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a b s t r a c t

Software defect prediction recommends the most defect-prone software modules for optimization of
the test resource allocation. The limitation of the extensively-studied supervised defect prediction
methods is that they require labeled software modules which are not always available. An alternative
solution is to apply clustering-based unsupervised models to the unlabeled defect data, called
Clustering-based Unsupervised Defect Prediction (CUDP). However, there are few studies to explore
the impacts of clustering-based models on defect prediction performance. In this work, we performed
a large-scale empirical study on 40 unsupervised models to fill this gap. We chose an open-source
dataset including 27 project versions with 3 types of features. The experimental results show that
(1) different clustering-based models have significant performance differences and the performance of
models in the instance-violation-score-based clustering family is obviously superior to that of models
in hierarchy-based, density-based, grid-based, sequence-based, and hybrid-based clustering families;
(2) the models in the instance-violation-score-based clustering family achieves competitive perfor-
mance compared with typical supervised models; (3) the impacts of feature types on the performance
of the models are related to the indicators used; and (4)the clustering-based unsupervised models do
not always achieve better performance on defect data with the combination of the 3 types of features.

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

The defects hidden in software modules threaten the security
nd decrease the reliability of the software product. Therefore,
t is essential to fix the defective modules before delivering the
roduct.
Defect fixing is a complex and time-consuming task, and lim-

ted testing resources are usually unaffordable for supporting
horough code reviews (Geremia and Tamburri, 2018). This re-
uests a prioritization to better analyze the software product.
n other words, developers and testers should reasonably allo-
ate the limited resources to test the modules that have a high
robability to contain defects. To seek for such prioritization,
oftware Defect Prediction (SDP) is proposed to identify the most
efect-prone modules for priority inspection. The most active SDP
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methods are supervised models which first train a classifier on
labeled modules and then use it to determine whether or not the
unlabeled modules contain defects. However, the supervised SDP
models need the labeled modules of historical data of the current
project or external projects which are not always available.

In order to conduct defect prediction on unlabeled data,
Unsupervised Defect Prediction (UDP) models are possible for
his task. As UDP models do not need any labeled data, they have
ttracted many researchers’ attention in recent years. There are
types of UDP models: Clustering-based Unsupervised Defect
rediction (CUDP) methods (such as the studies Zhong et al.,
004a; Bishnu and Bhattacherjee, 2012; Zhang et al., 2016) and
anking-based Unsupervised Defect Prediction (RUDP) methods
such as the studies Yang et al., 2016; Fu and Menzies, 2017;
an et al., 2017; Huang et al., 2017). RUDP methods select one
eature to rank modules based on the corresponding values. The
ationale behind this type of method is based on the assump-
ion that the feature values and the defect-proneness of the
odules have a direct or inverse proportional relationship (Yang

t al., 2016). However, such a relationship does not exist in
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ll features, which leads to inconsistent conclusions in previ-
us studies. For example, Yang et al. (2016) found that RUDP
ethods performed significantly better than supervised models
n change-level just-in-time defect data, but Yan et al. (2017)
ound that the conclusion in Yang et al. (2016) does not hold
n a file-level benchmark dataset. Thus, more work is needed
o investigate and verify the generalization of RUDP on different
efect data. In addition, RUDP methods need a threshold (such as
he proportion of the top-ranked modules) to divide the modules
nto two groups for calculating some performance indicators,
uch as F-measure. However, this threshold is not easy to be
etermined. Unlike RUDP methods, CUDP methods do not rely
n the relationship between a specific feature and the defect
abel to rank the modules, thus avoiding the above contradictory
onclusions. CUDP methods divide the modules into different
roups based on a specific rule without relying on a threshold. In
his work, we focused on CUDP methods and their performance
n defect data with different feature sets.
The general process of CUDP methods consists of the following
steps: (1) leveraging a similarity metric to cluster unlabeled
odules into different groups where the modules in the same
roup are more similar to each other compared with those in
ther groups. This step is based on the information found in
he data that describes the relationships among the modules; (2)
pplying a specific strategy to annotate each group as defective or
on-defective. In previous studies, researchers have applied some
lustering-based methods to unlabeled defect data. For example,
n early studies, researchers employed classic clustering methods
ike K-means algorithm (Zhong et al., 2004a) and self-organizing
aps algorithm (Abaei et al., 2013) to group the modules. In more

ecent studies, researchers designed specific methods to cluster
he modules, such as clustering and label method (Nam and Kim,
015), and average clustering method (Yang and Qian, 2016).

.1. Motivation

There are several limitations in existing CUDP approaches: (1)
here are few studies conducting a systematic literature review
owards CUDP articles; (2) all previous studies focus on using
xisting methods or developing newmethods to cluster unlabeled
odules for SDP, but few studies have explored the performance
ifferences of various clustering-based methods for UDP; (3) pre-
ious studies have shown that different feature types have im-
acts on the SDP performance of supervised models (Moser et al.,
008; Zimmermann and Nagappan, 2008; Radjenović et al., 2013;
aur et al., 2015), but to our best knowledge, there is no study
xplored the impacts of feature types on the SDP performance
f the clustering-based methods (i.e., the CUDP performance);
nd (4) all previous studies evaluated the CUDP performance
ith traditional indicators that do not consider the inspecting
fforts for modules, but no study has employed the more practical
ffort-aware indicators.
Motivated by these limitations, in this work we conducted

large-scale empirical study to analyze the performance differ-
nces of 40 clustering-based unsupervised models (as well as
supervised models for comparison) on a public benchmark

ataset. This dataset consists of 14 projects with a total of 27 ver-
ions in which 3 kinds of features are collected for each project.
e evaluated these methods with one traditional and 2 effort-

ware indicators. The experimental results show that (1) there
xist significant performance differences among these methods,
nd the hierarchy-based, density-based, grid-based, sequence-
ased, and hybrid-based clustering models perform significantly
orse for CUDP task in most cases; (2) some clustering-based
nsupervised models, such as the instance-violation-score-based
lustering methods, can achieve even better performance than
2

the typical supervised models; (3) the CUDP performance of the
methods on different indicators is affected by the feature types
of the defect data; (4) the supervised models usually perform
better on defect data with multiple feature types, while the phe-
nomenon does not conform to the clustering-based unsupervised
models.

1.2. Contribution

The main contributions of this study include:

(1) We retrieved and analyzed existing SDP studies involving
clustering methods from different perspectives, such as
the used datasets, feature types, performance indicators,
clustering methods, and labeling schemes. To the best of
our knowledge, this is the first work to conduct such a
detailed analysis for CUDP studies.

(2) We applied 40 clustering-based models from 9 clustering
families to 27 project versions who have 3 types of features.
In addition, we employed both traditional and effort-aware
indicators to evaluate the performance of these methods.
To our best knowledge, we were among the first to conduct
such a wide-ranging empirical study for investigating the
impacts of feature types on the CUDP performance and
use both kinds of indicators for synthetically evaluating the
CUDP performance.

(3) We designed and implemented an experimental frame-
work which integrates 40 clustering-based unsupervised
SDP models from multiple libraries. We further made the
framework public available and encouraged our fellow
researchers to integrate their state-of-the-art clustering
models to this framework for further comparative studies.

The remainder of the paper is organized as follows: Section 2
introduces the studied 40 clustering-based unsupervised models
and summaries the existing studies related to CUDP. Section 3
describes the design of our empirical study. Section 4 reports
our experimental results. Section 5 discusses the implications
from the experimental results and the potential validity threats.
Section 6 presents different types of empirical studies in SDP do-
main. Section 7 concludes this paper and draws potential future
directions.

2. Taxonomy and literature review

2.1. Taxonomy for clustering-based unsupervised models

As clustering-based unsupervised models identify defective
software modules without requiring the participation of labeled
modules, it is meaningful to seek models that can achieve similar
or better performance than supervised models for defect predic-
tion. We briefly introduced our studied 40 unsupervised models
from 9 clustering families.

2.1.1. Partition-Based Clustering (PBC) family
Given a dataset D with n instances (i.e., the software modules),

predefined cluster number k, and an objection function F , PBC
methods first construct k(k ≤ n) partitions of the data where
ach partition represents a cluster. Note that 2 conditions need
o be satisfied: (1) each cluster must contain at least one instance
nd each instance must belong to exactly one cluster. Then PBC
ethods utilize the iterative relocation technique to optimize

he object function F by moving instances from one group to
nother (Han et al., 2011). The aim is to make the instances in
he same cluster close to each other, whereas modules in distinct
lusters are far apart. The object function F is usually defined as
he distances between each instance to its center instance point.
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The typical processing method followed by the PBC family
s: first, it randomly selects k instances as the initial center
oints and assigns each remaining instance to a cluster whose
enter point is nearest to that instance. Then, it updates the
enter instance of each cluster and relocates the clusters of other
nstances. This process iterates until meeting a predetermined
ondition, such as the center points of the clusters remain un-
hanged.
In this work, we studied 13 methods in PBC family, including

-Means (Hartigan and Wong, 1979), Cascade K-Means(CM) (Ka-
egowda et al., 2012), Canopy (McCallum et al., 2000), X-Means
Pelleg et al., 2000), K-Medoids (Jin and Han, 2016), Partitioning
round Medoids (PAM) (Kaufman and Rousseeuw, 2009), Mini
atch K-Means (MBM) (Béjar Alonso, 2013), Fuzzy C-Means
FCM) (Bezdek et al., 1984), Fuzzy C-Shell (FCS) (Dave, 1990),
Hard C-Means (HCM) (MacQueen et al., 1967), K-Modes (Huang,
1997), FarthesFirst (FF) (Hochbaum and Shmoys, 1985), Cluster-
ng LARge Applications (CLARA) (Kaufman and Rousseeuw, 2009).
hese methods are basically the variations of K-means.

.1.2. Hierarchy-Based Clustering (HBC) family
HBC methods recursively create a hierarchical decomposition

f the data. According to the direction of the decomposition, HBC
ethods can be classified as either agglomerative hierarchical
lustering methods (i.e, bottom-up decomposition) or divisive hi-
rarchical clustering methods (i.e., top-down decomposition). The
ormer treats each instance as a separate cluster at the beginning
nd successively merges the closest cluster into a larger one, until
ll instances are merged into one cluster or a predefined condi-
ion meets. The latter treats all instances as an initial cluster at
he beginning and then successively splits the cluster into smaller
nes until each instance belongs to one cluster or a predefined
ondition meets. The condition can be the desired cluster number
r the inconsistency coefficient (Xu et al., 2016b).
In this work, we studied 6 methods in HBC family, including

gglomerative Hierarchical Clustering (AHC) (Ding and He, 2002),
ivisive Analysis Cluster (DAC) (Ding and He, 2002), RObust
lustering using linKs (ROCK) (Guha et al., 2000), Learning Vector
uantization (LVQ) (Kohonen, 1995), Clustering Using REpres-
ntatives (CURE) (Guha et al., 1998), Balanced iterative reducing
nd clustering using hierarchies (Birch) (Zhang et al., 1996).

.1.3. Density-Based Clustering (DBC) family
Methods in PBC family usually divide instances based on dis-

tance information, and thus work well on finding clusters of
spherical shape rather than arbitrary shape (Han et al., 2011). The
methods in the DBC family alleviate this limitation by using the
notion of data distribution density. Given a radius r and a density
threshold p for each instance, if its spherical region (the circular
region in a two-dimensional plane) with radius r contains at least
p instances, then all these instances construct a cluster.

In this work, we studied 3 methods in DBC family, includ-
ing Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) (Ester et al.), Ordering Points To Identify Clustering
Structure (OPTICS) (Ankerst et al., 1999), and Mean Shift (MS)
(Cheng, 1995).

2.1.4. Grid-Based Clustering (GBC) family
The methods in GBC family are based on the space-driven

concept, which quantizes the feature space into a finite number of
grid cells. These cells are independent of the distribution of input
instances and form a grid structure. Each instance falls into a grid
cell, which means that the feature space of the grid cell contains
that instance. All the clustering operations are carried out on the
grid structure.

In this work, we studied one method in GBC family, i.e.,
CLustering In QUEst (CLIQUE) (Agrawal et al., 1998).
3

2.1.5. Model-Based Clustering (MBC) family
The methods in MBC family assume a model for each cluster

and seek instances that can best match the model. They obtain
the clusters by constructing the density function of the spatial
distribution of the instances. The most frequently-assumed model
is the probability model and the division is based on the form of
probability. These lead to the unified probability distribution of
instances within the same cluster.

In this work, we studied 7 methods in MBC family, including
Neural-Gas (NG) (Martinetz et al., 1991), Expectation Maximiz-
ation (EM) (Dempster et al., 1977), Cobweb (Fisher, 1987),
Self-Organizing Map (SOM) (Kohonen, 1998), SOM for Simple
Clustering (SOMSC) (Novikov, 2018), SYNChronized SOM (SYN-
CSOM) (Novikov and Benderskaya, 2014), on-line update method
(i.e., Hard Competitive Learning (HCL)) (Fritzke, 1997).

2.1.6. Graph-Theory-Based Clustering (GTBC) family
The methods in GTBC family first construct a weighted graph

where each node represents an instance and the weight of the
edge denotes the similarity measure of its two nodes. Then, they
divide the graph into several subgraphs. As the division process
is usually based on the local dependencies of the graph, GTBC
methods can maintain the local connectivity on the data.

In this work, we studied 2 methods in the GTBC family, includ-
ing Affinity Propagation (AP) (Frey and Dueck, 2007) and Spectral
Clustering (SC) (Ng et al., 2002).

2.1.7. Sequence-Based Clustering (SBC) family
The methods in SBC family use the feature vectors once or

multiple times to generate compact and hyper-ellipsoidal clus-
ters. Their performance usually depends on the order in which
the vectors are presented to the methods (Kainulainen and Kain-
ulainen, 2002).

In this work, we studied 2 methods in SBC family, including
Basic Sequential Algorithmic Scheme (BSAS) and Modified BSAS
(MBSAS) (Theodoridis and Koutroumbas, 2006). BASA considers
ach instance only once while MBSAS runs twice through each
nstance.

.1.8. Instance-Violation-Score-Based Clustering (IVSBC) family
The notation of IVS is derived from previous studies (Nam and

Kim, 2015; Yang and Qian, 2016) that designed a specific cluster-
ing criterion for software modules in the context of SDP. Here,
we used a simple example to describe the calculation process
of this criterion. Given a defect data with 5 software modules
(i.e., M1 − M5) and 4 features (i.e., F1 − F4) in Fig. 1, we further
efined an initial violation matrix V whose elements are all 0.
irst, for each feature, we calculate one statistic value as the cutoff
hreshold. Here, we assumed the statistic value as the median
alue (Nam and Kim, 2015). Thus, the threshold vector of the
features is [3, 3, 4, 4]. Then, for each module, if its ith feature
alue is larger than the corresponding threshold, the value of its
orresponding position in matrix V changes to 1. For example,
omparing module M1 with feature vector [4, 2, 2, 5] and the
orresponding threshold vector [3, 3, 4, 4], the values of the first
entry and the fourth entry in the first row of matrix V are changed
to 1 as showed in Fig. 1 with gray background. This process was
repeated for all modules. After obtaining the final violation matrix
V, the sum of each row is treated as the IVS of the corresponding
module. Note that the threshold vector is defined as the Median
value of the Feature (MF) in Nam and Kim (2015) and as the Half
Average value of the Feature (HAF) in Yang and Qian (2016) as
showed at the bottom of the left part in Fig. 1. From the figure,
we could observe that different choices of the threshold vector
will result in different IVSs which are used as the measurement
to divide the modules into distinct clusters.



Z. Xu, L. Li, M. Yan et al. The Journal of Systems & Software 172 (2021) 110862

i

Fig. 1. An example of calculation process for IVS.

In this work, we studied 4 methods in IVSBC family, in-
cluding Clustering and LAbel (CLA) (Nam and Kim, 2015), its
mproved version Clustering and LAbel with Metric selection
and Instance selection (CLAMI) (Nam and Kim, 2015), Average
Clustering (AC) (Yang and Qian, 2016), and Cluster Ensembles
(CE) (Yang et al., 2018).

2.1.9. Hybrid Clustering (HC) family
For methods that combine multiple clustering techniques, we

classify them as in the HC family.
In this work, we studied 2 methods in HC family, includ-

ing Hierarchical K-Means Clustering (HMC) (Alboukadel, 2017a)
and Hierarchical Clustering on Principal Components (HCPC) (Al-
boukadel, 2017b). Both of them combine hierarchical clustering
method and K-means clustering method.

The concise descriptions for the 40 methods are presented in
Table 1.

2.2. Literature analysis

In this section, we conducted a literature analysis of all exist-
ing studies related to CUDP.

2.2.1. Search process
To understand the research progress in CUDP, we conducted

a search for the related articles that should satisfy the following
3 criteria: (1) the article applied clustering-based unsupervised
learning methods to software defect data; (2) the article was writ-
ten in English; (3) the full text of the article was available online.
We used the combined terms ‘‘defect prediction’’+‘‘clustering’’,
‘‘fault prediction’’+‘‘clustering’’, ‘‘quality prediction’’+‘‘clustering’’
as well as ‘‘defect prediction’’+‘‘unsupervised’’, ‘‘quality predic-
tion’’+‘‘unsupervised’’, ‘‘fault prediction’’+‘‘unsupervised’’ to
search the related articles. As a result, we retrieved a total of
34 articles. Through carefully reading these papers, we found
that 7 articles (Yang et al., 2006, 2016; Fu and Menzies, 2017;
Yan et al., 2017; Huang et al., 2017, 2018; Chen et al., 2019) do
not satisfy the first selection criterion. In addition, article (Gupta
et al., 2012a) just simply introduced 4 clustering-based methods
without conducting any qualitative and quantitative analysis on
software defect data. Therefore, we removed the 8 articles and
focused on the analysis of the remaining 26 articles as listed in
the first column in Table 3. In addition, to verify the completeness
of our search, we followed previous work (Zhou et al., 2018) to
conduct a forward snowballing search. Note that we searched
the articles published from 2000 because we found that the
earliest articles using the clustering algorithm to analyze the
defect data were published after that year. More specifically, we
first searched and inspected the articles having cited the these

articles through Google Scholar, then filtered out the unrelated

4

articles. In this work, we followed the previous work (Zhou et al.,
2018) to use Google Scholar as the main digital library, and also
searched the articles in the ACM Digital Library, IEEE Xplore,
Elsevier ScienceDirect, and SpringerLink to check if any articles
have been omitted. We repeated this process on all the reserved
articles. Table 2 reports the statistic information of the reserved
papers based on the type and year.

2.2.2. Existing unsupervised methods for SDP
Table 3 summaries the information of the used datasets and

performance indicators of the 26 selected articles including the
published year, the number of used projects (Proj.), the corre-
sponding development languages, the number and type of the
corresponding features, the availability of the used dataset, the
performance indicators, and the citations (Cit.). Note that the
citations are counted from the Google Scholar on July 24, 2020.

From Table 3, we have the following observations: (1) In
the articles published before 2015, the researchers conducted
experiments on a small number of projects with fewer features
and the corresponding feature type only consists of the code
complexity metrics; (2) the used projects in these articles are
mainly developed with Java, C++, and C; (3) In the articles pub-
lished after 2012, most researchers employed the defect data
that are available online as their studied corpora which is helpful
for others to reproduce their experimental results. Note that the
entries with gray background in the 7th column indicate that the
authors had provided a link to the dataset, but the link to the web
page fails at the moment; (4) the frequently-used performance
indicators are classification accuracy, error, False Positive Rate
(FPR), and Fault Negative Rate (FNR) for articles published before
2015, while the recent articles usually used the comprehensive
indicators, such as F-measure and AUC. However, no studies have
investigated the performance of effort-aware indicators for their
used clustering-based methods; (5) the citations of most studies
are less than 50 and only five articles (Zhong et al., 2004a; Bishnu
and Bhattacherjee, 2012; Zhang et al., 2016; Nam and Kim, 2015;
Yuan et al., 2000) has more than 100 citations. This statistic
indicates that, from the current situation, the CUDP topic has not
attracted widespread attentions from the researchers.

Table 4 presents an overview of information about the un-
supervised models used in these articles, including the specific
clustering-based methods (the column 2–6), the number of the
clusters (the column 7), and the used cluster labeling scheme (LS)
(the column 8).

From Table 4, we have the following observations: (1) the
methods in PBC and MBC families are frequently used for CUDP,
but no methods in HBC, GBC, and HC families have been used.
This inspires us to further investigate the impacts of these unin-
vestigated methods on CUDP; (2) half of the articles clustered the
software modules into 2 groups, which is based on the fact that
the defect data only contain 2 classes modules, i.e., the defective
and non-defective modules. In addition, there were 6 articles that
did not specify the cluster number in advance;

2.2.3. Labeling schemes
From the tables, we can find that there exist a total of 6

labeling schemes in previous studies (scheme 0 means that the
authors did not mention how to label each cluster):

• Scheme 1 denotes the expert inspection based labeling strat-
egy which invites experts to assign the label of each cluster;

• Scheme 2 denotes metric thresholds based labeling. This
scheme defines 6 feature [Lines of Code, Cyclomatic Com-
plexity, Unique Operator, Unique Operand, Total Operator,
Total Operand] as [65, 10, 25, 40, 125, 70] as the thresh-

old vector, then compares the vector with the feature of



Z. Xu, L. Li, M. Yan et al. The Journal of Systems & Software 172 (2021) 110862

T
A

able 1
summary of the studied unsupervised learning methods.
Fam. Method Brief Description No.

PBC

K-means A representative-based clustering by selecting the average values of the instances in the cluster as the centers 1

K-medoids Improving K-means by selecting the instances in the cluster as the centers 2

CM An improvement of K-means with automatic selection of K using the Calinski and Harabasz criterion 3

X-means An extension of K-means with efficiently searching the space of cluster locations and number 4

MBM A variant of K-means by using mini-batches to reduce the computation time 5

PAM An extension of K-means by finding a sequence of medoids that are centrally located in clusters 6

FCM The simplest fuzzy clustering algorithm which is a variant of K-means by allowing a instance to belong to more than one
cluster

7

FCS A generalization of fuzzy clustering to shell like clusters, i.e. detecting clusters that lie in nonlinear subspaces 8

HCM An extension of basic K-means based on classical set theory requiring that a instance either does or does not belong to a
cluster

9

K-modes An extension of K-means by replacing distances with dissimilarities and means with modes 10

FF A variant of K-means by replacing each cluster center in turn with the instance furthest from the existing cluster centers 11

Canopy Speeding up clustering operations on large datasets 12

CLARA Using sampling to handle large datasets with PAM 13

HBC

AHC Building a larger cluster by merging two smaller clusters in a bottom-up fashion 14

DAC Splitting a cluster into two smaller ones in a top-down fashion 15

Birch Using clustering feature and the corresponding tree to improve clustering speed and scalability, especially on large
datasets

16

LVQ Combining vector quantization and nearest-neighbor classification to update the cluster centers in an incremental manner 17

CURE Using instance variants from a constant number of well scattered instances after shrinking as the cluster representative
for large datasets, even with non-spherical shapes and wide variances in size

18

ROCK Considering the number of common neighbors for a pair of instances during clustering 19

DBC

DBSCAN Grouping together instances that have many nearby neighbors and marking outliers whose nearby neighbors are too far
away

20

OPTICS Detecting meaningful clusters in spatial data of varying density 21

MS Iteratively shifting each instance in the dataset until the top of its kernel density estimation surface reaches a nearest peak 22

GBC CLIQUE Constructing static grids to perform a bottom-up subspace clustering and using a prior method to reduce the search space 23

MBC

NG An artificial neural network for finding optimal data representations based on feature vectors 24

EM Iteratively performing an expectation (E) step, which creates a function for the expectation of the log-likelihood, and a
maximization (M) step, which computes parameters by maximizing the log-likelihood

25

Cobweb Traversing a classification tree top-down starting from the root node to find the best inserting position of a new instance
by calculating a category utility function

26

SOM A competitive learning network that uses a neighborhood function to preserve the topological properties of the input
space

27

SOMSC An adaptation of SOM for cluster analysis in simple way by using amount of cluster that should be allocated as amount
of neurons in the SOM

28

SYNCSOM A bio-inspired algorithm that is based on oscillatory network that uses SOM as the first layer 29

HCL A winner-take-all algorithm comprising methods where each input instance only determines the adaptation of one unit,
i.e., the winner

30

GTBC
SC Using the similarity matrix of the input data to construct a connected graph and treating the data clustering as a graph

partitioning problem
31

AP Based on the concept of ‘‘message passing’’ between instances and selecting the real instances as the cluster centers for
K-medoids

32

SBC
BSAS Setting the cluster’s representative as only a single vector and favoring the creation of compact clusters in which vectors

are presented only once
33

MBSAS A modification to BSAS which runs twice through the instances 34

IVSBC

CLA First clustering the modules and ranking the clusters based on the violation scores, then labeling the clusters in the top
half as defective

35

CLAMI After the same process as CLA, then selecting the modules with metric selection and instance selection to build a
supervised model

36

ACL Calculating the violation scores of all modules, then the modules whose scores are higher than a threshold are labeled as
defective

37

CE Using clustering algorithm ACL on generated multiple data partitions and combining the multiple clusters into a single
better one

38

HC

HMC First computing the cluster centers with hierarchical clustering, then using the k-means with these centers as initial
cluster centers

39

HCPC First performing hierarchical clustering on the selected principal components to obtain initial partitioning by cutting the
hierarchical tree, then using k-means to refine the initial partition

40
5
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Table 2
Statistic information of research papers published by type and year.
Year 2000 2001 2004 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2018 Total

Conference 2 1 1 1 1 1 1 1 0 0 2 1 1 2 2 17

Journal 0 1 1 0 0 0 0 2 1 2 0 2 0 0 0 9

Total 2 2 2 1 1 1 1 3 1 2 2 3 1 2 2 26
Table 3
A summary of previous studies related to CUDP.
Study Year Dataset characteristics Performance indicators Cit.

Proj. Language Feature number Feature type Available?

Yuan et al. (2000) 2000 1 / 10 Process No Absolute error, Relative error 131

Guo and Lyu (2000) 2000 1 Pascal, FORTRAN 11 Complexity No Type I, II error 41

Pedrycz et al. (2001a) 2001 10 Java, C++ 8 Complexity No No indicator 20

Pedrycz et al. (2001b) 2001 1 Java 7 Complexity No No indicator 18

Zhong et al. (2004a) 2004 1 C++ 13 Complexity No Error, FPR, FNR 123

Zhong et al. (2004b) 2004 2 C++ 13 Complexity No Mean squared error, pure 9

Yang et al. (2006) 2006 2 Both C 12, 11 Complexity No Accuracy 8

Mahaweerawat et al. (2007) 2007 1 Not mentioned 11 Complexity No Accuracy, absolute residual 22

Yang et al. (2008) 2008 2 C, Pascal, FORTRAN 10, 7 Complexity No Accuracy, Type I, II error 16

Catal et al. (2009) 2009 3 C 29 Complexity Yes Error, FPR, FNR 93

Catal et al. (2010) 2010 3 C 29 Complexity Yes Error, FPR, FNR 19

Sandhu et al. (2010) 2010 1 Java 8 Complexity No Accuracy, FPR, FNR 10

Kaur et al. (2010) 2010 3 C++, C 8, 22 Complexity, Requirement No FPR, Recall 10

Kaur and Kumar (2011) 2011 1 Java 39 Complexity No Accuracy 4

Bishnu and Bhattacherjee (2012) 2012 3 C 29 Complexity Yes Error, FPR, FNR 160

Gupta et al. (2012b) 2012 3 C 4 Complexity No Meansquare error 2

Abaei et al. (2013) 2013 3 C 29 Complexity Yes Error, FPR, FNR 22

Gupta et al. (2013) 2013 2 C++ / Complexity No Objective Function, Purity 5

Park and Hong (2014) 2014 3 C 29 Complexity Yes Accuracy, Error, FPR, FNR 18

Coelho et al. (2014) 2014 3 C++, C 21 Complexity Yes Accuracy 9

Pushpavathi et al. (2014) 2014 1 C 21 Complexity No Accuracy, RMSE, MAE, Reliability 1

Nam and Kim (2015) 2015 7 Java 465,26 (for 4,3 projects) Network and change genealogy,
Complexity

Yes Precision Recall, F-measure, AUC 103

Yang and Qian (2016) 2016 16 Java 26,61,20 (for 3,5,8 projects) Complexity, Process,
previous-defect and entropy

Yes Precision, Recall, and F-measure 7

Zhang et al. (2016) 2016 26 Java, C++, C 61,20 (for 5,21 projects) The same as above Yes AUC 137

Yang et al. (2018) 2018 15 Java 26,61,20 (for 3,5,7 projects) The same as above Yes Precision, Recall, and F-measure 1

Jothi (2018) 2018 5 C 29 Complexity Yes Error, FPR, FNR 1
a representative module or the average feature values of
each cluster. If at least one element in the threshold vector
is lower, the cluster is labeled as defective, otherwise as
non-defective;

• Scheme 3 determines the label of each cluster based on
some criteria, such as the risk level of the project, the defect
number, the Bayesian rule, and module-order modeling;

• Scheme 4 denotes the IVS-based labeling strategy. After
calculating the IVS values for all modules as stated in Sec-
tion 2.1.8, the modules with the same IVS values are
grouped into one cluster. This scheme ranks the clusters in
descending order based on their IVS values, then labels the
half top clusters as defective and others as non-defective.
The process is described in the blue rectangle in Fig. 2;

• Scheme 5 denotes the defect-rate-based labeling strategy.
This scheme ranks the modules based on their IVS values
in descending order and calculates a threshold based on the
defect rate, then labels the modules whose IVS values are
greater than the threshold as defective and other modules
as non-defective. The process is described in the purple
rectangle in Fig. 2;

• Scheme 6 denotes the SFM based labeling strategy. This
scheme clusters the modules into two groups and calculates
the Sum of Feature values of each Module (SFM), then calcu-
lates the Average value of the SFMs (ASFM) for all modules
in each cluster. The cluster with larger ASFM is labeled as
defective, and another cluster is labeled as non-defective.
The process is depicted in Fig. 3.
6

The key differences between our work and the above studies
are listed as follows: (1) we devoted to conduct a detailed analysis
towards the clustering-based methods for UDP; (2) we used a
larger-scale defect data as studied corpora; (3) our work was the
first study to use several unexplored clustering-based methods
(such as HCPC and HMC) to ensure that we select methods from
a variety of families; (4) we were among the first to employ both
traditional and effort-aware indicators to evaluate the perfor-
mance of the CUDP methods; (5) we made the first step to analyze
the interaction between the feature types and the performance of
the CUDP methods.

3. Empirical study design

3.1. Comparative methods

To investigate if there exist any clustering based models that
can outperform the supervised models for SDP, we chose some
representative supervised models for comparison. Although one
previous study (Ghotra et al., 2015) has investigated more than
30 supervised classification models for defect prediction, it is not
suitable for us to consider all these models. As Hall et al. (2011)
stated that simple classification models can also perform well
on SDP task, in this work we just selected 6 off-the-shelf super-
vised models for comparison, including the probabilistic-based
classifier Naive Bayes (NB), the statistic-based classifier Logistic
Regression (LR), the instance-based classifier k-Nearest Neighbor
(kNN), the tree-based classifier Classification And Regression
Trees (CART), the rule-based classifier Repeated Incremental
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Table 4
A Summary of Previous Studies Related to CUDP.
Previous Studies The used unsupervised models Cluster number LS

PBC DBC MBC GTBC IVSBC

Yuan et al. (2000) Subtractive clustering 2 3

Guo and Lyu (2000) EM Determined by a criterion 3

Pedrycz et al. (2001a) SOM 2 0

Pedrycz et al. (2001b) SOM 2 0

Zhong et al. (2004a) K-means NG 20 1

Zhong et al. (2004b) K-means NG 20 or 30 2

Yang et al. (2006) K-means, FCM GMM 2 or 3 2

Mahaweerawat et al. (2007) SOM Determined by two parameters 1

Yang et al. (2008) AP 2 1

Catal et al. (2009) K-means 20 2

Catal et al. (2010) X-means Determined by optimizing 3

Kaur et al. (2010) Two variants of K-means 2 0

Kaur and Kumar (2011) DBSCAN 2 0

Sandhu et al. (2010) K-means 2 0

Bishnu and Bhattacherjee (2012) Quad-tree K-means Heuristically determined 3

Gupta et al. (2012b) FCM Not mentioned 3

Abaei et al. (2013) SOM 2 3

Gupta et al. (2013) K-means, FCM 30, 15 0

Park and Hong (2014) X-means EM Determined by optimizing 1

Coelho et al. (2014) K-means EM 2 0

Pushpavathi et al. (2014) FCM and its variant 25 0

Nam and Kim (2015) CLA, CLAMI Based on IVS 4

Yang and Qian (2016) ACL 2 5

Zhang et al. (2016) SC 2 6

Yang et al. (2018) CEL 2 5

Jothi (2018) K-means, FCM,Quad-tree K-means Not mentioned 0
Fig. 2. The process of labeling scheme 4 and 5.
Fig. 3. The process of labeling scheme 6.
runing to Produce Error Reduction (RIPPER), and the ensemble-
earning-based classifier Random Forest (RF). The 6 models are
ypical and widely employed in previous SDP studies (Nam and
7

Kim, 2015; Li et al., 2017; Xu et al., 2019c; Li et al., 2018) as the
candidate of the basic classifiers and Zhang et al. (2016) compared
their proposed unsupervised model with 4 out of the 6 supervised
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odels. All these 6 models were implemented with the third-
arty functions in Weka library with the default parameters. The
easons are that: first, as the 40 unsupervised models in our
mpirical study were implemented using the default parameters
ithout tuning the parameters, thus, it would be more appropri-
te to use the default values for the supervised model for a fair
omparison; second, the main goal of this paper is to investigate
he impacts of unsupervised models on the defect prediction
erformance, not to explore the influence of parameter tuning on
he performance of supervised models, and previous studies have
tated that parameter tuning is a time-consuming process in the
ield of software engineering (Arcuri and Fraser, 2013). Thus, in
his work, we only reported the results of the supervised models
ith the default parameters.

.2. Implementation for unsupervised methods

We implement 35 clustering methods with third-party func-
ions in Weka, Python, and R libraries. Note that for the methods
hat are available in multiple libraries, we chose the implemen-
ation following the priority: Weka → Python → R. In addition,
CLA and CLAMI in IVSBC family were implemented using the
source code released by the authors, while ACL and CE methods
in IVSBC family and SC method in GTBC family were reproduced
by us following the corresponding descriptions in the original
literatures.

3.3. Research Questions (RQs)

In this work, we studied the following Research Questions
RQ).

RQ1: How do these selected methods perform on defect
atasets with complexity features?
RQ2: How do these selected methods perform on defect

atasets with process features?
RQ3: How do these selected methods perform on defect

atasets with network features?
RQ4: How do these selected methods perform on defect

atasets with all the aforementioned three types of features?
RQ5: What are the impacts of different feature types on the

erformance of the selected methods?
The first 3 questions explore the performance of clustering-

ased unsupervised models on defect data with individual feature
ypes. The fourth question investigates the performance of these
ethods on defect data with combined features. The last question
tudies the impact of defect data with different feature types on
he performance of these methods.

.4. Benchmark dataset

As one goal of our empirical study is to investigate the impacts
f feature types on CUDP performance, we chose a benchmark
ataset released by Song et al. (2018). This benchmark dataset
ombines PROMISE dataset (Jureczko and Madeyski, 2010) and
EEEM dataset (D’Ambros et al., 2012) which have been widely
sed in previous defect prediction studies (Zhang et al., 2016;
hou et al., 2018; Ghotra et al., 2015; Li et al., 2017, 2018; Jing
t al., 2015, 2017). More specifically, this benchmark dataset in-
ludes 14 open-source software projects (9 projects from
ROMISE dataset and 5 projects from AEEEM dataset) with a
otal of 27 versions in which 3 types of features are collected for
ach project version. Thus, we had a total of 81 project defect
ata. Table 5 presents the basic information of the defect data
f these projects, including the link, the brief description, the
ersion number, the total Sum of the Line Of Code (SLOC), the
otal number of all modules (# Mod.), the number of defective
8

odules (# Def.), and the percentage of defective modules (%
ef.). The 3 types of features include 7 code complexity features,
1 process features, and 24 network features. Table 6 presents
he brief definitions for these features. As all the projects were
eveloped with Java language which may limit the generality of
ur work, more projects with other languages need to be included
n our studied corpora.

.5. Empirical study framework

Fig. 4 depicts the flow chart of our empirical study framework.
or each feature type of one project version, we used the 1:1
tratified sampling technique to divide the data into part 1 and
art 2. The stratified sampling strategy ensures that the defect
atios of the two parts are consistent with that of the original
ata. This division strategy has been used in previous defect
rediction studies (Wang et al., 2016; Ryu et al., 2016; Xu et al.,
019c). In the first round, for supervised SDP, part 1 was fed into
he 6 supervised models which were used to predict the labels
f the modules in part 2. For CUDP, the 40 unsupervised models
ere only applied to part 2. In the second round, the two parts
ere swapped to run these methods again. This progress was
epeated 50 times to alleviate the randomness bias of the data
ivision. As a result, we obtained a total of 100 values for each
ndicator on each defect data and recorded the average values for
erformance analysis.

.6. Labeling scheme

For the 40 unsupervised models, we followed the labeling
cheme in Zhang et al. (2016) (i.e., Scheme 6 in Section 2.2)
o label the clusters due to its simplicity and effectiveness. For
he methods with predefined cluster number as 2, the labeling
rocess is the same as that in Zhang et al. (2016), as depicted
n Fig. 3. For the methods without predefined cluster numbers
i.e., multiple-cluster scenario), we used the labeling process in
ig. 5 to assign the labels to each cluster. More specifically, we
irst calculated the ASFMs for all clusters and the Mean values
of these ASFMs (MASFM). Then, we labeled the clusters whose
ASFMs are not less than MASFM as defective (i.e., the cluster
including module M4), and label other clusters (i.e., the cluster
including module M1 and M3, and the cluster including module
M2 and M5) as non-defective. In other words, we used the aver-
age values on all features in each cluster to determine it class
label. The motivation came from the heuristic rule of labeling
two classes following the scheme in the previous work (Zhang
et al., 2016) which suggested that the cluster with higher average
feature values should be labeled as defective. This heuristic is
based on the findings that larger or more complex files are mores
like to contain defects than smaller files or the files with lower
complexity (Nam and Kim, 2015; D’Ambros et al., 2012; Gaffney,
1984). Here, we gave an end to end example to explain the
labeling process for the methods that group the modules into
2 clusters: for one data partition of ant-1.3 project with code
complexity features, we first normalized the date in one part,
then used the typical K-means method to group the normalized
data into two clusters. The results show that one cluster contains
18 modules and one cluster contains 45 modules. The ASFM of the
two clusters are 0.869 and −0.348, respectively. As the former
one is larger than the latter one, we labeled all modules in the
first cluster as defective and all modules in the second cluster as
non-defective.

For the 6 supervised models, a classification threshold is
needed for the learning methods to determine the labels of the
modules. More specifically, a module is classified as defective if
its probability given by the model is larger than the classification
threshold, otherwise, it is classified as non-defective. In this
work, we used the default threshold 0.5 as used in Zhou et al.’s

work (Zhou et al., 2018).
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escription of the benchmark dataset.
Project Description Version SLOC # Mod. # Def. % Def.

Ant
A Java-based, shell independent build tool

1.3 37699 125 20 16.00%
1.4 54195 178 40 22.47%

(http://ant.apache.org/) 1.5 87047 293 32 10.92%
1.6 113246 351 92 26.21%

Camel
A integration framework based on Enterprise Integration Patterns

1.0 33721 339 13 3.83%
1.2 66302 608 216 35.53%

(http://camel.apache.org/) 1.4 98080 872 145 16.63%
1.6 113055 965 188 19.48%

ivy A dependence manager focusing on flexibility and simplicity 2.0 87769 352 40 11.36%(http://ant.apache.org/ivy/)

jedit
A cross platform programmer’s text editor

3.2 128883 272 90 33.09%
4.0 144803 306 75 24.51%
4.1 153087 312 79 25.32%

(http://www.jedit.org/) 4.2 170683 367 48 13.08%
4.3 202363 492 11 2.24%

log4j A logging package for printing log output 1.0 21549 135 34 25.19%(http://logging.apache.org/log4j/)

poi Java API for Microsoft documents format 2.0 93171 314 37 11.78%(http://poi.apache.org/)

Synapse
A lightweight and high-performance Enterprise Service Bus

1.0 28806 157 16 10.19%
1.1 42302 222 60 27.03%

(http://synapse.apache.org/) 1.2 53500 256 86 33.59%

Velocity A template language engine 1.6 57012 229 78 34.06%(http://velocity.apache.org/)

xerces A Java-based XML parser 1.2 159254 440 71 16.14%
(http://xerces.apache.org/xerces-j/) 1.3 167095 453 69 15.23%

Equinox framework An implementation of the OSGi core framework specification 3.4 39534 324 129 39.81%(www.eclipse.org/equinox/)

Eclipse JDT Core The Java infrastructure of the Java IDE 3.4 224055 997 206 20.66%(www.eclipse.org/jdt/core/)

Apache Lucene A high-performance, full-featured text search engine library 2.4.0 73184 691 64 9.26%(https://lucene.apache.org)

Mylyn A task and application lifecycle management framework for Eclipse 3.1 156102 1862 245 13.16%(www.eclipse.org/mylyn/)

Eclipse PDE UI Providing a set of tools to create, develop, test, debug and deploy 3.4.1 146952 1497 209 13.96%(www.eclipse.org/pde/pde-ui/) Eclipse plug-ins, fragments, features, update sites and RCP products
Fig. 4. Framework of our empirical study.
Fig. 5. Labeling scheme for multiple clusters.
.7. Evaluation indicators

To measure the effectiveness of the total 46 methods for SDP,
e employed 3 indicators as our performance measurement,

ncluding Matthew Correlation Coefficient (MCC), EAF-measure,
nd Popt. MCC is considered as the most appropriate indicator
9

for SDP task (Song et al., 2018; Yao and Shepperd, 2020); EAF-
measure is a more comprehensive effort-aware indicator recently
proposed by Huang et al. (2017, 2018). Popt is a normalized ver-
sion of the effort-aware indicator originally proposed in Mende
and Koschke (2010).

We first defined 4 basic terms as follows:

http://ant.apache.org/
http://camel.apache.org/
http://ant.apache.org/ivy/
http://www.jedit.org/
http://logging.apache.org/log4j/
http://poi.apache.org/
http://synapse.apache.org/
http://velocity.apache.org/
http://xerces.apache.org/xerces-j/
http://www.eclipse.org/equinox/
http://www.eclipse.org/jdt/core/
https://lucene.apache.org
http://www.eclipse.org/mylyn/
http://www.eclipse.org/pde/pde-ui/
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able 6
he brief definitions of the 3 types of features.
Feature type Feature name Brief description

Code complexity

Weighted methods per class (WMC) The sum of the complexities of methods in a class
Depth of Inheritance Tree (DIT) The inheritance levels from the object hierarchy top for the class
Number of Children (NOC) The number of direct descendants of the class
Coupling between object classes (CBO) The number of classes coupled to a given class
Response for a Class (RFC) The number of different methods executed when an object receives a message
Lack of cohesion in methods (LCOM) The sets of methods not related through the sharing of some of the class’s fields
Lines of code (LOC) The number of the lines of codes of the class

Process

Revisions The number of revisions of a module
Authors The number of different authors that inspected a module
Loc_added Total number of lines of code added to a module for all revisions
Max_loc_added The maximum number of lines of code added to a module for all revisions
Avg_loc_added The average number of lines of code added to a module per revision
Loc_deleted Total number of lines of code deleted to a module for all revisions
Max_loc_deleted The maximum number of lines of code deleted to a module for all revisions
Avg_loc_deleted The average number of lines of code deleted to a module per revision
Codechurn Total number of lines of code changed to a module for all revisions
Max_codechurn The maximum number of lines of code changed to a module for all revisions
Avg_codechurn The average number of lines of code changed to a module per revision

Network

Ego

Size The number of the nodes of the ego network
Ties The number of the edges involving in the network
Pairs The maximal number of directed ties
Density The percentage of the ties are actually presented
WeakComp The number of weak components in neighborhood
nWeakComp The normalized WeakComp by size
TwoStepReach The number of nodes within two directed steps of ego
ReachEfficiency The normalized TwoStepReach by Size
Brokerage The number of Pairs not directly connected
nBrokerage The normalized Brokerage by Pairs
EgoBetweenness The percentage of all geodesic paths among neighbors that pass through ego network
nEgoBetweenness The normalized EgoBetweenness by Size

Structure

Effective Size (EffSize) The number of alters connected to the ego minus the average degree of the alters
Efficiency The normalized EffSize by Size of the network
Constraint Measuring to what extend the ego is constraint by its alters
Hierarchy Measuring to what extent the constraint on ego is concentrated in a single alter

Centrality

Degree The number of nodes adjacent to a given node
nDegree The normalized Degree by the total number of nodes
Closeness The sum of the lengths of the shortest paths between a node and all other nodes
Reachability The number of nodes that a node can reach
Eigenvector Assigning relative scores to all nodes involving in the network
nEigenvector The normalized Eigenvector by the total number of nodes
Betweenness Measuring the frequency of a node appears on the shortest paths among other nodes
nBetweenness The normalized Betweenness by the total number of nodes
True Positive (TP) and False Negative (FN) denote the number
f defective modules that are correctly and incorrectly iden-
ified by a model, respectively; True Negative (TN) and False
ositive (FP) denote the number of non-defective modules that
re correctly and incorrectly identified by a model, respectively.
(1) MCC. Given the above 4 terms, the general formula of MCC

s defined as follows:

CC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(1)

MCC is non-effort-aware or traditional indicator since it does
not consider the efforts of inspecting modules.

To evaluate the SDP performance in an effort-aware sce-
nario (Mende and Koschke, 2010) in which only limited test
resources are used for code review expecting the maximum
profit (Yang et al., 2016; Arisholm et al., 2010; Kamei et al.,
2013), we used 2 effort-aware indicators, i.e., EAF-measure and
Popt. In previous studies, the number of LOC was used as proxy
measure of the test resources involving in inspecting a module
and the percentage of defective modules found after the inspec-
tion process was treated as the profit. In this work, we specified
the test resources as 20% of total LOC following (Yang et al.,
2016; Jiang et al., 2013; Yang et al., 2015; Xia et al., 2016). In
the calculation process of EAF-measure, we employed the same
ranking strategy in Xu et al. (2018), a variant version towards
the strategy in Huang et al. (2018). The reason why we did
10
not employ the ranking strategy in Huang et al. (2018) is that
the probabilities of the modules being defective are not always
available for unsupervised models. Fig. 6 depicts a diagram of the
calculation process for the effort-aware indicators. The process
consists of 5 main steps: (1) we clustered the modules into
multiple groups (usually 2 groups) and labeled them as defective
or non-defective based on the labeling strategy described in Sec-
tion 3.6; (2) we ranked the modules in each cluster in ascending
order based on their LOC values; (3) we concatenated the two
ranked results in which the ranked result of the defective group
is in the front of that of the non-defective group; (4) we simulated
the developers or testers in inspecting the ranked modules until
their cumulative LOC reached 20% (i.e., the cutoff point); and (5)
we recorded statistics to calculate EAF-measure.

Before obtaining EAF-measure, we first needed to calculate
Effort-Aware Recall (EARecall) and Effore-Aware Precision
(EAPrecision). Given data with n1 defective modules, after in-
specting the ranked modules with 20% of LOC, we assumed n′

modules and n1
′ actually defective modules have been detected.

EARecall is defined as EARecall = n1′/n1 and EA-Precision is
defined as = n1′/n′.

(2) EAF-measure. Given the terms of EARecall and EAPreci-
sion, the general formula of EAF-measure is defined as

EAF-measure =
(1 + β2) × EAPrecision × EARecall

. (2)

β2 × EAPrecision + EARecall
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Fig. 7. LOC-based Alberg diagram.

In this work, we set β as 2 to emphasize more on the role
f EARecall when balancing EARecall and EAPrecision following
he previous studies (Xu et al., 2019b,a). In addition, we also
pload the result of EAF-measure with β of 1 to our online
upplementary materials.
(3) Popt. Another effort-aware indicator Popt is based on the

rea under the effort curve in an Alberg diagram (Arisholm et al.,
010). Fig. 7 presents an example of an LOC-based Alberg dia-
ram. The calculation of Popt relies on 3 curves which correspond
o an optimal model, our proposed model m, and a worst model.
he 3 curves are described as follows:

• The optimal model means that all the modules are ranked in
descending order, based on their actual defect density. In de-
tail, the actual defective and non-defective model are ranked
in ascending order according to their LOC respectively and
the two ranked results were spliced, in which the ranked
result of the defective group is in the front of that of the
non-defective group.

• The proposed model m means that all modules are ranked
according to our ranking strategy.

• The worst model means that all modules are ranked in
ascending order, based on their actual defect density, that
is, the results are opposite to that of the optimal model.

The Popt(m) is formally defined as follows:

opt(m) =
Area(m) − Area(worst)

Area(optimal) − Area(worst)
. (3)

where Area() represents the area under the corresponding curve.
According to this definition, Popt is equal to the ratio of the

area of region B (the green dotted lines) to the sum of the area
of region B and the region A (the gray dotted lines). A larger
 b

11
Popt value signifies that there is a smaller difference between our
proposed model m and the optimal model.

3.8. Parameter configurations for unsupervised models

For the unsupervised models, if the clustering methods sup-
port specifying cluster number manually, we set it to 2, following
the approach conducted by Zhang et al. (2016). Among the 40
selected unsupervised models, 4 of them i.e., MS, AP, SOM, and
Cobweb, can determine the cluster number automatically. We
hence did not specify the cluster number of them. For other
parameters, we employ the default values in the Weka, Python,
and R libraries.

3.9. Performance analysis method

In this work, we applied a statistical test technique, i.e., Fried-
man test with the improved Nemenyi post-hoc test in Herbold
et al. (2018) (instead of the well-known novel Scott–Knott test)
to analyze the performance results, which determines whether
the performance differences among the methods are significant
or simply due to the natural variability of the performance re-
sults (Hassan, 2009). The Friedman test is non-parametric which
does not require the analysis data to follow a particular dis-
tribution and the improved Nemenyi test can divide the meth-
ods into non-overlapping groups. Whereas the novel Scott–Knott
test (Ghotra et al., 2015; Xu et al., 2016a; Tantithamthavorn et al.,
2017, 2018) requires the analysis data to satisfy the normality
and homoscedasticity assumptions (Herbold, 2017), which is not
always fulfilled in some cases. The combination of Friedman
with Nemenyi test is widely adopted in previous SDP studies
for significance test (Nam and Kim, 2015; Li et al., 2017, 2018;
D’Ambros et al., 2012; Mende and Koschke, 2010; Herbold et al.,
2018; Jiang et al., 2008; Lessmann et al., 2008).

For the SDP study, if the p value of the Friedman test towards
the performance results of multiple SDP methods is lower than
0.05, it denotes that these methods exist significant performance
differences for SDP task. Then Nemenyi post-hoc test is employed
to distinguish which SDP methods are significantly different from
others.

4. Empirical results

4.1. Results for RQ1

Since we needed to perform a total of 46 methods (40 unsu-
pervised models and 6 supervised models) on 27 defect data with
100 times, we obtained 124200 (46 × 27 × 100) records of the
erformance results for this question.
Fig. 8 depicts the box-plots of 3 indicators on defect data

ith code complexity features. We reported both the average and
edian indicator values represented by the colored point and

ands inside the boxes, respectively. The boxes with different
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Fig. 8. Box-plots of the 3 indicator values across 27 defect data with code complexity features.
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olors imply distinct meanings as follows: the red boxes indi-
ate that the corresponding methods belong to the top-ranked
roup after conducting the statistical test. In other words, these
ethods outperform the others with a statistical significance;

he green boxes indicate that the corresponding methods belong
o the bottom-ranked group, which implies that these methods
re outperformed by others with a statistical significance; the
lue boxes indicate that the corresponding methods belong to the
iddle-ranked group.
From Fig. 8, we can observe that, first, in terms of the su-

ervised model family, 5 classifiers except for NB belong to the
op-ranked group on all indicators. In terms of the PBC family, one
ethod (i.e., Canopy) belong to the top-ranked group on all indi-
ators, and 4 methods (i.e., CM, X-means, K-Modes, and Canopy)
elong to the top-ranked group on 2 effort-aware indicators. In
erms of the HBC, DBC, GBC, MBC, and HC families, no methods
elong to the top-ranked group on at least 2 indicators. In terms
f the GTBC family, one method (i.e., SC) belongs to the top group
n 2 effort-aware indicators. In terms of the SBC, all two methods
i.e., BSAS and MBSAS) belong to the top-ranked group on 2 effort-
ware indicators. In terms of the IVSBC family, all methods belong
o the top-ranked group on all indicators.

In terms of MCC, all classifiers in the supervised model family,
methods in the PBC family, one method in HBC, DBC, MBC,

nd HC families, and all methods in the IVSBC family belong
o the top-ranked group. In terms of EAF-measure, 5 methods
n supervised model and PBC families, one method in the HBC
amily, 2 methods in the DBC family, one method in the GBC
amily, 3 methods in the MBC family, one method in the GTBC
amily, and all methods in SBC and IVSBC families belong to the
op-ranked group. In terms of Popt, 5 methods in supervised
odel and PBC families, 3 method in the HBC family, one method

n the GTBC family, and all methods in SBC and IVSBC families
elong to the top-ranked group.
To sum up, on defect data with code complexity features, 5

lassifiers except for NB in the supervised model family, Canopy
12
in PBC family, and all methods in IVSBC family perform best on
all indicators.

4.2. Results for RQ2

Since we also needed to perform a total of 46 methods on 27
defect data with 100 times, we obtain 124,200 (46 × 27 × 100)
ecords of the performance results for this question.

Fig. 9 depicts the box-plots of 3 indicators on defect data with
rocess features. From Fig. 9, we observe that: first, in terms
f the supervised model family, 4 classifiers except for NB and
R belong to the top-ranked group on all indicators, NB and
R classifiers belong to the top-ranked group on one traditional
nd one effort-aware indicators. In terms of the PBC family, no
ethods belong to the top-ranked group on all indicators, one
ethod (i.e., K-Medoids) belongs to the top-ranked group on 2
ffort-aware indicators. In terms of HBC, GBC, MBC, SBC, and HC
amilies, no methods belong to the top-ranked group on at least
indicators. In terms of the DBC family, 2 methods (i.e, DBSCAN
nd OPTICS) belong to the top-ranked group on one traditional
nd one effort-aware indicators. In terms of the GTBC family, one
ethod (i.e., SC) belongs to the top-ranked group on 2 effort-
ware indicators. In terms of the IVSBC family, two methods
i.e., CLA and CLAMI) belong to the top-ranked group on all
ndicators, one method (i.e., CE) belongs to the top-ranked group
n 2 effort-aware indicators, and one method (i.e., AC) belongs
o the top-ranked group on one traditional and one effort-aware
ndicators.

In terms of MCC, all classifiers in the supervised model family,
methods in the PBC family, all methods in the DBC family, 3
ethods in the IVSBC family, and one method in the HC family
elong to the top-ranked group. In terms of EAF-measure, all
lassifiers in the supervised model family, 5 methods in the PBC
amily, one method in the HBC family, 2 methods in the DBC
amily, one method in the GBC family, 4 methods in the MBC
amily, all methods in GTBC, SBC, and IVSBC families belong to the
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Fig. 9. Box-plots of 3 indicator values across 27 defect data with process features.
op-ranked group. In terms of Popt, 4 classifiers in the supervised
odel family, 2 methods in the PBC family, one method in HBC
nd GTBC families, 3 methods in the IVSBC family belong to the
op-ranked group.

Overall, on defect data with process features, 4 classifiers
except for NB and LR) in the supervised model family, CLA and
LAMI in the IVSBC family achieve the best performance on all
ndicators.

.3. Results for RQ3

Due to the practical difficulties in launching the CLIQUE
ethod in the GBC family with network features, we have to

gnore CLIQUE from this study. The process of CLIQUE is that:
t first divides each dimension into a certain number of equal-
idth grid cells and saves those whose density is greater than
threshold as clusters; then each set of two dimensions is ex-
mined: if there are two intersecting cells in these 2 dimensions
nd the density in the intersection is greater than the threshold,
he intersection is also saved as a cluster. This is repeated for
ll sets (e.g., 3 dimensions, 4 dimensions) until the total feature
imension (Hassani, 2015). From this point of view, CLIQUE is
aced with the curse of dimensionality, which means that the
omplete enumeration of all subspaces becomes intractable with
he increasing dimensionality. Our experiments show that we
ould not apply the CLIQUE method to our defect data with 24
etwork features due to the required run time. For example, on
roject Eclipse JDT Core, CLIQUE needs nearly 3000 s (50 min) for
ne run of one data split. Since there are in total 100 runs, CLIQUE
eeds 5000 min (nearly 3.5 days). As we have 27 projects, it can
e roughly estimated that we need nearly 3 months to get the re-
ults for CLIQUE on defect data with network metrics. Considering
he practical applicability of CLIQUE, we did not consider CLIQUE
n this question since infinite time is not always available for
he SDP task. As a result, we performed in total 45 methods (39

nsupervised models and 6 supervised models) on 27 defect data

13
with 100 times, and obtained 121,500 (45 × 27 × 100) records
of the performance results for this question.

Fig. 10 depicts the box-plots of 3 indicators on defect data
with network features. From Fig. 10, we have the following find-
ings: first, in terms of the supervised model family, 4 classifiers
except for NB and LR belong to the top-ranked group on all
indicators, NB and LR classifiers belong to the top-ranked group
on one traditional and one effort-aware indicators. In terms of
PBC, HBC, and DBC families, no methods belong to the top-ranked
group on at least 2 indicators. In terms of the MBC family, one
method (i.e., SOMSC) belong to the top-ranked group on one
traditional and one effort-aware indicators. In terms of the GTBC
family, all methods belong to the bottom-ranked group on all
indicators. In terms of the SBC family, all methods belong to the
top-ranked group on 2 effort-aware indicators. In terms of the
IVSBC family, two methods (i.e., CLA and CLAMI) belong to the
top-ranked group on one traditional and one effort-aware indica-
tors. In terms of the HC family, one method (i.e., HCPC) belongs
to the top-ranked group on one traditional and one effort-aware
indicators.

In terms of MCC, all methods in the supervised model family,
one method in PBC, DBC, MBC, and HC families, all methods in
the IVSBC family belong to the top-ranked group. In terms of
EAF-measure, all classifiers in the supervised model family, one
method in PBC and HBC families, 2 methods in DBC and MBC
families, all methods in the SBC family, and 2 methods in the
IVSBC family belong to the top-ranked group. In terms of Popt, 4
classifiers in the supervised model family, 4 methods in the PBC
family, 5 methods in the HBC family, one method in the MBC
family, and all methods in SBC and HC families belong to the
top-ranked group.

In summary, on defect data with network features, 4 classifiers
(except for NB and LR) in the supervised model family exhibits
the best superiority on all indicators.



Z. Xu, L. Li, M. Yan et al. The Journal of Systems & Software 172 (2021) 110862

4

t
m
f

Fig. 10. Box-plots of 3 indicator values across 27 defect data with network features.
Fig. 11. Box-plots of 3 indicator values across 27 defect data by combining the 3 types of features.
p

a

.4. Results for RQ4

Since the dimension of the combined features is larger than
hat of the network features, we also could not get the perfor-
ance of the CLIQUE method on the defect data with combined

eatures. Thus, we also did not consider CLIQUE in this question.
 f

14
Again, we performed in total 45 methods on 27 defect data with
100 times, and obtained 121,500 (45 × 27 × 100) records of the
erformance results for this question.
Fig. 11 depicts box-plots of 3 indicators on defect data with

ll features by combining code complexity, process, and network
eatures. From Fig. 11, we have the following findings: first, in
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Fig. 12. Average values of 3 indicator for the selected methods on defect data with different feature types and the combined features.
terms of the supervised model family, 5 classifiers except for
NB belong to the top-ranked group on all indicators. In terms of
the PBC family, one method (i.e., FF) belongs to the top-ranked
group on one traditional and one effort-aware indicators. In terms
of HBC, DBC, MBC, GTBC and HC families, no methods belong
to the top-ranked group on at least 2 indicators. In terms of
the SBC family, all 2 methods belong to the top-ranked group
on 2 effort-aware indicators. In terms of the IVSBC family, 2
methods (i.e., CLA and CLAM) belong to the top-ranked group
on all indicators, one method (i.e., AC) belongs to the top-ranked
group on one traditional and one effort-aware indicators.

In terms of MCC, all classifiers in the supervised model family,
one method in PBC, DBC, HC families, and 3 methods in the IVSBC
family belong to the top-ranked group. In terms of EAF-measure,
all classifiers in the supervised model family, one method in the
HBC family, 2 methods in the DBC family, 3 methods in the MBC
family, one method in the GTBC family, all methods in the SBC
family, and 3 methods in the IVSBC family belong to the top-
ranked group. In terms of Popt, 5 classifiers in the supervised
model family, 2 methods in the PBC family, 3 methods in the HBC
family, all methods in the SBC family, and 3 methods in the IVSBC
family belong to the top-ranked group.

Overall, on defect data with all features, 5 classifiers (except
for NB) in the supervised model family, CLA and CLAMI in the
IVSBC family perform significantly better on all indicators.

4.5. Results for RQ5

To answer this question, we considered the unsupervised
models who belong to the top-ranked group on all indicators
15
or on 2 effort-aware indicators over defect data with one of the
feature types and all supervised models. According to the result
analysis in the above 4 research questions, 12 unsupervised mod-
els were remained (i.e., K-Medoids, CM, X-Means, K-Modes, and
Canopy in PBC family, SC in GTBC family, and all methods in SBC
and IVSBC families). Thus, we used 18 models (12 unsupervised
+ 6 supervised models) to analyze this question.

Fig. 12 shows bar charts of the average values of 3 indicators
for the selected methods on defect data with different feature
types and the combined features. From this figure, we can observe
that, in terms of the 6 classifiers in supervised model family, they
achieve the best average performance on Popt over defect data
with network features and the best average performance on other
2 indicators over defect data with the combined features. For the
methods except for the ones in the IVSBC family, they perform
bad on the traditional indicator but perform well on 2 effort-
aware indicators over defect data with different types of features.
In terms of the 12 unsupervised models, their performance of dif-
ferent indicators vary according to the feature types of the defect
data. For example, for Canopy, it achieves better performance on
the traditional indicator over defect data with code complexity
and process features, but obtains better performance on 2 effort-
aware indicators over defect data with network and combined
features; for the two methods in the SBC family (i.e., BSAS and
MBSAS), they achieves the best MCC values on defect data with
process and network features, the best EAF-measure values over
defect data with network and combined features, the best Popt
values over defect data with network features; for SC, it achieves
nearly the same MCC and EAF-measure values on defect data
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ith different feature types, but obtains the best Popt value over
efect data with process features. For CLA, CLAMI, and AC, they
erform the best on the traditional indicator over defect data with
ombined features, and do not perform well on 2 effort-aware
ndicators over defect data with code complexity features. In
ddition, CLA and CLAMI obtain similar average performance on
effort-aware indicators over defect data with process, network,
nd combined features. For CE, it does not perform well on the
raditional indicator but performs the best on 2 effort-aware in-
icators over defect data with process and combined features, and
t obtains nearly the same average performance on all indicators
ver defect data with process and combined features.
From the above observations, the superiority of the selected

8 methods (especially for the unsupervised models) on de-
ect data with distinct feature types varies according to the
ndicators used.

. Discussion

.1. Implications

We provided some implications from the analysis of our ex-
erimental results for practitioners and researchers.

(1) The methods in the HBC, GBC, and HC families should be
avoided in practice for defect prediction. The reason is that
no methods from the above families perform well on all
indicators and on 2 effort-aware indicators over defect data
with any kind of feature types and the combined features.
This may explain why the methods in these 3 families
were not explored in previous studies. We recommended
that practitioners should avoid using such methods when
conducting SDP on unlabeled defect data.

(2) The methods in IVSBC family appear to be optimal op-
tions for CUDP. Overall, they present promising perfor-
mance in most cases. As these methods design specific
rules (such as the violation score) which rely on the defect
data characteristics to divide the modules, they are able to
well adapt to the SDP task in practical applications.

(3) Clustering-based defect prediction models should be
highly regarded for researchers. Our experimental results
show that several clustering-based models are not infe-
rior to the classical supervised models, such as Canopy
method in the PBC family which can achieve competitive
performance or even better performance over defect data
with code complexity features. As unsupervised models
do not require the prior knowledge of the defect data by
label collection which is known to be time-consuming and
labor-intensive (Fu and Menzies, 2017; Xu et al., 2019d;
Chen et al., 2015), they can promote the quality assurance
activity.

(4) Selection of clustering-based models for CUDP should
comprehensively consider feature types of the defect
data and the used indicators. Performance of these meth-
ods varies towards the two factors. For example, the effort-
aware performance of Canopy prefers to the defect data
with network and combined features while the traditional
performance of Canopy prefers to the defect data with
other two types of features. We recommend that software
engineering researchers should extract suitable features
from the source code for specific performance according to
actual requirements.

(5) A combination of features does not always enable the
defect data to promote the performance of unsuper-
vised models. Although the supervised models achieve
better performance on two indicators (i.e., MCC and EAF-

measure) over defect data with combined features overall,

16
the clustering-based unsupervised models do not always
perform well on such defect data. For example, defect data
with combined features are not suitable to K-Medoids on
2 effort-aware indicators, and to Canopy on the traditional
indicator. Thus, when the researchers hesitate whether
to combine different feature types to form a new defect
dataset, the decision should rely on the used unsupervised
methods and indicators.

(6) As there exist some clustering-based models with promis-
ing defect prediction performance, we can use them with
the labeling scheme to annotate some data for the re-
searchers and practitioners to perform some other su-
pervised learning tasks, expecting to save the cost of
manual annotation.

(7) As discussed in Section 3.2, the implementation of our
framework (with the help of Weka, Python and R) is
quite generic. Hence, apart from comparing clustering-
based defect prediction models, we believe that our frame-
work, with slight modifications, could be also applied to
other comprehensive comparative studies concerning
clustering-based approaches.

.2. Threats to validity

In this subsection, we presented the following 3 major threats
o the validity of our work.

(1) External Validity: Our experiments were conducted using
publicly available benchmark data from 27 versions of 14
open source projects. An external validity threat is that
all of these projects were developed with Java language
and we do not consider the projects developed with other
languages, such as C, C++ or python. This may limit the
generality of our experimental results. In addition, since
our benchmark data consists of 3 types of features, i.e., code
complexity features, process features, and network fea-
tures, our experimental results may not be generalized
to the defect data with other feature types, such as text
features (Scandariato et al., 2014) and developer’s scatter-
ing features (Di Nucci et al., 2018). Future experiments on
various defect data can alleviate such threats.

(2) Internal Validity: For method implementation, we used
the third-party library implementation or the code pro-
vided by the authors for most methods to avoid poten-
tial mistakes in the implementation process by ourselves,
which is beneficial to relieve the threat to the internal
validity. One potential threat is that our implementations
for AC and CE may be slightly inconsistent with the original
versions. In this work, two graduate students participated
in checking the source code to minimize this threat. For
the parameter setting of the cluster number, we set it to 2
for most methods. Thus, another threat is that the derived
results may exist a certain degree of differences for other
settings of this parameter. More fine-tuned parameters
would be needed in future studies.

(3) Construct Validity: The threat to the construct validity is
that the used performance indicators may not provide a
comprehensive evaluation for the methods. In this work,
we used one traditional and 2 effort-aware indicators to
measure the performance of these methods. Although
these indicators were commonly used in the defect pre-
diction domain, we still cannot claim that our conclusions
are consistent with that of other indicators that we have
not analyzed in this study. Another threat is the appropri-
ateness of the used statistical test technique. In this work,

we used a non-parametric test, the Friedman test with
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Nemenyi post-hoc test to check the significant differences
among these methods. This test is a classic statistical test
which is employed in many previous defect prediction
studies. Rather than using the original test, we used the
improved version proposed in Herbold et al. (2018) which
is more suitable to generate non-overlapping groups for
statistical analysis.

. Related work

The topic of SDP has been an active research field and been
idely studied in the last two decades. Recent studies on this
opic can be roughly divided into 3 categories. The first cate-
ory is that the researchers employed ready-made techniques or
roposed new methods for SDP task in which machine learning
ethods are the mainstream trends. This type of studies aims

o improve the performance of detecting the defective modules,
uch as the work in Jing et al. (2014), Xia et al. (2016) and Jing
t al. (2015). The second category is that researchers collected
ifferent features from the source code for SDP tasks. This type
f studies aims to extract more effective representations for the
odules to promote the identification of the defective modules,
uch as the work in Moser et al. (2008), Jiang et al. (2013),
ureczko and Spinellis (2010), Di Nucci et al. (2017) and Yan
t al. (2020). The third category concerns the works leveraging
revious publications or dataset to perform comprehensive com-
arisons on the performance of a set of methods. The first two
ategories mainly focus on improving the SDP performance from
technological perspective while the last one mainly focuses on
onducting literature reviews or empirical studies to investigate
he impacts of different experimental components on the predic-
ion performance, such as the work in Ghotra et al. (2015), Song
t al. (2018) and Xu et al. (2016a). Our work belongs to the last
ategory. In this section, we report the research progress about
his category.

.1. Empirical studies on classification models for SDP

Lessmann et al. (2008) considered three potential factors that
ay cause bias for SDP performance, including the used classifica-

ion models, the used performance indicators, and the statistical
ests used for empirical findings. To investigate this issue, they
hoose 22 classifiers as studied objects and applied them to 10
ublicly available projects from original NASA dataset. Besides,
hey employed AUC to evaluate the performance of these classi-
iers and used the Friedman test with the Nemenyi test to analyze
he results. The results showed that there exist no significant
erformance differences among the top 17 classifiers. Following
essmann et al.’s work, Ghotra et al. (2015) conducted a larger-
cale empirical study for a total of 31 classification models on
9 projects from 3 datasets (i.e., the original NASA dataset, the
leaned NASA dataset, and the PROMISE dataset). They employed
he AUC and a double Scott–Knott test to evaluate and analyze the
erformance of these classifiers, respectively. They found that the
esults are similar to those in Lessmann et al. (2008) on original
ASA dataset, but the results on the other 2 datasets show a sta-
istically distinct separation among these classifiers. They hence
oncluded that the choice of classification models have impacts
n SDP performance. Tantithamthavorn et al. (2018) explored the
mpacts of parameter optimization on 26 classification models on
datasets with 12 performance indicators. They found that the
ptimization can improve the AUC performance of models by up
o 40 percents.

Different from the above studies which focused on analyzing
he impacts of supervised classification models on the SDP per-
ormance, in this work, we investigated the impacts of clustering-
ased unsupervised models on the SDP performance.
17
6.2. Empirical studies on unsupervised models for SDP

Yang et al. (2016) were the first to compare the performance of
unsupervised models with that of supervised models for JIT defect
prediction. Their results on 6 projects showed that some simple
unsupervised models achieved better effort-aware performance
than supervised models under 3 prediction scenarios. Fu and
Menzies (2017) revisited Yang et al.’s work and proposed a super-
vised model, called OneWay which is based on the implication of
Yang et al.’s simple unsupervised model. They repeat experiment
on the same project as Yang et al.’s work and the results showed
that OneWay performed better than Yang et al.’s unsupervised
models. They suggested that simple supervised models should
be given priority to perform defect prediction task. Yan et al.
(2017) replicated Yang et al.’s work for file-level defect prediction
task. The results showed that their conclusion was consistent
with Yang et al.’s under the cross-project prediction scenario but
was contrary to Yang et al.’s under the within-project prediction.
Huang et al. (2017, 2018) also replicated Yang et al.’s work and
analyzed the reason why the unsupervised model could achieve
better effort-aware performance. They proposed a simple super-
vised model called CBS (Huang et al., 2017) and CBS+ (Huang
et al., 2018) that performed better than the unsupervised model
in terms of two effort-aware indicators and could inspect fewer
changes. Chen et al. (2019) made a first attempt to compare the
performance between unsupervised models and supervised mod-
els for predicting the defect number. They conducted experiments
on 7 projects with 24 versions under 3 prediction scenarios and
suggested that the unsupervised method should be treated as
the baseline method when researchers proposed new supervised
defect number prediction models.

Different from the above studies in which the unsupervised
models ranked the software modules according to the feature
values, in this work, we focused on the unsupervised models
based on the clustering techniques that group the software mod-
ules into different clusters. Recently, Li et al. (2020) conducted a
systematic review of unsupervised models for SDP. They mainly
analyzed some experimental results in existing articles. Different
from their work, we did a more detailed summary for the exper-
imental configurations of existing articles, like the information
of used datasets, performance indicators, and labeling schemes.
In addition, we conducted large-scale experiments to compre-
hensively analyze the SDP performance of 40 clustering-based
model and investigated the impacts of feature types on the SDP
performance.

6.3. Empirical studies on feature selection and reduction methods for
SDP

Muthukumaran et al. (2015) investigated 7 ranking-based, 2
wrapper-based and one embedded-based feature selection meth-
ods on the original NASA dataset and AEEEM dataset. They found
that the performance of the 10 methods has no significant dif-
ferences. Gao et al. (2011) studied 7 ranking-based feature selec-
tion methods followed by 4 feature subset searching strategies
on a private dataset. They found that 6 ranking-based meth-
ods obtained similar performance. Wang et al. (2011) conducted
an empirical study on 6 ranking-based and 2 ensemble-based
feature selection methods on 3 datasets. They found that the
performance of the ranking-based methods is affected by 2 fac-
tors (i.e., the datasets and classification models used) while the
ensemble-based methods are stable and robust to the 2 factors.

Xu et al. (2016a) empirically studied 32 feature selection
methods from 5 families on 3 datasets (i.e., the original NASA
dataset, the cleaned NASA dataset, and the AEEEM dataset) with
a random forest classifier. They used the same performance
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ndicators and statistic test as in Ghotra et al. (2015). They found
hat these methods have significant performance differences on
ach dataset. Following Xu et al.’s work, Ghotra et al. (2017)
onducted a larger-scale empirical comparison for 30 feature
election methods on 2 datasets (i.e., the clean NASA dataset and
he AEEEM dataset) with 21 classification models. They found
hat the correlation-based filter subset selection method with the
estFirst search strategy performed the best, and the performance
mpacts of these methods vary across the used classification
odels and the datasets. Kondo et al. (2019) performed an em-
irical study to investigate the impact of 8 feature reduction
echniques on the performance of 5 classification models and
clustering models over 3 datasets. The difference between

eature selection and feature reduction methods is that the for-
er one reduces the number of features by choosing a subset
ased on the importance degrees of the features, while the
atter one reduces the number of features by generating new
r combining features through feature transformation methods.
hey found that neural network-based feature reducing methods
i.e., restricted Boltzmann machine and auto-encoder) performed
he best on clustering models, and created features with small
ariants in performance across the classification models and
lustering models.
The above studies explored the application of feature selec-

ion or reduction methods for SDP task, which usually need the
abeled defect data to select the informative feature subset. Dif-
erent from these studies, our work concentrated on the usage of
lustering-based unsupervised models in SDP without involving
n the feature engineering techniques.

.4. Empirical studies on sampling-based imbalanced learning tech-
ologies for SDP

There are different methods to alleviate the class imbalance
ssue for SDP, such as the sampling-based, ensemble-based, and
ost-sensitive-based imbalanced learning methods. The
ampling-based methods add or remove some modules to re-
alance the training set. Ensemble-based methods combine the
ecisions of multiple classifiers to obtain better performance than
he single one. Cost-sensitive-based methods take the misclassi-
ication costs for different classes into consideration by treating
ifferent misclassification differently. That is, the cost for labeling
defective module as non-defective is higher than the cost for

abeling a non-defective module as defective. Many empirical
tudies about the imbalanced SDP issue focus on sampling-based
ethods.
Kamei et al. (2007) examined the impacts of 4 sampling meth-

ds on the SDP performance of 4 classification models over 2
ndustry legacy software systems. They found that these sampling
ethods are only helpful to improve the performance of linear
nd logistic models. Bennin et al. (2016) explored the impacts
f 4 sampling methods on the effort-aware SDP performance of
0 classification models over 10 software projects from PROMISE
ataset. They found that these sampling methods could promote
he performance of all the models when the defect percent-
ge of the data is between 20% and 30%. Bennin et al. (2017b)
nvestigated the impacts of 6 sampling methods on the SDP
erformance of 5 classification models over 10 software projects
rom PROMISE dataset. They found that these methods had statis-
ic and practical significances in terms of false positives, Recall,
-mean, but not in terms of AUC. Bennin et al. (2017a) studied the
mpacts of a configurable parameter (i.e., the defect percentage
f the data) on the SDP performance of 7 sampling methods with
classification models over 10 projects from PROMISE dataset.
hey found that this parameter indeed affects the performance
f these models in terms of the used indicators except for AUC.
18
Tantithamthavorn et al. (2018) assessed the impacts of 4 sam-
pling methods on the performance and interpretation of 7 classi-
fication models with 10 performance indicators over 101 projects
from 5 datasets. They found that the optimized SMOTE method
and under-sampling method could increase the performance of
Recall and AUC, but are not helpful to interpret the models.
Song et al. (2018) systematically evaluated 17 imbalanced learn-
ing methods (including sampling-based, ensemble-based, cost-
sensitive-based and imbalanced ensemble-based methods) with
7 classification models over 27 software projects. They found
that these methods are more effective on the defect data with
moderate or higher imbalance rates, and a particular combination
of the imbalance learning methods and classification models is
important for improving the performance of SDP.

The sampling-based imbalanced learning methods need the la-
bel information to balance the training sets for learning unbiased
supervised classification models. Different from the above stud-
ies, our work assumed that the label information was not avail-
able and studied the unsupervised models that do not consider
the class imbalance processing.

6.5. Literature reviews on SDP studies

Some researches have surveyed a large amount of SDP studies
and designed some criteria to identify the primary ones. They
mainly analyzed these articles to find common patterns and give
some deep insights.

Catal and Diri (2009) reviewed 74 articles about SDP and
found that the usage of publicly available datasets, the method-
level features and machine learning methods are the mainstream
trends. Hall et al. (2011) performed an in-depth analysis of the
quantitative and qualitative results of 36 articles with sufficient
contextual and methodological information selected from 208
articles. Their empirical observations suggested that simple clas-
sification model and the combination of process, product, and
people-based features tended to perform well and the feature
selection methods were beneficial to the SDP performance. Shep-
perd et al. (2014) conducted a meta-analysis on 600 sets of
prediction results published in 42 primary studies. They found
that the choice of classification models had little impacts on the
SDP performance. In contrast, the researcher group was the major
explanatory factor to affect the SDP performance.

Hosseini et al. (2017) conducted a systematic literature re-
view towards Cross Project Defect Prediction (CPDP) articles and
identified 30 primary studies. CPDP utilizes the labeled data of
external projects to build a classifier to predict the labels of the
unlabeled data in the project at hand. They pointed out the most
commonly-used performance indicators, the well-performed
classification models and the widely-used datasets, and suggested
that more attention should be paid on CPDP as it is still a chal-
lenging task. In order to identify which CPDP method performed
the best, Herbold et al. (2018) replicated 24 existing CPDP meth-
ods and evaluated them on 5 datasets. They found that 3 methods
achieved the best performance in most cases and pointed out that
there is still room for improvement before the CPDP methods can
be put into practice. Similarly, Porto et al. (2018) implemented
31 state-of-the-art CPDP methods and compared them on 47
versions of 15 projects from PROMISE dataset. They identified
4 methods that achieved the best performance across datasets
and proposed a meta-learning solution to dynamically choose the
suitable method for a specific project.

Different from the above studies which mainly paid attention
to review the SDP work under the supervised scenarios, i.e., the
defect prediction task within the project or across projects, in
this work, we conducted literature reviews only for the defect
prediction studies under the unsupervised scenario.
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. Conclusions

We conducted a large-scale comparison to analyze SDP per-
ormance differences among 40 clustering-based unsupervised
odels and 6 typical supervised models. We made the first step

owards investigating the impacts of the feature types of defect
ata on the performance of these methods. Our experimental
esults on 81 defect data indicate that not all clustering-based
nsupervised models are worse than the supervised models, and
he performance of the methods in the IVSBC family is particu-
arly outstanding overall. Moreover, we observed that the feature
ypes can indeed affect the performance of the studied methods
n different indicators.
As of our future work, we plan to explore the impacts of fea-

ure selection on the SDP performance of these clustering-based
odels, since previous studies have empirically demonstrated

hat different feature selection methods can significantly affect
he SDP performance of supervised models (Xu et al., 2016a;
hotra et al., 2017). In addition, as previous studies stated that
he class imbalance issue of the defect data has negative impacts
n the SDP performance of supervised models (Tantithamthavorn
t al., 2018; Song et al., 2018), we will also explore how to con-
ider this issue in the clustering-based models to further improve
heir performance.

We provide the benchmark dataset, the experimental scripts,
nd experimental results at https://github.com/sailer2020/CUDP.
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