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ABSTRACT
The rapid development of Android apps primarily benefits from

third-party libraries that provide well-encapsulated functionalities.

On the other hand, more andmoremalicious libraries are discovered

in the wild, which brings new security challenges. Despite some

previous studies focusing on the malicious libraries, however, most

of them only study specific types of libraries or individual cases.

The security community still lacks a comprehensive understanding

of potentially malicious libraries (PMLs) in the wild.

In this paper, we systematically study the PMLs based on a

large-scale APK dataset (over 500K samples), including extraction,

identification, and comprehensive analysis. On the high-level, we

conducted a two-stage study. In the first stage, to collect enough

analyzing samples, we designed an automatic tool to extract

libraries and identify PMLs. In the second stage, we conducted

a comprehensive study of the obtained PMLs. Notably, we analyzed

four representative aspects of PMLs: library repackaging, exposed

behaviors, permissions, and developer connections. Several inter-

esting facts were discovered. We believe our study will provide new

knowledge of malicious libraries and help design targets defense

solutions to mitigate the corresponding security risks.

CCS CONCEPTS
• Security and privacy → Software and application security.
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1 INTRODUCTION
According to the recent statistics [38], as of Feb 2020, the market

share of Android has reached 73.3%. The rapid development of

Android apps primarily benefited from third-party libraries that

provide well-encapsulated functionalities, such as social network

services, map services, and advertisement services. However, the

convenience of third-party libraries does not come without risk.

Recently, the analysis of potentially malicious libraries (PMLs for
short) has attracted lots of attention, and some recent works have

made the first attempts. Here we summarize some typical ones:

• Wu et al. [40] found that advertisements or analytics SDKs

could introduce open ports without developers’ awareness.

• Li et al. [33] considered that some mutations of third-party

libraries potentially indicate malicious behaviors.

• Chen et al. [17] found that some popular libraries may be

repackaged with malicious payloads by the adversary.

• Pan et al. [37] found that a time bomb within the library

com.baidu.kirin shared by 9,710 apps.

Previous related works provide solid ground for understanding

the security implications of third-party libraries. However, most

of them focused on the advertising libraries or just individual

case studies, lacking a comprehensive study on the behaviors and

features of PMLs. Several research questions are still unanswered.

For instance, howmany PMLs are repackaged from benign libraries?

Who developed these PMLs? On the other hand, malicious libraries

could bring severe security risks to both mobile users and app

developers. Without an in-depth understanding, the targeted

defense solutions cannot be designed and deployed effectively.

Ourwork. To fill this research gap, in this paper, we carried out the
first empirical study on PMLs based on a large-scale APK dataset,

including extraction, identification, and comprehensive analysis.

On the high-level, we conducted a two-stage study.

The first stage is to extract and identify enough PMLs as

analyzing samples. We designed an automated tool to achieve this

target, called LibExtractor. Its design idea is based on extracting

and clustering library candidates from large-scale apps. LibEx-

tractor improves the efficiency issue and extends additional PML

identification modules. It combines the report from VirusTotal [11]

and results of behavior matching to identify PMLs. We also define

a list of potentially harmful behaviors as the criterion for behavior

matching. As a result, LibExtractor can efficiently extract libraries

without previous knowledge from large-scale apps and identify

PMLs.
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The second stage is to conduct a comprehensive analysis of the

PMLs (and the apps containing PMLs) obtained from the previous

stage. In particular, we focused on the following four aspects:

1) Library Repackaging. If a PML is created by modifying a

benign library, its impact may be very severe, especially when the

victim library belongs to a popular SDK. To identify the repackaged

libraries, we designed a light-weight classification approach.

2) Exposed Potentially Harmful Behaviors. In Android, the exposed
components (Activities, Services, etc.) can be accessed by other

apps without permission. To PMLs, exposed behaviors also could

be exploited to conduct confused deputy attacks [22]. We measured

the amounts of exposed potentially harmful behaviors in PMLs.

3) Permissions. As the fundamental protection mechanism of

Android, permissions provide the capabilities of accessing sensitive

system resources for PMLs. We measured the frequently used

sensitive permissions of PMLs.

4) Developer Connections With Apps. The sources and authors of

PMLs are important clues for identifying malware families. Based

on app certificates, we analyzed the developer connections between

PMLs and the corresponding apps.

In practice, our experiments and analysis are based on a large-

scale APK dataset containing over 500K apps (217,027 apps and

316,437 malware samples). Several interesting facts are discovered.

For example, tracking users (through device ID) is themost common

behavior of PMLs. Also, a popular benign library may be used to

generate multiple repackaged PMLs.

Contributions. This paper has the following contributions:

• Systematic Study. We systematically studied the behaviors

and features of PMLs, including library repackaging, exposed

behaviors, permissions, and developer connections.

• New Tool. We designed an automatic analysis tool, LibEx-

tractor, for PML extraction and identification. It can extract

PMLs without previous knowledge.

• Large-scale Investigation.We carried out large-scale experi-

ments on over 500K APK files. 4,957 PMLs were discovered

and used for the subsequent analysis.

Roadmap.The rest of this paper is organized in the following order:
In Section 2, we give the methodology and necessary knowledge

of our work. Section 3 describes the design of LibExtractor,

including library extraction and PML identification. In Section 4, we

demonstrate the results of PML identification and tool evaluation.

Section 5 analyzes four aspects of PMLs in-depth. Section 6

discusses some limitations of this paper, and Section 7 reviews

previous works. Section 8 concludes this paper.

2 BACKGROUND AND METHODOLOGY
In this section, we illustrate the motivation and methodology for

analyzing third-party potentially malicious libraries. Besides, the

necessary background will be provided.

2.1 Running Example
In our preliminary study, we discovered a library named com.wonde-
rtek, which can be extracted from more than 50 apps. Also, all of

these apps are developed by the same developer –Migu, a subsidiary

company of China Mobile (the largest mobile network operator

Under the package of com/kuguo /b

/ad

h.smali
.method public a(Lcom/buguo/b/d;Z)V dependency

d.smali

Figure 1: Example of method dependency.

in China). This library has plenty of suspicious behaviors such as

obtaining the contact information and monitoring the calling status

of the phone. It also can download unwanted APKs, and even further

install them in the background (by executing shell command), which

may waste the user’s data traffic and cause additional costs. Also,

we uploaded 5 of these APKs to VirusTotal [11], an online malware

detection platform, and the result shows that, on average, 29 anti-

virus engines reported these APK files contain a Trojan named

wondertek. Since China Mobile is a well recognized large company,

it is quite unusual to find such a malicious library in its apps. This

case motivates us to explore the malicious third-party libraries in

the wild.We find several aspects of malicious libraries have not been

well studied, such as their behaviors, developers, and other security

implications. The research gap needs to be filled immediately.

2.2 Methodology
Third-party libraries are widely used in Android app developments

to accelerate the development period. On the other hand, more

and more malicious libraries are discovered in the wild. These

malicious libraries cannot be fully understood without a systematic

study. In our study, we try to investigate several aspects of

malicious libraries, such as behaviors, repackaging issues, exposed

components, permissions, and developer connections.

To provide first-hand knowledge, as the first step, we need to

extract and identify potentially malicious libraries (PMLs) based on

a large-scale APK dataset. After that, we will analyze these PMLs

in-depth to answer valuable research questions.

2.3 PML Extraction and Identification
To capture PMLs from malware samples in the wild, we need to

design a tool to achieve automatic PML extraction and identification.

It means this tool can extract libraries from large-scale apps directly

without previous knowledge and identify PMLs efficiently.

After reviewing the previous research, we did not consider

the tools based on a pre-defined database because they cannot

identify unknown libraries (not existing in their database), such

as LibScout [15], LibRadar [34], and LibPecker [42]. We noticed a

library extraction tool named LibD [33], which could meet some

of our requirements. However, it also has some limitations, which

significantly affect the analysis efficiency, as the below explains:

• Speed. LibD generates feature values of libraries by hashing

the opcodes within basic blocks after control flow graph

construction. However, the process of the CFG construction

and subsequent calculation is very time-consuming.

• Completeness. LibD uses file inclusion, class inheritance,

and call graph to construct library candidates. However,

these relations are not enough and may cause a lack of some

components in the library candidates. For example, Figure 1
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PMLsCandidates Construction Feature GenerationDependency Extraction Candidates Clustering PML Identification
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Field 1 ... Field6

PackagePackage ...
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(Iteration)
feature1 feature6...

Candidate Groups

Real Libraries PHB Matching

Online Scanning

Figure 2: Overview of LibExtractor.

shows the parameter dependency of a method, while LibD

omits this dependency during the candidate construction.

Our Tool: LibExtractor. To solve the efficiency issue and meet

our requirements for large-scale app scanning, we design LibEx-

tractor. It can quickly extract libraries from large-scale apps

and perform PML identification. It uses all possible dependencies

between classes so that the completeness of library candidates

can be guaranteed. We also design a special algorithm to generate

the feature value which greatly improves the speed. Also, it can

handle the package name obfuscation which is widely deployed

by malware apps. Besides, since our PML analysis is based on

potentially harmful behaviors (defined later), we combine the result

of the scanning report from VirusTotal [11] and behavior matching

to identify PMLs. The detailed design will be illustrated in Section 3.

Potentially Harmful Behaviors. Here we list several types of

potentially harmful behaviors that may exist in PMLs. This behavior

list is based on the behaviors of com.wondertek library and the

detection rules of some malicious code detection tools [4, 5]. Also,

we referred to the behavior list used by Gamba et al. [23] while

they were analyzing the behaviors of pre-installed apps. We define

8 types (with 23 sub-types) of potentially harmful behaviors: (each

sub-type contains several APIs)

(1) Telephony: SMS sending, SMS interception, and calling.

(2) Location: accessing GPS, LAC (location area code), CID (cell

identity), and cell location.

(3) Phone Identifier : reading SIM and phone information.

(4) Network & Connection: accessing network connection and

reading network configuration information.

(5) Code Execution: library loading and Linux command execu-

tion.

(6) Media Interception: accessing audio and video.

(7) Personal Information: reading SMS, MMS, contact, clipboard,

calendar, Email, voicemail, and phone number.

(8) App Installation: accessing package information.

2.4 PML Analysis
In the analysis phase, we studied four aspects of PMLs: library

repackaging, exposed potentially harmful behaviors, permissions,

and developer connections with apps.

2.4.1 Library Repackaging. If a PML is created by modifying a

benign library without potentially harmful behaviors, we treat

this library as a repackaged library. The malicious payload may be

introduced by developers (unguarded library updating operations)

or attackers (intentional attacks). In our investigation, we try to

answer “how many PMLs are repackaged from benign libraries”.

2.4.2 Exposed Potentially Harmful Behaviors. In the manifest file of

an Android app, a component could be set as “android:exported=-
true” to make it exposed. These exposed components could be

accessed or invoked by any other apps. In this paper, we define

exposed potentially malicious behaviors as the behaviors that can be

accessed by the exposed components through the call paths on the

call graph within each library. This operation allows the adversaries

to inject payload containing those behaviors into the PMLs, and

then access the payload through the exposed components. In

our investigation, we try to answer “does there exist any exposed
potentially malicious behaviors in PMLs”.

2.4.3 Permissions. Android uses the permission mechanism to

restrict apps to access system resources. In Android 6.0 and later

versions, when an app needs sensitive permissions, it should

not only declare them in its manifest file but also request the

permissions while running [6]. Some malicious libraries may

pretend that the app needs certain functions and asks users to grant

sensitive permissions for them. The permission used by the PMLs,

and their corresponding apps, which is highly related to potentially

harmful behaviors, are still worthy of study. In our investigation,

we try to answer “which permissions are frequently used in PMLs”.

2.4.4 Developer Connections With Apps. Though it is difficult

to obtain the developer’s information from the libraries directly,

there might be some connections between the developers of the

libraries and their corresponding apps. Therefore, we focused on

the connections based on the bipartite graph between PMLs and

the signatures of their corresponding apps. In our investigation, we

try to answer “what about the connections between the PMLs and
their authors”.

3 SYSTEM DESIGN
The purpose of this paper is to carry out a comprehensive study on

the potentially malicious libraries in the wild. To capture massive

PML samples, in this section, we present the detailed design of our

PML extraction and identification tool – LibExtractor. Our PML

analysis is based on the results of LibExtractor. On the high-level,

LibExtractor contains five steps (as illustrated in Figure 2):

(1) Dependency Extraction: Disassemble the input APK file

and extract six kinds of dependencies and the file structure

from the Smali code.

(2) Candidate Construction: Build an inclusion-dependency

graph based on the dependencies between classes and re-

move redundant packages. Then construct library candidates

by dividing the connected components in the graph.
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(3) Feature Value Generation: Generate a unique feature

value for each library candidate, which is based on a

particular algorithm using the dependency field in each class

contained by this candidate.

(4) Candidate Clustering: Identify real libraries from candi-

dates using the clustering-based method, which is suitable

for large-scale analysis.

(5) PML Identification: Compare the results of VirusTotal

scanning and potentially harmful behavior matching to

identify PMLs.

3.1 Dependency Extraction
In this step, we disassemble the input APK to get all its class

dependencies and package structures over the Smali codes using

baksmali [8]. The package structure is a file tree, of which leaf

nodes are class files, and the other nodes are packages.

We extract six kinds of dependencies in each class file. Here we

define, if Class B exists in one of the 6 fields listed below in Class

A, then we regard Class B as a dependency of Class A:

• superclass. Class A inherited from Class B.

• interface. Class A implements Interface B.
• staticField. Class B (as a variable type) exists in the static field

of Class A.
• instanceField. Class B (as a variable type) exists in the instance
field of Class A.

• directMethod. Class B (as a variable type) exists in the

parameters or return values of static, private, and constructor

methods of Class A.
• virtualMethod. Class B (as a variable type) exists in the the

parameters or return values of virtual methods of Class A.

3.2 Candidate Construction
In this step, we construct library candidates by dividing connected

components in an inclusion-dependency graph, with auxiliary

information extracted from the manifest file of the input APK.

Inclusion-Dependency Graph. We construct an inclusion-depe-

ndency graph based on the six kinds of dependencies and package

structure of the app. The nodes in this graph are the packages in the

package structure obtained in Section 3.2. Also, it is an undirected

graph, and we define the edges as follows: if any dependency exists

between the file A𝑓 contained in the package A𝑝 and the file B𝑓
contained in the package B𝑝 , we define that there is an edge between

node A𝑝 and node B𝑝 .
Eliminate Redundant Packages. Android official libraries (e.g.

android.support.v4, etc.) and packages containing apps’ own

codes and their dependencies will cause multiple libraries connect-

ing to each other in the inclusion-dependency graph. Moreover,

they will be grouped into one component (library candidate) while

dividing connected components, which will affect the accuracy of

our tool’s result. Besides, some packages in the app may not contain

any files (may contain sub-packages), such as some root packages

or middle-level packages. We define these packages as redundant
packages, and they will be eliminated from the graph. Note that we

identify an app’s own packages based on the package names of this

app shown in its manifest file.

Candidate Construction. To construct library candidates, we

divide weakly connected components on the Inclusion-Dependency

Graph, and we define each component as a library candidate. Each

component contains one or several packages that are connected by

the edges defined above. Since there is no dependency between two

different components, each component has standalone functionality,

which is consistent with the characteristics of a library.

3.3 Feature Value Generation
In this step, LibExtractor generates the feature value of each

library candidate for the clustering step in Section 3.4. The candidate

feature value is calculated by the feature values of its packages,

which can be further divided into class feature values, as shown

in the third step in Figure 2. Because the dependencies between

classes are complex but easy to obtain, we can quickly obtain unique

feature value for each class based on its dependencies.

Class Feature Value. To ensure that each class has a unique fea-

ture value and still maintain resilience to package name obfuscation,

we design an algorithm to generate the feature values (in the form

of hash values), which contains four rounds of calculation. In each

round, we will calculate a feature value for every class file in a

candidate:

(1) First Round. In each class of a candidate, we obtain a special
relative path from this class to each of its dependency classes.

For example, if x/y/z is a dependency of x/x/x in the

corresponding dependency field, then we will get a relative

path ../../A/A.We use the letter A to replace all the package
names and file names in this relative path so that the package

name obfuscation will not affect the feature value. In each of

the six dependency field (Section 3.1), we sort these relative

paths by the order of their length, and the sorted relative

paths are concatenated into a single space-separated string.

If some classes do not exist in the entire file structure, such

as java.lang.String, etc., we will use their class names

directly instead of relative paths. Then, we concatenate the

strings of the six dependency fields into one string and hash

it to generate the feature value of each class in the first round.

(2) Next Three Rounds. In each of the next three rounds,

for each dependency field in a class, we concatenate the

dependency classes’ corresponding feature values (generated

in the previous round) into a single string (in the same

order as the first round). We directly use the name of those

dependency classes that do not exist in the file structure.

Then we concatenate the strings of these six fields into a

single string and hashed this string to generate the new

feature value of this class. For each class, the feature value

calculated in the last round will be its final feature value,
which will be used to calculate the feature values of packages

and the candidate.

A simple example of the first and second round calculation is

shown in Figure 3. This example shows that even if Class a1 and a2
share the same feature value in the first round, their second-round

feature values can be different. As a result, each class can get a

unique feature value. Since dependencies between classes are easy

to obtain and there are no complex operations such as handling
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Class a1
../A/A

Hash0 a2

Hash0 a1=

...

...

Hash0 b2

Hash0 b1

First Round Second Round

Hash1 a2

Hash1 a1

...

...

Hash1 b2

Hash1 b1

¹ ¹ ¹

Dependency FeatureHash0

Class b1
../A

Class a1
Hash0 b1

Class b1
...

Class a2
../A/A

Class b2
../A/A/A

Class a2
Hash0 b2

Class b2
...

Figure 3: An example of the first two rounds’ calculation.

basic blocks, so LibExtractor can quickly generate a feature value

for each class.

Package and Candidate Feature Value. To each package in a

candidate, we sort the final feature values of all the classes contained

by this package in non-decreasing order (numerical order) and

concatenate them into a single string.We then hash this string to get

the package feature value. And similarly, we sort and concatenate

feature values of packages into a single string and hash this string

to generate the feature value of this candidate.

3.4 Candidate Clustering
In this step, LibExtractor clusters the candidates using the same

way as LibD [33]. The candidates sharing the same feature value

are put into the same group. Further, if the number of candidates

in one group is equal to or greater than a pre-defined threshold,

we consider that this group indicates a real third-party library. The

selection of the threshold will be described in detail in Section 4.2.

Obfuscation. Since we use relative paths instead of the class names

while generating the feature value for each candidate in Section 3.3,

LibExtractor is resilient to package name obfuscation. It can

recover the original package names of some of the obfuscated

libraries by selecting the most appropriate candidate from each

group, for example:

0001 aad2 ... ee9b687cebe945 - com/catstudio/plugin
0001 aad2 ... ee9b687cebe945 - com/e/a
0001 aad2 ... ee9b687cebe945 - com/catstudio/c

In this example, we select the candidate that has the longest

package name in a group to represent the original name, say

com/catstudio/plugins is recovered. In practice, LibExtractor

can recover the obfuscated package names, if a group of candidates

meets the following three conditions: (1) All candidates in this

group have the same amount of packages. (2) All candidates in this

group are not entirely obfuscated (e.g., a/b/c). (3) The package

names of all candidates share the same prefix. Other obfuscation

situations will be discussed in Section 6.2.

3.5 PML Identification
LibExtractor extracts libraries from large-scale malicious apps

and then identifies potentially malicious libraries from them. We

use a simple method to deal with this problem. It includes 2 parts:

(1) Upload libraries to a malware detection platform for online

scanning to obtain PMLs.

(2) Perform a behavior matching based on a predefined list to

get PMLs using potentially harmful behaviors.

Table 1: Markets of dataset

Markets # of APKS Markets # of APKs

Apps from Third-party Markets

Anzhi 54,761 NDuo 19,532

Mumayi 22,085 Angeeks 25,675

Wandoujia 61,197 UnKnown 33,777

Total 217,027

Malware Samples

Androzoo 316,437

3.5.1 Online Scanning. We upload all the libraries to VirusTo-

tal [11], a platform formalware detection using dozens of Anti-Virus

engines. We follow the method used by Chen et al. [18], that is, for

each library, if two or more engines report it as a malware, then we

record this library as a PML.

3.5.2 Behavior Matching. Given the potentially harmful behavior

list described in Section 2, to each PML, we match the API of

potentially harmful behaviors in each class file and record the

amount and locations of these behaviors. Then we collect all the

PMLs that contain these behaviors. The reason for performing

this step is that we only care about those PMLs having potentially

harmful behaviors, thus we can further perform the analysis based

on these behaviors in Section 5.

4 LIBRARIES EXTRACTION AND PML
IDENTIFICATION

We implemented a prototype of LibExtractor with 8,598 lines

of Java code and 196 lines of Python code. To demonstrate the

effectiveness of LibExtractor, we also carried out large-scale

experiments on real-world data. In this section, we present tool

evaluation and the results of potentially malicious libraries. The

subsequent analysis will be based on the results of this section.

4.1 Dataset
We collected a large number of malware samples (malicious apps)

with the support of Androzoo Project [2], a collection of Android

apps (APKs) built by the University of Luxembourg. Every app in

Androzoo has been detected by several anti-virus software to label

it as benign or malicious.

On the other hand, to evaluate the performance of LibExtractor

and make a comparison between PMLs and benign libraries, we

also crawled many apps from several third-party app markets, such

as Anzhi, Mumayi, and Wandoujia. Note that these apps are not

always benign due to the lenient security criterion of markets.

If we only adopt benign apps without malicious payload (and

malicious libraries), it will be difficult to carry out our subsequent

PML analysis. Since the libraries extracted from these apps are not

always benign, we call them Possibly Benign Libraries (PBLs for
short).

Finally, we obtained 217,027 apps and 316,437 malware samples

as our dataset, as listed in Table 1.
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Table 2: Unreported Libraries (in the whitelist).

Threshold 30 20 11 10 9 1

Unreported 9 7 3 2 2 2

4.2 System Parameter Setup
As mentioned in Section 3.4, we need to set a threshold when

clustering candidates. Through comparing with the whitelist

provided by Chen et al. [17], we evaluate the LibExtractor

with different thresholds to determine the most suitable one. This

whitelist contains 72 commonly used third-party libraries. For each

threshold, we compared the groups of candidates and the libraries

listed in the whitelist and gave an unreported number (appears in

the whitelist but is not found in the result).

Considering that malicious apps may rarely use the libraries

in the whitelist, we use the apps from third-party markets to

determine the threshold. Generally, the higher the threshold is,

the fewer libraries can be found. The whitelist comparison results

are listed in Table 2. It shows that when the threshold decreases to

10, the unreported amount will drop to 2 and not decrease any more.

Therefore, we chose 10 as the threshold and obtained 19,938 PBLs

(from 217,027 apps) as contrast data for the subsequent experiments

in Section 4.4 and 5.1.

4.3 Evaluation
We evaluated the performance and accuracy of the part of library

extraction (i.e., Step 1-4 described in Section 3).

Processing Time. Based on the hardware configuration of Xeon

E5-2630 2.30 GHz, 128 GB RAM, we applied LibExtractor and

LibD to process 217,027 APKs. On average, LibExtractor takes

1.059 seconds to process each APK, while LibD takes 67.429 seconds.

Accuracy. Since there is no well-established ground truth of third-

party libraries, we follow the method used by LibD [33] and use

randomly selected subset to verify the accuracy of the library

extraction step of LibExtractor. In detail, we randomly selected

1000 APKs from our dataset as a test subset. After that, we applied

LibExtractor and LibD to extract libraries from these 1000 APKs

separately and collect those libraries used by at least 10 APKs in

this subset. Then we manually analyzed the extraction results to

evaluate the accuracy. The result shows that LibExtractor output

55 libraries in total, with 54 correct libraries, while LibD output 54

libraries with only 48 correct libraries.

Obfuscation. In the 19,938 PBLs obtained in Section 4.2, we

found 4,547 libraries with obfuscated package names. It means that

LibExtractor is resilient to package name obfuscation. Further,

LibExtractor recovered the package names of 1,123 libraries.

In summary, LibExtractor can effectively extract third-party

libraries from large-scale APK dataset with good accuracy.

4.4 Potentially Malicious Library Identification
LibExtractor extracted 17,725 libraries from 316,437malware sam-

ples, and further performed PML identification on these libraries.

4.4.1 VirusTotal Scanning. We packed each library to a DEX file

and uploaded this file to VirusTotal [11], a platform for malware
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Figure 4: Libs containing potentially harmful behaviors.

detection using dozens of anti-virus engines. Here we follow the

method used by Chen et al. [18] while identifying PMLs, that is, if

two or more engines reported the uploaded DEX file is malware,

we will record this library in the result. In total, we recorded 5,492

libraries from VirusTotal’s report.

4.4.2 Potentially Harmful Behaviors Matching. To the 5,492 librari-

es reported by VirusTotal, we performed behavior matching

described in Section 3.5.2 and obtained 4,957 PMLs that contain

potentially harmful behaviors.

After these two steps, 4,957 libraries were labeled as PMLs for

subsequent analysis. Also, we recorded 207,137 malware samples

that used at least one library from these 4,957 PMLs.

4.5 Potentially Harmful Behavior Comparison
To compare the difference of potentially harmful behaviors between

PMLs and PBLs, we also performed behavior matching on the 19,938

PBLs obtained in Section 4.2. In Figure 4, we compare the number

of potentially harmful behaviors in PMLs and PBLs. It shows the

percentage of PMLs/PBLs containing a specific behavior. We can

find, in most categories, the proportions of PMLs are significantly

higher than the ones of PBLs, especially the sub-types of Phone
Information, Network Config, Package, etc.

This figure also indicates that some potentially malicious behav-

iors are frequently used by PMLs, say more than 80%. For instance,

the behaviors related to Package (82,87% vs. 31.81%) may be used

to check whether a particular app has already been installed. In

particular, malicious advertising libraries usually induce the user

to click on the download links to obtain advertising revenue. The

considerable difference in Network Config (84.71% vs. 29.36%) is

also strong support for this point. In addition, the behaviors related

to Phone Information (85.01% vs. 24.18%) are frequently used to

identify victim users and track devices.

To summarize, the typical behaviors of PMLs include:

(1) Read the unique device ID to identify users.

(2) Access network for downloading files or transmitting data.

(3) Access device locations for locating users.

(4) Get the app installation list to check whether a particular

app has been installed.

(5) Execute Linux shell commands.
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5 ANALYSIS OF POTENTIALLY MALICIOUS
LIBRARIES

In this section, we studied several aspects of PMLs and try to answer

the following research questions.

• How many PMLs are repackaged from benign libraries?
• Does there exist any exposed potentially harmful behavior in
PMLs?

• Which permissions are frequently used in PMLs?
• What about the connections between the PMLs and their
authors?

The analyzed dataset is based on the 4,957 PMLs and their

corresponding 207,137 malware samples obtained in the stage

of PML identification (Section 4.4).

5.1 Library Repackaging
If a PML is created by modifying a benign library, its impact may be

severe, especially when the victim library belongs to a popular SDK.

Malicious payloads can be injected into massive apps with these

libraries. Similar attacks ever occurred on the iOS platform [1].

Identify Repackaged Libraries. To identify those repackaged

libraries in our PML set, we applied a lightweight method based

on clustering the package names and feature values. In detail, we

clustered the PMLs and PBLs sharing the same package list into a

group and eliminated the libraries with duplicate feature values. At

the same time, we also eliminated the obfuscated libraries which

can not be recovered by LibExtractor. All libraries in the same

group will be considered as mutations of the same library. After

that, in each group, we counted the number of potentially harmful

behaviors of each library. Once a PBL without such behaviors

was found in a group, all PMLs in this group were considered

as repackaged libraries of this PBL.
Results. Finally, we discovered 162 groups containing 2,257 li-

braries in total. Following our method, we further identified 218

repackaged libraries in 35 groups.

Impact. To measure the impact of these repackaged libraries, we

also recorded the number of corresponding malware apps using

these repackaged libraries in our dataset. For each repackaged

library, we multiplied the number of its potentially harmful

behaviors by the number of associated malware apps, and then

used the product to evaluate the impact of this repackaged library.

The top ten repackaged libraries with the most significant impact

are listed in Table 3. In particular, up to 7 PMLs repackaged

net.youmi.android and shared the same name. The repackaged

PML ranked No. 2 (com.mobclick.android) affected the most apps

(3,637).

Our assessment:
• At least 4.4% of PMLs are repackaged libraries.

• A popular benign librarymay be used to generate multiple

repackaged PMLs.

Table 3: Top 10 repackaged libs with the largest impact.

No. Origin Lib Name Behaviors APKs Impact

1 net.youmi.android 47 1,947 91,509

2 com.mobclick.android 9 3,637 32,733

3 net.youmi.android 44 715 31,460

4 net.youmi.android 42 254 10,668

5 net.youmi.android 29 357 10,353

6 net.youmi.android 26 252 6,552

7 net.youmi.android 46 141 6,486

8 net.youmi.android 21 304 6,384

9 com.iapppay.pay 48 124 5,952

10 com.mobclick.android 9 593 5,337

5.2 Exposed Potentially Harmful Behaviors
In this sub-section, we identified exposed components in our PMLs

and their corresponding apps. Further, we also identified exposed

potentially malicious behaviors based on the call graph.

5.2.1 Exposed Components. To our PML analysis, exposed com-
ponents are defined as the components (of a library) which could

be accessed or invoked by other apps. It means these components

declared one of the following parameters in the app’s manifest file:

(1) android:exported=true;
(2) intent-filter;

In practice, we extracted the manifest files from the 207,137

malware apps containing PMLs and collected all the exposed

components. Then we matched them with those components

belonging to PMLs to obtain the exposed components of PMLs.

Results. After scanning, we discovered 101 PMLs containing 133

exposed components in total. Note that, since LibExtractor is

resilient to package name obfuscation, some of the obfuscated

package names were recovered to their original names. On the other

hand, this operation brought some obstacles to the components

matching between the apps and libraries. Therefore, it reduced the

discovered number of libraries containing exposed components to

some extent.

Particularly, com.admogo.UpdateService is an exposed compo-

nent found in 23 PMLs, which were used by 761 apps. The package

names of these 23 libraries are quite similar and may be the muta-

tions of com.admog library. A method of this component is down-
loadUpdateFile(String downloadUrl, File saveFile)which
can download files from a given URL. Since this component is

exposed, this method may be called by other apps and download

unknown files on the user’s phone, which may pose a risk to users.

5.2.2 Exposed Harmful Behaviors. Our further analysis focused on
the potentially harmful behaviors that could be accessed by the

exposed components through the call paths. We identified those

exposed behaviors through static taint analysis.

In the practical analysis, we built a call graph for each PML. Each

node in the call graph is a method within the library. The edges

of this call graph are the function calls between those methods.

Also, we defined sinks as the methods containing potentially

harmful behaviors, and the sources are the methods within exposed

components. If the source could reach the sink, it means the

corresponding potentially harmful behaviors in this sink are

exposed.
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Figure 5: Exposed potentially harmful behaviors.

Note that, in Section 3.5.2, the locations of identified potentially

harmful behaviors have been recorded. Thus, the sinks have been

obtained. To obtain the call paths, we performed the backtracking

algorithm from each sink to visit the nodes in the call graph. When

a node(method) of an exposed component is visited, it will be

regarded as a source, and we output those nodes in the reverse

direction of the visit order as a call path (from the source to the

sink). Each time when the algorithm could not find an unvisited

node, it would terminate.

Results. Among the 101 PMLs containing exposed components,

40 PMLs contains 156 exposed potentially harmful behaviors, as

shown in Figure 5. These 40 libraries were used by 21,756 malware

apps, which accounts for 6.9% of all malware samples in our dataset.

Specifically, 45 sources can reach 119 sinks through 286 call paths.

Each sink contains multiple potentially harmful behaviors. 25

sources contain potentially malicious behaviors themselves, which

means these behaviors may be directly accessed from other apps.

In Figure 5, to the exposed potentially harmful behaviors, most

of them belong to the sub-categories of Network Config, Phone
Information, and Package. Since these behaviors are the typical

characteristics of PMLs, they may be exploited by other PMLs,

which may lead to confused deputy attacks [22].

Besides, Hu et al. [25] mentioned that adversaries could inject

a BroadcastReceiver into apps that can run malicious code

while a specific event occurs. We also found such a case. An

exposed component called com.kuguo.ad.MainReceiver exists

in 11 mutations of the com.kuguo library. It can monitor apps’

installation, screen lock, and network connection status changes,

etc.

Our assessment:
• Exposed components are not common in PMLs. In total,

156 exposed potentially harmful behaviors are identified

in 4,957 PMLs.

• About 6.9% ofmalware samples can be affected by exposed

potentially harmful behaviors.

5.3 Permissions
In this sub-section, we investigated the permissions requested by

the 4,957 PMLs and the corresponding 207,137 malware samples.

5.3.1 Declared Permissions. As the first step, we extracted the sensi-
tive permissions used bymalware apps. Thus, we defined a sensitive

Table 4: Sensitive Permissions Used By PMLs.

Group Permission Num Rate

CONTACTS
WRITE_CONTACTS 16 0.71%

GET_ACCOUNTS 186 8.20%

READ_CONTACTS 126 5.56%

PHONE

READ_CALL_LOG 8 0.35%

READ_PHONE_STATE 1,719 75.83%

CALL_PHONE 376 16.59%

WRITE_CALL_LOG 1 0.04%

USE_SIP 0 0.00%

PROCESS_OUTGOING_CALLS 2 0.09%

ADD_VOICEMAIL 0 0.00%

CALENDAR
READ_CALENDAR 111 4.90%

WRITE_CALENDAR 113 4.98%

CAMERA CAMERA 60 2.65%

SENSORS BODY_SENSORS 0 0.00%

LOCATION
ACCESS_FINE_LOCATION 1,705 75.21%

ACCESS_COARSE_LOCATION 1,655 73.00%

STORAGE
READ_EXTERNAL_STORAGE 19 0.84%

WRITE_EXTERNAL_STORAGE 1,395 61.54%

MICROPHONE RECORD_AUDIO 73 3.22%

SMS

READ_SMS 53 2.34%

RECEIVE_WAP_PUSH 1 0.04%

RECEIVE_MMS 1 0.04%

RECEIVE_SMS 24 1.06%

SEND_SMS 144 6.35%

READ_CELL_BROADCASTS 0 0.00%

permission list, which is based on the dangerous permissions and

groups given by the Android developer document [19], as shown

in Table 4 (the first two columns). Then, we used Androguard [7]

to get the permissions declared by each malware app. Note that,

in Android 6.0 or later versions, permissions not only need to be

registered in the manifest files but also need to be dynamically

requested while the app is running [6].

Results. We successfully obtained the permissions of 206,722

malware samples and failed in 415 samples due to the code packing

protection. On the aspect of usage percentage, four permissions are

used by over 60% samples. Specifically, READ_PHONE_STATE (96.97%)
and WRITE_EXTERNAL_STORAGE (94.72%) are the most common

permissions. The former one is usually used to obtain device

identity information (e.g., IMEI) for tracking the mobile user. The

latter one is used to store data on the disk. In addition, location

information related permissions are also popular, say 61.1% for

ACCESS_FINE_LOCATION and 69.4% for ACCESS_COARSE_LOCATION.

5.3.2 Permissions Used by PMLs. Further, we studied the sensitive

permissions used by PMLs. Based on the API-permission mapping

list of PScout [14], we obtained the used permissions through

searching sensitive API invocations.

Results. In total, 2,267 PMLs used sensitive permissions. The

categories and quantities of permissions are listed in Table 4.

According to the statistics, READ_PHONE_STATE is the most fre-

quently used permission, say 75.83% (1,719/2,267). Recall that in

the malware samples, the percentage is 96.97%. Similarly, two
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locations related permissions – ACCESS_FINE_LOCATION and AC-
CESS_COARSE_LOCATION are also popular (75.21% and 73% respec-

tively).

Our assessment:
• The permissions used by PMLs could correlate to the

potentially harmful behaviors contained by PMLs.

• Almost every app corresponding to PMLs has

declared the permission READ_PHONE_STATE and

WRITE_EXTERNAL_STORAGE.

5.4 Developer Connections with Apps
In this sub-section, we analyzed the developer connections between

PMLs and their corresponding apps. Since it is quite challenging

to identify the developers of PMLs directly, we explored the

connections based on the app certificates, which are signed by the

developers’ private keys. Following this approach, we first collected

the certificates of all malware apps associated with those PMLs.

Then we built a bipartite graph between the PMLs and certificates

signatures to explore the hidden connections.

5.4.1 App Certificates. First, we extracted the app certificates

from the malware samples containing PMLs. To each APK file, we

uncompressed it and extracted the file with the suffix .DSA or .RSA
under the original/META-INF folder. This file is the certificate

that contains the signature information. Then we used Keytool [9]

to parse these certificates and obtained the signatures.

In general, if an app is signed by a CA (certificate authority), we

can find the developer information from its app certificate. In the

certificate, the owner field refers to the developer’s information,

and the issuer field refers to the CA that signed this certificate.

However, most app certificates are self-signed for convenience,

and the contained information may not always be real. Despite all

this, based on a large-scale of certificates, we still can obtain some

valuable information from their signatures. The limitation will be

discussed in Section 6.4.

Results. We collected 207,102 certificates in total and failed to

extract certificates in 35 malware samples due to the incomplete

APK files. Also, among these certificates, 530 certificates cannot

be parsed by Keytool. Finally, we obtained signature information

from 206,572 certificates, of which only 726 certificates (0.35%)

were issued by the CA, and 205,846 certificates (99.65%) are self-

signed. In particular, 516 certificates were issued by “CMCA app

signing CA”, 209 certificates were issued by “CMCA code signing

CA”, and one certificate was issued by “WoSign OV Code Signing”.

However, we are unable to obtain information about the developers

of these apps directly from these certificates because the owner field
is represented by special codes and cannot be identified.

5.4.2 Bipartite Graph. Webuilt a bipartite graph between the PMLs

and the self-signed certificates of their correspondingmalware apps,

which could present the connections between the libraries and the

apps. According to our observations, in most self-signed apps, the

owner and issuer field of each signature are the same. Thus we

use the owner as of the unique identifier for each certificate. If two

certificates have the owner with the same arguments (including

EmailAddress, CN (Common Name), OU (Organization Unit), O

Table 5: Top 10 libs with a single corresponding certificate.

No Lib Name CN O APKs

1 org.dp.pp eastedge null 4,060

2 com.fw.tzfive luo baixiu 1,059

3 com.dlf.myp aaaaaa null 1,057

4 com.jeef.wapsConnection luo baixiu 871

5 com.nyc.a Andrew Vasiliu Qbiki Networks 728

6 net.mz.callflakessdk null neoline 412

7 cn.appmedia.ad Andrew Vasiliu Qbiki Networks 367

8 com.revmob zhuyg zhuyg 328

9 cn.appmedia.ad zhuyg zhuyg 321

10 com.fgbljllzq.rvmzmugcz208126 Android Android 287

(Organization), L (Locality Name), ST (State Name), C (Country)),
they will be treated as the same certificate.

Note that some certificates cannot provide useful information

and should be eliminated from the bipartite graph. For example,

there are 74 libraries of which certificates are all signed by “Android

Debug”. We also found 329 libraries that connected to empty

certificates (all seven parameters in the owner field are null) and
24 libraries of which corresponding certificates are either debug-

signed or empty. In some certificates, the CN field is “test” or

“unknown”. Since these certificates are meaningless for our analysis,

we eliminated them from the bipartite graph.

Results. We obtained a bipartite graph between 17,127 certificates

and 4,526 PMLs. We also found some interesting cases. For example,

in the certificate of android.dzs.cql.hcham (an app about novels),
its CN field is baidusoso, and it appears in 331 apps. However, after

our investigation, we found that this name does not belong to the

Baidu company, which indicates that the developers of these apps

took advantage of Baidu to mislead app developers and users.

The certificate having themost corresponding libraries is “apkide”

(shown in the CN field), which has 370 corresponding PMLs.

However, “apkide” is an APK modification tool used by plenty

of Chinese developers. They use this tool to decompile, modify, and

repackage APKs. These 370 PMLs are possibly injected into those

APKs by modifying and repackaging these APKs using this tool.

If a library is associated with multiple different certificates, it is

difficult to explore the connection between them. Thus we focused

on the libraries that only have one kind of the corresponding

certificate on the bipartite graph. We found 1,211 PMLs that only

associated with one corresponding certificate. The top ten libraries

with only one certificate are shown in Table 5. CN refers to the devel-
oper, and O refers to the organization. The library org.dp.pp, which
ranks top in Table 5 and its corresponding signature is “eastegde”.

The certificate is also connected to 3 other PMLs: com.revmob.ads,
com.dianru.adsdk, and com.fancypush.pushnotifications. T-
hese 4 PMLs have 4,145 corresponding apps, and these apps are

about novels and readings. Since these PMLs are only associated

with “eastedge”, they may share the same author, which earned

revenue by luring users to click on the ad links while reading novels.

Our assessment:
• Nearly all PMLs are used by self-signed apps.

• Some popular PMLs may be created by the same author.
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6 DISCUSSIONS AND LIMITATIONS
6.1 PML Identification
VirusTotal may omit some PMLs. For example, we found an ad

library called com.mobclix.android, which invokes the Linux

command su to try to get the root privilege. We believe that this

behavior should not exist in a benign library, but VirusTotal failed

to report this library as a malware. Since it is costly to manually find

out those omitted libraries, we only used the PMLs in the report.

6.2 Obfuscation
As described in Section 3.3 and 3.4, due to the special relative

paths, LibExtractor is resilient to package name obfuscations,

like Proguard [10], the Android official obfuscation tool. Besides,

since LibExtractor sorts relative paths within each dependency

field in order, obfuscations tools that modify the order in which the

methods appear in the code will not affect LibExtractor. However,

some obfuscation tools perform code encryption, which will lead

to the failure of dependency extraction and impede LibExtractor.

This situation will be described in Section 6.3. On the other hand,

we cannot handle code shrinking and obfuscations that can change

the package structure, which will change the relative path between

classes. It is hard to distinguish the libraries that are obfuscated in

this way, thus we treated them as library mutations in the analysis.

6.3 Clustering Candidates
In Section 3.4, we found that some candidates in the same group

may have completely different package names, like

09e422c ...97 b636e411b78f9be - com/zcp/xgsdk
09e422c ...97 b636e411b78f9be - com/umeng/customview
09e422c ...97 b636e411b78f9be - com/umeng/qqsdk

The reason is the failure of parsing smali codes. In Section 3.1,

baksmali [8] failed to parse the Smali code of some apps but only

obtained the class and package names. Each of these packages was

divided as a candidate in Section 3.2 since they have no dependency.

These packages generated the same hash value in Section 3.3,

thus different candidates shared the same feature value and were

grouped. Since these candidates would reduce the accuracy of our

results, we removed them while clustering candidates.

6.4 Self-Signed Certificates
In Section 5.4.1, we got an app named com.moon.t-ingchejiemi2.
Its certificate shows that the APK comes from “California, US", but

it should be a Chinese app according to its package name. This

example shows that the information in self-signed certificates may

not be real. However, since we have large-scale corresponding

certificates, we still can obtain valuable information. In addition,

the result also shows that our approach is promising.

7 RELATEDWORK
Third-Party Library Identification. Previous third-party library
identification tools have three mainstream approaches. (1)The first

is to create a whitelist of library names for known libraries. Grace

et al. [24] and Book et al. [16] built a list of well-known ad libraries

and identified the ad libraries in the app by matching package

names. However, the package name obfuscation will significantly

reduce the accuracy of this approach. (2) The second approach is to

generate feature values for the known libraries and built a database

to identify libraries by feature matching and similarity comparison.

LibScout [15] used a high-level package organization to generate

the feature value. Wukong [39] and LibRadar [34] generated the

feature value of each library based on system APIs used in the

libraries. LIBPECKER [42] based on class dependency and assigned

different weights to each class and matched the third-party libraries

by calculating the similarity between the classes. However, it is

costly to identify unknown libraries using this approach, because

they need to update the database frequently and perform similarity

comparison. (3) The third approach is to extract library candidates

from large-scale apps and cluster the candidates based on their

feature values. [29, 32, 33]. For example, LibD [33] used inheritance,

inclusion, and call relations to construct candidates and generates

the features by hashing the opcodes within basic blocks. Our tool

uses the third approach and improves efficiency. We use class

dependency for both candidate construction and feature generation

and generate each class’s feature value based on a novel algorithm.

Malware Detection. Due to the pervasiveness of Android devices

and apps, researchers and practitioners have proposed various

approaches to detect and dissect Android malware [12, 20, 26,

41, 43]. Androguard [7] has been proposed for conducting a

security analysis of Android files, which has also used by plenty

of malware detection approaches [3, 35, 36]. TaintDroid [21] has

been proposed to track privacy leaks in smartphones at runtime.

Similarly, FlowDroid [13] and IccTA [27] have been proposed to

detect privacy leaks in Android apps statically. Android malware

might be repackaged (or piggybacked) from other apps [31]. Hence,

previous research proposed various approaches to detect and dissect

repackaged Android apps [28]. Besides, Li et al. [30] have developed

a prototype tool called SimiDroid for detecting repackaged apps.

8 CONCLUSION
In this paper, we give an in-depth analysis of potentially malicious

Android third-party libraries. Firstly, we propose LibExtractor

that can quickly extract libraries from large-scale apps and identify

potentially malicious libraries based on the report of VirusTotal and

their potentially harmful behaviors. We obtained 4,957 potentially

malicious libraries for analysis and 19,938 possible benign libraries

for behavior contrast. We performed a comprehensive analysis

of the PMLs, including library repackaging, exposed components,

permissions and developer connections with corresponding apps.

The result shows the typical characteristic of PMLs with some

interesting cases.
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