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ABSTRACT
Jupyter notebooks—documents that contain live code, equations,
visualizations, and narrative text—now are among the most popu-
lar means to compute, present, discuss and disseminate scientific
findings. In principle, Jupyter notebooks should easily allow to re-
produce and extend scientific computations and their findings; but
in practice, this is not the case. The individual code cells in Jupyter
notebooks can be executed in any order, with identifier usages pre-
ceding their definitions and results preceding their computations.
In a sample of 936 published notebooks that would be executable
in principle, we found that 73% of them would not be reproducible
with straightforward approaches, requiring humans to infer (and
often guess) the order in which the authors created the cells.

In this paper, we present an approach to (1) automatically satisfy
dependencies between code cells to reconstruct possible execution
orders of the cells; and (2) instrument code cells to mitigate the
impact of non-reproducible statements (i.e., random functions) in
Jupyter notebooks. Our Osiris prototype takes a notebook as input
and outputs the possible execution schemes that reproduce the
exact notebook results. In our sample, Osiris was able to reconstruct
such schemes for 82.23% of all executable notebooks, which has
more than three times better than the state-of-the-art; the resulting
reordered code is valid program code and thus available for further
testing and analysis.
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1 INTRODUCTION
Jupyter notebooks—documents that contain live code, equations,
visualizations, and narrative text—have become the most widely
used system for interactive literate programming [49]. They are
being used to compute, present, discuss and disseminate scientific
findings; and have emerged as the de facto standard for data sci-
entists to easily record and understand data analyses [32, 51]. In
September 2018, more than 2.5 million Jupyter repositories were
stored on GitHub—10 times more than in 2015 [33].

One of the promises of Jupyter notebooks is that they should
make scientific findings reproducible—that is, readers should be
able to reconstruct and assess the path from raw source data to
abstractions and findings, as presented in the notebook [18, 36].
Unfortunately, this is rarely the case. Published notebooks suffer
from lack of data, from lack of modules, from lack of metadata
indicating tool and library versions, or bad packaging [6]. But even
if all of this is given, only a small fraction of notebooks can be
faithfully reproduced.

Why is that so? A central feature of Jupyter notebooks is that the
individual cells they aremade of can be executed interactively in any
order. The language interpreter (typically Python) will execute the
code in the cell as soon as a user “runs” it. While Jupyter provides
a “run all cells” feature that runs all cells starting from the topmost
one, authors do not need to ensure that this results in meaningful
execution order. It is not uncommon that notebooks output and
present a result at the very beginning, followed by the code that
actually produces the result, making the notebook more akin to
an article than a conventional program. The interactive nature of
notebooks makes all of this possible.

Jupyter notebooks assign a monotonically increasing number to
each cell as it is executed; readers may thus find that a cell at the top
may have been executed after a cell further downwards. However,
even with this information, notebooks are hard to reproduce. In a
2019 study by Pimentel et al. [33], with a straightforward setting,
less than 25% of valid notebooks (with defined Python versions and
recorded execution order) could be executed without errors; and
less than 5% of them would actually produce the same results.

Given how many scientific results now are being produced using
Jupyter notebooks [37], it is time for the program analysis and test-
ing community to make their best approaches available to notebook
authors. But with 75% of valid notebooks not even running with-
out errors, this means that the majority of notebooks are actually
inaccessible for any automated testing and analysis tool.
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In this paper, we present an automatic approach to make Jupyter
notebooks reproducible, and in consequence, available for analysis
and testing. Our approach automatically identi�es and satis�es
dependencies between Jupyter notebook cells, reconstructing the
possible execution orders that reproduce the exact notebook results
without errors. The resulting ordered code can thus be subject to
testing and analysis (e.g., enabling continuous regression testing
for notebook contributors to ensure the reproducibility of their
notebooks); our approach thus forms a necessary prerequisite for
further analysis of notebook code. If a given notebook cannot be
reproduced, ourOsirisprototype provides detailed debugging mes-
sages explaining (to notebook users) why reproducibility is not
achievable.

This paper is organized as follows. After detailing the problem
(cf. Section 2), we make the following contributions:

A study on the causes of non-reproducibility. We conduct a
large-scale reproducibility study about Jupyter notebooks
and manually summarise the root causes making notebooks
non-executable and non-reproducible (cf. Section 3).

Making notebooks reproducible again. We design and imple-
ment a prototype tool called Osiris (cf. Section 4), which
combines static analysis and dynamic testing to explore the
possibilities of reproducing given notebooks. The resulting
reordered code faithfully reproduces the results in the note-
book; since it is valid program code, it is available for further
testing and analysis. Since di�erent users may require dif-
ferent amounts of reproducibility (e.g. some users may wish
to reproduceall results as stated, others may only wish to
re-run the notebook, possibly with di�erent data), Osiris
supports a number ofmatchingandexecutionstrategies to
achieve the best result.

Automatic diagnosis for non-reproducible notebooks. In case
a notebook cannot be reproduced, Osiris features a targeted
debugging module to infer and report failure causes.

Our approach is e�ective: In our sample, Osiris was able to
reproduce 82.23% of executable notebooks (cf. Section 5), which is
a large improvement over the 16.7% listed in state of the art [33].
After discussing the potential implication and limitations of our
approach (cf. Section 6), we depict related work (cf. Section 7) and
close this paper with conclusion (cf. Section 8).

2 MOTIVATION
Let us start with some background and terminology.

Figure 1: The �le structure of a simple Jupyter notebook
repository.

Jupyter is used to refer to the Jupyter application, which pro-
vides the computational environment to allow the execution of
notebooks.Notebook (or Jupyter Notebook) refers to the literate
programming document, which contains the actual content (e.g.,
main.ipynb in Figure 1) written by thenotebook authors . Similar
to the work of Pimentel et al. [33], Notebook and Jupyter Notebook
will be interchangeably used in this paper.Independent Python
Code will be used to refer to Python code that is not directly pre-
sented in a notebook but might be accessed by the notebook code.
For example, the code shown inutils.py(cf. Figure 1) is regarded
as independent python code.Notebook Repository refers to the
project where the notebooks are written and managed. A note-
book repository can contain multiple notebooks. For example, the
repository shown in Figure 1 contains two Jupyter notebooks (i.e.,
Notebook1 and Notebook2).

Jupyter notebooks are sequences ofcells, essentiallyCode Cells
andText Cells(cf. Figure 2). Code cells contain executable (Python)
source code to generate results, while text cells contain text that
enables programmers to state rationales behind the code logic; this
text includes Markdown and HTML for rich text, images, formatting,
and more. These combinations of these two cell types allows for
literate programming[19], implemented by Jupyter in aninteractive
computational notebook environment. This environment allows parts
of a notebook to be executed with immediate results, including
formatted texts and visual graphs.

Figure 2: Jupyter notebook example.
Figure 2 illustrates a simple example of a notebook. It contains

one (Markdown) text cell and �ve (Python) code cells. All the code
cells have been executed as indicated by the execution mark (e.g.,
�In [1]�) shown in front of the code cells. The execution mark tells
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