
Restoring Reproducibility of Jupyter Notebooks
Jiawei Wang

Faculty of Information Technology, Monash University,
Australia

Tzu-yang Kuo
Hong Kong University of Science and Technology,

Hong Kong

Li Li
Faculty of Information Technology, Monash University,

Australia

Andreas Zeller
CISPA Helmholtz Center for Information Security,

Germany

ABSTRACT
Jupyter notebooks—documents that contain live code, equations,
visualizations, and narrative text—now are among the most popu-
lar means to compute, present, discuss and disseminate scientific
findings. In principle, Jupyter notebooks should easily allow to re-
produce and extend scientific computations and their findings; but
in practice, this is not the case. The individual code cells in Jupyter
notebooks can be executed in any order, with identifier usages pre-
ceding their definitions and results preceding their computations.
In a sample of 936 published notebooks that would be executable
in principle, we found that 73% of them would not be reproducible
with straightforward approaches, requiring humans to infer (and
often guess) the order in which the authors created the cells.

In this paper, we present an approach to (1) automatically satisfy
dependencies between code cells to reconstruct possible execution
orders of the cells; and (2) instrument code cells to mitigate the
impact of non-reproducible statements (i.e., random functions) in
Jupyter notebooks. Our Osiris prototype takes a notebook as input
and outputs the possible execution schemes that reproduce the
exact notebook results. In our sample, Osiris was able to reconstruct
such schemes for 82.23% of all executable notebooks, which has
more than three times better than the state-of-the-art; the resulting
reordered code is valid program code and thus available for further
testing and analysis.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation;

KEYWORDS
Python, Jupyter Notebooks, Reproducibility, Osiris

ACM Reference Format:
Jiawei Wang, Tzu-yang Kuo, Li Li, and Andreas Zeller. 2020. Restoring
Reproducibility of Jupyter Notebooks. In 42nd International Conference
on Software Engineering Companion (ICSE ’20 Companion), October 5–11,
2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3377812.3390803

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3390803

1 INTRODUCTION
Jupyter notebooks—documents that contain live code, equations,
visualizations, and narrative text—have become the most widely
used system for interactive literate programming. They are being
used to compute, present, discuss and disseminate scientific find-
ings; and have emerged as the de facto standard for data scientists
to easily record and understand data analyses [3, 6]. In September
2018, more than 2.5 million Jupyter repositories were stored on
GitHub—10 times more than in 2015 [4].

One of the promises of Jupyter notebooks is that they should
make scientific findings reproducible—that is, readers should be able
to reconstruct and assess the path from raw source data to abstrac-
tions and findings, as presented in the notebook [2]. Unfortunately,
this is rarely the case. Published notebooks suffer from lack of data,
from lack of modules, from lack of metadata indicating tool and
library versions, or bad packaging [1]. But even if all of this is given,
only a small fraction of notebooks can be faithfully reproduced.

Why is that so? A central feature of Jupyter notebooks is that the
individual cells they aremade of can be executed interactively in any
order. The language interpreter (typically Python) will execute the
code in the cell as soon as a user “runs” it. While Jupyter provides
a “run all cells” feature that runs all cells starting from the topmost
one, authors do not need to ensure that this results in meaningful
execution order. It is not uncommon that notebooks output and
present a result at the very beginning, followed by the code that
actually produces the result, making the notebook more akin to
an article than a conventional program. The interactive nature of
notebooks makes all of this possible.

Given how many scientific results now are being produced using
Jupyter notebooks, we feel it is the time for the program analysis and
testing community to make the best of their approaches available
to notebook authors [7]. But with 75% of valid notebooks (revealed
by Pimentel et al. [4]) not even running without errors, this means
that the majority of notebooks are actually inaccessible for any
automated testing and analysis tool.

In this paper, we present an automatic approach to make Jupyter
notebooks reproducible, and in consequence, available for analysis
and testing. Our approach automatically identifies and satisfies
dependencies between Jupyter notebook cells, reconstructing the
possible execution orders that reproduce the exact notebook results
without errors. The resulting ordered code can thus be subject to
testing and analysis; our approach thus forms a necessary prereq-
uisite for further analysis of notebook code. If a given notebook
cannot be reproduced, our Osiris prototype provides detailed de-
bugging messages explaining why reproducibility is not achievable.

https://doi.org/10.1145/3377812.3390803
https://doi.org/10.1145/3377812.3390803
https://doi.org/10.1145/3377812.3390803


ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea Jiawei Wang, Tzu-yang Kuo, Li Li, and Andreas Zeller

Experimental results show that our approach is effective: In our
sample, Osiris was able to reproduce 82.23% of executable note-
books, which is a large improvement over the 16.7% listed in state
of the art [4].

2 ROOT CAUSES OF NON-REPRODUCIBILITY
Through a thorough manual investigation on nearly 1,000 Jupyter
notebooks, we have observed the following root causes that may
cause Jupyter notebooks non-reproducible.

R1: Randomness.Many scientific computing programs require
random functions for sampling from Gaussian distributions or data
shuffling. They produce different results after each execution (if
no seed is given), making it hard to determine if the results can be
reproduced.

R2: Time and Date. Time functions are recurrently used by
notebook authors to achieve some specific functions such as evalu-
ating time efficiency, logging for SQL operations, etc. Since time
changes continuously, the outputs of the time function also vary
every time, making it hard to ascertain the reproducibility of the
code.

R3: Plots. We see a considerable number of notebooks that
cannot be reproduced because of differences in plotted images.
Indeed, in some cases, images are generated based on input data or
random numbers that cannot be ensured to remain the same each
time when the notebooks are executed.

R4: External Inputs. Jupyter notebooks may rely on external
inputs (data fetched from web servers such as web crawler demon-
stration) to execute. However, the external inputs are subject to
change (such as URL decay [5]), causing inconsistencies between
the reproduced results and the recorded original results.

R5: Floating Point Numbers. In notebooks, floating point
numbers may be printed differently depending on the running
machines, or the targeted Python versions. Therefore, the repro-
duced results (relevant to floating point numbers) might be different
from the original ones.

R6: Container Traversal. In Python, the order in which sets
and dictionaries are traversed is not fixed. Hence, this order may
differ across execution environments, causing differing cell outputs.

R7: Execution Environment. Notebooks may access the ex-
ecution environment information (e.g., number of CPUs, Python
package versions, the memory location of variables, etc.) that is
usually specific to each setting and hence is different from one
another. Moreover, in different execution environments, the same
data might be printed in different formats. All these differences will
impact the reproducibility of notebooks.

R8: Inappropriate execution order of cells. Apart from the
errors raised by execution environments, we also observe a signifi-
cant number of notebooks that fail to be executed due to poor code
quality, e.g., containing name errors (undefined variables), key error
(key not found in dictionaries), syntax errors, etc. These errors are
yielded because the execution order of cells is inappropriate (e.g., a
variable is used before its definition).

3 APPROACH AND EXPERIMENTS
After identifying the root causes of non-reproducibility, we design
and implement a prototype tool called Osiris to restore the repro-
ducibility of Jupyter notebooks. Osiris adopts different strategies
(i.e., match and execution strategies) to resolve the aforementioned
root causes of non-reproducibility, attempting to maximize the ex-
ecution and reproducibility of notebooks. Osiris takes as input a
Jupyter notebook and outputs the possible execution schemes that
reproduce the exact notebook results. If Osiris fails to reproduce
the notebook, it will highlight the location of failures (i.e., non-
reproducible parts) that could be useful for understanding the root
causes of non-reproducibility of Jupyter notebooks.

To evaluate the efficiency of Osiris, we launch Osiris on a set
of randomly selected Jupyter notebooks, among which 1,435 note-
books can be successfully executed. Among these executable note-
books, 1,180 of them have been shown reproducible, giving a re-
producibility rate of 82.23%, which has more than tripled the rate
of the state-of-the-art and significantly increased from the results
by simply executed the notebooks following their recorded execu-
tion orders. This result experimentally shows that the strategies
introduced in Osiris are useful for restoring the reproducibility of
Jupyter notebooks.

4 CONCLUSION
Motivated by the low reproducible rate of Jupyter notebooks re-
ported by the state-of-the-art, we present to the SE community
the first work to automatically restore reproducibility of Jupyter
Notebooks. After conducting an empirical study to observe the
root causes that make Jupyter notebooks non-reproducible, we de-
signed and implemented a prototype called Osiris to resolve the
observed root causes, aiming to explore all the possible execution
schemes that reproduce the exact notebook results. In our eval-
uation, we show that our prototype tool is effective in restoring
the reproducibility of Jupyter notebooks, achieving a significant
improvement over the state-of-the-art. Notably that our approach
enables further static and dynamic analyses, which can be used for
testing, empirical studies, automatic repair techniques, and more.

REFERENCES
[1] Adam Brinckman, Kyle Chard, Niall Gaffney, Mihael Hategan, Matthew B Jones,

Kacper Kowalik, Sivakumar Kulasekaran, Bertram Ludäscher, Bryce D Mecum,
Jarek Nabrzyski, et al. 2019. Computing environments for reproducibility: Captur-
ing the “Whole Tale”. Future Generation Computer Systems 94 (2019), 854–867.

[2] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for
reproducible computational workflows.. In ELPUB. 87–90.

[3] Jeffrey M. Perkel. 2018. Why Jupyter is data scientists’ computational notebook of
choice. Nature news 563 (2018), 145–146.

[4] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A large-scale study about quality and reproducibility of jupyter notebooks.
In Proceedings of the 16th International Conference on Mining Software Repositories.
IEEE Press, 507–517.

[5] Diomidis Spinellis. 2003. The decay and failures of web references. Commun. ACM
46, 1 (2003), 71–77.

[6] Dan Toomey. 2017. Jupyter for data science: Exploratory analysis, statistical mod-
eling, machine learning, and data visualization with Jupyter. Packt Publishing
Ltd.

[7] Jiawei Wang, Li Li, and Andreas Zeller. 2020. Better Code, Better Sharing:On the
Need of Analyzing Jupyter Notebooks. In ICSE-NEIR 2020.


	Abstract
	1 Introduction
	2 Root Causes of Non-Reproducibility
	3 Approach and Experiments
	4 Conclusion
	References

