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ABSTRACT
By bringing together code, text, and examples, Jupyter notebooks
have become one of the most popular means to produce scientific
results in a productive and reproducible way. As many of the note-
book authors are experts in their scientific fields, but laymen with
respect to software engineering, one may ask questions on the
quality of notebooks and their code. In a preliminary study, we
experimentally demonstrate that Jupyter notebooks are inundated
with poor quality code, e.g., not respecting recommended coding
practices, or containing unused variables and deprecated functions.
Considering the education nature of Jupyter notebooks, these poor
coding practices, as well as the lacks of quality control, might be
propagated into the next generation of developers. Hence, we argue
that there is a strong need to programmatically analyze Jupyter
notebooks, calling on our community to pay more attention to the
reliability of Jupyter notebooks.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation.
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1 INTRODUCTION
Jupyter, a free open-source web application allowing users to write
documents containing explanatory text, equations, and visualiza-
tions, as well as live codes and their execution results, has become
tremendously popular nowadays. It provides a way for faculties
to make a living workbook for sharing computational information
(e.g., code) along with explanations, meanwhile, students can bene-
fit from the live code to better understand the concepts introduced
in the notebook. In addition to tutoring purposes, Jupyter notebook
has also become the data scientists’ computational notebook of
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choice. Indeed, Jupyter has emerged as a de-facto standard for data
scientists [3]. As argued by Helen Shen on Nature, Jupyter notebook
makes data analysis easier to record, understand and reproduce [2].

The popularity of Jupyter notebook is also reflected by the expan-
sion of public Jupyter notebook projects on Github. As of September
2018, there are over 2.5 million Jupyter projects on Github, which
is 10 times more than that of 2015. One main reason leading to
this popularity of Jupyter could be that Jupyter excels in literate
programming [7], which allows users to formulate and depict their
thoughts with text, supplemented by links, figures, and mathemati-
cal equations, as they prepare to write code cells. These code cells
can then be executed along with the preparation of the notebook
and the results can be permanently recorded, which can further be
shared with other users as replicable computational documentation.

Despite the aforementioned benefits, the usage of Jupyter has
also comewith some drawbacks. As argued by Joel Grus [3], because
of inadvertently running code cells out of order, developers may
encounter the problem that notebooks do not behave as expected.
Moreover, Jupyter notebooks might also encourage poor coding
practices, e.g., it is difficult to logically organize the code into a
reusable manner. Considering Jupyter notebooks are often used
as tutorials or documentation for inexperienced programmers to
learn practical programming skills, this poor coding practices may
further be propagated into the next generation of developers.

This calls for programmatically analyzing Jupyter notebooks—to
ensure the quality of the notebooks and the correctness of the code,
the consistency between the code and its explanatory text, and
more.

By and large, the software engineering community has not yet
proposed promising approaches to automatically analyze Jupyter
notebooks. To this end, we conduct in this work a preliminary study
of a large set of Jupyter notebooks, aiming at checking if the code
presented in the notebooks is implemented with good qualities. In a
sample of 1982 “high-quality” Jupyter notebooks, our experimental
results reveal that the publicly released Jupyter notebooks contain
code with poorly respect to the Python style conventions and code
qualities (e.g., including unused variables that are defined but never
referenced and accessing deprecated features of certain Python
libraries).

This preliminary study empirically shows that there is indeed a
strong need to analyze Jupyter notebooks. Therefore, based on the
experimental results, we further present our vision towards pro-
grammatically and systematically analyzing Jupyter notebooks. We
argue that our community needs to propose promising approaches
to (1) enforce good coding styles, (2) improve the quality and re-
liability of the code, (3) apply best practices for software quality,
and (4) ensure a good balance between text and code in Jupyter
notebooks.
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2 PRELIMINARY STUDY
Jupyter notebooks are frequently used to present tutorials and de-
veloper documentation, from which inexperienced programmers
can learn for certain programming skills. Therefore the quality
of the notebooks is extremely important. As our initial attempt
towards checking the quality of the code written in Jupyter note-
books, we present in this work a preliminary study. Aiming for
motivating the need for automated analysis of Jupyter notebooks,
we are interested in the following two research questions:

RQ1 (Quality in Programming Style): To what extent does
the code in Jupyter notebooks respect recommended Python pro-
gramming conventions? Programming conventions are a set of
guidelines or programming styles that are recommended for pro-
grammers to follow to improve the readability and maintainability
of their source code. Although those conventions are not enforced
by compilers, we argue that developers (especially Jupyter note-
book writers) should try their best to follow them. Compared to
independent Python code, which may not be substantially read by
other developers, Jupyter notebook code is expected to be read by
developers (especially the newbie ones). As a result, the existence
of poor coding styles in Jupyter notebooks would have a bigger
impact on that of independent Python code.

RQ2 (Quality in Code Content): How does the quality of ac-
tual code in Jupyter notebooks compare with that of independent
Python code? Ideally, compared with the code quality of indepen-
dent Python code, the code in notebooks should come with higher
quality because of the education purpose of notebooks. However,
to the best of our knowledge, it is unknown to the community
whether this is true or not. The code scripts written in Jupyter
notebooks are scattered at different locations due to the literate
programming feature, fostering unused variables that should not be
included in high-quality code samples. Therefore, we investigate in
this research question the appearance of unused variables and the
usage of deprecated APIs in Jupyter notebooks, as our first initiative
towards characterizing the code quality of Jupyter notebooks.

These two research questions are just our first initiative towards
motivating the necessity of programmatically analyzing Jupyter
notebooks, which, to the best of our knowledge, has not yet been
investigated by the software engineering community. Our commu-
nity should hence take action to propose promising (code analysis)
approaches to ensure the quality of Jupyter notebooks.

2.1 Experimental Setup
Dataset. To answer the aforementioned research questions, we
resort to Github to harvest a dataset (i.e., Jupyter notebooks) to
support our empirical investigations. Instead of randomly cloning
Jupyter notebooks, for which their qualities are unknown, we focus
on a set of notable projects that are curated by the Jupyter team.
Specifically, the Jupyter team has maintained a gallery of interesting
Jupyter notebooks [1]. In this preliminary study, we restrict our-
selves to analyzing Python-based notebooks only. After removing
dead links and duplicated links, we automatically collected 1,982
notable Python-based notebooks covering various topics such as
mathematics, signal processing, natural language processing, etc,
as our research subject data.

Jupyter
Notebook

Code #1

Text/Output

Code #2 Code #N

Text/Output Text/Output

*.py

Figure 1: Preprocessing Jupyter notebooks.

Preprocessing. To facilitate the empirical investigation, we de-
velop a set of Python scripts to preprocess the dataset. The programs
take a Jupyter notebook file as input and output a chain of code
cells (cf. Fig. 1). Each of the code cells is associated with its explana-
tory text, execution output, and possibly external Python code. The
external code is presented as an independent Python script (*.py),
which is likely written by the same contributors (who writes the
notebook) and is usually regarded as “library code” to facilitate
the implementation of the notebook. Unlike the Python code pre-
sented in the notebook, the independent Python scripts will not
appear in the notebook but will likely be imported and executed by
a notebook.

Statistics. The selected 1,982 Jupyter notebooks contain in total
202,332 lines of Python code (LOC). Fig. 2(a) illustrates the distribu-
tion of the LOC among the selected projects, giving a median and
average lines at 62 and 102.5, respectively. Regarding the number of
code cells presented in each notebook, as shown in Fig. 2(b), half of
the considered notebooks have presented more than 10 code cells.
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Figure 2: Distribution of the number of lines of code (left)
and the number of code cells (right) in each Jupyter note-
book.

2.2 RQ1: Quality in Programming Style
As the first research question, we are interested in checking if the
Python code written in Jupyter notebooks respects the Python
coding style. Ideally, because most of the Jupyter notebooks are
provided for education, the code should be well aligned with the
recommended coding conventions so that the learners will not be
misled to write Python code with poor coding practices. To this
end, we resort to the PEP8 checker1 to evaluate the code written
in Jupyter notebooks. This check aims at checking Python code
1https://pypi.org/project/pep8/
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Table 1: Top 10 error messages observed for both indepen-
dent Python scripts and notebook Python code.

Python Remark Notebook Remark
E501 line too long E231 missing whitespace after ‘,’, ‘;’, or

‘:’
E231 missing whitespace after ‘,’, ‘;’, or

‘:’
E501 line too long

E111 indentation is not a multiple of
four

E225 missing whitespace around oper-
ator

E201 whitespace after ‘(’ E251 unexpected spaces around key-
word / parameter equals

E265 block comment should start with
‘#’

E703 statement ends with a semicolon

E302 expected 2 blank lines, found 0 E261 at least two spaces before inline
comment

E225 missing whitespace around oper-
ator

E265 block comment should start with
‘#’ comment

E251 unexpected spaces around key-
word / parameter equals

E128 continuation line under-indented
for visual indent

E701 Multiple statements on one line
(colon)

E201 whitespace after ‘(’

E202 whitespace before ‘)’ E302 expected 2 blank lines, found 0

against some of the style conventions in the PEP8 guidelines, a set of
best practices on how to write Python code to improve readability
and consistency. The checker takes as input a sequence of Python
code and outputs the errors and warnings that the code suffers
from.

Among the 1,982 Jupyter notebooks we considered in this work,
which correspond to 202,332 lines of Python code in the notebooks,
the PEP8 checker yields 73,371 errors, giving a ratio of 36.26%. This
evidence shows that the Python code presented in Jupyter note-
books are not well aligned with the recommended coding practices.

Furthermore, we also launch the checker on all the independent
Python scripts (e.g., the external code is shown in Fig. 1) located in
the same project repository as the Jupyter notebooks are. Among all
the related project repositories, 1,919 independent Python scripts
are found, corresponding to in total 452,953 lines of code and 60,878
errors given by the PEP8 checker. The error ratio of independent
Python code w.r.t. PEP8 checker is 13.40%, which is much lower
than that of code written in the notebooks. This result empirically
demonstrates that Jupyter notebook contributors are not attempting
to follow good practices while coding. Considering the education
nature of Jupyter notebooks, we argue that Jupyter users need to
pay more attention to coding practices. Table 1 further enumerates
the top 10 recurrently appeared error types given by the Python
code presented in notebooks and independent Python files. The
fact that these two lists are more or less the same suggests that
Jupyter notebook contributors are more likely to make mistakes
when writing via Jupyter than via independent Python files.

2.3 RQ2: Quality in Code Content
As another experiment towards the verification of the quality of the
Python code in Jupyter notebooks, we check in this research ques-
tion if unused variables are presented by the providers of Jupyter
notebooks. Unused variables are such variables that are defined in
a code cell but are never used in that cell and its subsequent cells.
Fig. 3 illustrates the working process of our methodology. Given a
piece of Python code, we first build an Abstract syntax tree (AST)
for the involving code (as shown in step (1)). Specifically, as shown

import numpy as np
a = np.arange(15)
print(a)
print(a.shape)

a,           Store
np,         Load
arange,  Load
a,           Load
a,           Load
shape,   Load

(1) AST Tree
Generation

(2) Variable Access
Table Generation

Figure 3: The working process of identifying unused vari-
ables in Python code.

in the AST, each variable is associated with a special node indicat-
ing it is introduced into the context (i.e., Store) or referenced by
the context (i.e., Load). In the second step, we perform an in-order
traversal over the AST and separate all the variables that are associ-
ated with the “Store" or “Load" context into a variable access table.
As shown in step (2), the table contains a list of variables following
their appearing order in the code. Following this table, if a variable
is stored but not loaded subsequently, we will consider it as an un-
used variable and will flag it as such. If a variable is the result of a
cell, e.g. x = f(); x, the variable (i.e., x) will be considered as used (i.e.,
“Store” in the AST tree). Following this straightforward approach,
we experimentally find that 118 and 66 (out of 147) repositories
(or 2150 and 1613 unused variables) whose Jupyter notebooks and
independent python scripts contain unused variables, respectively.
The fact that notebooks have introduced significantly more unused
variables than that of independent Python scripts suggests that
notebook contributors should be more careful when writing code
on notebooks.

Furthermore, we take this opportunity to also look at if notable
Jupyter notebooks contain code employing deprecated functions of
Python libraries. Again, due to the educational purpose, we argue
that deprecated functions should be avoided by notebook contribu-
tors or fixed under maintenance. Just as a representative example,
we investigate the usage of deprecated functions via the Scikit-Learn
library, a machine learning library for Python. Being imported by
201 notebooks, Scikit-Learn is one of the most popular libraries
in our dataset. We manually go through the release notes of the
Scikit-Learn library published within the past three years (since
2016). Table 2 enumerates the top 5 most used deprecated APIs.
Among the 215 notebooks, 76 of them (around 35.35%) have some-
how leveraged deprecated APIs (as shown in Table 2, one notebook
can access multiple deprecated APIs), illustrating that deprecated
APIs are recurrently used by Jupyter notebook contributors. As for
independent python scripts, 15 scripts make use of deprecated APIs
among 66 ones Scikit-learn libraries are called.

The aforementioned evidence experimentally shows that Jupyter
notebooks, even notable ones, are inundated with low-quality code.
It also suggests that long-term maintenance of Jupyter notebooks
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Table 2: Top five most frequently deprecated API uses in
Scikit-Learn involved notebooks

Deprecated API # Notebooks Sample Notebook
sklearn.cross_validation 56 justmarkham/DAT4,herrfz/dataanalysis

sklearn.grid_search 22 rasbt/pattern_classification
sklearn.datasets.fetch_mldata 6 jakevdp/PythonDataScienceHandbook
sklearn.preprocessing.Imputer 3 ogrisel/parallel_ml_tutorial

sklearn.mixture.GMM 3 jakevdp/PythonDataScienceHandbook

is also demanded by the community, in order to deliver reliable
notebooks to inexperienced learners.

3 VISION
The aforementioned preliminary study experimentally reveals that
Jupyter notebooks, even for notable ones, are inundated with poor
coding practices and code smells. Considering the education na-
ture of Jupyter notebooks, the current situation, if not changed,
in the long run, would certainly harm the community. The new
generations of programmers are educated with poor coding styles
that may lead to technical debts, and even with wrong examples
that may introduce errors into critical software systems. Therefore,
we argue that there is a strong need to properly analyze Jupyter
notebooks before releasing them to the public.

We now enumerate some of the future directions that are needed
to be addressed by the community.

Enforcing good coding styles. The fact that notable Jupyter
notebooks have their code written without fair respect to the rec-
ommended coding conventions suggests that there is no attempt
yet for regulating Jupyter users to write source code with good pro-
gramming styles. However, poor coding styles can be learned and
hence propagated into thousands of programmers who might write
more code with poor coding practices. Therefore, we argue that
our community should implement effective approaches to enforce
good coding styles in Jupyter notebooks.

Improving code quality and reliability. Automated tools are
expected to locate poor quality code (or code smells) and subse-
quently to recommend fixes to improve the code quality, so as to
improve the overall quality of Jupyter notebooks. In addition to
the occurrences of unused variables, the uses of deprecated func-
tions, many other topics (such as the usage of duplicated code and
inefficient algorithms, etc.) are also worthwhile to explore.

Apply best practices for software quality. The Software En-
gineering community has produced a wealth of best practices to
ensure software quality. Like other software, Jupyter Notebooks can
be tested, verified, reviewed, assessed. Users of Jupyter Notebooks
should be encouraged to apply static checkers and bug finders; use
tests and assertions for systematic checks; provide specifications on
result properties; and use and apply domain-specific consistency
checks for Notebook results. This also calls for better tools that
analyze and check Notebook code—including static analysis for
Python, Julia, or R code.

Ensure a good balance between text and code. Jupyter note-
books embrace an innovative way of sharing knowledge, where the
intricacies are not only explained but also complemented with live
coding examples. However, too much water can drown the miller.
We argue that a good balance between the explanatory text and
the code is preferred. The flow of the code and text should be also

kept consistent. To achieve this, we believe that an interdisciplinary
approach, which involves code analysis and comprehension, natu-
ral language processing, and artificial intelligence, could be highly
useful.

4 RELATEDWORK
To the best of our knowledge, our work is the first investigation
motivating the necessity of deep static/dynamic analysis of Jupyter
notebooks—a requirement widely overlooked by the software re-
search community. Indeed, the only work targeting the analysis of
Jupyter notebooks, as we are aware of, is the one recently conducted
by Pimentel et al. [8], who empirically look at the reproducibility of
Jupyter notebooks. Their experimental results show that the success
rate of reproducing Python notebooks are quite low (less than 25%).
This evidence further supplements our initiative towards calling
on our community to propose advanced approaches for analyzing
Jupyter notebooks.

Jupyter notebooks have been popularly investigated by our fel-
low researchers of other communities [4–6]. For example, Rule et
al. [9] look at computational notebooks from the human factors
point of view. Based on a large scale empirical study of compu-
tational notebooks on Github, the authors show that not all com-
putational notebooks contain explanatory text and only a small
set of notebooks have discussed the reasoning or results of the
methods described. Through an interview with 15 academic data
analysts, they argue that computational notebooks are considered
to be messy. These results complement our work and demonstrate
the necessity of analyzing Jupyter notebooks.

5 CONCLUSION
In this work, we conducted a preliminary study on a set of notable
Jupyter notebooks. Our experimental results reveal that Jupyter
notebooks are indeed inundated with poor coding practices. Mo-
tivated by these empirical results, we presented our vision on the
need of analyzing Jupyter notebooks, appealing for the software
engineering community to pay more attention to the quality and
reliability of Jupyter notebooks.
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