
Knowledge Graphing Git Repositories:
A Preliminary Study

Yanjie Zhao1, Haoyu Wang1, Lei Ma2, Yuxin Liu3, Li Li3, and John Grundy3
1 Beijing University of Posts and Telecommunications, Beijing, China

2 Harbin Institute of Technology, Harbin, China
3 Monash University, Melbourne, Australia

Abstract—Knowledge Graph, being able to connect informa-
tion from a variety of sources, has become very famous in
recent years since its creation in 2012 by Google. Researchers
in our community have leveraged Knowledge Graph to achieve
various purposes such as improving API caveats accessibilities,
generating answers to developer questions, and reasoning com-
mon software weaknesses, etc. In this work, we would like to
leverage the knowledge graph concept for helping developers
and project managers to comprehend software repositories. To
this end, we design and implement a prototype tool called
GitGraph, which takes as input a Git repository and constructs
automatically a knowledge graph associated with the repository.
Our preliminary experimental results show that GitGraph can
correctly generate knowledge graphs for Git projects and the
generated graphs are also useful for users to comprehend the
projects. More specifically, the knowledge graph, on one hand,
provides a graphic interface that users can interactively explore
the integrated artefacts such as commits and changed methods,
while on the other hand, provides a convenient means for users
to search for advanced relations between the different artefacts.

I. INTRODUCTION

Git, created by Linus Torvalds in 2005 for managing the
source code of Linux kernel, has become the most popular
version control system in the world for tracking changes in
general computer files during the development of software sys-
tems. Unlike traditional client-server version control systems
such as CVS and Subversion, where the complete history of
software projects is only stored in the server, Git comes with a
full-fledged repository (e.g., full version-tracking abilities) that
stores the complete history both locally and centrally, making
it a promising repository for mining insights.

With the explosion of open source projects, Git has become
even more prevalent for both developers and researchers.
This momentum has further been boosted by the introduction
of web-based version control services (e.g., GitHub and
BitBucket), which operates Git as their default mechanism for
managing software systems. Those web-based Git services,
on one hand, simplify the process of using Git repositories
while on the other hand provide a user-friendly interface for
developers and project managers to easily comprehend the
project. Because of these advantageous, the web-based version
control systems have achieved great success. For example,
GitHub has attracted over 28 million users who contribute in
total over 57 million repositories, including popular ones such
as the Android framework code base.

Despite the big success of web-based Git systems, the
current mechanism does not provide sufficient information for
developers and managers to quickly and easily comprehend the
projects. Indeed, the current graphical user interface of web-
based Git systems does not provide an interactive visualisation
for users to intuitively explore the relationship of different soft-
ware artefacts. Furthermore, the information provided by the
current graphical interface is also limited. More specifically,
the changes made to the project (or program files) are usually
listed via commits without providing statistical data about the
overall changes. For example, project managers cannot directly
observe the mostly changed program files, which could have
been the pain points where bugs are frequently introduced.

To address the aforementioned limitations, in this work,
we are interested in associating knowledge graphs with Git
projects so as to provide an alternative means for developers
and project managers to comprehend the projects. Knowledge
Graph (KG), a new term introduced by Google in 2012 when
Google integrates KG in its search engine, consists of a set of
interconnected typed entities and their attributes. The reason
why KG is chosen in this work is that the graph database
(of KG) goes beyond the traditional relational database by
supporting frequent schema changes, real-time data updates
and query responses, and as well as allowing users to infer
indirect facts in the graph.

Towards supplementing existing Git representations, we
design and implement a prototype tool called GitGraph, which
takes as input a Git project and outputs a knowledge graph
specifically constructed for the project. The correctness and
usefulness of GitGraph are then empirically evaluated via
experimental results. Specifically, regarding the usefulness of
the generated knowledge graph, we empirically show that it
is capable of providing (1) an interactive visual overview of
the project on which users can explore. It turns the original
loose text structure into an associated physical structure. For
example, researchers can visually view details of changes
to a program file, e.g., to what extent it has been changed
overall? (2) an interface for supporting advanced (or fine-
grained) Git queries (graph query languages supported by
the KG database). For example, users can leverage dedicated
query scripts to search for the modification history of a given
method over the graph, including when it was changed, who
changed it, and what was changed?

978-1-7281-0591-8/19/$31.00 c© 2019 IEEE SANER 2019, Hangzhou, China
ERA Track

599

Authorized licensed use limited to: Monash University. Downloaded on May 05,2021 at 01:35:54 UTC from IEEE Xplore. Restrictions apply.

We make available online our implementation, along with
the scripts to replicate our experiments at

https://github.com/xuanyi531/GitGraph

II. METHODOLOGY

Our objective in this work is to leverage the benefits of
KG to supplement the representation of Git repositories so as
to help developers and project managers better comprehend
their Git projects. To this end, as our first attempt to achieve
this goal, we design and implement a prototype tool called
GitGraph, which takes as input a Git repository and outputs
a knowledge graph associated to the repository and a set
of web services that provide interfaces for researchers and
practitioners to programmatically access the graph.

Fig. 1 illustrates the working process of GitGraph, which is
mainly made up of three modules: (1) Metadata Extraction
Module, (2) Graph Construction Module, and (3) Service
Construction Module. We now introduce these three modules,
respectively.

MEM
Metadata Extraction

Git
Project

GCM
Graph Construction

SCM
Service Construction

Web
Service

Knowledge
Graph

Fig. 1. GitGraph Overview.

A. MEM: Metadata Extraction

Given a Git repository, GitGraph so far extracts automati-
cally the following metadata:

• Commits: Since the evolution of the repository is
mainly reflected by commits. GitGraph attempts to record
commit-related metadata as detail as possible. More
specifically, given a commit, GitGraph records its commit
time, commit message, commit author, the changed files
and the changed code (i.e., diff).

• Files: GitGraph accounts all the files presented in the Git
repository, including not only program files but also other
files such as libraries, XML configurations, images, etc.

• Classes/Methods: Regarding program files, in order to
provide fine-grained changes, we also perform simple
static analysis to those files, attempting to summarise
the interior structure of the detailed implementation. For
example, for Java files, we locate the classes, and their
methods presented in the Java files. For each method, we
further parse its code to highlight if certain (third-party)
APIs are accessed into. We believe this information will
be useful for understanding the usage of certain APIs
(e.g., the official Java APIs or third-party library APIs).

• Branches: Like any other version control systems, Git
also supports branch mechanism to facilitate teamwork.
To avoid the possibility of messing with the mainline

code, developers can create a branch diverging from the
mainline code to implement their modules independently.
In this work, we consider a branch of a Git repository as a
small single-branch Git project and hence all the metadata
mentioned above will be extracted for a branch.

B. GCM: Graph Construction Module

After the extraction of metadata, the graph construction
module (GCM) of GitGraph aims at connecting them to
construct the knowledge graph. Fig. 2 illustrates the predefined
schema of the knowledge graph that we plan to build. The
shaded rectangle represents a node in the graph and, if applied,
the property of the node is represented by a un-shaded box.
Different nodes are connected via labelled edges where the
labels are named based on the relationship of the nodes.

Because the files (especially program files) are continuously
changed during the evolution of the Git repository, in this
work, we consider the different versions of the same file as
different nodes, which are differentiated by the commitID
affix, representing the version when the file is changed.
Similarly, classes and methods are presented following the
same strategy. As long as the content of classes/methods is
changed, GitGraph will generate a new node to record the
change. Otherwise, the node from the previous commit will
be used. Algorithm 1 presents the detailed working process
of this strategy. The changed files and classes are integrated
into the graph via new nodes (lines 5 and 10 respectively)
while the unchanged files and classes are directly inherited
from the previous commit (lines 18 and 12 respectively). For
simplicity, the integration of method nodes is condensed into
a single method parseAndConnectMethods(cls), as shown in
line 14.

Algorithm 1 The Knowledge Graph Construction Process.
Require: commiti+1 //The subsequent commit of commiti
1: commitNode = createCommitNode(commiti+1)
2: changedF iles = extractChanges(commiti+1)
3: for file ∈ changedF iles do
4: fileNode = createF ileNode(file.name, commiti+1)
5: connect(commitNode, fileNode)
6: classes = extractClasses(file)
7: for cls ∈ classes do
8: if (md5(cls.body)! = getClassMD5(commiti, cls) then
9: classNode = createClassNode(cls.name, commiti+1)

10: connect(fileNode, classNode)
11: else
12: connect(fileNode, getClassNode(commiti)
13: end if
14: parseAndConnectMethods(cls)
15: end for
16: end for
17: for file ∈ getF iles(commiti) & & file /∈ changedF iles do
18: connect(commitNode, getF ileNode(commiti)
19: end for

The output of this module is a knowledge graph that graph
users can interactively play with. Fig. 3 presents an simplified
example of a graph constructed from YahooNewsOnboard-
ing [5]. Also, with the help of graph query languages (e.g.,
Cypher, a declarative, SQL-inspired language for describing
patterns in graphs visually using an ascii-art syntax), users

600

Authorized licensed use limited to: Monash University. Downloaded on May 05,2021 at 01:35:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The Schema of GitGraph’s Graph Database

Fig. 3. An Example of Simplified Knowledge Graph.

can achieve complicated queries such as enquiring the top ten
modified classes during the evolution of the Git repository (cf.
Code 1).

Code 1

MATCH (c:Class)
RETURN c.name, count(∗) AS cnt
ORDER BY cnt DESC LIMIT 10

C. SCM: Service Construction Module

As discussed in the previous section, graph query languages
can be leveraged to achieve advanced enquiries from knowl-
edge graphs. Despite that graph query languages such as
Cypher are relatively easy to write, users still need to spend
some time to learn the language before mastering it, resulting
in a user-unfriendly strategy, where impatient users may drop
the usage of knowledge graphs.

To this end, as the last module of GitGraph, we aim at
providing a means for end users to enquiry the graph without
knowing any query languages (i.e., no need to learn and
consequently write query scripts). To achieve this purpose,
we implement the last module as a configuration-based web
service generator, which automatically generates online web
services wrapping the actual implementation of query scripts
(configurable). As shown in Fig. 4, client apps only need to
send HTTP requests, which can further be optimised with
dedicated SDKs, to achieve advanced enquiries.

Now, to enquiry the top modified classes during the evolu-
tion of the Git repository, instead of using the script presented

GitGraph - Knowledge Graph

Query
Scripts

Client
App

Http Request

Web Service

Fig. 4. Expected Usage Scenerio of GitGraph Knowledge Graph.

in Code 1, one can achieve it via the following HTTP request
(cf. Code 2), where query languages are no longer needed.

Code 2

HTTP Get /topChangedClasses?num=10

III. EVALUATION

Towards verifying the correctness and usefulness of our
approach, in this preliminary work, we aim to answer the
following two research questions:

• RQ1: Can GitGraph correctly construct knowledge
graphs for Git repositories?

• RQ2: Are GitGraph useful for comprehending Git repos-
itories?

A. Correctness

Since there is no automated way to verify if the generated
knowledge graph is correct, we resort to manual verification
in this work to confirm the correctness of our approach.
More specifically, we select five Android app (relatively small)
projects from F-Droid, which has their source code been made
available on Github. We then manually build the knowledge
graph based on the schema and rules introduced in the previous
section. After that, we launch GitGraph on these five projects
separately for knowledge graphs construction. Our experimen-
tal results show that all the automatically generated knowledge
graphs are respectively and perfectly matched with the ones
we manually build, demonstrating that GitGraph can indeed
correctly construct knowledge graphs for Git repositories.

B. Usefulness

To evaluate the usefulness of GitGraph, we select 10 popular
and active Android app projects from F-Droid, as listed in
Table I. These projects have 132 to 2,636 commits. The
constructed KG for each of them has thousands of nodes and
edges. For example, the app “suntimesWidge” has more than
17K nodes and roughly 2 million edges. It is not easy to
comprehend such a large project with millions of changes.

601

Authorized licensed use limited to: Monash University. Downloaded on May 05,2021 at 01:35:54 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXPERIMENTAL RESULTS OF GitGraph for 10 Android App Git repositories.

Project Name # Commits # Graph
Nodes # Graph

Edges
Top 3
Changed Files

Top 3
Changed Classes

Top 3
Changed Methods

AFWall+ [6] 1474 13779 617637
main.java.../Api.java
main.java.../MainActivity.java
dev.../Api.java

Api
MainActivity
G

public void onCreate(...)
protected void onCreate(...)
public void onReceive(...)

BookWorm [4] 510 5153 58522
Main.java
BookEntryResult.java
DataHelper.java

Main
BookEntryResult
DataHelper

public void onCreate(...)
public void onPause()
public void onCreate(...)

Calendula [7] 1383 18552 822798
/.../MedicinesActivity.java
/.../CalendulaApp.java
/.../Med...Fragment.java

MedicinesActivity
Medicine...Fragment
CalendulaApp

protected void onCreate(...)
public View onCreateView(...)
public boolean on...Selected(...)

Flavordex [8] 182 3628 59565
main/.../EditCatFragment.java
main/.../ExportDialog.java
main/.../ViewFlavorsFragment.java

EditCatFragment
ViewPhotosFragment
ExportDialog

public View onCreateView(...)
public Loader onCreateLoader(...)
public Dialog onCreateDialog(...)

Kolab Notes [9] 532 5817 217767
main/.../OverviewFragment.java
main/.../DetailFragment.java
main/.../MainPhoneActivity.java

OverviewFragment
DetailFragment
MainPhoneActivity

protected void onCreate(...)
public void onActivityCreated(...)
public boolean on...Selected(...)

MaterialFBook [10] 132 3011 21073
main/.../MainActivity.java
main/.../NotificationsService.java
main/.../MainActivity.java

MainActivity
SettingsActivity
NotificationsService

protected void onCreate(...)
public boolean on...Selected(...)
public void onCreate(...)

Network Monitor [11] 956 10127 421478
jraf/.../NetMonService.java
jraf/.../LogActivity.java
main/.../Advanced...Activity.java

LogActivity
NetMonService
NetMonPreferences

protected void onCreate(...)
public ... getContentValues()
public Dialog onCreateDialog(...)

Padland [12] 202 2169 29162
main/.../PadViewActivity.java
main/.../PadLandDataActivity.java
main/.../PadListActivity.java

PadViewActivity
PadLandDataActivity
PadListActivity

protected void onCreate(...)
private WebView makeWebView()
public void onCreate(...)

SuntimesWidge [13] 2636 17826 1910041
main/.../SuntimesActivity.java
main/.../SuntimesUtils.java
main/.../WidgetSettings.java

SuntimesActivity
SuntimesUtils
WidgetSettings

protected void initViews(...)
public void themeViews(...)
protected void updateViews(...)

Uber-ride [14] 152 2394 27650
main/.../LoginManager.java
test/.../LoginManagerTest.java
main/.../LoginActivity.java

LoginManager
LoginManagerTest
RequestDeeplink

public void setup()
protected void onCreate(...)
public void onLoad...Agent()

In this section, we elaborate several use cases as examples
to demonstrate the usefulness of our approach.

Interactive graphical interface. With GUI-based naviga-
tion provided by GitGraph, one can review the project more
quickly and clearly, making it easy to understand the evolution
of the corresponding project. For example, as shown in Fig. 5,
one can quickly observe the relevant changes involved by
a bug-fix commit. Furthermore, we believe this graphical
interface can be also useful by researchers to quickly confirm
their empirical findings when they need to manually verify the
results obtained by mining Git repositories.

Fig. 5. Graphical representation of the changes involved by a Bug-fix commit.

Advanced Git Query. The knowledge graph generated by
GitGraph not only provides a graphical representation for
Git projects but also provides a means that goes beyond
traditional Git management systems such as GitHub for sup-
porting advanced searches. Researchers/users are able to query
knowledge using graph query language scripts or simply using
HTTP request as mentioned in Subsection II-C. The extracted

knowledge can then be leveraged to better comprehend the
projects so as to support the decision of future investigations.

As shown in Table I, the 5th, 6th, and 7th columns enumer-
ate the top 3 changed files, classes, and methods, respectively.
Such rankings go beyond traditional Git repositories as well as
popular web-based Git systems such as GitHub to provide use-
ful statistics for project managers and maintainers to quickly
comprehend the projects. For example, based on the ranking
of frequently changed classes, project maintainers can drill
down the possible reasons so as to decide whether a thorough
refactoring process is needed to avoid further changes if the
previous changes are all resulted by a bad designing of the
class in the first place. With the knowledge graph built by
GitGraph, in addition to the three rankings shown in Table I,
users can actually easily observe much more rankings such as
the top contributing developers w.r.t. code qualities (i.e., with
fewer changes after their commits).

We believe that the knowledge graph constructed by Git-
Graph can be leveraged to support various mining software
repository studies. Just as an example towards demonstrating
this possibility, we present in this work a preliminary study
of identifying frequent buggy methods. In this work, we rely
on a naive approach to identify buggy methods: as long
as the method is changed by bug-fix commits, for which
both “bug” and “fix” keywords are presented in their commit
messages. Table II further enumerates the total number of bug-
fix commits and the top 3 involved buggy methods for the 10
Git projects, which can be respectively obtained through a
single script query or a single web service call.

602

Authorized licensed use limited to: Monash University. Downloaded on May 05,2021 at 01:35:54 UTC from IEEE Xplore. Restrictions apply.

TABLE II
TOP 3 CHANGED BUGGY METHODS.

Project Name # Bug Fix
Commits Top 3 Buggy Methods

AFWall+ 393
MainActivity.onCreate(...)
Connect...Receiver.onReceive(...)
Api.getApps(...)

BookWorm 16
BookSearch.onCreate(...)
BookDAO.insert(...)
BookDAO.build...Cursor(...)

Calendula 211
CalendulaApp.onCreate()
Confirm...Activity.saveSchedules()
Schedule...Activity.updateSchedule()

Flavordex 18
ViewFlavorsFragment.onCreate(...)
CatListDialog.onCreateLoader(...)
PhotoUtils.getTakePhotoIntent(...)

Kolab Notes 161
OverviewFragment.onActivityCreated(...)
DetailFragment.onActivityCreated(...)
OverviewFragment.onResume()

MaterialFBook 8
NotificationsService.notifier(...)
MainActivity.searchToolbar()
MainActivity.onPause()

Network Monitor 123
LogActivity.loadHTMLFile()
NetMonDatabase.onUpgrade(...)
HTMLExport.writeHeader(...)

Padland 39
PadViewActivity. makeWebView()
PadLandDataActivity.menu group(...)
PadListAdapter.getGroup(...)

SuntimesWidge 214
Sun...Activity.onCreate(...)
GetFixHelper.getFix()
SuntimesUtils.calendar...String(...)

Uber-ride 41
LoginManager. val...on(...)
Legacy...Handler.checkValidState(...)
Legacy...HandlerTest. handle...Dialog()

IV. FUTURE WORK

In this work, we have presented GitGraph for constructing
knowledge graphs for Git projects. Although so far GitGraph
works for Git projects separately, it can be also leveraged to
construct a KG for multiple Git projects. Indeed, different
KGs generated for different Git projects can be seamlessly
integrated via some common features such as their leveraged
APIs and their presented common vulnerabilities/bugs.

Furthermore, we are not only interested in representing Git
repositories but are also interested in going beyond simple
representation to offer more capabilities. To this end, we
attempt to also harvest metadata from other sources such as
question-answer websites and bug tracking systems. Unlike
traditional relative databases, which have a fixed schema that
is difficult to extend after the database is created, graph
databases come with a flexible schema that can be easily
extended. Hence, the aforementioned metadata (e.g., extracted
from question-answer websites and bug tracking systems) and
new metadata, which supplements the comprehension of Git
repositories, can be easily integrated into existing graphs.

V. RELATED WORK

Understanding and Visualizing Git Repositories. Some
essential and useful tools have been developed to summarise
and visualise a Git repository. Focusing on the contribution of
each developer, Gitential [1] helps to get valuable insights
from a team and developers by analysing Git repos and
coding hours, etc. GitVis3D [3], a visualisation tool for git
communities, visualises a versioning graph as 3D animation.
Furthermore, GitUp [2], a new Git interaction model, provides

a layer on top of a reusable generic Git toolkit called GitUpKit
to help developers build their own Git UI.

Application of Knowledge Graph. In recent years, re-
searchers have demonstrated that knowledge graphs are useful
for various purposes such as constructing question-answering
websites [15], [16], [18], [20], [21], representing API caveats
from the API documentation [17], performing semantic rank-
ings [19], etc. Our work is the first attempt to apply knowledge
graph to understand Git repositories.

VI. CONCLUSION

This paper presents our preliminary work on knowledge
graphing Git repositories, which provides an interactive graph-
ical representation that is expected to help developers and
project managers better comprehend Git projects. Moreover,
as experimentally demonstrated in this work, the automati-
cally generated knowledge graph is also useful for supporting
advanced Git queries such as observing the top changed buggy
methods, and supporting mining software repository studies.

ACKNOWLEDGEMENT

This work is supported by the National Key Research and
Development Program of China (grant No.2017YFB0801903),
the National Natural Science Foundation of China (grants
No.61702045) and the National Key Program for Basic Re-
search of China (grant No.2017-JCJQ-ZD-043).

REFERENCES

[1] Gitential. https://gitential.com/.
[2] GitUp. https://gitup.co/.
[3] GitVis3D. https://github.com/kofujimura/gitVis3D.
[4] BookWorm, 2011. https://github.com/charlieCollins/and-bookworm.
[5] Yahoonewsonboarding, 2016. https://github.com/rahulrj/

YahooNewsOnboarding.
[6] AFWall+, 2018. https://github.com/ukanth/afwall.
[7] Calendula, 2018. https://github.com/citiususc/calendula.
[8] Flavordex, 2018. https://github.com/ultramega/flavordex.
[9] Kolab Notes, 2018. https://github.com/konradrenner/kolabnotes-android.

[10] MaterialFBook, 2018. https://github.com/ZeeRooo/MaterialFBook.
[11] Network Monitor, 2018. https://github.com/caarmen/network-monitor.
[12] Padland, 2018. https://github.com/mikifus/padland.
[13] SuntimesWidge, 2018. https://github.com/forrestguice/SuntimesWidget.
[14] Uber Rides Android SDK, 2018. https://github.com/uber/

rides-android-sdk.
[15] Abdalghani Abujabal, Mohamed Yahya, Mirek Riedewald, and Gerhard

Weikum. Automated template generation for question answering over
knowledge graphs. In WWW 2017, pages 1191–1200.

[16] Sutanay Choudhury, Khushbu Agarwal, Sumit Purohit, Baichuan Zhang,
Meg Pirrung, Will Smith, and Mathew Thomas. Nous: Construction and
querying of dynamic knowledge graphs. In ICDE, 2017.

[17] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei
Liu, and Xuejiao Zhao. Improving api caveats accessibility by mining
api caveats knowledge graph. In ICSME 2018.

[18] Guozhu Meng, Yinxing Xue, Jing Kai Siow, Ting Su, Annamalai
Narayanan, and Yang Liu. Androvault: Constructing knowledge graph
from millions of android apps for automated computing. arXiv preprint
arXiv:1711.07451, 2017.

[19] Chenyan Xiong, Russell Power, and Jamie Callan. Explicit semantic
ranking for academic search via knowledge graph embedding. In WWW
2017, pages 1271–1279, 2017.

[20] Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola, and
Le Song. Variational reasoning for question answering with knowledge
graph. arXiv preprint arXiv:1709.04071, 2017.

[21] Xuejiao Zhao, Zhenchang Xing, Muhammad Ashad Kabir, Naoya
Sawada, Jing Li, and Shang-Wei Lin. Hdskg: Harvesting domain specific
knowledge graph from content of webpages. In SANER, 2017.

603

Authorized licensed use limited to: Monash University. Downloaded on May 05,2021 at 01:35:54 UTC from IEEE Xplore. Restrictions apply.

