payloads on
popular apps to spread malware [3].

Android app repackaging has been raised as a serious
problem by various authors in the literature as well as
by different stakeholders in the app development industry.
For example, large-scale application plagiarism [4] has led
to the shutdown of several non-official app markets. Last
year, Ustwo Games, developer of the popular “Monument
Valley” game, has reported that only 5% of Monument
Valley installations on Android are paid for [5], with various
copies being available from different “authors” in the same
market. Very recently, the famous Pokemon Go app has been
repackaged in different ways and for different reasons as
mentioned in the Lookout blog [6]. In a different category,
Jung et al. [7] have presented a serious case of repackaging
attacks on Korea’s Banking Android apps, demonstrating
how it was possible to redirect money transfers without
having to illegally obtain any of the sender’s personal
information such as bank accounts.

• L. Li is with the Faculty of Information Technology, Monash University,
Australia.

• T. Bissyandé and J. Klein are with the Interdisciplinary Centre for
Security, Reliability and Trust, University of Luxembourg, Luxembourg.

Manuscript received XXX; revised XXX.

To limit repackaging and its impacts, different steps must
be taken by all concerned parties. For example, developers
may explore different techniques for watermarking their
apps and denying some functionalities when it becomes
obvious that the running copy is a cloned version [8], [9].
Nevertheless, most of the workload is carried by market
maintainers who must employ powerful tools to catch
repackaged apps in a fast and accurate way so as to remove
them from markets [10]. A number of research studies in
the literature have investigated a variety of repackaging
detection approaches without convincingly demonstrating
that the problem is now well addressed.

In this paper, we revisit the state of research on repack-
aged app detection, insisting on the practical challenges that
the community must focus on for implementing effective
repackaged app detection solutions for Android markets.
Overall we make the following contributions:

• We propose a systematic review of the state-of-the-art
literature on repackaged app detection and highlight
their shortcomings in terms of the impracticality of
the approaches, lack of reproducibility, and suboptimal
evaluation scenarios.

• We build the RePack dataset and release it to the
community to encourage proper assessment of repack-
aged app detection approaches. Our work builds upon
the popular AndroZoo repository [11], [12], which can
serve as an exchange repository for describing one’s
dataset using the hash values of apps. We also enu-
merate research directions that the community should
take up for advancing the state-of-the-art in the topic.

The remainder of this paper is organised as follows.
Section 2 clarifies the terminology used, and explains the
procedure for the Systematic Literature Review (SLR) that
we have conducted on the topic of Android repackaged app
detection. Section 3 discusses the prominent challenges in

2

taming app repackaging. Then, Section 4 summarises the
different contributions made in the literature and highlight
some issues in their approaches and evaluations. Section 5
describes our efforts in addressing some important chal-
lenges. Notably, we discuss the construction of a large
dataset of repackaging pairs from the AndroZoo app repos-
itory. Sections 6 and 7 discuss priority research directions
and potential threats to validity of this study respectively.
Section 8 enumerates closely related work and Section 9
finally provides concluding remarks.

All artefacts of our research are available in the RePack
repository at:

https://github.com/serval-snt-uni-lu/RePack

2 LITERATURE SEARCH

In this section, we provide introductory information on
the lightweight Systematic Literature Review (SLR) that we
have performed to assess the advances that were made in
the area of repackaged app detection. We first clarify the
terminology used in the field before giving statistics on the
collected literature corpus.

2.1 Terminology

Several terms are used in the literature, notably in paper
titles and abstracts, to indicate actions that somehow involve
a repackaging process:

Repackaging refers to the core process of unpacking a soft-
ware package, then repackaging it after a probable modifi-
cation of the decompiled code and/or of other resource files
(e.g. logos, Permission list, etc.). Because all Android app
packages (APKs) are signed with the developer certificate, a
repackaging pair, formed by an original app and its repack-
aged version, can be differentiated by their checksums even
when no modification of the code has been performed by
the repackager, who should be different from the original
app developer. Following this principle, we consider in this
work two apps as a repackaged app pair as long as (1) they
share at least 80% of the code (i.e., code similarity exceeds
80%) and (2) they are signed by different developers.

Cloning is the process of building a software by re-
verse engineering another software or by reimplementing it
based on documentation or usage experience. Theoretically,
cloning is different from repackaging because it does not
need to package an app based on its cloning version while
repackaging always form the app based on its original
counterpart. Nevertheless, in the Android ecosystem, this
difference is negligible as it is straightforward to clone an
app via repackaging and, in most cases, the whole app code
(rather than partial code) is manipulated.

Reusing is the action of producing apps from existing
code rather than developing from scratch. The existing code
can vary from small parts like several methods to big parts
such as whole app functionalities.

Plagiarism consists in wrongfully appropriating the work
of another developer, e.g., by cloning her/his APK to benefit
from, for example, advertisement revenues. Comparing to
the term reusing, plagiarism emphases on the part that the
cloned code is wrongfully leveraged.

Piggybacking is defined in the literature as a malware
development activity where a given benign app is repack-
aged to include a malicious payload. Piggybacked apps thus
constitute a subset of repackaged apps.

Camouflage is a technique used by malware writers to
trick users into installing malware sample, which is pre-
sented as a well-known popular app, e.g., by repackaging
an app to replace its main functionality with the malicious
implementation. In this work, we consider camouflage as a
special case of piggybacking, where the app interfaces are
not modified (to keep the same looks) but the app code has
been manipulated.

2.2 Systematic Literature Review (SLR) Methodology

Our work evolves around an investigation of the state-of-
the-art research on repackaged app detection. We search for
the relevant literature in a systematic way, following the
guidelines provided by Keele [13], and Brereton et al. [14].
Thus, in a first step, after outlining the relevant research
questions, we search for potential related work (up to the
end of 2017) in four well-known online repositories: ACM
Digital Library, IEEE Xplore, SpringerLink, and ScienceDi-
rect. We use two groups of keywords (in the form of regular
expression) enumerated in Table 1. The search string1 is
formed as a conjunction g1 AND g2 where g1 and g2 are
themselves formed each as a disjunction of the keywords
respectively of groups G1 and G2. The goal of this step is
to collect as many related papers as possible, taking into ac-
count most well-recorded proceedings. We consolidate2 the
collected list of relevant work by manually going through
all the papers, examining the title and abstract, to ensure
that they deal with repackaged app detection. Following
the same guidelines suggested by Barbara Kitchenham [17],
short papers3 such as the one presented by Ayush Kohli [18]
will not be considered in this study.

In a second step, we perform a backwards-snowballing
on the remaining papers in an attempt to account for in-
fluential papers that may not have been recorded in the
aforementioned repositories or that did not mention the
used keywords. To that end, we carefully read the related
work section of the papers collected at the end of the first
step.

TABLE 1: Repository Search Keywords.

Group (AND) Keywords (OR)
G1 android, mobile, *phone*
G2 clon*, repackag*, piggyback*, plagiari*, reus*, camouflag*

At the end of the SLR search, we had collected 57 papers
that present work dealing, in one way or another, and to any
extent, with research on Android app repackaging. Table 2
enumerates all the papers, highlighting their publication
year, publication venues and the accompanying tool name.

1. (android OR mobile OR *phone*) AND (clon* OR repackag* OR
piggyback* OR plagiari* OR reus*)

2. Online repository search engines often list irrelevant results pres-
ence potential irrelevant articles [15], [16].

3. Less than five pages in double column or nine pages in single
column.

https://github.com/serval-snt-uni-lu/RePack

3

TABLE 2: Full List of Collected and Examined Papers

Tool/Reference Year Venueα
CodeMatch [19] 2017 ESEC/FSE
DR-Droid2 [20] 2017 TDSC (J)
DAPASA [21] 2017 TIFS (J)
FUIDroid [22] 2017 MISY (J)
APPraiser [23] 2017 IEICE TIS (J)
RepDroid [24] 2017 ICPC
SimiDroid [25] 2017 TrustCom
GroupDroid [26] 2017 SSPREW@ACSAC (W)
CLANdroid [27] 2016 ICPC
DR-Droid [28] 2016 MoST@S&P (W)
DroidClone [29] 2016 DICTAP
FSquaDRA2 [30] 2016 NordSec
Li et al. [31] 2016 SANER
Niu et al. [32] 2016 ICSAI
RepDetector [33] 2016 ESSoS
SUIDroid [34] 2016 TrustCom
Kim et al. [35] 2015 ASE (J)
AndroidSOO [36] 2015 EuroSec@EuroSys (W)
AndroSimilar2 [37] 2015 JISA
Chen et al. [38] 2015 JCST (J)
DroidEagle [39] 2015 WiSec
ImageStruct [40] 2015 ISPEC
MassVet [41] 2015 USENIX Security
PICARD [42] 2015 CCPE (J)
Soh et al. [43] 2015 ICPC
Wu et al. [44] 2015 SCN (J)
WuKong [45] 2015 ISSTA
AnDarwin2 [46] 2014 TMC (J)
AndRadar [47] 2014 DIMVA
Chen et al. [48] 2014 ICSE
DIVILAR [49] 2014 CODASPY
DroidKin [50] 2014 SecureComm
DroidLegacy [51] 2014 PPREW@POPL (W)
DroidMarking [9] 2014 ASE
DroidSim [52] 2014 IFIP SEC
FSquaDRA [53] 2014 DBSec
Kywe et al. [54] 2014 ICISC
Linares-Vsquez et al. [55] 2014 MSR
PLayDrone [56] 2014 SIGMETRICS
ResDroid [57] 2014 ACSAC
Ruiz et al. [58] 2014 IEEE Software (J)
ViewDroid [59] 2014 WiSec
AdRob [60] 2013 MobiSys
AnDarwin [61] 2013 ESORICS
AndroSimilar [62] 2013 SIN
AppInk [63] 2013 AsiaCCS
AppIntegrity [64] 2013 CODASPY
DroidAnalytics [65] 2013 TrustCom
PiggyApp [66] 2013 CODASPY
SCSdroid [67] 2013 CompSec (J)
Androguard [68] 2012 HICSS
DNADroid [2] 2012 ESORICS
DroidMat [69] 2012 AsiaJCIS
DroidMOSS [70] 2012 CODASPY
JuxtApp [71] 2012 DIMVA
Potharaju et al. [72] 2012 ESSoS
Ruiz et al. [73] 2012 ICPC
α: (J) and (W) stand for Journal and Workshop venues respectively

2.3 Statistics on State-of-the-art Work

The research topic around repackaged apps has been ini-
tiated in the Android community after a presentation of
Desnos and Gueguen [74] at Black Hat, Abu Dhabi 2011,
where they discussed Android app reverse engineering
and decompilation, and the associated security implications.
Fig. 1 illustrates some statistical trends of the research pub-
lications on Android repackaged app detection.

It appears from the collected data that repackaged app
detection has been tackled first and mostly by security
researchers. Then, Software Engineering researchers have

4
7 8

6
3 4

2

5
5

3 2
1

1

2

2 2

2012 2013 2014 2015 2016 2017

SEC SE/PL Other

Fig. 1: Distributions of the State-of-the-art literature per Year.

picked up on the problem, leading to a peak of publications
in 2014. After 2014, the volume of published research started
to steadily decrease, although no new data has shown that
the problem has been solved in practice.

It is noteworthy that only 19% (11 out of 57) of the state-
of-the-art work have been archived in a Journal volume,
suggesting that very few extensive investigations into the
problem are available. Conference proceedings, which pro-
vide a faster visibility of researcher’s work on a competitive
topic such as Android, account for over 80% of the publi-
cations. The four workshop papers [51], [36], [28], [26] that
we have identified in the SLR are providing radically new
approaches to the problem of repackaged apps detection,
but only focus on repackaged malware.

Except for the considered approaches that explicitly tar-
get the detection of repackaged Android apps, our literature
search also identified several papers focusing on detecting
third-party libraries [75], [76], [77]. Although these papers
are not considered in this work, we believe their approaches
can generally be adapted to detect repackaged apps as well.
For example, Li et al. [75] have introduced LibD to identify
third-party libraries, including multi-package ones, which
are categorised based on the internal code dependencies
of candidate libraries. Interested readers are encouraged to
follow their research paper for more details.

3 OVERVIEW OF CHALLENGES IN REPACKAGED
APP DETECTION

Before detailing the different solutions presented in the liter-
ature, we propose to review the challenges that researchers
should seek to address in repackaged app detection. These
challenges are brought up by the realities in the app in-
dustry, practical requirements for assessing a detection ap-
proach, as well as specificities of Android development.

(1)Meeting market-scale constraints.
Android developers have produced millions of apps dis-
tributed in several markets, raising scalability issues in the
detection of repackaged apps. In this work, we consider that
the scalability of detecting repackaged apps is referred to
two challenges: (1) combinatorial explosion and (2) imprac-
tical aspect, e.g., to have the original app counterparts in the
dataset.

Regarding combinatorial explosion, let us take Google
Play as an example, the official Android app market has
hosted already over 3 million Android apps4, while several

4. https://www.appbrain.com/stats/number-of-android-apps

https://www.appbrain.com/stats/number-of-android-apps

4

alternative markets such as AppChina have also passed the
one-million mark. A simple and intuitive, pairwise similar-
ity comparison between apps (combinatorial explosion) is
thus not scalable in practice. For example, using such an
approach to detect repackaged apps in Google Play alone,
one would need to perform about C2

3∗106 comparisons. If we
consider a computing platform with 10 cores each starting
10 threads to compare pairs of apps in parallel, it would
still take several months to complete the analysis when
optimistically assuming that each comparison would take
about 1ms.

From a practical point of view, unfortunately, the prob-
lem is further exacerbated by the fact that repackaged apps
and their original counterparts are often hosted on different
markets. A pairwise comparison approach would then re-
quire collecting as many apps as possible across all markets
and repositories. Failing to collect such app set would
result in an unfair evaluation for repackaged app detection
approaches. Indeed, on the one hand, because of missing
original apps, some repackaging detection approaches (e.g.,
pairwise-based approaches) would be unsuccessful for flag-
ging some repackaged apps, although those approaches
by themselves are capable of achieving that. On the other
hand, given a flagged repackaged app (e.g., by ML-based
classifiers), not being able to identify its original counterpart
in the testing app set does not necessarily mean the flagged
app is a false alarm, because it could be the case that the
testing app set is just not big enough, where the original
counterpart happens to not be in it.

(2)Having a reference dataset.
Despite the awareness in academia and industry on the
problem of app repackaging, the community lacks relevant
datasets to support research work. Building a large and con-
sistent ground truth of repackaging pairs indeed requires
substantial efforts. Unfortunately, unless such efforts are
made, we can hardly expect significant advances towards
producing reliable approaches and tools for addressing
repackaged app detection. Indeed, on the one hand, in
the absence of a reference dataset, which can serve as a
pseudo ground truth, state-of-the-art work cannot be bench-
marked and compared one against the other. On the other
hand, existing approaches that claim to be successful cannot
convince the reader on the precision of their techniques,
since confirmation is manually performed by the authors
and the detected repackaged apps are not disclosed to the
community for additional checking.

(3)Recognising the original app in a repackaging pair.
Given a repackaging pair, constituted by two similar apps,
one being a repackaged version of the other, it is commonly
accepted that it remains challenging to distinguish which
app is the original [60], [66]. Instead, the literature often
relies on heuristics such as app packaging/compilation time
(e.g., timestamp of classes.dex). Although such heuristics
are intuitive, they are not fully reliable in a sophisticated
malware development scenario. Indeed, it is possible for
malware writers to manipulate compilation time of their
repackaged apps [78]. Yet, a number of state-of-the-art ap-
proaches depend on such heuristics to flag repackaged apps
in the wild.

(4)Accounting for potential obfuscation.
Obfuscation is known to be effective to help developers to

hide their code logic for preventing potential plagiarism.
Many obfuscation algorithms have been implemented in
frameworks such as DexGuard [79] and SandMark [80]
which are already used in the Android community. At
the same time, however, obfuscation can be leveraged by
pirates and malware writers to evade the detection of their
repackaging operations. As shown by Huang et al. [81],
most static approaches for repackaged app detection are
ineffective in the presence of obfuscated apps.

(5)Dealing with noise of common libraries.
Common libraries, such as the popular com.google.ads and
com.revmob advertisement libraries, which are extensively
used across many apps, can significantly impact the effec-
tiveness in repackaged app detection [31]. Indeed, when
common libraries are substantially larger than core function-
ality code, a pairwise comparison approach can lead to false
positives, presenting two different apps, but with similar
libraries, as a repackaging pair. Similarly, when a large
library is replaced during repackaging by another library,
a pairwise comparison will fail to detect the repackaging
scenario, leading to a false negative. To overcome this chal-
lenge, researchers build whitelists of common libraries that
are filtered out during repackaged detection processes [48].
Unfortunately, it is also challenging to build an exhaustive
list of common libraries.

(6)Constructing and exploiting a call/dependency
graph.
Call and dependency graphs are appealing for repackaged
app detection as they can abstract the behaviour imple-
mented in a software to allow effectively identifying similar
behaviour [82], [83]. Unfortunately, there are several chal-
lenges in constructing an Android call/dependency graph
that will be reliable for comparison experiments. First, An-
droid is event-based and most behavioural actions are per-
formed via user-triggered events (e.g., clicking a button) or
system events (e.g., incoming phone call), through callback
methods. A call graph may not properly account for the
sequences in which callback methods are called. Second,
the Inter-component communication mechanism further in-
volves the use of callback methods to allow interaction
among different parts of an app. Since those parts are not
directly linked at the code level, the constructed call/de-
pendency graph of the app will eventually be incomplete,
depending on the choice of starting point for exploring the
app. Finally, heavy use of reflection further complicates the
building of sound call/dependency graphs [84].

The size of the graphs can also challenge the detection
of repackaged apps. Indeed, when the graphs are small
(e.g., with less than four nodes), comparisons often lead to
numerous false positives [48]. When the graphs are very
large, the challenge of finding isomorphisms may become
prohibitive.

(7)Dealing with corner-cases.
Besides the aforementioned challenges, some corner cases
are often eluded in the literature of app analysis. First, some
apps cannot be decompiled by popular Baksmali and Soot
de-compilers. Indeed, malware writers may intentionally
include code which is specifically engineered to prevent
such compilers to work [85]. Second, all apps are not strictly
packaged with common assets: for example, some apps do
not have layouts, which may cause failures for approaches

5

that assume that apps always do. Finally, app hardening
techniques, where the main app code in classes.dex is en-
crypted and loaded at runtime through Java Native Inter-
face (JNI), also raises the bar for the research in repackaged
app detection [86].

(8)Dealing with legal issues.
Aside from technical barriers, legal concerns, including
copyright/licensing issue in exposing third-party apps and
liability in redistributing malware can impact the advances
in research on repackaged app detection. Indeed, as pre-
viously warned by Bodden et al. [87], data security and
user privacy on one side and intellectual property rights
on the other side, are slowly emerging in the field of infor-
mational self-protection. Thus, for example, researchers are
often forced to hold back their dataset, hindering adequate
comparisons that could lead to tangible improvement of the
state-of-the-art. As suggested by Rasthofer et al. [88], there
is a need in our community to analyze legal issues.

4 REVIEW OF STATE-OF-THE-ART APPROACHES

The papers collected for the SLR include an approach and
experiments related to repackaged apps detection. We char-
acterise the different approaches and discuss their evalua-
tion scenarios.

4.1 Taxonomy of Approaches

Table 3 provides details on categorisation of the different
state-of-the-art approaches, highlighting the various fea-
tures each leverages in its proposed approach. Repackaged
app detection can be performed statically or dynamically.
We also note that there are static approaches which do not
analyse the bytecode in the app package for their detection
process. Instead, they solely rely on the resource files ac-
companying the code. Various information from apps are
leveraged as features for identifying repackaged apps. Such
features can be extracted from metadata (e.g., permissions
recorded in the Manifest file), from the code (e.g., call
graphs), or from runtime data (e.g., execution traces).

Based on our review of the 57 state-of-the-art studies, we
propose a taxonomy of 5 categories for the design of state-
of-art approaches:

Similarity computation-based approaches, developed
in 42 out of 57 papers, are the most common method-
ology adopted in the literature. Since Androguard [90],
[74], which has proposed algorithms for pairwise compar-
ison of apps, several variants using code information (e.g.,
DNADroid [2] with dependence graphs, DroidMOSS [70]
with fuzzy hashing-based fingerprints), layout/resource in-
formation (e.g., DroidEagle [39]) or a combination of both
(e.g., ResDroid [57], ViewDroid [59]) have been developed.
Several approaches have further been proposed to improve
the scalability of the state-of-the-art in pairwise comparison.
Generally, these involve a two-step process during which
the apps are first pre-processed to extract features that
best summarise them. PiggyApp [66] builds vectors using
normalised values of extracted features. Thus, instead of
computing the similarity between apps based on their code,
the authors compute the distance of vectors associated with
the apps. Although this state-of-the-art work attempts to

escape the scalability problem with pairwise comparisons
by relying on the Vantage Point Tree data structure to parti-
tion the metric space, it still requires the dataset to contain
exhaustively the original apps as well as their repackaged
versions. Later, Chen et al. [48], [41] have proposed to ab-
stract app method code into a single geometric characteristic
value, a graph score, to allow even faster comparisons.
Their approaches are however also unusable in practice in
the context of the myriads of Android markets which are
difficult to crawl [11] at once so as to have all potential
original and repackaged apps in the search space.

Runtime monitoring-based approaches, used in 5 ap-
proaches, record or/and extract specific information during
dynamic execution (or installation) of apps to check whether
an app is repackaged or not. Most of those approaches (e.g.,
AppInk [63]) aim at repackaging deterrence by providing
means for market maintainers to arbitrate/validate whether
a watermarked app has been repackaged.

Supervised learning-based approaches, implemented in
5 approaches, extract feature vectors from app data and
train classifiers that will be used to predict whether an app
is repackaged or not. DR-Droid [28] reuses known features
from the malware detection community and applies it to
each of the statically identified loosely-coupled parts of
a repackaged app. SCSDroid [67] compares dynamically
recorded system call sequences against some pre-learned
runtime information of known families for detecting repack-
aged malware.

Unsupervised learning-based approaches, developed in
4 approaches, regroup apps in different sets using advanced
learning algorithms with features that can split apps based
on their similarity. We differentiate these approaches from
simple Similarity computation-based ones, as they radically
try to improve the scalability of the pairwise comparison
between apps, by focusing on apps that are likely to be
repackaged from one another.

Symptom discovery-based approaches, implemented in
only one recent workshop paper, build on the intuitive
assumption that repackaging processes leave marks on the
repackaged apps. If such marks can be fully characterised, it
is possible to spot the symptoms in apps. AndroidSOO [36]
has recently introduced and explored a novel and easily
extractable attribute called String Offset Order, which is
extracted from string identifiers list in the classes.dex byte-
code file. Such approaches can normally provide promising
results as they can manage to solve most challenges at
once, especially the requirement to have the original apps
available in the test set, and are unlikely suffering from false
positive results if the corresponding symptoms are well-
defined.

During SLR paper examination, we have attempted to
identify which challenges, among those enumerated in Sec-
tion 3, authors have strived to address. In particular, we
check that the proposed approach/methodology 1) meets
market constraints (in terms of scalability and usability in
practice), 2) is evaluated based on a constructed reference
dataset (whatever its size and representativeness), 3) explic-
itly accounts for app obfuscation (to any extent), and 4)
attempts to reduce the noise of common libraries. Details
in Table 3 show that no approach addresses all challenges,
with Market-scale constraints being the least tackled in the

6

TABLE 3: Summary of Examined Approaches.

Tool Category Features Dynamic Bytecode MSα GTβ ORγ LNδ

AndroidSOO [36] Symptom discovery string offset order 3
CodeMatch [19] Similarity Comparison code fuzzy hash 3 3 3 3
FUIDroid [22] Similarity Comparison layout tree 3 3 3
APPraiser [23] Similarity Comparison resource files 3
RepDroid [24] Similarity Comparison layout group graph 3 3 3
SimiDroid [25] Similarity Comparison method statements, resource files, components 3 3
GroupDroid [26] Similarity Comparison control flow graph 3 3
CLANdroid [27] Similarity Comparison Identifiers, APIs, Intents, Permissions, and Sensors 3 3 3
Li et al. [31] Similarity Comparison method-level signature 3 3
RepDetector [33] Similarity Comparison inputs/outputs of methods 3 3 3
Wu et al. [44] Similarity Comparison HTTP distance 3 3 3 3
FSquaDRA2 [30] Similarity Comparison signature of resource files 3 3
SUIDroid [34] Similarity Comparison layout tree 3 3
DroidClone [29] Similarity Comparison control flow pattern 3 3
Niu et al. [32] Similarity Comparison method-level signature 3 3
AndroSimilar2 [37] Similarity Comparison entropy of byte block 3 3
AndroSimilar [62] Similarity Comparison entropy of byte block 3 3
DroidEagle [39] Similarity Comparison visual resources 3 3
ImageStruct [40] Similarity Comparison images
Soh et al. [43] Similarity Comparison user interfaces 3 3 3 3 3
Chen et al. [38] Similarity Comparison method-level signature powered by NiCad [89] 3
MassVet [41] Similarity Comparison centroid of UI structures, method-call graphs 3 3 3 3
DroidKin [50] Similarity Comparison meta-info and n-gram bytecode/opcode 3 3
Ruiz et al. [58] Similarity Comparison count-, set-, sequence-, and relationship-based objects 3 3 3
Linares-Vásquez et al. [55] Similarity Comparison count-, set-, sequence-, and relationship-based objects 3
Chen et al. [48] Similarity Comparison centroid of control flow graph (CFG) 3 3 3
PLayDrone [56] Similarity Comparison signature of resource files
FSquaDRA [53] Similarity Comparison signature of resource files 3
ViewDroid [59] Similarity Comparison ICC-based view graph 3 3 3
DroidSim [52] Similarity Comparison component-based control-flow graph 3 3 3
AndRadar [47] Similarity Comparison method-level signature 3
Kywe et al. [54] Similarity Comparison app name, description, icon, screenshot
PiggyApp [66] Similarity Comparison APIs, permissions, Intents 3 3 3
DroidAnalytics [65] Similarity Comparison API sequences 3 3 3
AdRob [60] Similarity Comparison data-dependency graph 3 3
DroidMOSS [70] Similarity Comparison opcode sequences, developer certificate 3 3 3
JuxtApp [71] Similarity Comparison k-grams of opcode sequences 3 3
DNADroid [2] Similarity Comparison program/data dependency graph 3 3 3
Androguard [68] Similarity Comparison method-level signature 3 3
Potharaju et al. [72] Similarity Comparison abstract syntactic tree 3 3
Ruiz et al. [73] Similarity Comparison count-, set-, sequence-, and relationship-based objects 3
WuKong [45] Similarity Comparison API call sequences , variable occur times 3 3 3 3
Kim et al. [35] Similarity Comparison runtime API invocations 3 3
ResDroid [57] Unsupervised Learning activities, permissions, intent filters, event handlers, etc. 3 3 3 3
AnDarwin2 [46] Unsupervised Learning program dependency graph 3 3 3
AnDarwin [61] Unsupervised Learning program dependency graph 3 3 3
DroidMat [69] Unsupervised Learning permissions, intents, components, API calls, ICC 3
DAPASA [21] Supervised Learning coefficient/distance of sensitive subgraph/motifs 3 3 3 3
DR-Droid2 [20] Supervised Learning user interactions, sensitive APIs, permissions 3 3 3 3
DR-Droid [28] Supervised Learning user interactions, sensitive APIs, permissions 3 3 3 3
DroidLegacy [51] Supervised Learning frequency of API calls in primary module 3 3 3 3
SCSdroid [67] Supervised Learning system call sequences 3 3
PICARD [42] Runtime Monitoring execution trace 3 3
DIVILAR [49] Runtime Monitoring virtualization-based protection 3 3
DroidMarking [9] Runtime Monitoring watermarking 3 3
AppIntegrity [64] Runtime Monitoring package name 3
AppInk [63] Runtime Monitoring watermarking 3 3

MSα: Market-Scale, GTβ : Ground Truth, ORγ : Obfuscation Resilience, LNδ : Library Noise.

literature.
We further study the most represented similarity

computation-based approaches. Details enumerated in Ta-
ble 4 show that the simple Jaccard index is the most shared
similarity metric. A plethora of approaches are then trying
different algorithms for computing the similarity scores.

Overall, the literature mostly describes approaches that
statically detect repackaged apps by analysing the app
bytecode. Most of the approaches are based on pairwise
similarity comparison, which is unfortunately not suitable
for market-scale analyses. We remind the readers that in this
work the scalability issue is referred to the problems of (1)
combinatorial explosion and (2) absence of original apps. In-
deed, even when some approaches find relevant features for
efficiently speeding the comparison (e.g., Andarwin [46] can
analyse an app in 109 seconds), pairwise comparison-based
and unsupervised learning-based approaches are still facing
the issue of requiring the presence of the original app to find
its repackaged versions. Nevertheless, pairwise similarity

comparison is still useful and is often necessary. Actually,
in general, the analysis results of any advanced approaches,
which may meet market scalability requirements, must still
be vetted and confirmed via a pairwise comparison that
validates the high similarity score between the suspicious
repackaged app and another app.

Most state-of-the-art approaches cannot scale to mil-
lions of Android apps. They are thus not practical
for market maintainers.

4.2 Review of Evaluation Setups and Artefacts

Authors of state-of-the-art approaches have argued that
their proposed features enumerated in Table 3 are effective
for identifying repackaged apps. However, in the absence
of a comprehensive comparative assessment of existing
approaches, one question remains open for the community:

7

TABLE 4: Distance metrics used in Similarity computation approaches.

Algorithm Formula1 Approaches Count
Jaccard |X∩Y |

|X∪Y | PLayDrone [56], FSquaDRA [53], ViewDroid [59], PiggyApp [66], Jux-
tApp [71], Wu et al. [44], Ruiz et al. [73], Ruiz et al. [58], Linares-Vásquez
et al. [55], Li et al. [31], SimiDroid [25], APPraiser [23], Kim et al. [35]

13

Euclidean
√∑n

1 (xi − yi)2 Potharaju et al. [72], Soh et al. [43] 2

Normalized Compression
LX|Y−min{LX,LY }

max{LX ,LY }
Androguard [68], AndRadar [47] 2

Mahalanobis2
√∑n

1
(xi−yi)2

s2i
RepDetector [33] 1

Manhattan
∑n

1 |xi−yi|∑n
1 (xi+yi)

WuKong [45] 1

Cosine
∑n

1 xiyi√∑n
1 x

2
i

√∑n
1 y

2
i

Kywe et al. [54], CLANdroid [27] 2

FUIDroid [22], DroidClone [29], Niu et al. [32], DroidAnalytics [65], DNADroid [2], DroidMOSS [70], ImageStruct [40]
Customized/Other RepDroid [24], SUIDroid [34], MassVet [41], AdRob [60], DroidSim [52], DroidEagle [39], DroidKin [50], AndroSimilar2 [37] 21

GroupDroid [26], Chen et al. [38], Chen et al. [48], FSquaDRA2 [30], AndroSimilar [62], CodeMatch [19]
1xi, yi are elements of feature set X , Y .
2si in Mahalanobis algorithm is the standard deviation of xi, yi over the sample set.

what is the minimal feature set that is most effective in discrimi-
nating repackaged apps from non-repackaged ones?

We survey the origin of datasets used for experiments,
their sizes, and the availability of tools and data from state-
of-the-art approaches for use by other researchers. Table 5
provides the details of this assessment information for the
reviewed publications.

Tool availability Among the 57 publications proposing
approaches for detecting repackaged apps, only 7 have
made their tool support available.

Datasets availability Only 4 approaches have publicly
released a ground truth of similarities among Android apps.
Five (5) approaches have released the original set of apps
where they searched for repackaged apps.

Dataset size There is a huge variation among the sizes
of datasets used in the evaluation setups of state-of-the-art
approaches. Five studies have gone over the one-million
apps mark, 10 studies have analysed more than 100 thou-
sand apps (although less than 1 million), 30 studies have
analysed between 1000 and 100,000 apps, 7 papers have
analysed between 100 and 1000 apps. Three papers have
even been assessed on less than 100 apps. Given the size of
the official market alone, there is room to improve the scale
of the experiments performed in the literature.

Dataset diversity We also checked the origin of the
datasets and found that many approaches collect their ex-
perimental datasets from 1 or few sources. We note that
those approaches that used several sources are not neces-
sarily the ones that assessed on the largest datasets.

We have further investigated to what extent state-of-
the-art approaches have been compared in the literature.
Given the lack of data sharing and the unavailability of
tool support from competitor approaches, little comparative
evaluation has been presented in the literature. Among the
57 publications, only nine (9) have performed a comparative
study against the similarity scores of other approaches (e.g.,
the Androguard [90] tool). Fig. 2 summarises the graph of
comparison among the different state-of-the-art approaches.
We note that other comparative assessments are performed
on authors’ previous studies (which, by the way, are not
available to others) or by replicating, to the best of their
effort, some basic similarity computation-based approach.

Finally, we investigate how the accuracy of repackaged

TABLE 5: Summary of Examined Approaches based on
Their Evaluation Metrics.

Publication Tool Dataset #. of Genome
Available Available Apps

CodeMatch [19] 3 3 (10000,100000)
DR-Droid2 [20] (1000,10000) 3

DAPASA [21] (10000,100000) 3
FUIDroid [22] (10000,100000)
APPraiser [23] (1000000,∞)
RepDroid [24] 3 3 (100,1000)
SimiDroid [25] 3 3 (1000,10000)

GroupDroid [26] (1000,10000) 3
CLANdroid [27] 3 3 (10000,100000)

DR-Droid [28] (1000,10000) 3
DroidClone [29] (100,1000)

FSquaDRA2 [30] 3 (1000,10000)
Li et al. [31] 3α (1000000,∞)

Niu et al. [32] -
RepDetector [33] (1000,10000)

SUIDroid [34] (100000,1000000)
Kim et al. [35] (100,1000)

AndroidSOO [36] (10000,100000) 3
AndroSimilar2 [37] (10000,100000) 3

Chen et al. [38] (1000,10000) 3
DroidEagle [39] (1000000,∞)

ImageStruct [40] (10000,100000) 3
MassVet [41] (1000000,∞)
PICARD [42] (0,100)
Soh et al. [43] (100,1000)
Wu et al. [44] (1000,10000)
WuKong [45] (100000,1000000)

AnDarwin2 [46] (100000,1000000)
AndRadar [47] (100000,1000000) 3
Chen et al. [48] (10000,100000)

DIVILAR [49] (0,100)
DroidKin [50] (1000,10000) 3

DroidLegacy [51] (1000,10000) 3
DroidMarking [9] (100,1000)

DroidSim [52] (100,1000) 3
FSquaDRA [53] 3 (10000,100000)
Kywe et al. [54] (10000,100000)

Linares-Vásquez et al. [55] 3α (10000,100000)
PlayDrone [56] 3α (1000000,∞)

ResDroid [57] (100000,1000000)
Ruiz et al. [58] (100000,1000000)

ViewDroid [59] (10000,100000)
AdRob [60] (100000,1000000)

AnDarwin [61] (100000,1000000)
AndroSimilar [62] (10000,100000) 3

AppInk [63] (0,100)
AppIntegrity [64] (10000,100000)

DroidAnalytics [65] 3α (100000,1000000)
PiggyApp [66] (10000,100000)
SCSdroid [67] (100,1000)

Androguard [68] 3 -
DNADroid [2] (10000,100000)
DroidMat [69] (1000,10000)

DroidMOSS [70] (10000,100000)
JuxtApp [71] (100000,1000000)

Potharaju et al. [72] (1000,10000)
Ruiz et al. [73] 3α (1000,10000)

3α: dataset without repackaging labels

app detection is evaluated in state-of-the-art literature. In

8

ViewDroid

Potharaju et al.
@ESSoSImageStruct

Androguard

DNADroid

DroidMOSS

RepDetector

compare with
own/replicated
private tools

DroidMat DroidLegacy

SUIDroid/
FUIDroid FSquaDRA(2)

SimiDroid RepDroidKim et al.
@ASE

Soh et al.
@ICPC

Chen et al.
@ICSE

CodeMatch

FSquaDRA(2)

Fig. 2: Relationship of comparison among state-of-the-art approaches.

the absence of an external ground truth, authors apply their
approach on random datasets and then manually verify the
findings, on a sampled subset, to compute efficiency, leading
to the introduction of potential researcher bias. For evaluat-
ing their recent centroid-based approach, Chen et al. [48]
have randomly selected and checked 359 apps among thou-
sands of apps that are flagged as cloned and found that their
approach has zero false positive. A few approaches (7, cf.
Fig. 2) use Androguard as a proxy to check the similarity of
the detected repackaging pairs, adding some confidence to
their evaluation setup. Supervised Learning approaches rely
on the Genome dataset or other malware from VirusTotal to
build training and test sets.

Non-disclosure of tools and datasets is leading to
redundant research and does not encourage innova-
tion since there is limited opportunities to reproduce,
validate and compare.

5 DATASET CONSTRUCTION

State-of-the-art work in the literature claims high-
performance rates for their proposed approaches. Unfor-
tunately, their shortcomings in opening their datasets and
implementations to comparative assessment by other re-
searchers are actually blocking further research into the
problem. Since Android app repackaging remains relevant
today5, we propose to reboot this research topic, in the
hope of encouraging novel contributions that will tackle
efficiently the different challenges enumerated in Section 3.

To that end, we propose to build an extensive dataset,
namely RePack, for assessing repackaged detection algo-
rithms. Such a dataset includes a set of repackaged apps
accompanied with a “proof” of their repackaged state by
providing the original apps with which they form repack-
aging pairs, following the same definition: A repackaged
app pair (1) has at least 80% of code similarity between its
two apps and (2) has its two apps are signed by different
developers. Our work builds upon the popular AndroZoo

5. As demonstrated in the Lookout blog [6], which details their
analysis of the various repackaging versions of the popular Pokemon
Go app (repackaging with a trojan included, repackaging for cheating,
repackaging with adware included, etc.)

repository, which can serve as an exchange repository for
describing one’s dataset using the hash values of apps.

The collection of RePack is done in a systematic way.
Fig. 3 illustrates an overview of the construction process.
We leverage the AndroZoo dataset [11], which (by the time
of this study) includes over 5 million apps continuously
crawled from 13 markets including the official Google Play
and several alternatives markets such as AppChina, as well
as online repositories such as F-Droid and the Genome
project. To find repackaging pairs, we take the traditional,
time-consuming, but most accurate, approach of performing
similarity computations. To optimize the process, we devise
a two-phase approach for identifying repackaging pairs. We
now detail these two phases separately.

5.1 Splitting the Search Space
Because of time and computing resources constraints, it is
virtually infeasible to perform pairwise comparisons for all
possible app combinations in a dataset such as AndroZoo.
Instead, we propose to rely on a clustering-based approach
to split the search space, so as to focus on comparing only
likely similar apps. As illustrated in Fig. 3, this phase is
actually made up of three steps:

• Step (1): Feature Extraction. We abstract each app into
a representative feature vector. To ensure processing
speed, we focus on features that are easily extractable
from an APK file. Those include class names, declared
permissions, declared actions and intent-filters. These
features will prevent for example from regrouping a
game app with a messenger app and will ensure that
similar apps are included together in the same cluster.

• Step (2): EM Clustering. We leverage the Expectation
Maximization (EM) algorithm [91] to regroup the An-
droZoo apps into different clusters. EM is preferred to
other popular clustering algorithms, such as K-mean,
because it does not require to be parameterised with
the number of clusters that should be produced.

• Step (3): Candidate Pairing. At the end of this phase,
we consider the set of apps in each cluster and form
candidate combinations of repackaging pairs. Given
two apps in a cluster, the candidate pair is formed by
considering the one created before (based on the cre-
ation time of the DEX file) as the original app while the
remaining one as the repackaged version. Because we

9

AndroZoo

app1: [0, ..., 1, 0]
app2: [1, ..., 0, 0]
appn: [0, ..., 1, 1]

Features

(1) Feature
Extraction

(2) EM
Clustering

App Clusters

(3) Candidate
Pairing

Likely Similar Apps

(4) Similarity
Comparison

RepackageRepo

Fig. 3: Overview of RePack Construction. Step (1), (2), and (3) for Splitting the Search Space. Step (4) for Fast, Approximate,
Brute-force Similarity Comparison.

consider repackaging to be mostly a parasite activity,
we drop candidate pairs where the apps have been
signed with the same developer certificate. Indeed,
apps that are signed by the same certificate are usually
considered to be app variants of a same company or
app versions of the same app, which are unlikely to be
repackaged versions.

5.2 Fast, Approximate, Brute-force Similarity Compari-
son

Given a candidate pair of apps (app1, app2) found in a
cluster, we compute four similarity metrics, and calculate
a score based on Formula (1).

• identical (I), which represents the number of methods
(signature + body) which are shared by both apps;

• similar (S), representing the number of similar (same
signature but different body contents) methods be-
tween two apps;

• new (N), representing the number of new methods that
were added in app2 in comparison with app1; and

• deleted (D), representing the number of such methods
that exist in app1 but not in app2.

similarityScore := max{
|I|

|I|+ |S|+ |D|
,

|I|
|I|+ |S|+ |N |

} (1)

To ensure a fast computation of the above metrics, we
use an approximative representation of app method con-
tents by mapping the different statement types to alpha-
bet characters. For example, the simplified code snippet
presented in Listing 1 could be represented by string acc,
where an interface and virtual invocation statement are
respectively mapped to character a and c. All variables are
thus dropped from the comparison. The contents of the
different methods thus go through a code-to-text transfor-
mation leading to short strings for which efficient similarity
analysis algorithms exist. By ignoring easily-manipulable
variable names, our code-to-text transformation enables the
brute-force comparison to be resilient to simple obfusca-
tions which are commonly performed during repackaging.
Although we have attempted to fasten the pairwise compar-
isons, our similarity analysis still takes roughly one month
to finish on all the candidate pairs.

Finally, after confirming the effectiveness of our pair-
wise comparison methodology, we further set the similarity
threshold to 80% to decide that a pair of apps is a repackag-
ing pair. We aim to be conservative by selecting a threshold
that is more strict than those used in the literature [53],
[2]. We have performed experiments to validate that the
approximation in Phase 2 of the approach is preserving

1 $r2 = interfaceinvoke $r1.<WindowManager: Display
getDefaultDisplay()>();

2 virtualinvoke $r2.<Display: int getWidth()>();
3 virtualinvoke $r2.<Display: int getHeight()>();

Listing 1: Simplified Code Snippet of Android Apps. This
Code Snippet is Presented at the Jimple Level, where Our
Similarity Analysis is Implemented on top of Soot, in
which Jimple is the Default Intermediate Representation
(IR) Code.

similarity scores. These experiments consisted in comput-
ing exact statements similarity and comparing the similar-
ity scores against those obtained after approximations of
method contents. Overall, we ran the experiments on all
the repackaged app pairs obtained in this work. We found
no difference between the two experiments, i.e., with exact
statements compared and the same threshold at 80%, all
the RePack app pairs are still flagged as repackaged pairs.
Furthermore, we also validate that the scores that we obtain
are similar to those obtained with state-of-the-art tools such
as AndroGuard, which is basically in agreement with our
collected pairs (more details are given in Section 5.5).

5.3 Overall Results

Based on the AndroZoo dataset, we are able to collect 15,297
repackaging pairs to be shared as repackaging reference
dataset. We find that many apps are repackaged several
times by different attackers, with a minimal, mean, and
maximum times of 1, 2.168, and 176, respectively. Overall,
our RePack dataset includes 15,297 repackaged apps for
2,776 original apps. Table 6 shows the top three original
apps that are repackaged by over 100 different attackers.
Interestingly, all those three apps are from the official Google
Play store, suggesting that Google Play apps are somehow
more favoured by attackers to repackage and distribute.

Fig. 4 plots the distribution of DEX size of all the col-
lected RePack apps, where the size ranges from 3.67 KB
(minimal) to 16,180 KB (maximum), with a median and
mean size of 965.2 KB and 88.67 KB respectively. This dis-
tribution suggests that RePack is quite diverse, containing
small-size, middle-size, and large-size Android apps. We
then go one step deeper to investigate the changes of DEX
size between the two apps of a given pair. Among the 15,297
app pairs, over 70% of them have shown that repackaging
will eventually enlarge the DEX file, suggesting additional
code is usually injected during repackaging. However, for
nearly 30% of repackaging cases, the DEX size of repackaged
apps are smaller than that of the original apps.

Fig. 5 and Fig. 6 further respectively plots the distri-
bution of the number of Resource Files and Java Files for
the benchmark apps. The number of resource files ranges

10

TABLE 6: Top Three Original Apps that have been Repackaged by Over 100 Different Attackers.

SHA256 (Original App) Package Name Market Repackaged Certs
9CC2EAEF8636AE77794ACDF085A2C241A98E620581391D41FBC5D39D69528E53 com.algorythmicstudios.droid play.google.com 176
34084F29D69F2056E776B1F6BA3B1174D07C192F4EF2AF7CE793B0DE97C517C9 com.theindievelopers.stacktothirty play.google.com 109
D178AA7FC82311AF6536ECD7872FAEC9C1111E233EF25798F1E157F375862FCC com.HatchWorks.BabyDiscoverAquatic play.google.com 107

0 500 1000 1500 2000 2500 3000

Fig. 4: Distribution of DEX Size of RePack Apps (in KB).

from 12 to 10,5296, where the median and mean values are
150 and 247, respectively. For Java files, the number ranges
from 6 to 7225, where the median and mean values are 662
and 1050, respectively. These two distributions once again
suggest that the RePack dataset is quite diverse, where both
apps with a small number of resource/Java files and with
a large number of resource/Java files are included. Interest-
edly, Spearman’s rank correlation coefficient (i.e., ρ < 0.35)
suggests that there is no strong correlation between the
number of resource files and the number of Java files, further
confirming the diversity of our benchmark dataset.

0 100 200 300 400 500 600 700

Fig. 5: Distribution of the Number of Resource Files.

0 500 1000 1500 2000 2500

Fig. 6: Distribution of the Number of Java Files.

Fig. 7 plots the distribution based on the diff of Cre-
ation time between the two apps of a given repackaging

6. The maximum number is considered as an outlier so that it is
not presented at the boxplot. This explanation also applies to other
boxplots.

pair. Comparing to the creation time of the original apps,
the repackaging delay ranges from several days to several
years with an average, 88.67 days. This distribution also
suggests that our collected RePack apps are diverse, con-
taining different repackaging cases that could be interesting
to malware analysts to investigate.

0 500 1000 1500 2000 2500 3000

Fig. 7: Distribution of Creation Time Diff between RePack
Pairs (in Day).

Finally, we use the AVClass [92] labelling tool to assess
the diversity of repackaged malicious apps in our dataset.
Given a repackaged app, we consider it as malicious as long
as one of VirusTotal hosted anti-virus products flags it as
such. For a given app and its labels from VirusTotal anti-
virus engines, AVClass outputs a unique name of malware
or adware family. We feed AVClass with all the repackaged
malicious apps in our dataset. AVClass has successfully clas-
sified 5,960 repackaged apps of our dataset into 45 known
families, while the Genome dataset includes 49 families.
Moreover, our dataset includes about 9,337 repackaged apps
that AVClass is not able to categorize into a known malware
or adware family.

Overall, all the aforementioned studies, covering differ-
ent aspects, suggest that our collected repackaged pairs,
namely RePack, is quite diverse, and therefore is reliable to
be leveraged to support various analyses. Last but not the
least, as discussed in our previous work [31], for detecting
repackaged Android apps, common libraries may cause
both false positive and false negative results. Hence, we
extend our benchmark to also provide library information
for each repackaged pairs. We hope the extended infor-
mation can encourage the community to innovate in-depth
analyses for better understanding the facts between libraries
and app clones, including malicious ones. The library usage
(i.e., the 1,113 libraries summarised by Li et al. [31]) of each
app in the benchmark has been also made publicly avail-
able in our replication dataset. Moreover, to facilitate the
use of library information for Android-based analyses, we
provide a research-based prototype tool called LibExcluder
for generating library-free versions of given Android apps.
The goal of LibExcluder is to remove library code from a
given Android app. Given a whitelist of common libraries,
LibExcluder takes as input an Android app and outputs a
new app version, which is generally as same as the inputted

11

TABLE 7: Manual validation results of randomly selected repackaged app pairs (five examples).

Repackaged Code Resource Manual Observation (Same)
App Pair Similarity Similarity Package Name App Name Icon Main UI Skeleton
CCAC0E/3CDCEF 0.990 0.982 7 7 7 3
AE064D/6F2081 0.905 0.357 7 7 7 3
CA9ABD/78940D 0.987 0.982 3 3 3 3
207372/707ED8 0.866 0.929 7 7 7 3
FF57A0/74E764 0.995 0.776 7 7 7 3

one except that the code belonging to libraries configured in
the whitelist are excluded. Therefore, LibExcluder presents
to existing state-of-the-art approaches a new app version
where library code no longer exists. Without any modifica-
tion (i.e., being non-invasive), existing approaches such as
IccTA [93] can benefit from this work to perform library-free
analyses.

Our dataset is, to the best of our knowledge, the
largest one containing repackaged app pairs. It is
built from a representative set of apps, and includes
a diverse set of repackaged apps.

5.4 Manual Validation of Random Samples

One of the major goals of constructing a benchmark of
Repackaged Android apps is to support replication and
comparison studies by the community. Towards demon-
strating this ability, we need to ensure in the first place that
our constructed benchmark is reliable. To this end, we use a
statistical formula to compute our sample size for manual
checking. This formula, extracted from [94] (page 75), is
presented in Equation 2, where the following parameters
are used:

• population is set to 15, 297, the size of our dataset;
• The confidence interval c is set to 10% (i.e., c = 0.1);
• p is related to the variability in the population. Since we

don’t know the variability, p is set to 0.5, i.e., maximum
variability.

• z is related to the confidence level. As explained in [95]
(page 3), “z2 is the abscissa of the normal curve that cuts
off an area α at the tails (1− α equals the desired confidence
level, e.g., 95%)”. We set the confidence level at 95%, and
thus z is set to 1.96 (as explained in [95]).

ss :=
z2∗p∗(1−p)

c2

1 +
z2∗p∗(1−p)

c2
−1

population

(2)

As a result, the sample size ss is equal to 94.48. Even-
tually, we select a round number of 100 app pairs and
manually validate their similarities.

It is actually non-trivial to decide whether a given two
apps (which share over 90% of the code and are signed by
different developers) are repackaged from one to another
manually. We hence resort to dynamic analysis to validate
the selected pairs. Given a pair of apps, we manually install
them respectively on two emulators set up with exactly
the same configurations. After the apps are installed, we

manually launch and play with them and observe the simi-
larity and difference between the two apps. Among the 100
selected pairs, our manual validation confirms that 89 of
them are clearly repackaged pairs (sharing exactly the same
UI page or at least similar UI skeleton), giving a precision of
89% at least for our harvested benchmark7. The remaining
11 pairs have big changes in their UI pages that cannot
be soundly confirmed. Nonetheless, we remind the readers
that those app pairs, despite having different UI pages, have
shared over 80% of code and thus could be repackaged app
pairs as well.

Table 7 illustrates five samples of the details we have ob-
served from our manual validation process. The first column
presents the hash values8 of the selected pairs. The second
and third columns illustrate the similarity scores yielded by
SimiDroid, based on its method-based and resource-based
similarity analyses, respectively. The last four columns show
whether the package name, app name, icon and the main UI
skeleton are respectively the same between the two apps in
a pair. Regarding the main UI skeleton, we consider it is
the same as long as the layout is more or less the same. For
example, in this work, we consider the two pages shown
in Fig. 8 (collected from pair FF57A0/74E764) have the same
UI skeleton. If two apps (1) have over 90% of code similar
from one another, (2) are signed by different developers (or
teams), and (3) have similar look and feel (i.e., similar UI
skeleton), we consider these two apps as true repackaged
app pair. Hence, our manual validation confirms that 89%
of the randomly selected app pairs from our benchmark are
true repackaged app pairs, suggesting that our benchmark
is quite reliable. Subsequently, our benchmark should be
capable of supporting replication and comparison studies
between state-of-the-art approaches.

Table 7 further reveals that a repackaged app may (or
may not) change the package name, app name and icon of
the original app. These findings once again suggest that our
benchmark is diverse and is representative to different types
of repackaging cases.

5.5 Supporting Replication and Comparison of State-
of-the-art Work

Towards demonstrating the ability to support replication
and comparison studies, we revisit a couple of literature
approaches for repackaging detection which have made
their associated tools available. As shown in Table 5, only
seven research approaches have made some tools available.

7. Recall is not computed due to the complexity of confirming non-
repackaged app pairs (i.e., false negative results).

8. SHA256s, only the first six letters are shown.

12

(a) Original App. (b) Repackaged App.

Fig. 8: The first page of apps FF57A0 (left) and 74E764
(right), which more or less share the same UI Skeleton.

Nevertheless, not all of them are applicable for our study:
CLANdroid, CodeMatch and RepDroid cannot be directly
executed as the former two approaches require a corpus pre-
processing step and while the last one expects a complicated
runtime environment with hard-coded platform dependen-
cies. FSquaDRA2 and FSquaDRA share the same basics in
their approaches, experimenting one of them should be
enough. As a result, we focus on replicating the experiments
of FSquaDRA (resource-based comparison), Androguard
(approximate code-based comparison), and SimiDroid (ex-
act code-based comparison) based on our RePack dataset.

27.13%

19.36%

14.26%

10.97%

5.57%

0 0.05 0.1 0.15 0.2 0.25 0.3

>= 0.5

>= 0.6

>= 0.7

>= 0.8

>= 0.9

Fig. 9: FSquaDRA Results by Different Thresholds.

In this work, we use recall to characterise the ability of
state-of-the-art tools to detect repackaged apps9. If a pair in
the RePack benchmark is flagged as a repackaged pair, we
consider it as a True Positive (TP) result. Otherwise, if the
pair is flagged as a non-repackaged pair, we consider it as
a False Negative (FN) result. Then, the recall of a given tool

9. The reason why precision is not considered is that in this work we
assume all the repackaged pairs in our benchmark are true positives.
Therefore, there will be no false positives reported and hence the
precision of state-of-the-art tools will be always 100%.

can be computed based on the following formula:

recall :=
TP

TP + FN
(3)

Due to exceptions thrown by AndroGuard, FSquaDRA
and SimiDroid, we eventually consider results for 8,078
pairs, among the pairs in RePack, where all the three tools
have successfully finished their analyses. Given the same
threshold at 80%, AndroGuard is in agreement with our
collected dataset for 86% pairs while FSquaDRA only agrees
for 11% pairs. In other words, while similarity scores by
AndroGuard would allow identifying 86% of pairs in our
dataset (i.e., recall is 86%), similarity by FSquaDRA is only
aligned for 11% of the RePack pairs (i.e., recall is 11%).
Regarding the similarity results of SimiDroid, we only ob-
serve seven pairs (out of in total 11,255 successfully finished
analyses) that have their similarity scores less than 80%, re-
sulting in almost 100% recall. Fig. 9 further plots the results
of FSquaDRA by different thresholds. The lower threshold
considered, the higher the results achieved. Nonetheless,
even with lower thresholds, the results of FSquaDRA are
still not comparable to that of AndroGuard and SimiDroid.
These results show that the similarity analysis we have per-
formed for building possible repackaging pairs is highly in
line with the analysis of AndroGuard and SimiDroid but not
in line with the analysis of FSquaDRA. The disagreement
of FSquaDRA could be explained by one of the findings
summarized by Li et al. [96], where the authors experi-
mentally demonstrate that repackaging may also largely
manipulate the resource files which would thus lead to poor
results for resource-based similarity analysis tools. Fig. 10
further shows the distribution of the similarity results of
these three tools, where the median and mean values are
99%, 85.8% for AndroGuard, 30%, 35% for FSquaDRA, and
99.47%, 96.78% for SimiDroid, respectively. Mann-Whitney-
Wilcoxon (MWW) test demonstrates that the difference be-
tween the obtained scores of AndroGuard and FSquaDRA
(and between that of FSquaDRA and SimiDroid) are signif-
icant. Cliff’s effective size estimation nevertheless suggests
that the results of AndroGuard and FSquaDRA (and also
that of SimiDroid and FSquaDRA) are largely and positively
correlated, which has been also demonstrated by the authors
of FSquaDRA.

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●●●

●

●●●

●

●●●●

●

●●

●

●●●●●●

●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●

●

●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●●

●
●
●

●

●
●

●
●●●
●
●●●
●

●

●
●●
●
●

●
●
●
●
●
●●●●●●
●
●
●
●●

●

●

●
●
●

●

●
●●●
●
●●●●●

●

●
●●
●
●
●

●

●●
●●●●
●
●●
●●
●●●●
●●●●
●
●
●
●●
●
●●●
●
●
●●●
●●●

●

●
●●●●●
●
●

●
●●
●
●
●

●

●

●
●

●●

●

●
●

●
●

●
●
●
●
●●●●
●
●●●●
●
●
●●●●
●●
●●
●
●●
●●
●

●
●●●
●
●●●●●●●●●
●

●

●●

●●
●●
●●●●●●

●●

●

●●

AndroGuard FSquaDRA SimiDroid

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
im

ila
rit

y
S

co
re

Fig. 10: Distribution of Similarity Scores Given by Andro-
Guard, FSquaDRA and SimiDroid.

13

Finally, we proceed ourselves to propose a straightfor-
ward scalable repackaged app detection approach based
on our insights on analysing repackaging pairs in the
RePack dataset. This approach uses classification technique
(specifically machine learning based 10-Fold cross valida-
tion) based on symptoms (i.e., component capability decla-
ration, app permission requests, mismatch between package
and Launcher component names, package name diversity,
favoured sensitive apis) of the repackaging process ap-
pearing in apps. In total, our approach extracts 521 fea-
tures, including four boolean and int features presented
and 107, 266, 144 features for repackaging favourite new
permissions, new capabilities and sensitive APIs, respectively.
Overall, this straightforward approach achieves 79% Recall
for distinguishing repackaged apps from non-repackaged
ones. Although these performance scores are lower than
many performances (up to 100%) recorded in the literature,
they are obtained, to the best of our knowledge, from the
first readily reproducible experiments with an approach
that is not based on pairwise similarity computation. The
performance of this technique, measured on RePack, can be
considered as a reasonable baseline to improve within the
community. For the sake of space, we provide the details of
this approach as a supplementary document for interested
readers to refer to [97].

6 PRIORITY RESEARCH DIRECTIONS

Our investigation into the problem of repackaged app de-
tection has yielded an enumeration of challenges that the
research community must strive to address. We also propose
in this section some priority research directions towards
creating most efficient detection systems.

1) Comprehending Repackaging Processes: As dis-
cussed previously, machine-learning approaches are appeal-
ing to ensure scalability and practicality in repackaged app
detection. Nevertheless, their design must be based on a
solid feature engineering process which should identify
features that are truly representative of the repackaging
phenomenon. In this work, we have proposed preliminary
investigations into such features and focused on features
which were easy and fast to extract. More extensive analyses
into a large ground truth of repackaging pairs can provide
more insights on novel and discriminative features. For
example, we have not studied the impact of repackaging on
the density of call graphs (since edges are inserted/deleted
by modifications of original apps).

A more extensive investigation into repackaging pro-
cesses can further provide a taxonomy of repackaging sim-
ilar to the types of code clones surveyed by Roy et al. [98].
Such a taxonomy can help researchers more precisely inform
readers on the target of their research.

2) Graph Analysis: In static analysis, call/dependency
graphs are known to be a reliable representation of app
structure. Since repackaging is mostly not invasive, a
repackaged app may be formed by loosely-coupled mod-
ules [28]. An efficient analysis of call/ dependency graphs
can thus be leveraged in a precise and practical means to de-
tect repackaged apps, i.e., without relying on the availability
of the original apps for comparison.

3) Dynamic Analysis: Dynamic analysis, although accu-
rate, is expensive to implement by all market maintainers.
Furthermore, because malware can now easily detect when
they are run in a sandboxed environment, they may hide the
behaviour implemented in the payload added via repack-
aging. Nevertheless, new avenues of research involved a
form of crowdsourcing can be explored, where market
maintainers collect runtime information from users’ devices
for posterior analyses of similar/divergent app behaviour.

4) Repackaging Deterrence: Finally, besides provid-
ing market maintainers with means to screen markets for
repackaged apps, researchers should provide repackaged
app detection in markets, developers should be provided
with means for protecting their apps from repackagers.
AppInk [63] and DIVILAR [49] are rare examples of research
work attempting to propose approaches for repackaged de-
terrence in the security community. We feel that the Software
engineering community can heavily contribute in this area
as well with watermarking techniques.

7 THREATS TO VALIDITY

Although we have tried our best to collect relevant papers as
much as possible by following a well-defined methodology
for conducting SLR, our results may have still missed some
publications. More specifically, the state-of-the-art reposi-
tory search engines (e.g., the one provided by Springer)
are not so accurate, usually resulting in many irrelevant
papers and may also miss some relevant ones. To further
mitigate this threat, we have also conducted a backwards-
snowballing based on already considered publications.

Another threat to validity of our study lies in the exhaus-
tiveness of our dataset. However, we have leveraged the An-
droZoo largest available research dataset of Android apps
to mitigate potential threats. Nevertheless, we have empir-
ically shown that our collected dataset, namely RePack, is
quite diverse, e.g., containing both small-size and large-size
apps and containing over 40 distinct types of repackaged
malware families.

As a known challenge, so far, this is no straightforward
means to pinpoint whether a given app is the original
version of a given repackaging app pair. Hence, the original
apps in our collected dataset may not be the final original
ones as the creation time of DEX files can be manipulated.
Furthermore, as shown in a recent study, because of multi-
generation repackaging, the identified original app of a
given repackaging pair may also be a repackaged version
of a previous app, making the identified original app even
more wrongful. Furthermore, the creation time of Android
apps can be also manipulated, making the identified orig-
inal app even more wrongful. Nevertheless, it remains an
interesting future work for our community to tackle.

Because of AV disagreements, the AV labels collected
from VirusTotal may not be perfect, nor does the AVClass
classifications. However, in this work, we only use Virus-
Total to get quick insights on our constructed dataset. We
thus encourage our fellow researchers to explore this direc-
tion to propose more promising approaches for pinpointing
Android malware.

The fact that libraries are not excluded in this work could
lead to inaccurate results as well. The rationale behind this

14

decision is that (1) Despite much efforts have been put on
investigating Android libraries, we feel that the momentum
of Android research has not yet produced a complete set of
common libraries to support in-depth analysis of Android
apps, including the whitelist leveraged in the extension of
this work. (2) As argued by literature work, libraries could
be favoured by attackers to inject malicious payloads so as
to repackage Android apps with the ability to reuse the
same exploitation to other apps that have leveraged the
same popular library. Removing libraries may also exclude
the opportunity to pinpoint the malicious behaviours of
repackaged malicious apps. Nonetheless, we believe that
the consideration of libraries could be crucial to repackaged
app detection approaches. We, therefore, have provided to
our community a research-based prototype tool for generat-
ing library-free versions of given Android apps, aiming at
encouraging the community to innovate in-depth analyses
for better understanding the facts between libraries and app
clones, including malicious ones.

Finally, despite our benchmark is carefully built follow-
ing a strict definition of repackaged app pairs: (1) over 80%
of code similarity and should be signed by different devel-
opers, our benchmark may lead to both under-approximate
(obfuscation is not considered) and over-approximate (li-
braries are considered) results. Indeed, under-approximate
could be reported if obfuscation (especially method sig-
natures are manipulated) is not considered while over-
approximate could be yielded if common libraries are taken
into account. Additionally, the definition by itself may not be
always true. For example, two apps could be independently
implemented by two developers (i.e., different signatures)
via cloning from the same app. Because the changes made
by the cloning process can be small, the two apps may
still remain over 80% of code similarity (mainly contributed
by the app that the two apps cloned from). Based on our
definition, we could still flag this two apps as a repackaged
app pair. Nonetheless, although the repackaged app version
is not directly modified from another app, we believe it
could still be considered (to some extent) as a repack-
aged pair. Moreover, the current construction process of
the benchmark is based on the extracted properties at the
method level, which might introduce biases to repackaged
app detectors that are implemented based on other means
rather than the static analysis of methods. Nevertheless, it is
non-trivial and probably time-intensive to manually verify
the validity of all the app pairs in our benchmark. Hence,
we commit to continuously improve the validity of the
benchmark and eventually provide an oracle for evaluating
repackage detection tools.

8 RELATED WORK

Repackaging is an important issue in the Android ecosys-
tem that must be continuously dealt with by the research
community. We argue that the research around repackaged
app detection is blocked by state-of-the-art work which
record high performance rates in the literature while hin-
dering comparative assessments. Related to our work are
(1) studies that provide constructive discussions on the
value of contributions in a research domain, (2) general

research on clone detection and (3) frameworks for assessing
repackaged detection approaches.

Critical review of research: Recently, Blackburn et al.
present to our community a pragmatic guide to assessing
empirical evaluations [99]. They state that an unsound claim
can misdirect an entire field. In this work, we attempt to fol-
low their guidelines and thus to avoid potentially unsound
claims. Although we have not focused on finding fallacies in
evaluation of state-of-the-art work, our motivation is similar
to that of Monperrus [100] and his critical review of a state-
of-the-art automated repair work. We have discussed the
challenges that researchers in this domain must keep in
mind and further provide new data, approach and ideas
for potential research directions.

Code clone & software plagiarism detection: App
repackaged detection deals with similar concepts as in tra-
ditional code clone detection approaches [83], [101], [102],
[103], [82], [104], which either work at a higher level where
files are directly compared [104] or work at a lower level
where fragments of code (or graphs/trees) are considered,
their objectives were to measure the similarity of code frag-
ments. Even if the notion of clone fragment, be it a method,
file or package, could be very useful for app similarity
measurements, it is not sufficient in the context of Android,
since Android apps have intensively leveraged framework
and library code. In other words, two apps with similar code
fragments are not necessarily similar.

Closely related to our new proposed approach is
Clonewise [105], which, to the best of our knowledge, is the
first to consider clone detection as a classification problem.
Our approach, also in contrast with most state-of-the-art
work, considers repackaging detection as a classification
problem to enable a practical use in real-world settings.

Nevertheless, machine learning techniques, by allowing
sifting through large sets of applications to detect malicious
apps based on measures of similarity of features, have
been extensively leveraged to conduct large-scale malware
detection [106], [107], [108], [109]. Unfortunately, through
extensive evaluations, the community of ML-based malware
detection has not yet shown that current malware detectors
for Android are efficient in detecting malware in the wild.
One among the candidate reasons to this situation is the
fact that most malware are actually repackaged from benign
apps, their ML-based features are probably similar to those
extracted from benign apps, making them indistinguishable
for ML-based malware detection. Indeed, as pointed out
by Meng et al. [110], the current feature-based malware
detection approaches are not enough because they cannot
provide detailed information beyond their mere detection.
They thus propose an alternative approach that leverages
semantic features (based on deterministic symbolic automa-
ton (DSA)) to comprehensive Android malware and thereby
to detect and classify them. Therefore, we believe that the
detection of repackaged Android apps contributes to also
valuable ingredients for detecting malicious Android apps.

Assessment of repackaged detection algorithms:
Complementary to our work, Huang et al. [81] have early
proposed a framework to comprehensively evaluate the
obfuscation resilience of repackaging detection algorithms.
They demonstrate the obfuscation problem for repackaged
detection algorithm by experimenting on Androguard. Fol-

15

lowing state-of-the-art work now regularly report on their
performance with this framework. With our work, we aim
for the same momentum of using a common dataset for
evaluating approaches.

9 CONCLUSION

We proposed to review the challenges of repackaged app
detection in the Android ecosystem. We then performed a
review of state-of-the-art work and highlighted the necessity
to put new life into the research on repackaged app detec-
tion. We contribute in this direction by building a compre-
hensive dataset of repackaging pairs, aiming at supporting
replications of existing approaches and implications of new
research directions.

ACKNOWLEDGMENT

This work was supported by the Monash-Warwick Alliance
Catalyst Fund (2018/2019), by the European Union, under
the SPARTA project, by the Fonds National de la Recherche
(FNR), Luxembourg, under projects CHARACTERIZE
C17/IS/11693861 and Recommend C15/IS/10449467, and
by the University of Luxembourg, under the VulFix project.
The authors would like to thank the anonymous reviewers
who have provided insightful and constructive comments
that have led to important improvements in several parts
of the manuscript. The authors also appreciate the help
received from Timothée Riom who have helped to verify
the literature review results.

REFERENCES

[1] Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui
Zang, and Heesook Choi. Adrob: Examining the landscape and
impact of android application plagiarism. In Proceeding of the 11th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’13, pages 431–444, New York, NY, USA, 2013.
ACM.

[2] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the
clones: detecting cloned applications on android markets. In
ESORICS, 2012.

[3] Li Li, Daoyuan Li, Tegawendé F Bissyandé, David Lo, Jacques
Klein, and Yves Le Traon. Ungrafting malicious code from
piggybacked android apps. Technical Report, 2016.

[4] Jason Ankeny. Feds seize android app market-
places applanet, appbucket in piracy sting, August
2012. http://www.fiercemobilecontent.com/story/
feds-seize-android-app-marketplaces-applanet-appbucket-piracy-sting/
2012-08-22.

[5] Ustwo games. https://goo.gl/TuZnz4. Accessed: 2016-08-25.
[6] Pokemon go: New tampered apps & what you can do.

https://blog.lookout.com/blog/2016/07/15/pokemon-go/. Ac-
cessed: 2016-08-25.

[7] Jin-Hyuk Jung, Ju Young Kim, Hyeong-Chan Lee, and
Jeong Hyun Yi. Repackaging attack on android banking applica-
tions and its countermeasures. Wireless Personal Communications,
73(4):1421–1437, 2013.

[8] Wu Zhou, Xinwen Zhang, and Xuxian Jiang. Appink: Water-
marking android apps for repackaging deterrence. In Proceedings
of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS ’13, pages 1–12, New York,
NY, USA, 2013. ACM.

[9] Chuangang Ren, Kai Chen, and Peng Liu. Droidmarking: Re-
silient software watermarking for impeding android application
repackaging. In ASE, 2014.

[10] Haoyu Wang, Hao Li, Li Li, Yao Guo, and Guoai Xu. Why are
android apps removed from google play? a large-scale empirical
study. In The 15th International Conference on Mining Software
Repositories (MSR 2018), 2018.

[11] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. Androzoo: Collecting millions of android apps for the
research community. In MSR, 2016.

[12] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F
Bissyandé, Alexandre Bartel, Jacques Klein, and Yves Le Traon.
Androzoo++: Collecting millions of android apps and their meta-
data for the research community. arXiv preprint arXiv:1709.05281,
2017.

[13] Staffs Keele. Guidelines for performing systematic literature
reviews in software engineering. 2007.

[14] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark
Turner, and Mohamed Khalil. Lessons from applying the sys-
tematic literature review process within the software engineering
domain. Journal of systems and software, 80(4):571–583, 2007.

[15] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried
Rasthofer, Alexandre Bartel, Damien Octeau, Jacques Klein, and
Yves Le Traon. Static analysis of android apps: A systematic
literature review. Technical report, SnT, 2016.

[16] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé,
and Jacques Klein. Automated testing of android apps: A sys-
tematic literature review. IEEE Transactions on Reliability, 2018.

[17] Barbara Kitchenham. Procedures for performing systematic re-
views. Keele, UK, Keele University, 33(2004):1–26, 2004.

[18] Ayush Kohli. Decisiondroid: a supervised learning-based system
to identify cloned android applications. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, pages
1059–1061. ACM, 2017.

[19] Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif,
Ben Hermann, Johannes Lerch, and Mira Mezini. Codematch:
obfuscation won’t conceal your repackaged app. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering,
pages 638–648. ACM, 2017.

[20] Ke Tian, Danfeng Daphne Yao, Barbara G Ryder, G Tan, and
Guojun Peng. Detection of repackaged android malware with
code-heterogeneity features. IEEE Transactions on Dependable and
Secure Computing, 2017.

[21] Ming Fan, Jun Liu, Wei Wang, Haifei Li, Zhenzhou Tian, and
Ting Liu. Dapasa: detecting android piggybacked apps through
sensitive subgraph analysis. IEEE Transactions on Information
Forensics and Security, 12(8):1772–1785, 2017.

[22] Fang Lyu, Yaping Lin, and Junfeng Yang. An efficient and
packing-resilient two-phase android cloned application detection
approach. Mobile Information Systems, 2017, 2017.

[23] Yuta Ishii, Takuya Watanabe, Mitsuaki Akiyama, and Tatsuya
Mori. Appraiser: A large scale analysis of android clone apps.
IEICE TRANSACTIONS on Information and Systems, 100(8):1703–
1713, 2017.

[24] Shengtao Yue, Weizan Feng, Jun Ma, Yanyan Jiang, Xianping Tao,
Chang Xu, and Jian Lu. Repdroid: an automated tool for android
application repackaging detection. In Program Comprehension
(ICPC), 2017 IEEE/ACM 25th International Conference on, pages
132–142. IEEE, 2017.

[25] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Simidroid:
Identifying and explaining similarities in android apps. In The
16th IEEE International Conference On Trust, Security And Privacy
In Computing And Communications (TrustCom 2017), 2017.

[26] Niccolò Marastoni, Andrea Continella, Davide Quarta, Stefano
Zanero, and Mila Dalla Preda. Groupdroid: Automatically group-
ing mobile malware by extracting code similarities. 2017.

[27] Mario Linares-Vásquez, Andrew Holtzhauer, and Denys Poshy-
vanyk. On automatically detecting similar android apps. In
Program Comprehension (ICPC), 2016 IEEE 24th International Con-
ference on, pages 1–10. IEEE, 2016.

[28] Ke Tian, Danfeng (Daphne) Yao, Barbara G. Ryder, and Gang Tan.
Analysis of code heterogeneity for high-precision classification of
repackaged malware. In MoST@S&P (W), 2016.

[29] Shahid Alam, Ryan Riley, Ibrahim Sogukpinar, and Necmeddin
Carkaci. Droidclone: Detecting android malware variants by
exposing code clones. In Digital Information and Communication
Technology and its Applications (DICTAP), 2016 Sixth International
Conference on, pages 79–84. IEEE, 2016.

[30] Olga Gadyatskaya, Andra-Lidia Lezza, and Yury Zhauniarovich.
Evaluation of Resource-based App Repackaging Detection in
Android. In Proceedings of the 21st Nordic Conference on Secure
IT Systems, NordSec 2016, pages 135–151, 2016.

[31] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.

http://www.fiercemobilecontent.com/story/feds-seize-android-app-marketplaces-applanet-appbucket-piracy-sting/2012-08-22
http://www.fiercemobilecontent.com/story/feds-seize-android-app-marketplaces-applanet-appbucket-piracy-sting/2012-08-22
http://www.fiercemobilecontent.com/story/feds-seize-android-app-marketplaces-applanet-appbucket-piracy-sting/2012-08-22

16

An investigation into the use of common libraries in android
apps. In SANER, 2016.

[32] Haofei Niu, Tianchang Yang, and Shaozhang Niu. Clone analysis
and detection in android applications. In Systems and Informatics
(ICSAI), 2016 3rd International Conference on, pages 520–525. IEEE,
2016.

[33] Quanlong Guan, Heqing Huang, Weiqi Luo, and Sencun Zhu.
Semantics-based repackaging detection for mobile apps. In
ESSoS, 2016.

[34] Fang Lyu, Yapin Lin, Junfeng Yang, and Junhai Zhou. Suidroid:
An efficient hardening-resilient approach to android app clone
detection. In Trustcom/BigDataSE/ISPA, 2016 IEEE, pages 511–518.
IEEE, 2016.

[35] Daeyoung Kim, Amruta Gokhale, Vinod Ganapathy, and Ab-
hinav Srivastava. Detecting plagiarized mobile apps using api
birthmarks. Automated Software Engineering, 23(4):591–618, 2015.

[36] Hugo Gonzalez, Andi A Kadir, Natalia Stakhanova, Abdullah J
Alzahrani, and Ali A Ghorbani. Exploring reverse engineering
symptoms in android apps. In Proceedings of the Eighth European
Workshop on System Security, page 7. ACM, 2015.

[37] Parvez Faruki, Vijay Laxmi, Ammar Bharmal, Manoj Singh Gaur,
and Vijay Ganmoor. Androsimilar: Robust signature for detecting
variants of android malware. Journal of Information Security and
Applications, 22:66–80, 2015.

[38] Jian Chen, Manar H. Alalfi, Thomas R. Dean, and Ying Zou.
Detecting android malware using clone detection. JCST, 2015.

[39] Mingshen Sun, Mengmeng Li, and John C.S. Lui. Droideagle:
seamless detection of visually similar android apps. In WiSec,
2015.

[40] Sibei Jiao, Yao Cheng, Lingyun Ying, Purui Su, and Dengguo
Feng. A rapid and scalable method for android application
repackaging detection. In ISPEC, 2015.

[41] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan
Zhang, Heqing Huang, Zou Wei, and Peng Liu. Finding un-
known malice in 10 seconds: Mass vetting for new threats at the
google-play scale. In USENIX Security, 2015.

[42] Alessandro Aldini, Fabio Martinelli, Andrea Saracino, and
Daniele Sgandurra. Detection of repackaged mobile applications
through a collaborative approach. CCPE, 2015.

[43] Charlie Soh, Hee Beng Kuan Tan, Yauhen Leanidavich Arna-
tovich, and Lipo Wang. Detecting clones in android applications
through analyzing user interfaces. In ICPC, 2015.

[44] Xueping Wu, Dafang Zhang, Xin Su, and WenWei Li. Detect
repackaged android application based on http traffic similarity.
SCN, 2015.

[45] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. Wukong:
A scalable and accurate two-phase approach to android app
clone detection. In ISSTA, 2015.

[46] Jonathan Crussell, Clint Gibler, and Hao Chen. Andarwin: Scal-
able detection of android application clones based on semantics.
TMC, 2014.

[47] Martina Lindorfer, Stamatis Volanis, Alessandro Sisto, Matthias
Neugschwandtner, Elias Athanasopoulos, Federico Maggi, Chris-
tian Platzer, Stefano Zanero, and Sotiris Ioannidis. Andradar:
Fast discovery of android applications in alternative markets. In
DIMVA, 2014.

[48] Kai Chen, Peng Liu, and Yingjun Zhang. Achieving accuracy
and scalability simultaneously in detecting application clones on
android markets. In ICSE, 2014.

[49] Wu Zhou, Zhi Wang, Yajin Zhou, and Xuxian Jiang. Divilar:
diversifying intermediate language for anti-repackaging on an-
droid platform. In CODASPY, 2014.

[50] Hugo Gonzalez, Natalia Stakhanova, and Ali A Ghorbani. Droid-
kin: Lightweight detection of android apps similarity. In Interna-
tional Conference on Security and Privacy in Communication Systems,
pages 436–453. Springer, 2014.

[51] Luke Deshotels, Vivek Notani, and Arun Lakhotia. Droidle-
gacy: automated familial classification of android malware. In
PPREW@POPL (W), 2014.

[52] Xin Sun, Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie.
Detecting code reuse in android applications using component-
based control flow graph. In IFIP SEC, 2014.

[53] Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo, Francesco
La Spina, and Ermanno Moser. Fsquadra: fast detection of
repackaged applications. In DBSec, 2014.

[54] Su Mon Kywe, Yingjiu Li, Robert H. Deng, and Jason Hong. De-
tecting camouflaged applications on mobile application markets.
In ICISC, 2014.

[55] Mario Linares-Vásquez, Andrew Holtzhauer, Carlos Bernal-
Cairdenas, and Denys Poshyvanyk. Revisiting android reuse
studies in the context of code obfuscation and library usages.
In MSR, 2014.

[56] Nicolas Viennot, Edward Garcia, and Jason Nieh. A measure-
ment study of google play. In SIGMETRICS, 2014.

[57] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei
Zhang. Towards a scalable resource-driven approach for detect-
ing repackaged android applications. In ACSAC, 2014.

[58] Israel J. Ruiz, Bram Adams, Meiyappan Nagappan, Steffen Di-
enst, Thorsten Berger, and Ahmed E. Hassan. A large scale
empirical study on software reuse in mobile apps. IEEE Software,
2014.

[59] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu,
and Peng Liu. Viewdroid: Towards obfuscation-resilient mobile
application repackaging detection. In WiSec, 2014.

[60] Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui
Zang, and Heesook Choi. Adrob: Examining the landscape and
impact of android application plagiarism. In MobiSys, 2013.

[61] Jonathan Crussell, Clint Gibler, and Hao Chen. Andarwin:
Scalable detection of semantically similar android applications.
In ESORICS, 2013.

[62] Parvez Faruki, Vijay Ganmoor, Vijay Laxmi, Manoj Singh Gaur,
and Ammar Bharmal. Androsimilar: robust statistical feature
signature for android malware detection. In Proceedings of the
6th International Conference on Security of Information and Networks,
pages 152–159. ACM, 2013.

[63] Wu Zhou, Xinwen Zhang, and Xuxian Jiang. Appink: water-
marking android apps for repackaging deterrence. In AsiaCCS,
2013.

[64] Timothy Vidas and Nicolas Christin. Sweetening android lemon
markets: Measuring and combating malware in application mar-
ketplaces. In CODASPY, 2013.

[65] Min Zheng, Mingshen Sun, and John C.S. Lui. Droidanalytics:
A signature based analytic system to collect, extract, analyze and
associate android malware. In TrustCom, 2013.

[66] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong
Zou. Fast, scalable detection of piggybacked mobile applications.
In CODASPY, 2013.

[67] Ying-Dar Lin, Yuan-Cheng Lai, Chien-Hung Chen, and Hao-
Chuan Tsai. Identifying android malicious repackaged applica-
tions by thread-grained system call sequences. CompSec, 2013.

[68] Anthony Desnos. Android: Static analysis using similarity dis-
tance. In HICSS, 2012.

[69] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and
Kuo-Ping Wu. Droidmat: Android malware detection through
manifest and api calls tracing. In AsiaJCIS, 2012.

[70] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting
repackaged smartphone applications in third-party android mar-
ketplaces. In CODASPY, 2012.

[71] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen,
and Dawn Song. Juxtapp: a scalable system for detecting code
reuse among android applications. In DIMVA, 2012.

[72] Rahul Potharaju, Andrew Newell, Cristina Nita-Rotaru, and
Xiangyu Zhang. Plagiarizing smartphone applications: Attack
strategies and defense techniques. In ESSoS, 2012.

[73] Israel J. Ruiz, Meiyappan Nagappan, Bram Adams, and Has-
san Ahmed E. Understanding reuse in the android market. In
ICPC, 2012.

[74] Anthony Desnos and Geoffroy Gueguen. Android: From revers-
ing to decompilation. Proc. of Black Hat Abu Dhabi, pages 77–101,
2011.

[75] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu,
Jian Liu, Rui Xue, and Wei Huo. Libd: Scalable and precise
third-party library detection in android markets. In Software
Engineering (ICSE), 2017 IEEE/ACM 39th International Conference
on, pages 335–346. IEEE, 2017.

[76] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar:
fast and accurate detection of third-party libraries in android
apps. In Proceedings of the 38th International Conference on Software
Engineering Companion, pages 653–656. ACM, 2016.

[77] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party
library detection in android and its security applications. In

17

Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 356–367. ACM, 2016.

[78] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Moonlightbox:
Mining android api histories for uncovering release-time incon-
sistencies. In The 29th IEEE International Symposium on Software
Reliability Engineering (ISSRE 2018), 2018.

[79] Dexguard. https://www.guardsquare.com/dexguard. Accessed:
2016-08-25.

[80] Sandmark: A tool for the study of software protection algorithms.
http://sandmark.cs.arizona.edu. Accessed: 2016-08-25.

[81] Heqing Huang, Sencun Zhu, Peng Liu, and Dinghao Wu. A
framework for evaluating mobile app repackaging detection
algorithms. In International Conference on Trust and Trustworthy
Computing, pages 169–186. Springer, 2013.

[82] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag:
Detection of software plagiarism by program dependence graph
analysis. In In the Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD06,
pages 872–881. ACM Press, 2006.

[83] Chanchal Kumar Roy and James R. Cordy. A survey on software
clone detection research. Technical report, School fo Computing,
TR 2007-541, Queen’s University, 2007.

[84] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques
Klein. Droidra: Taming reflection to support whole-program
analysis of android apps. In The 2016 International Symposium
on Software Testing and Analysis (ISSTA 2016), 2016.

[85] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang Shu, Bodong
Li, Wenjun Hu, and Dawu Gu. Appspear: Bytecode decrypting
and dex reassembling for packed android malware. In 18th
International Symposium on Research in Attacks, Intrusions, and
Defenses, RAID, pages 359–381, 2015.

[86] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. Dexhunter: to-
ward extracting hidden code from packed android applications.
In European Symposium on Research in Computer Security, pages
293–311. Springer, 2015.

[87] Eric Bodden, Siegfried Rasthofer, Philipp Richter, and Alexan-
der Roßnagel. Schutzmaßnahmen gegen datenschutz-
unfreundliche smartphone-apps. Datenschutz und Datensicherheit-
DuD, 37(11):720–725, 2013.

[88] Siegfried Rasthofer, Steven Arzt, Max Kolhagen, Brian Pfret-
zschner, Stephan Huber, Eric Bodden, and Philipp Richter. Droid-
search: A tool for scaling android app triage to real-world app
stores. In Science and Information Conference (SAI), 2015, pages
247–256. IEEE, 2015.

[89] James R Cordy and Chanchal K Roy. The nicad clone detector.
In Program Comprehension (ICPC), 2011 IEEE 19th International
Conference on, pages 219–220. IEEE, 2011.

[90] Androguard: Reverse engineering, malware analysis of android
applications. https://github.com/androguard. Accessed: 2016-
08-25.

[91] Todd K Moon. The expectation-maximization algorithm. IEEE
Signal processing magazine, 13(6):47–60, 1996.

[92] Marcos Sebastián, Richard Rivera12, Platon Kotzias12, and Juan
Caballero. Avclass: A tool for massive malware labeling. 2016.

[93] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein,
Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden,
Damien Octeau, and Patrick Mcdaniel. IccTA: Detecting Inter-
Component Privacy Leaks in Android Apps. In Proceedings of the
37th International Conference on Software Engineering (ICSE 2015),
2015.

[94] William G. Cochran. Sampling Techniques. Wiley Eastern Limited,
1977.

[95] Glenn D. Israel. Determining sample size. University of Florida,
series of the Program Evaluation and Organizational Development,
1992.

[96] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, David Lo, and Lorenzo Cavallaro. Understanding
android app piggybacking: A systematic study of malicious code
grafting. IEEE Transactions on Information Forensics & Security
(TIFS), 2017.

[97] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Base-
line Approach for Repackaged App Detection: A Supple-
ment Document of the Research Paper Entitled “Rebooting
Research on Detecting Repackaged Android Apps: Literature
Review and Benchmark”. In https://github.com/serval-snt-uni-
lu/RePack/blob/master/RePack Supplement.pdf, 2019.

[98] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Compar-
ison and evaluation of code clone detection techniques and tools:
A qualitative approach. Sci. Comput. Program., 74(7):470–495, May
2009.

[99] Stephen M Blackburn, Amer Diwan, Matthias Hauswirth, Peter F
Sweeney, José Nelson Amaral, Tim Brecht, Lubomir Bulej, Cliff
Click, Lieven Eeckhout, Sebastian Fischmeister, et al. The truth,
the whole truth, and nothing but the truth: a pragmatic guide to
assessing empirical evaluations. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 38(4):15, 2016.

[100] Martin Monperrus. A critical review of ”automatic patch genera-
tion learned from human-written patches”: Essay on the problem
statement and the evaluation of automatic software repair. In Pro-
ceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 234–242, New York, NY, USA, 2014. ACM.

[101] B.S. Baker. On finding duplication and near-duplication in large
software systems. In Reverse Engineering, 1995., Proceedings of 2nd
Working Conference on, pages 86–95, Jul 1995.

[102] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
detection using abstract syntax trees. In Software Maintenance,
1998. Proceedings., International Conference on, pages 368–377, Nov
1998.

[103] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane
Glondu. Deckard: Scalable and accurate tree-based detection of
code clones. In Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, pages 96–105, Washington, DC,
USA, 2007. IEEE Computer Society.

[104] H.A. Basit and S. Jarzabek. A data mining approach for detect-
ing higher-level clones in software. Software Engineering, IEEE
Transactions on, 35(4):497–514, July 2009.

[105] Silvio Cesare, Yang Xiang, and Jun Zhang. Clonewise detecting
package-level clones using machine learning. In Tanveer Zia,
Albert Zomaya, Vijay Varadharajan, and Morley Mao, editors,
Security and Privacy in Communication Networks, volume 127 of
Lecture Notes of the Institute for Computer Sciences, Social Informat-
ics and Telecommunications Engineering, pages 197–215. Springer
International Publishing, 2013.

[106] J. Zico Kolter and Marcus A. Maloof. Learning to detect and
classify malicious executables in the wild. J. Mach. Learn. Res.,
7:2721–2744, December 2006.

[107] Boyun Zhang, Jianping Yin, Jingbo Hao, Dingxing Zhang, and
Shulin Wang. Malicious codes detection based on ensemble
learning. In Proceedings of the 4th international conference on
Autonomic and Trusted Computing, ATC’07, pages 468–477, Berlin,
Heidelberg, 2007. Springer-Verlag.

[108] Justin Sahs and Latifur Khan. A machine learning approach to
android malware detection. In Intelligence and Security Informatics
Conference (EISIC), 2012 European, pages 141–147. IEEE, 2012.

[109] R. Perdisci, A. Lanzi, and Wenke Lee. Mcboost: Boosting scalabil-
ity in malware collection and analysis using statistical classifica-
tion of executables. In Computer Security Applications Conference,
2008. ACSAC 2008. Annual, pages 301–310, 2008.

[110] Guozhu Meng, Yinxing Xue, Zhengzi Xu, Yang Liu, Jie Zhang,
and Annamalai Narayanan. Semantic modelling of android
malware for effective malware comprehension, detection, and
classification. In ISSTA, pages 306–317. ACM, 2016.

Li Li is a lecturer (a.k.a., Assistant Professor)
and a PhD supervisor at Monash University,
Australia. Prior to joining Monash University, he
spent 1.5 years as a Research Associate at the
Serval group, SnT, University of Luxembourg. He
received his PhD degree in computer science
from the University of Luxembourg in 2016. His
research interests are in the fields of Android
security and Reliability, Static Code Analysis,
Machine Learning and Deep Learning. Dr. Li
received an ACM Distinguished Paper Award at

ASE 2018, a FOSS Impact Paper Award at MSR 2018 and a Best
Paper Award at the ERA track of IEEE SANER 2016. He is an active
member of the software engineering and security community serving
as reviewers or co-reviewers for many top-tier conferences and journals
such as ICSME, SANER, TSE, TIFS, TDSC, TOPS, EMSE, JSS, IST,
etc. His personal website is http://lilicoding.github.io.

18

Tegawendé F. Bissyandé is a Research Sci-
entist with SnT, University of Luxembourg. He
received his PhD degree in Computer Science
from the University of Bordeaux in 2013. His
work is mainly related to Software Engineering,
specifically empirical software engineering, re-
liability and debugging as well as mobile app
analysis. His works were presented in major
conferences such as ICSE, ISSTA and ASE,
and published in top journals such as Empirical
Software Engineering and IEEE TIFS. He has

received a best paper award at ASE 2012, and has served in several
program committees including ASE-Demo, ACM SAC, ICPC.

Jacques Klein is a Senior Research Scientist
(faculty position) with SnT, University of Lux-
embourg. He leads a group of about 10 re-
searchers focusing on Mobile Security and Soft-
ware Engineering. Dr. Klein has standing expe-
rience and expertise on (1) successfully running
industrial projects with impressive experience in
data analytics, software engineering, information
retrieval, etc., (2) Android security including both
static analysis techniques for tracking privacy
leaks and machine learning for identifying mal-

ware. Dr. Klein has been successful in publishing relevant results in top
journals/conferences including TSE, TIFS, Empirical Software Engineer-
ing journal, Usenix Security, PLDI, ICSE, POPL, ISSTA, etc.

	Introduction
	Literature Search
	Terminology
	Systematic Literature Review (SLR) Methodology
	Statistics on State-of-the-art Work

	Overview of Challenges in Repackaged App Detection
	Review of State-of-the-art Approaches
	Taxonomy of Approaches
	Review of Evaluation Setups and Artefacts

	Dataset Construction
	Splitting the Search Space
	Fast, Approximate, Brute-force Similarity Comparison
	Overall Results
	Manual Validation of Random Samples
	Supporting Replication and Comparison of State-of-the-art Work

	Priority Research Directions
	Threats to Validity
	Related Work
	Conclusion
	References
	Biographies
	Li Li
	Tegawendé F. Bissyandé
	Jacques Klein

