
40

On the Impact of Sample Duplication in
Machine-Learning-Based Android Malware Detection

YANJIE ZHAO and LI LI, Monash University, Australia

HAOYU WANG, Beijing University of Posts and Telecommunications, China

HAIPENG CAI, Washington State University, United States

TEGAWENDÉ F. BISSYANDÉ and JACQUES KLEIN, University of Luxembourg, Luxembourg

JOHN GRUNDY, Monash University, Australia

Malware detection at scale in the Android realm is often carried out using machine learning techniques.
State-of-the-art approaches such as DREBIN and MaMaDroid are reported to yield high detection rates when
assessed against well-known datasets. Unfortunately, such datasets may include a large portion of duplicated
samples, which may bias recorded experimental results and insights. In this article, we perform extensive
experiments to measure the performance gap that occurs when datasets are de-duplicated. Our experimental
results reveal that duplication in published datasets has a limited impact on supervised malware classification
models. This observation contrasts with the finding of Allamanis on the general case of machine learning bias
for big code. Our experiments, however, show that sample duplication more substantially affects unsupervised
learning models (e.g., malware family clustering). Nevertheless, we argue that our fellow researchers and
practitioners should always take sample duplication into consideration when performing machine-learning-
based (via either supervised or unsupervised learning) Android malware detections, no matter how significant
the impact might be.

CCS Concepts: • Computing methodologies → Machine learning; • Software and its engineering →
Software notations and tools;

Additional Key Words and Phrases: Duplication, dataset, machine learning, android, malware detection

ACM Reference format:

Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawendé F. Bissyandé, Jacques Klein, and John Grundy. 2021.
On the Impact of Sample Duplication in Machine-Learning-Based Android Malware Detection. ACM Trans.

Softw. Eng. Methodol. 30, 3, Article 40 (May 2021), 38 pages.
https://doi.org/10.1145/3446905

This work was supported by the Australian Research Council (ARC) under a Laureate Fellowship project FL190100035; a
Discovery Early Career Researcher Award (DECRA) project DE200100016; and a Discovery project DP200100020; by the
National Natural Science Foundation of China (No. 61702045 and No. 62072046); by the Fonds National de la Recherche
(FNR), Luxembourg, under project CHARACTERIZE C17/IS/11693861; and by the SPARTA project, which has received
funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 830892.
Authors’ addresses: Y. Zhao, L. Li (corresponding author), and J. Grundy, Monash University, Australia, Wellington Rd, Clay-
ton, VIC, 3800; emails: {yanjie.zhao, li.li, john.grundy}@monash.edu; H. Wang, Beijing University of Posts and Telecom-
munications, China, No 10, Xitucheng Road, Haidian District, Beijing, PRC, 100876; email: haoyuwang@bupt.edu.cn; H.
Cai, Washington State University, USA, Pullman, WA 99163, USA; email: haipeng.cai@wsu.edu; T. F. Bissyandé and J.
Klein, University of Luxembourg, Luxembourg, 2 Avenue de l’Universite, 4365 Esch-sur-Alzette, Luxembourg; emails:
{tegawende.bissyande, jacques.klein}@uni.lu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2021/05-ART40 $15.00
https://doi.org/10.1145/3446905

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

https://doi.org/10.1145/3446905
mailto:permissions@acm.org
https://doi.org/10.1145/3446905

40:2 Y. Zhao et al.

1 INTRODUCTION

Security of mobile apps is now a critical research and practice issue. Mobile apps are used per-
vasively, including for critical activities such as transportation (e.g., smart car apps), finance (e.g.,
banking apps), and healthcare (e.g., heart rate monitoring apps). Even leisure apps, which are sel-
dom viewed as critical, may pose security threats given that they can provide attackers easy access
to sensitive information on users’ devices [9, 41]. The diversification of app developers, vendors,
and brokers creates a great challenge to ensure that each app can be rapidly and effectively vetted
from the perspective of security and privacy concerns.

Ideally, mobile apps should be intensively analyzed to check their security and privacy require-
ments conformance. However, when performed statically, app analysis is often time-consuming,
may produce many false positives, and will not identify all problems that occur at runtime [27, 44,
45, 55, 64]. On the other hand, dynamic analysis does not scale and often cannot cover the whole
codebase [19, 36, 49, 50]. In recent years the research community has progressively shifted to view
machine learning (ML) as an affordable and worthwhile effort for identifying security issues, in
particular, malicious behavior, in mobile apps [26, 31, 43, 48].

An increasingly large body of research on machine-learning-based approaches for predicting
Android malware has been published. DREBIN [8] and MamaDroid [51] are state-of-the-art sample
approaches that are commonly referred to. However, after promising results have been reported,
the community has started to reflect on the potential biases that many machine-learning-based
research experiments carry. For example, Allix et al. [5] and then Pendlebury et al. [58] have ex-
perimentally shown that the performance of malware detectors is actually highly dependent on
experimental parameters, such as dataset construction (e.g., spatial and temporal dimensions) or
evaluation methodology (e.g., 10-fold cross-validation). The dataset is a critical ingredient in the
training and validation of all machine-learning-based models. Nevertheless, to date, the app anal-
ysis community has paid little attention to the intrinsic quality of datasets beyond the problems
of class imbalance and temporal alignment [5, 58].

Concerning the quality of datasets and their impact on machine learning models, Allamanis [4]
has recently raised the concern of code sample duplication, i.e., the phenomenon where a given
sample is repeated several times in the dataset. This study reported that performance metrics
of machine learning models for big code are sometimes inflated by up to 100% when testing on
duplicated code corpora, compared to their performance on de-duplicated corpora. We consider
this alarming finding to be relevant for further investigation in the field of ML-based Android
malware detection since Android samples may also contain duplicated features, which are often
extracted from Android apps’ code snippets and metadata such as permissions or resource files.
Indeed, it casts doubts on threats to validity on all research achievements in this area. Our work,
in this article, echoes this concern and attempts to clarify the effect of sample duplication on the
performance of malware detectors.

Our investigations start with a review of recent state-of-the-art approaches in ML-based mal-
ware detection. Through this we identify some artifacts whose duplications in the datasets may
not be obvious to experimenters. We then discuss theoretically the possible effect of sample dupli-
cation on learning models. Then, we quantify the extent of sample duplication in widely used app
malware datasets. Finally, we perform large-scale experimental analyses of the effect of duplication
by considering two learning scenarios for malware detection—binary classification of malicious-
ness as a supervised learning problem, and malware family clustering as an unsupervised learning
problem. Based on our experiment findings, we provide a discussion on the quality of the current
malware datasets as well as on the validity of their recorded performance in the literature.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:3

Our experimental exploration reveals that (1) widely used malware datasets include a consider-
able amount of duplicate data samples. Given recent studies on the adverse effect of duplicate
code for machine learning models of code, many promising results and findings in the literature
are potentially threatened by this issue of duplication bias. With comprehensive experiments
covering different types of dataset samples, we have shown that (2) the impact of duplicates in
commonly used datasets remains marginal. This is for the typical supervised learning models
that are proposed for app malware detection, no matter whether 10-fold cross-validation or
in-the-wild experiments are applied. (3) The marginal impact is consistent across different ma-
chine learning models trained on different algorithms including RandomForest and SVM. (4) We
have shown that unlike supervised learning, for which an insignificant impact is observed for
malware detection, the impact of sample duplication on unsupervised learning (especially on
malware clustering) is, however, quite significant. Based on these empirical findings, no matter
how significant the impact of sample duplication might be, we appeal to the community that
our fellow researchers and practitioners should always take sample duplication into consider-
ation when performing future machine-learning-based (via either supervised or unsupervised
learning) Android malware detections.

The remainder of this article is organized as follows. Section 2 explains the problem scope of
this work, and Section 3 presents a preliminary study regarding the duplication phenomenon in
publicly released Android malware datasets. After that, Section 4 presents our experimental de-
sign, while Section 5 reports the corresponding experimental results. Later, Section 6 discusses
the possible implications of this work and its potential limitations. Section 7 discusses the related
work, and finally, Section 8 concludes this article.

2 PROBLEM SCOPING

We provide key background information for helping readers better understand our study. Notably,
we recall the main usage scenarios of machine learning in the field of malware detection and
discuss different levels of app details that are recurrently leveraged to constitute learning datasets.
Finally, we introduce the duplication bias problem.

2.1 Machine-Learning-Based Malware Detection

Machine learning is relied upon to perform malware detection at a large scale in many published
toolsets and experiments. There are mainly two scenarios: binary classification models are trained
to predict the maliciousness of an app. These are generally a supervised learning scenario where
the entire dataset is labeled for the experiments. In contrast, the problem of malware family iden-
tification is often modeled as an unsupervised learning scenario; i.e., samples are grouped together
based on their similarity.

Table 1 enumerates a few examples of key published work in the field of machine-learning-
based malicious behavior analysis. A key observation from this table is that for the large majority
of approaches, feature engineering targets code artifacts. Our study will thus focus on code-related
samples.

For the purpose of our study, we focus on four levels of artifacts that may be subject to duplica-
tion when they constitute the learning datasets: (1) the APK samples (i.e., the whole app packages),
(2) the DEX code (i.e., the entire code within the app package), (3) the Opcode Sequence (i.e., the
low-level machine language instructions), and (4) the API calls (i.e., only the specific parts of the
code that interact with the framework and access sensitive physical resources).

In practice, datasets used for learning are composed of samples of each of the aforementioned
types and can include duplicates. This may subsequently lead to duplication bias (cf. Section 2.2).

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:4 Y. Zhao et al.

Table 1. Sample Approaches Involving Machine Learning for Malicious Android Apps Analyses

Year Venue Approach Features Detection Scenario

2019 TASE CDGDroid [76] CFG, DFG Family classification

2018 TOSEM RevealDroid [28] API calls, reflection, native binaries Bi- and family classification

2017 CODASPY McLaughlin et al. [52] Opcode sequence Bi-classification

2016 NDSS MaMaDroid [51] API calls Bi-classification

2016 IST Wu et al. [70] API calls Bi-classification

2015 ICSE MUDFLOW [11] Sensitive data flows One-class classification

2015 ICSE Holland et al. [29] API calls, permissions Bi-classification

2014 NDSS DREBIN [8] API calls, permissions, etc. Bi-classification

2014 SIGCOMM Droid-Sec [75] API calls, permissions, dynamic behavior Bi-classification

2013 SecureComm DroidAPIMiner [2] API calls Bi-classification

APK. Android apps are distributed in the form of packages (APKs). Every app version has a
distinct APK file. Malware datasets shared in the literature are generally formed by collecting APKs
from a variety of sources such as the official Google Play store and other alternative third-party
markets. The state-of-the-art machine-learning-based malware classifiers are usually proposed to
flag Android malware at the APK level.

DEX. DEX file (i.e., Dalvik Executable) is the core file of an Android app that contains the
actual programming code to be executed on a hosting Android device OS. By default, the DEX
file is named as classes.dex in given Android apps. In this work, we consider that DEX duplication
exists in a dataset as long as the same DEX file appears in different apps (i.e., the hash value of the
classes.dex file is identical between two different apps). For example, in the Drebin dataset, there are
128 different app samples that share the same package name, namely com.soft.android.appinstaller,
for which their DEX hashes are the same despite their APK hashes being different.

Opcode Sequence. Bilar [13] asserts that opcodes (which can be disassembled from DEX files)
can act as a predictor, since the distribution of malware opcode frequencies significantly differs
from that of non-malicious software. In our manual observation, we found that different DEX
files can indeed result in identical opcode sequences. These can be fulfilled by, for example, al-
tering only the resource files of given Android apps, where some resource files in Android are
used to set the constant values of certain variables or define the names of specific widgets. This
type of change will lead to different DEX files but will not impact the actual code compiled to
DEX files. Thereby, they will not impact the disassembled opcode sequences. In this work, we
consider opcode sequence duplication to exist as long as different apps share the same opcode se-
quence. This is no matter whether the corresponding DEX files are identical or not. As an example,
there are three app samples, namely com.brianrileyar.girlonfire, com.brianrileyar.fieldrunners, and
com.brianrileyar.sonic, sharing the same opcode sequences but with different DEX hashes.

API Call. We go one step further to identify more fine-grained duplications in malware
datasets. To this end, we look at the API calls (which can be extracted from an app’s op-
code) of Android apps, since APIs are one of the most important constituent parts of the
apps. Even if two apps have different opcode sequences, these two apps may still have the
same sequence of API calls, which may in turn lead to identical features when APIs are exclu-
sively considered. In this work, we consider API call duplication to exist as long as there are
a number of apps that access the same number of APIs, and each API is called in the identi-
cal sequence and times. For example, in the Drebin dataset, the samples with package names,
com.evilsunflower.reader.evilShenger, com.evilsunflower.reader.evilQichang, com.evilsunflower.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:5

reader.evilGuigu, and com.evilsunflower.reader.evilLiangxing, share the same API calls, although
their opcode sequences are different.

2.2 Duplication in Machine Learning Datasets

Machine learning experiments require datasets to train models that provide recommendations on
new and unseen samples. The standard expectation is that the models will generalize well to those
new samples: the training process faithfully models the true distribution of the data as it will be
observed by the particular application execution scenario. As discussed by Allamanis [4], in order
for the machine learning model to generalize to the true data distribution,1 it needs to be trained
on data independently drawn from that distribution. Unfortunately, sample duplicates commonly
violate this assumption with varying consequences as duplicated samples will not introduce new
knowledge to the learning models.

Sample duplication, in the domain of malware detection, refers to the idea that some learning
data samples (e.g., the APK, the DEX code, etc.) appear multiple times within a corpus. The fea-
ture vectors subsequently extracted from the duplicated samples will likely be duplicated as well.
Such duplication creates an issue as it biases the data distribution. Actually, a common practice
in machine learning experiments is to split any existing dataset into two parts: a training set that
is used to train the machine learning model and a test set where the performance of the model is
measured. Since duplicated datasets are randomly distributed to the training set, the algorithms
tend to learn different probability distributions, which may result in different results. Moreover,
the splitting process may put the same samples (e.g., duplicated ones) into both training set and
test set, leading also to biased learning.

Definitions: Assume a dataset D of app information samples that is split into a training and a
test set. Conceptually, we can distinguish three types of duplicates: (1) “in-train” duplicates, i.e.,
samples duplicated within the training set; (2) “in-test” duplicates, i.e., duplicates within the test
set; and (3) “cross-set” duplicates, i.e., samples that appear both in training and test sets.

We borrow the terms of Allamanis to define the Duplicate bias [4]:

In machine learning, a measured quantity f , such as the loss function minimized during train-
ing or a performance (e.g., precision) metric, is usually estimated as the average of the metric
computed uniformly over the training or test set(s). Specifically, the estimate of f over a dataset
D = {xi } is computed as

f̂ =
1

|D |
∑

xi ∈D

f (xi). (1)

Duplication biases this estimate because somewxi will appear multiple times. Specifically, we
can equivalently transform D as a multiset X = {(xi , ci)}, where ci ∈ N+ is the number of times
that the sample xi is found in the dataset. Therefore, we can rewrite Equation (1) as

f̂ = (1 − d)
1

|X |
∑

xi ∈X
f (xi)

︸������������︷︷������������︸
unbiased estimate f̄

+d
1

|D | − |X |
∑

xi ∈X
(ci − 1) f (xi)

︸������������������������������︷︷������������������������������︸
duplication bias β

, (2)

where d = |D |− |X |
D

=
∑

ci−|X |
D

is the duplication factor where |X | is the number of unique xi in X .
Thus, d is the proportion of the samples in the dataset that are duplicated (ci > 1). By rewriting

the above equation as f̂ = (1 − d) f̄ + dβ, we see that the larger the duplicate factor d , the larger
the effect of the duplication bias β .

1True data distribution is different from real-world data distribution since the former one should contain no duplicated
samples, while the latter one could.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:6 Y. Zhao et al.

Table 2. Statistics of Selected Android Malware Datasets

Dataset # Malware Collecting Period Release Date # Families

Genome 1,260 2010→ 2011 2012 49
Drebin 5,560 2010→ 2012 2014 179α

AMD 24,553 2010→ 2016 2017 71
RmvDroid 9,133 2014→ 2018 2019 56
α Adware is excluded from this dataset.

From a machine learning perspective, the duplication bias in the training loss causes a model
to overweight some training samples (the in-train duplicates). During testing, the duplication
bias will skew the reported performance metric. Furthermore, we expect cross-set duplicates to
artificially improve any metric taking advantage of the fact that multiple samples that are seen
during training also appear in the test set, giving the illusion that the model generalizes, where
in fact it memorized duplicates.

3 PUBLISHED DATASETS FOR MALWARE DETECTION

Our study aims at uncovering potential issues of state-of-the-art ML-based malware detection
approaches due to duplication bias. To this end, we first focus on investigating the presence of
duplicates within commonly used Android malware datasets described in the literature. Towards
investigating the impact of sample duplication in ML-based Android malware detection, we are
interested in knowing, in the first place, if sample duplication indeed exists in common Android
Malware datasets. Our research question is thus:

RQ1: Does the duplication phenomenon, which has been revealed in big code modeling
datasets, occur in Android malware datasets?

3.1 Study Datasets

Android Malware Detection and Analysis has received much attention for many years. The re-
search community has collected and updated from various sources a variety of datasets that pro-
vide a ground truth for evaluating technical approaches to app malware analysis. Table 2 sum-
marizes four representative ones2 and provides some descriptive statistics about their size and
diversity in terms of numbers of malware families that are represented. We then give a brief in-
troduction to these four exemplar datasets.

• Genome. The Genome project is a seminal work in the research of Android malware de-
tection. As part of this project, Zhou and Jiang [77] publicly released a dataset of 1,260
malicious apps covering the majority of existing Android malware families (specifically,
49 families that were manually labeled by security analysts). The release dates of the app
samples range from August 2010 to October 2011. Nowadays, Genome is considered to be
obsolete, as most malware signatures have been well understood and malware writers are
devising new techniques to hide malicious behavior (from both static checkers and dynamic
monitoring).

2These datasets have been widely used by our community to evaluate the effectiveness of malware detection and classifi-
cation approaches [67].

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:7

Table 3. Performance Achieved by Some Representative State-of-the-Art
Approaches That Have Leveraged These Datasets to Train Malware

Classification Models

Dataset Approach Precision (%) Recall (%) F1 Score (%)

Genome Fan et al. [22] 99.67 95.85 97.72
Drebin DANdroid [53] 98.4 98.9 98.6
AMD Li et al. [37] 99.22 99.16 99.19
RmvDroid Fan et al. [22] 96.54 97.77 97.15

• Drebin. To foster research on Android malware and to enable comparison among different
detection approaches, Arp et al. [8] released the Drebin Android malware dataset in 2014,
for which they built as part of their work on “explainable malware detection.” The Drebin
dataset contains 5,560 malicious apps that were collected between August 2010 and October
2012. This dataset also includes the samples from the Genome dataset. The 5,560 malicious
apps are categorized by Drebin maintainers into 179 families. Unlike the families labeled in
the Genome project, which are labeled mainly by practitioners, the malware samples in the
Drebin dataset are labeled by the authors of the Drebin approach themselves based on the
output of different anti-virus scanners. The authors took steps to manually unify the output
of these anti-virus scanners.

• AMD. AMD is a carefully labeled and well-studied Android malware dataset [68]. In addi-
tion to 24,553 samples assembled from 2010 to 2016, the dataset also includes a manually
documented behavioral description of its malware samples. Based on the results of anti-
virus scanners, the malware samples of this dataset are categorized into 135 variants within
71 malware families.

• RmvDroid. Released in 2019, RmvDroid [67] is the latest malware dataset that was released
for complementing existing datasets, which are often outdated, unreliable, and lacking de-
tails of app metadata such as description, reviews, etc. The RmvDroid dataset contains 9,133
app samples that are associated with 56 malware families and were all caught after being
exposed in the official Android market (i.e., Google Play).

Table 3 further enumerates some representative state-of-the-art approaches that have leveraged
these datasets to train malware classification models. The last three columns of this table further
illustrate the performance (i.e., precision, recall, and F1 score, respectively) achieved by those ap-
proaches. The fact that all the approaches have achieved over 97% F1 score (or 96% precision, 95%
recall) suggests that these datasets selected in this work are representative and hence are suitable
to fulfill our experiments.

3.2 Duplication in Malware Datasets

An Android app is identified in the official market based on its unique package name, which pre-
vents users from installing different versions of a given app on their device. However, since mali-
cious code can be inserted during app updates, app versions may be considered as different sam-
ples within the real-world distribution of apps. Therefore, maintainers of datasets generally rely
on hash values of APK files to ensure that sample APKs are unique.

Cross-Dataset APK Duplication. Although commonly used datasets do not include duplicated
APKs (the samples are often named by their SHA256 hash value), we note that the datasets are of-
ten redundant from one to another. This redundancy should be made clear to researchers who are
interested in combining multiple datasets to fulfill their experiments [22, 72]. We hence provide

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:8 Y. Zhao et al.

Table 4. APK Duplication between Selected Android Malware Datasets

Dataset 1 Dataset 2 # Cross
Duplication

Rate
Dataset 1 Dataset 2 # Cross

Duplication
Rate

AMD RmvDroid 2,618 28.67% AMD Genome 365 28.97%

Drebin Genome 1,229 97.54% Drebin RmvDroid 40 0.72%

AMD Drebin 559 10.05% Genome RmvDroid 26 2.06%

The duplication rate is calculated via the following formula: |Dat aset 1∩Dat aset 2|
min (|Dat aset 1|, |Dat aset 2|) .

Fig. 1. Within-dataset sample duplication in the selected malware datasets.

in Table 4 statistics of cross-dataset duplications. We note that APK redundancy exists in all the
considered malware datasets. The duplication rate varies from as small as 1% to as large as 97%,
although those malware datasets are all collected via different methods. Even though Drebin au-
thors have claimed that it included all the Genome samples, due to some outlier cases, we cannot
observe a 100% duplication rate for these two datasets.

Within-Dataset Duplication. While researchers appear to ensure that datasets are not duplicated
at the APK level, we note that the relevant in-APK components may be duplicated. For example,
including several repackaged versions of a given app, where only layout and image changes are
applied, will lead to a duplicated dataset of code (Dex) clones. Similarly, looking at lower-level
details that constitute the samples for learning, one might discover new duplications that prevent
faithfully modeling the distribution of data that practitioners have to deal with. Figure 1 sum-
marizes the statistics of duplication for dex code, opcode sequence, and API calls in all the four
selected datasets.

We note that Dex code duplication concerns between 2.6% of samples (the RmvDroid dataset)
and 40% of samples (the Drebin dataset). For the case of the Drebin dataset, this means that for 40%
of its app samples, there exists at least one other sample in the dataset that shares the same DEX
file with them. Although the percentages are substantial, they are far less than the percentages of

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:9

Fig. 2. Distribution of the number of samples in each duplication (samples without duplication are ignored).

Table 5. Malware Family Intersection between Selected Android Malware Datasets

Same Intersection # Same Intersection

Dataset 1 Dataset 2 Families Rate Dataset 1 Dataset 2 Families Rate

AMD RmvDroid 12 21.43% AMD Genome 5 10.87%

Drebin Genome 18 39.13% Drebin RmvDroid 10 17.86%

AMD Drebin 21 29.58% Genome RmvDroid 5 10.87%

The intersection rate is calculated via the following formula: |Dat aset 1∩Dat aset 2|
min (|Dat aset 1|, |Dat aset 2|) .

duplication for Opcode sequences (minimum of 30%) and API calls (minimum of 40%). Distribution
of the number of samples in each duplication is further provided in Figure 2 to provide more
insights. The median values of all the distributions3 show that at least half of the duplications
happen on only two samples, indicating that the selected datasets are quite diverse despite the
existence of sample duplication. The fact that the maximum values of all the distributions are
always less than five also backs up this indication.

3.3 Family Representation in Datasets (a.k.a. Family Duplication)

During our analyses, we have found that although datasets include samples from a large variety of
malware families, the intersections of families between the selected datasets are relatively small. As
summarized in Table 5, the intersection rate ranges from 10.87% to 39.13%. The actual distribution
of the size of malware families is often highly imbalanced. For instance, in the Drebin dataset,
within the 179 families that are enumerated, some are represented with a single APK sample,
while other families include hundreds of samples, as illustrated in Figure 3. This imbalance, if
ignored, may introduce biases to malware clustering approaches and hence the performance of

3The only difference is Dex in the RmvDroid dataset, for which the median value is also quite close to 2.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:10 Y. Zhao et al.

Fig. 3. Family distribution of the Drebin dataset.

Fig. 4. Imbalanced distribution of malware families in the selected four datasets.

ML-based malware classifications. Indeed, as argued by Yu et al. [74], in practice, samples in a
dataset may have different importance when conducting clustering-based approaches. Therefore,
it is important to properly adjust the sample distributions (or weights) when clustering a dataset.
Unfortunately, the same phenomenon occurs for RmvDroid, AMD, and Genome datasets. For the
sake of characterizing the imbalance among various families, we counted the malware samples
from the top 10 families of each dataset and made a comparison with the whole dataset, as shown
in Figure 4. For all the malware datasets, the top 10 family samples account for over 70% of the total
samples. As shown in Table 6, samples in some malware families may have been highly duplicated
(could be over 90%) as Android malware developers tend to create new malware by repackaging
existing ones.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:11

Table 6. Sample Duplication in the Top 10 Malware Families of the Selected Android Datasets

Drebin AMD RmvDroid

Family Dex Opcode Seq API Call Family Dex Opcode Seq API Call Family Dex Opcode Seq API Call

FakeInstaller 82.27% 84.86% 85.62% Airpush 1.05% 36.23% 42.97% Airpush 2.37% 43.28% 48.93%

DroidKungFu 18% 34.93% 44.98% Dowgin 4.73% 22.62% 26.2% Mecor 0 88.83% 91.48%

Plankton 0.32% 18.72% 22.88% FakeInst 82.7% 85.29% 88.38% Plankton 0 12.59% 19.88%

Opfake 80.91% 86.79% 87.11% Mecor 0.27% 97.58% 97.91% Adwo 0.28% 10.64% 39.5%

GinMaster 2.95% 3.24% 3.24% Youmi 0.69% 16.94% 23.94% Youmi 0 11.35% 21.31%

BaseBridge 60.91% 74.55% 77.58% Fusob 89.83% 89.83% 94.25% Mobidash 30.97% 78.13% 82.39%

Iconosys 0 41.45% 50.66% Kuguo 1.58% 21.85% 25.77% Kuguo 0.26% 3.6% 4.63%

Kmin 42.18% 67.35% 70.07% BankBot 58.91% 80.87% 83.7% Gappusin 0.65% 6.1% 18.74%

FakeDoc 68.18% 69.7% 69.7% Jisut 72.71% 85.35% 91.21% Viser 0.34% 9.52% 13.27%

Geinimi 15.22% 21.74% 26.09% DroidKungFu 18.68% 33.88% 45.05% Dowgin 2.38% 7.48% 9.18%

RQ1 Answer

Duplication is commonplace in malware datasets used in the published literature. It occurs for
samples at a different artifact level when leveraged for machine-learning-based malware detec-
tion. Duplication may concern up to 40% of Dex code samples in datasets that are widely used
for experimental validation of detection techniques, or up to 97% in certain malware families,
which may significantly bias evaluation results.

4 STUDY DESIGN

We now present the detailed design of our empirical study, including the research questions we aim
to answer (Section 4.1), the machine learning algorithms we will leverage in this work (Section 4.2),
the features we plan to extract from Android apps (Section 4.3), and the evaluation metrics we will
leverage to categorize the performance of machine learning classifications (Section 4.4).

4.1 Research Questions

Machine learning techniques for malware detection have been largely assessed using common
datasets that include duplicated artifacts. We conduct several experiments to assess for any po-
tential duplication bias, specifically the extent of sample duplication impact on the performance
of state-of-the-art ML-based Android malware detectors. To that end, we propose three additional
refined research questions that explore cases of both supervised and unsupervised learning ap-
proaches.

• RQ2: What is the impact of malware sample duplication on supervised learning for building
Android malware detectors?

• RQ3: Is the impact of sample duplication influenced by a specific underlying supervised
learning algorithm?

• RQ4: Are unsupervised learning models impacted by sample duplication bias in a similar
way to supervised learning models?

4.2 Machine Learning Algorithms

We now present the machine learning algorithms that are leveraged in this work to implement An-
droid malware predictors. Using several state-of-the-art malware detection approaches described

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:12 Y. Zhao et al.

in the literature, we train binary classification models to predict malicious content of sample apps.
Specifically, we have focused on the following four algorithms. We first leverage SVM to answer
RQ2 (cf. Section 5.1) and then leverage all four algorithms to empirically compare the impact of
duplication bias on different machine learning algorithms (cf. Section 5.2).

• Support Vector Machine (SVM) is a widely used supervised machine learning algorithm
that attempts to perform binary classifications by finding the hyperplane that effectively
separates data points associated with two classes [14]. In malware detection tools, SVM has
been one of the key long-term algorithms that have been explored. Even state-of-the-art
approaches such as Drebin have achieved high performance by relying on SVM [8].

• Decision Trees (DT) infer classification rules from a set of unordered and irregular cases.
It performs classification using branch structure, using a tree as a form of expression.
According to the survey of Safavian and Landgrebe [61], decision trees have been success-
fully used in many diverse areas. Aung and Zaw [10] have used decision trees to classify
Android applications as malicious or benign by focusing on their permission features.

• The K-Nearest Neighbor (KNN) algorithm identifies the closest K instances (from the
training dataset) based on a certain distance metric and from which it picks up the most
common class tag to form the prediction result. The study of Firdausi et al. [23] shows that
simple machine learning algorithms such as KNN can be used to detect malicious applica-
tions effectively and efficiently.

• Random Forest (RF) is a classification algorithm that builds multiple decision trees from
which the final output is converged by voting the results yielded by individual trees. Several
tools for Android app analysis have used RF for malware classification. For example, Alam
et al. [3] have largely relied on RF in their study. Sanz et al. [62] have found that RF produces
the best classifier among all the algorithms including Sequential Minimal Optimization

(SMO) [1], KNN, and so forth.

4.3 Feature Engineering

Machine-learning-based classification relies on data to learn what characteristics could suggest
that a given sample likely belongs to a given class. For example, in malware detection, the learn-
ing algorithms must be “told” what characteristics are associated with each malicious or benign
sample in the dataset. Such characteristics are known as the feature set and implemented as a
feature vector. Arp et al. [8] proposed one of the most comprehensive feature sets for Android
malware detection, which has proved effective in the state-of-the-art Drebin approach. They fo-
cused on features that can be extracted with a lightweight static analysis approach in order to scale
their tool to thousands of samples. Such features are based on the Manifest file in the apk (i.e., An-

droidManifest.xml) as well as the disassembled DEX code. In the end, eight aspects are considered
to produce eight sets of strings:

• S1: Hardware components. Malicious behavior in Android malware often involves access
to specific hardware components such as the camera or the GPS. Related features statically
extracted based on access requests made can be derived from the manifest file.

• S2: Requested permissions. Malicious apps tend to request specific permissions more
frequently, such as SEND_SMS, CAMERA, and READ_CONTACTS, than that of benign
apps [62]. Hence, permission requests from the Manifest file could be a good indicator to
differentiate malware from goodware.

• S3: App components. Activities, services, content providers, and broadcast receivers
that are declared in the manifest file are the four types of existing components that define

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:13

different specific interfaces to the system. Some components may be statistically more
leveraged by malicious apps than by benign apps.

• S4: Filtered intents. An Intent is a messaging object used to exchange data between app
components. Malware may use it to listen to particular intents to achieve malicious pur-
poses; e.g., malware could hijack the SMS_RECEIVED system intent to listen to users’ SMS
messages.

• S5: Restricted API calls. A typical case of identifying malicious behavior is the use of re-
stricted API calls without requesting required permissions; i.e., the application has a high
probability of gaining external permissions through an exploit of privilege escalation vul-
nerability. Such restricted critical calls can be detected from the disassembled code.

• S6: Used permissions. After harvesting the restricted API calls (as shown in S5), one can
calculate the actual permissions required by the app accessing those APIs. This permission
set might be different from the one explicitly declared by app developers in the manifest
(cf. S2).

• S7: Suspicious API calls. Certain API calls may cause exposure to sensitive data or re-
sources and are often exploited by Android malware. API calls for sensitive data access, net-
work communication, sending and receiving SMS messages, and executing external com-
mands, and frequently used for obfuscation, are gathered.

• S8: Network addresses. In many cases, malicious apps eventually need to fetch external
data (e.g., download dynamically loaded code) or to leak data outside the app. These activ-
ities require network communication with specific hosts. Thus, IP addresses, hostnames,
and URLs gathered from the disassembled code can be characterized for malicious behavior
prediction.

The aforementioned feature set covers a wide range of characteristics of Android apps and has
been adopted widely by the research community [2, 20, 28, 52]. Our experiments in this work di-
rectly leverage this comprehensive feature set to build relevant classifiers that match the typical
performance recorded in the literature. Consecutively, our study focuses on the impact of sam-
ple duplication bias on these classifiers. We note that the eventual size of the feature set in each
experiment is dependent on the app dataset selected for training.

4.4 Evaluation Metrics

For a binary classification problem, the ML model ultimately needs to predict whether a given
sample belongs to one of two classes (i.e., generally is positive or negative). In our case, we consider
the classes malware and goodware. A confusion matrix is often used to establish the performance
of a classification model, based on four measurements:

(1) True Positive (TP), i.e., the number of malware samples that are flagged as malicious by
the ML model;

(2) False Negative (FN), i.e., the number of goodware samples that are flagged as benign by
the ML model;

(3) True Negative (TN), i.e., the number of malware samples that are flagged as benign by the
ML model; and

(4) False Positive (FP), i.e., the number of goodware samples that are flagged as malicious by
the ML model.

Based on these enumerations, we can compute the following three metrics (cf. Precison, Recall ,
and F1 Score) that are commonly taken as indicators for evaluating ML-based approaches and are

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:14 Y. Zhao et al.

defined as follows:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 score =
2 ∗ Precision ∗ Recall
Precision + Recall

.

5 EXPERIMENTAL RESULTS

In this section, we detail the experimental results we observed for answering our four research
questions from Section 4.1. The four research questions cover both 10-fold cross-validation (RQ2)
and holdout experiments (RQ 2 and 3), supervised learning (RQ 2 and 3), and unsupervised learning
(RQ4) approaches, as well as a comparison of different machine learning algorithms (RQ3).

5.1 RQ2: Impact of Duplication Bias on Malware Classifiers

Our experiments to assess the impact of duplication bias in malware datasets follow the ML-based
approach for malware detection proposed by Arp et al. [8] (i.e., we train the machine learning
model through the famous SVM algorithm). We leverage the common datasets used in the Android
malware detection literature (namely Drebin, AMD, and RmvDroid) and investigate the impact of
all three levels of duplications (i.e., DEX file, Opcode Sequence, and API Call) in ML-based malware
detection. To better characterize the impact of duplication bias, following the general practice of
state-of-the-art works [5, 58], we answer this research question in two experimental settings: (1)
10-fold cross-validation (also known as in-the-lab experiments), which is a widely used statistical
method for estimating the capability of machine learning models, and (2) in-the-wild experiments,
which attempt to evaluate the capability of machine learning models in a real-world setting, i.e.,
training the model based on a known dataset and using the model to predict an unknown dataset.
Below we now describe these two experiments in detail.

5.1.1 10-Fold Cross-validation. In 10-fold cross-validation, the dataset is randomly divided into
10 equal-size sample sets. Among the 10 subsets, one of them is retained as the test set for validating
the performance of the machine learning model, which is then trained on the remaining 9 subsets.
This process is then repeated 10 times with each of the subsets used exactly once as the test set.
The performance measurements of these 10 validations are then averaged to compute the final
performance metric of the classification approach.

Experimental Setup. Given a malware dataset and a duplicated sample type, we set up two
experiments: one without sample duplication and another with sample duplication. These two ex-
periments form a controlled group for evaluating the difference brought by sample duplication to
the machine-learning-based classifications. To better distinguish the settings, we set up six exper-
iments, two for each duplication type, for each malware dataset, as detailed below.

• E1/E2: Without/With DEX Duplication. These two settings evaluate the performance of
machine learning approaches w.r.t. DEX duplication. For E1, i.e., without DEX duplication,
the training set is formed by taking into account all the non-duplicated samples from the
original dataset. For E2, we randomly select the same number of samples (as that of E1) from
the original dataset to form the training set. Since the original dataset contains duplicated
samples, the randomly selected subset will likely contain duplicated samples as well. Indeed,
the chance of randomly selecting a set of |E1| (i.e., 3,559) apps that is identical to E1 from
the original dataset (i.e., 5,560 apps) is low.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:15

Table 7. SVM-Based Android Malware Detection via 10-Fold Cross-Validation

Dataset Type Setting Training Set # Features # Duplicated Malware Goodware
Vectors (Ratio) Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) F1 Score (%)

Drebin

Dex
E1 (Without Duplication) 3,559*2 48,026 949 (26.66%) 96.56 94.91 95.72 95.03 96.62 95.81
E2 (With Duplication) 3,559*2 43711 2,019 (56.72%) 97.82 95.84 96.81 95.96 97.85 96.89

Opcode seq
E3 (Without Duplication) 2,859*2 44,494 455 (15.91%) 96.2 94.58 95.38 94.71 96.28 95.48
E4 (With Duplication) 2,859*2 40,305 1,338 (46.8%) 97.21 95.24 96.21 95.37 97.28 96.31

API call
E5 (Without Duplication) 2,646*2 39,388 316 (11.94%) 96.18 93.91 95.02 94.11 96.28 95.17
E6 (With Duplication) 2,646*2 35,117 1,162 (43.93%) 97.12 95.1 96.09 95.24 97.19 96.2

AMD

Dex
E1 (Without Duplication) 19,205*2 185,011 3,299 (17.18%) 98.05 95.64 96.78 95.87 98.04 96.9
E2 (With Duplication) 19,205*2 172,507 4,730 (24.63%) 98.21 95.92 96.99 97.19 97.06 97.06

Opcode seq
E3 (Without Duplication) 12,863*2 143,889 1,545 (12.01%) 97.78 95.77 96.71 96 97.79 96.84
E4 (With Duplication) 12,863*2 122,438 4,629 (35.99%) 98.14 96.13 97.07 96.34 98.14 97.19

API call
E5 (Without Duplication) 11,735*2 135,485 1,015 (8.65%) 97.48 94.93 96.09 95.32 97.5 96.32
E6 (With Duplication) 11,735*2 114,330 3,895 (33.19%) 97.85 96.13 96.94 96.31 97.86 97.04

RmvDroid

Dex
E1 (Without Duplication) 8,893*2 100,998 1,398 (15.72%) 97.79 98.45 98.11 98.44 97.73 98.07
E2 (With Duplication) 8,893*2 100,100 1,561 (17.55%) 97.81 98.49 98.14 98.48 97.75 98.11

Opcode seq
E3 (Without Duplication) 6,122*2 77,693 432 (7.06%) 96.79 98.25 97.5 98.23 96.67 97.42
E4 (With Duplication) 6,122*2 71,079 1,011 (16.51%) 97.15 98.4 97.75 97.77 97.72 97.72

API call
E5 (Without Duplication) 5,453*2 73,467 273 (5.01%) 96.35 98.06 97.18 98.02 96.23 97.1
E6 (With Duplication) 5,453*2 62,587 1,030 (18.89%) 97.3 98.33 97.89 98.32 97.23 97.75

To support binary classification, we randomly select the same number of benign apps like that of malware to form the training set (i.e., # malware 2).

• E3/E4: Without/With Opcode Sequence Duplication. Similar to E1/E2 except that op-

code sequence duplication is used instead of dex file.
• E5/E6: Without/With API Call Duplication. Similar to E1/E2 except that API call du-

plication is used instead of dex file.

Since we are interested in conducting binary classifications (i.e., malware or goodware) and two
of the three considered datasets do not come with benign apps (the datasets contain malware only),
we relied on the AndroZoo repository [6, 39, 46] to collect benign samples to train the machine
learning model. AndroZoo is a growing collection of Android apps collected from several sources,
including the official Google Play app market. It currently contains over 10 million Android APKs.
Each of them has been scanned by over 70 anti-virus products hosted on VirusTotal.4 We consider
an app to be benign as long as none of the anti-virus products (hosted on VirusTotal) flags it
as malware. Specifically, for each experimental setting, we randomly select the same number of
goodware (as that of malware) to form the training set, as unbalanced training sets may introduce
biases to machine-learning-based classifications. Furthermore, to avoid potential biases introduced
by our random sampling, we ensure that there are no repackaged app pairs between the selected
malware and goodware samples (i.e., do not share the same package names). We also conduct each
experiment setting 10 times and report the average performance as the output. These settings
apply to all the experimental results reported in this article.

Result. Table 7 summarizes the 10-fold cross-validation results. Following the experimental
setup, for each dataset, we perform six different experiments (i.e., E1→ E6): two experiments for a
given sample duplication type. As indicated in the fourth column, different duplication types will
result in a different number of samples for training, which subsequently leads to a different number
of features (as shown in the fifth column). Generally, the more training samples considered, the
larger the feature sets extracted.

The last six columns in Table 7 further illustrate the classification results for predicting both
malware and goodware of the SVM-based malware detection approach. Based on these results, we
can observe the following interesting findings:

Finding 2.1: When predicting goodware, no matter which metric is considered or which du-
plication type is concerned, the performance achieved via training datasets containing duplicated
samples is always higher than that of datasets without duplicated samples.

4https://www.virustotal.com/gui/.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

https://www.virustotal.com/gui/

40:16 Y. Zhao et al.

Fig. 5. The correlation between feature size and the classification results (i.e., Precision, Recall, and F1 score).
Each dot represents one experiment.

Finding 2.2: Regarding malware prediction, the results are more or less similar to that of good-
ware.

These two findings suggest that machine learning models tend to achieve higher performance if
there are overlaps between the training sets and test sets. Indeed, when performing 10-fold cross-
validations, duplicated samples will likely be divided into both training and test sets. This verdict
further implies that machine learning approaches, in practice, should be trained on datasets that
are as comprehensive and representative as possible. The more representative samples we can
include in the training set, the more likely there will be similar samples in the test set, and thereby
the higher the performance machine learning approaches could achieve. Nevertheless, we argue
that researchers, when reporting the performance of their machine learning approaches, should
make it clear if sample duplication exists in their dataset.

Interestingly, as demonstrated in Table 7, the performance difference between a controlled ex-
perimental pair E1 and E2, no matter which metric is concerned, is always smaller than 1.32%. This
evidence suggests that the actual impact brought by sample duplication is insignificant. In other
words, the validity of state-of-the-art malware detection approaches may not be severely threat-
ened due to sample duplication of their training dataset. Nevertheless, we argue that duplicates (1)
should still be removed to avoid unnecessary biases in machine-learning-based classifications or
(2) be kept if a clear and convincing argument can be given.

Figure 5 further illustrates the correlation between feature sizes and the performance of the
machine learning approach. The fact that the R −value is positive for all the cases shows that the
performance of the 10-fold cross-validation is generally aligned with the size of features consid-
ered. Nonetheless, some of the positive correlation is quite weak and yet not significant, given a
significance level of α = 0.001.5 This finding further confirms that the impact brought by sample
duplication might be marginal to the performance of machine learning approaches.

5.1.2 In-the-Wild Experiments. As advocated by Allix et al. [5], when conducting machine-
learning-based Android malware detection, in-the-lab experiments, such as using 10-fold cross-
validation, may not be reliable to justify the performance of the machine learning models. There
is also a need to validate the performance of the machine learning models in a real-world setting,

5There is one chance in a thousand that the difference between the datasets is due to a coincidence.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:17

Fig. 6. The experiment design of ML-based Malware Detection.X stands for the set of samples selected from
|D |, while Y stands for the set of apps selected for fulfilling the test set, which is kept the same for both S1
and S2.

i.e., in-the-wild experiments such as training on a dataset while testing on another dataset. In our
second research question, we re-evaluate the impact of sample duplication for machine-learning-
based malware detection approaches through a so-called in-the-wild experimental setting.

Experimental Setup. As illustrated in Figure 6, given a malware dataset, we create two subsets,
namely ND and D. We put all samples one by one that do not introduce duplication into ND, and
those that involve duplication into D. As a result, all the samples in ND do not contain duplicated
samples, while all the samples in D have duplicated versions presented in ND. We then randomly
select a small set of samples, Y , in ND to form the test set6 and prepare the training set in two
settings, noted as S1 and S2 in Figure 6.

In this experiment, we set Y as 30% of the samples in ND (i.e., 30% of samples with no dupli-
cation). Consequently, the training malware set contains |70%ND | samples (i.e., either ND − Y or
35%ND + X , where X can be calculated via the following formula):

X =

{
D, |D | <= |35%ND |
K , K ∈ D and |K | = |35%ND |.

In rare cases, if |D | < 35%|ND |, meaning that we cannot select the same number of apps from
the set of D to form the training set with duplication, we simply select all the apps in the D set to
form the training malware set. Recall that we aim at conducting binary classification in this work.
Therefore, we need to add goodware to the training set as well. To this end, we randomly select
the same number of goodware (i.e., |70%ND |) from Google Play to form the final training set.

Furthermore, instead of arbitrarily stipulating the values of hyper-parameters for the machine
learning model, we leverage the grid search technique to automatically find suitable values for
those hyper-parameters. Grid search is a popular pre-process step that explores all the possible
parameter combinations to pinpoint an optimal combination for the model.

Result. Table 8 summarizes our experimental results for the experiments conducted for answer-
ing RQ2, for which SVM binary classification is applied to all three representative datasets. When
a different duplication type is involved, the total number of non-duplicated and duplicated samples
will be different. In all datasets, Dex duplication yields the largest number of non-duplicated sam-
ples, followed by Opcode Sequence and API Call, respectively. The different size of non-duplicated
samples subsequently causes different training and test sets, which further yields different num-
bers of features for the machine learning classification. The number of features is dependent on the

6It is worth noting that the test set will have no impact on the performance of machine learning models. We kept the test
set duplication-free to avoid potential biases.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:18 Y. Zhao et al.

Fig. 7. Distribution of performance differences between 10-fold cross-validation and the holdout
experiments.

Table 8. Experimental Results of SVM-Based Malware Classification

Dataset Type Setting |N D | Training Set Test Set # Features # Duplicated Malware Goodware
Vectors (Ratio) Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) F1 Score (%)

Drebin

Dex
E1 (Without Duplication) 3,559 2,491*2 1,068*2 34,799 581 (23.32%) 93.4 96.81 95.08 96.69 93.16 94.89
E2 (With Duplication) 3,559 2,491*2 1,068*2 31,299 1,341 (53.85%) 94.34 95.31 94.82 95.27 94.27 94.77

Opcode seq
E3 (Without Duplication) 2,859 2,001*2 858*2 33,398 255 (12.74%) 91.37 96.38 93.81 96.17 90.9 93.46
E4 (With Duplication) 2,859 2,001*2 858*2 29,843 864 (43.17%) 92.92 94.54 93.73 94.44 92.8 93.61

API call
E5 (Without Duplication) 2,646 1,852*2 794*2 30,289 206 (11.12%) 91.89 95.71 93.76 95.53 91.55 93.5
E6 (With Duplication) 2,646 1,852*2 794*2 26,942 756 (40.81%) 92.76 94.74 93.74 94.63 92.6 93.6

AMD

Dex
E1 (Without Duplication) 19,205 13,444*2 5,761*2 135,015 2,745 (20.42%) 97.6 99.55 98.56 99.54 97.55 98.54
E2 (With Duplication) 19,205 13,444*2 5,761*2 111,349 5,838 (43.42%) 97.91 99.33 98.61 99.32 97.88 98.59

Opcode seq
E3 (Without Duplication) 12,863 9,004*2 3,859*2 107,270 909 (10.1%) 97.09 99.43 98.25 99.42 97.02 98.2
E4 (With Duplication) 12,863 9,004*2 3,859*2 90,748 3,058 (33.96%) 97.2 99.17 98.17 99.16 97.13 98.13

API call
E5 (Without Duplication) 11,735 8,215*2 3,520*2 101,418 585 (7.12%) 97.3 99.32 098.3 99.3 97.24 98.26
E6 (With Duplication) 11,735 8,215*2 3,520*2 85,655 2,569 (31.27%) 97.2 99.41 98.29 99.39 97.14 98.25

RmvDroid

Dex
E1 (Without Duplication) 8,893 6,225*2 2,668*2 73,911 898 (14.43%) 96.85 98.99 97.9 98.96 96.78 97.86
E2 (With Duplication) 8,893 3,353*2 2,668*2 73,211 1,066 (31.79%) 96.86 98.97 97.9 98.95 96.79 97.86

Opcode seq
E3 (Without Duplication) 6,122 4,285*2 1,837*2 58,773 247 (5.76%) 95.1 99.4 97.2 99.37 94.88 97.07
E4 (With Duplication) 6,122 4,285*2 1,837*2 50,276 869 (20.28%) 95.73 98.85 97.26 98.81 95.59 97.17

API call
E5 (Without Duplication) 5,453 3,817*2 1,636*2 52,695 160 (4.19%) 95.85 98.84 97.32 98.8 95.72 97.24
E6 (With Duplication) 5,453 3,817*2 1,636*2 44,554 680 (17.82%) 96.15 98.55 97.34 98.51 96.06 97.27

|N D | means the number of non-duplicated samples (after excluding duplicated ones). To enable binary classification, the train and test sets are fitted with randomly selected

goodware.

selected training dataset. Different apps may contribute to different features, although the same
extraction strategy is applied.

• Finding 2.3: Unlike the results we obtained previously, i.e., via 10-fold cross-validation,
in this experiment, as highlighted in the table, the training set with sample duplications
often achieves a higher precision yet lower recall for predicting malware than such settings
without duplication involved in the training sets. This finding implies that, with duplication
samples in the training set, the classifier is more conservative and less likely to flag a given
app as malware, resulting in a lower false-positive rate and hence a higher false-negative
rate. In opposite, without sample duplication, the classifiers are able to achieve better recalls.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:19

This could be explained by the fact that more diverse samples of malware7 are learned by
the classifiers, making them more knowledgeable to pinpoint unknown ones.

• Finding 2.4: Different datasets will yield different classification results, which are further
aligned with the size of the training dataset, which is similar to the result obtained via 10-
fold cross-validation. In our experiment, AMD has the largest training dataset and achieves
the best performance in terms of distinguishing malware from benign ones. The impact of
sample duplication on machine-learning-based malware detection can vary from dataset
to dataset. For example, the performance yielded by the AMD dataset is more stable than
that of the Drebin dataset, which yields a larger range of vibration of results. This observa-
tion further suggests that the dataset quality is very important for machine-learning-based
Android malware detection.

RQ2 Answer

When performing 10-fold cross-validation for Android malware detection, sample duplication
has a positive impact on the performance of classification results. We hence advocate that practi-
tioners and researchers should pay attention to sample duplication when conducting ML-based
classification results. Nevertheless, the fact that the performance difference is quite small sug-
gests that the impact brought by sample duplication to machine learning approaches might be
marginal.When performing in-the-wild experiments for predicting malware, sample duplication
also impacts the performance of ML-based classification results. The fact that the performance
of ML models varies from dataset to dataset further suggests that the dataset quality is im-
portant for ML-based Android malware detection approaches. Nonetheless, similar to that of
10-fold cross-validation, the impact of sample duplication on the machine learning models is
marginal. We argue that duplicates (1) should still be removed to avoid unnecessary biases in
machine-learning-based classifications or (2) be kept if a clear and convincing argument can be
given.

5.2 RQ3: Impact of Duplication Bias on Different ML Algorithms

As elaborated in Section 4.2, there are various machine learning algorithms recurrently leveraged
by researchers for detecting Android malware. Specifically, we further consider three supervised
machine learning algorithms, namely Decision Tree (DT), RandomForest (RF), and K-Nearest

Neighbors (KNN).
Experimental Setup. The experimental setup for answering this research question is the same

as the one leveraged for answering RQ2 (e.g., E1→ E6) except that the machine learning algo-
rithms are now altered to DT, RF, and KNN, respectively. Similar to the experiments of SVM-based
classification, we also leverage grid search to automatically stipulate hyper-parameter values for
the newly selected machine learning algorithms.

Results. Figure 8, Figure 9, and Figure 10 illustrate these experimental results. For each dataset,
the precision, recall, and F1 score values are presented, and for each experimental setting, four
machine learning algorithm results are comparatively illustrated. Based on these results, we sum-
marize the following findings.

• Finding 3.1: When different evaluation metrics are considered, the performance of different
machine learning algorithms is also different, although they are applied to the same dataset.

7Given fixed number of malware, the more duplicated malware samples included, the less diverse and representative the
malware set will be.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:20 Y. Zhao et al.

Fig. 8. Experiment results with different ML algorithms on Drebin dataset.

Fig. 9. Experiment results with different ML algorithms on AMD dataset.

Fig. 10. Experiment results with different ML algorithms on RmvDroid dataset.

Indeed, for precision, KNN yields the worst performance for the Drebin and RmvDroid
datasets, while DT yields the worst performance for the AMD dataset. For recall, RF yields
the worst performance for all three considered datasets. For F1 scores, SVM always achieves
the best performance compared to the other ML algorithms.

• Finding 3.2: Sample duplication has diverse impacts on these different machine learning
algorithms. As shown in Figures 8 to 10, in the 36 controlled experimental groups—four
machine learning algorithms are evaluated in each pair, e.g., SVM, DT, RF, and KNN in
E1/E2, Precision of Drebin—DT appears to be impacted differently in six groups and SVM
in four groups. There is no impact observed for RF and KNN.

Table 9 further summarizes the accuracy of the experiments. Accuracy is usually considered to
be one of the most important metrics for checking if a machine learning classifier can be adopted
in practice, as the cost of errors can be huge, e.g., requiring huge efforts for practitioners to review
the results manually. Interestingly, as highlighted by the Δ column, which calculates the differ-
ence between two experimental settings (e.g., E2-E1), for almost all of the cases, the differences are
positive. The machine learning classifiers trained based on a dataset without duplicated samples

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:21

Table 9. Accuracy of the Classification with Different Experimental Settings

Dataset Type Setting # Features Δ # Duplicated Accuracy (%)
Vectors (Ratio) SVM Δ DT Δ KNN Δ RF Δ

Drebin

Dex
E1 (Without Duplication) 34,799

–3,500
581 (23.32%) 94.99

–0.2
92.27

–1.56
91.1

–1.51
92.88

–1.64
E2 (With Duplication) 31,299 1,341 (53.85%) 94.79 90.71 89.59 91.24

Opcode seq
E3 (Without Duplication) 33,398

–3,555
255 (12.74%) 93.64

0.02
89.91

–1.83
88.62

–1.29
91.42

–0.61
E4 (With Duplication) 29,843 864 (43.17%) 93.66 88.08 87.33 90.81

API call
E5 (Without Duplication) 30,289

–3,347
206 (11.12%) 93.63

0.04
87.96

0.24
88.02

–0.12
90.29

–0.73
E6 (With Duplication) 26,942 756 (40.81%) 93.67 88.2 87.9 89.56

AMD

Dex
E1 (Without Duplication) 135,015

–23,666
2,745 (20.42%) 98.55

0.03
92.36

–0.49
96.13

–1.49
92.48

–0.24
E2 (With Duplication) 111,349 5,838 (43.42%) 98.58 91.87 94.64 92.24

Opcode seq
E3 (Without Duplication) 107,270

–16,522
909 (10.1%) 98.22

–0.06
96.42

–0.92
95.61

–0.94
94.98

–0.43
E4 (With Duplication) 90,748 3,058 (33.96%) 98.16 95.5 94.67 94.55

API call
E5 (Without Duplication) 101,418

–15,763
585 (7.12%) 98.28

–0.01
95.94

–0.63
95.55

–0.52
95.7

–1.48
E6 (With Duplication) 85,655 2,569 (31.27%) 98.27 95.31 95.03 94.22

RmvDroid

Dex
E1 (Without Duplication) 73,911

–700
898 (14.43%) 97.88

0
95.88

0.13
95.73

–0.08
95.67

–0.65
E2 (With Duplication) 73,211 1,066 (31.79%) 97.88 96.01 95.65 95.02

Opcode seq
E3 (Without Duplication) 58,773

–8,497
247 (5.76%) 97.14

0.08
95.29

–1.85
94.36

–0.27
95.1

–1.89
E4 (With Duplication) 50,276 869 (20.28%) 97.22 93.44 94.09 93.21

API call
E5 (Without Duplication) 52,695

–8,141
160 (4.19%) 97.28

0.02
95.57

–2.45
93.64

–0.1
94.22

–1.28
E6 (With Duplication) 44,554 680 (17.82%) 97.3 93.12 93.54 92.94

Fig. 11. Training set preparation for ML-based malware family classification.

are generally more accurate than such classifiers that are trained with datasets containing dupli-
cated samples. A possible explanation for this effect could be that, compared to the latter case, the
former setting contains more diverse malware samples, i.e., more malware characteristics, which
could make the classifier more powerful in locating new samples. Nevertheless, the performance
difference is still within a small range, no matter which machine learning algorithm is used.

RQ3 Answer

Sample duplication can have diverse impacts on the performance of different machine learning
models. However, no matter which machine learning algorithm is concerned, the impact seems
to be marginal.

5.3 RQ4: Impact of Duplication Bias on Unsupervised Malware Clustering

In previous subsections, we have explored the impact of sample duplication on supervised learning
approaches, w.r.t. three types of sample duplications that may have been overlooked by many state-
of-the-art ML-based Android malware detection approaches. In this section we now explore the
impact of sample duplication on unsupervised learning approaches, with a special focus on the
duplication of malware families. The reason unsupervised learning is selected is that it is one of
the most common techniques used by researches to identify Android malware families [17, 18].

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:22 Y. Zhao et al.

Experimental Setup. Figure 11 illustrates the process we followed to prepare the training sets
for setting up the experiments in answering this last research question. The first step for setting up
the experiments is to perform malware family analysis to identify the family of a given malware.
Fortunately, all the datasets have been released with family labels associated with their samples.
In this work, we directly leverage those labels to conduct our experiments.

Given a dataset, once the family labels are identified for all its malware, we rank the families
based on the number of malware they are assigned to. For the sake of simplicity, and to better
present the experimental results, we choose the top 10 families to form our experiments. For the
malware of the top 10 families, given a duplication type, we separate the malware samples into
two sets: ND (all the samples are non-duplicated from each other) and D (all the samples are
duplicated to that of ND), following the same strategy we leveraged for setting up the experiments
in answering RQ2. Based on this distribution, we form two experiments: one without duplicated
samples (i.e., S1′, the ND set is directly leveraged) and another containing duplicated samples (i.e.,
S2′ contains samples from both ND and D and the size is equal to that of S1′).

Finally, for these three types of duplication, we set up six experiments, two for each duplication
type, and form a control group.

• E1
′/E2

′ : Two datasets respectively contain or do not contain DEX Duplication; i.e., E1′

utilizes S1′ and E2′ utilizes S2′.
• E3

′/E4
′ : Similar to E1′/E2′ except that opcode sequence duplication is used instead of

DEX Duplication.
• E5

′/E6
′ : Similar to E1′/E2′ as well except that API call duplication is used instead of DEX

Duplication.

Recall that our dataset for this experiment is formed by 10 families of apps. We hence set the
final cluster numbers to 10, k = 10, for both K-means and Gaussian Mixture Model (GMM) [60]
clustering algorithms,8 allowing for a better and clearer evaluation of the capability of the unsu-
pervised learning models. In this setting, the learning model will group the input dataset into 10
clusters (e.g., clusters 1→ 10). Unfortunately, apart from grouping data samples into clusters, un-
supervised learning approaches do not label the yielded clusters. To this end, after the clustering
approach, we further leverage a straightforward approach to label the clusters. Specifically, given
a cluster, we compare it to the input 10 family sets. We leverage the Jaccard similarity coefficient
to calculate the distance between the given cluster and the original 10 malware family sets. The
Jaccard similarity coefficient is a simple yet well-known metric that has been frequently leveraged
to calculate the similarity of sample sets, including the similarity of clusters categorized by unsu-
pervised learning approaches [47, 59]. Given two clusters A, B, the Jaccard index can be calculated
as the ratio of the size of the intersection of A and B to the size of the union of A and B (cf. the
formula below). The corresponding Jaccard index can be a value between 0 and 1, with 0 indicating
no overlap (i.e., the two clusters are totally different) and 1 complete overlap (i.e., the two clusters
are exactly the same) between the two clusters:

J (A,B) =
|A ∩ B |
|A ∪ B | .

Results. Table 10 summarizes the experimental results of applying unsupervised learning ap-
proaches to cluster Android malware families, concerning Dex duplication in the training samples
(i.e., E1′ and E2′). The 10 selected malware families are shown in the first row of the table and

8Two of the most popular clustering algorithms. GMM can be regarded as an optimized version of the K-means model. In
this work, we include two clustering algorithms to avoid potential biases.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:23

Table 10. Jaccard Distance between Clustering Results and the Original Family Samples on Drebin

Setting Cluster No. FakeInstaller DroidKungFu Plankton Opfake GinMaster BaseBridge Iconosys Kmin FakeDoc Geinimi Label

Cluster 1 0.356 0 0 0.2218 0 0.0629 0.0031 0.0569 0 0 FakeInstaller

Cluster 2 0.0045 0.1726 0.1048 0.0155 0.2859 0.0866 0.0148 0 0.0065 0.1058 GinMaster

Cluster 3 0 0.1917 0 0 0.0115 0.0042 0 0 0 0 DroidKungFu

Cluster 4 0 0 0.7929 0 0 0 0 0 0 0 Plankton

K-means E1’ Cluster 5 0 0 0 0 0 0 0.625 0 0 0 Iconosys

(Without Duplication) Cluster 6 0.2752 0 0 0.2208 0 0 0.1569 0 0 0 FakeInstaller

Cluster 7 0 0 0 0 0.2644 0 0 0 0 0 GinMaster

Cluster 8 0 0.4607 0 0 0 0 0 0 0 0 DroidKungFu

Cluster 9 0 0 0 0 0 0 0 0 0.881 0 FakeDoc

Cluster 10 0 0 0 0 0 0.205 0 0.5635 0 0 Kmin

Cluster 1 0.5855 0 0 0.1261 0 0 0 0 0 0 FakeInstaller

Cluster 2 0.0327 0.297 0 0.0215 0.2336 0.0309 0.0036 0 0.0022 0 DroidKungFu

Cluster 3 0 0.5814 0 0 0 0 0 0 0 0 DroidKungFu

Cluster 4 0 0 0.7127 0 0 0 0 0 0 0 Plankton

K-means E2’ Cluster 5 0 0 0 0 0 0 0.625 0 0 0 Iconosys

(With Duplication) Cluster 6 0 0.0133 0.2429 0 0.1939 0.0024 0 0 0 0.0027 Plankton

Cluster 7 0 0 0 0 0.2705 0 0 0 0 0 GinMaster

Cluster 8 0 0 0 0 0 0.6822 0 0 0 0 BaseBridge

Cluster 9 0 0 0 0 0 0.085 0 0 0.2929 0.55 Geinimi

Cluster 10 0.0859 0 0 0.2628 0 0.0079 0.1571 0.336 0 0 Kmin

Cluster 1 0.0064 0.0934 0.0622 0.0586 0.5248 0.0561 0.0091 0.0172 0.0091 0.0174 GinMaster

Cluster 2 0 0 0.6902 0 0 0 0 0 0 0 Plankton

Cluster 3 0.4676 0 0 0.1501 0 0.0022 0.0968 0.2104 0 0 FakeInstaller

Cluster 4 0 0 0 0.0035 0 0 0.4658 0 0 0.3646 Iconosys

GMM E1’ Cluster 5 0 0.159 0 0 0 0 0 0 0 0 DroidKungFu

(Without Duplication) Cluster 6 0 0.1405 0 0 0 0.0049 0 0 0 0 DroidKungFu

Cluster 7 0 0 0 0 0 0.5273 0 0 0.2791 0 BaseBridge

Cluster 8 0 0 0.1926 0 0 0 0 0 0 0 Plankton

Cluster 9 0 0.5164 0 0 0.0016 0 0 0 0 0 DroidKungFu

Cluster 10 0 0 0 0.1368 0 0 0 0 0 0 Opfake

Cluster 1 0 0.0655 0.0021 0.0045 0.5714 0.0407 â 0.0147 0 0.0054 0.0149 GinMaster

Cluster 2 0 0 0.3579 0 0 0 0 0 0 0 Plankton

Cluster 3 0.4711 0 0 0.082 0 0.0021 0.0734 0 0.1153 0.2051 FakeInstaller

Cluster 4 0 0 0 0 0 0 0.6316 0 0 0 Iconosys

GMM E2’ Cluster 5 0 0.3839 0 0 0 0 0 0 0 0 DroidKungFu

(With Duplication) Cluster 6 0 0.5174 0 0 0 0 0 0 0 0 DroidKungFu

Cluster 7 0 0 0 0.0994 0 0.449 0 0.3761 0 0 BaseBridge

Cluster 8 0 0 0.6388 0 0 0 0 0 0 0 Plankton

Cluster 9 0 0 0 0 0.2705 0 0 0 0 0 GinMaster

Cluster 10 0.0044 0 0 0.3684 0 0 0.0743 0 0 0 Opfake

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:24 Y. Zhao et al.

Fig. 12. Visualization of the misclassified malware families (for E1′/E2′ of the Drebin dataset). The colored
shapes represent the retained families. The shapes with dotted lines represent such families that are not
identified by the clustering approach.

the clustering results are enumerated in the second column, simply named as cluster 1→ 10. The
value in each cell shows the Jaccard index between the samples in a cluster and the samples in
a given family. Distance = 0 indicates that there is no overlap between the cluster and the given
family.

For each cluster, we calculate its Jaccard indexes to all malware families and label it based on
the family that achieves the largest index value. Let us take the second row as an example: for
cluster 1 in E1′, we calculate 10 Jaccard indexes respectively for the 10 considered malware families,
among which we obtain five positive indexes. Since the largest index goes to FakeInstaller, i.e.,
samples in this cluster are closer to the FakeInstaller family than others, we label this cluster as
FakeInstaller.

To better present the difference between the two settings—with or without duplicated samples—
we visualize the results in Figure 12. Each ellipse represents a malware family. If the family is no
longer identified after clustering, it will be highlighted with dotted lines. The families are con-
nected through directed edges. Each directed edge represents a mis-clustering from the source
family to the target family. The mis-clustered sample numbers are further displayed as the weight
of the edge, which is also reflected by the thickness of the edge. For example, in the graph of E1′ in
Figure 12, there is an edge from Kmin to FakeInstaller. The weight (14/85) indicates that there are
14 out of 85 Kmin malware being recognized as FakeInstaller malware. Figure 13 further illustrates
the visualization of misclassified malware families for all the other experimental settings (for the
results returned by K-means only, the results returned by GMM are more or less the same and
hence are not displayed to save space). From these visualized experimental results, Table 12 and
Table 13 highlight the major differences returned by K-means and GMM, respectively.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:25

Fig. 13. Visualization of the misclassified malware families (for all the other experimental settings).

Finally, we leverage MoJoFM [69], a Mojo distance-based effectiveness metric, to measure the
effectiveness of the selected two clustering models. The MoJoFM metric provides a more objective
evaluation of the performance of clustering approaches and can provide a single number as output
that is simple to interpret and compare. Table 11 summarizes the experimental results. No matter
which datasets or experimental settings are concerned, the differences between the MoJoFM
scores achieved by K-means and GMM are not significant. However, no matter which clustering
algorithms are concerned, there is a clear difference between a controlled pair of experimental
settings (e.g., without or with duplicated samples).

Finding 4.1: Sample duplication can indeed impact the performance of unsupervised learning
models. For example, as shown in Figure 12, given the same unsupervised learning model, e.g., K-
means, the same malware dataset is clustered into seven and eight families (i.e., the colored shapes)
for E1′ and E2′ (without and with Dex duplication), respectively.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:26 Y. Zhao et al.

Table 11. The MoJoFM Distance between the Clustering Results and the Original Partition

Type Setting Drebin AMD RmvDroid
K-means (%) GMM (%) K-means (%) GMM (%) K-means (%) GMM (%)

Dex
E1’ (Without Duplication) 67.64 69.68 83.42 75.69 66.4 67.76
E2’ (With Duplication) 76.24 75.62 79.11 77.72 65.85 68.35

Opcode seq
E3’ (Without Duplication) 70.07 76.35 81.26 81.75 57.72 61.81
E4’ (With Duplication) 73.76 78.34 75.02 74.55 58.38 58.83

API call
E5’ (Without Duplication) 79.4 77.38 93.15 80.21 61.34 59.33
E6’ (With Duplication) 82.2 78.57 72.62 77.36 58.69 58.16

Finding 4.2: The unidentified malware families are almost always different between the two
experimental settings in a controlled pair. Indeed, as shown in the fifth column of Table 12 and
Table 13, only one out of nine pairs achieves the same result. This evidence suggests that, unlike
that of supervised learning models, the impact of sample duplication on unsupervised learning
models is quite significant.

Finding 4.3: The impact of sample duplication in unsupervised-learning-based malware clas-
sifications is independent of clustering algorithms. Likely, no matter which clustering algorithms
are selected, the clustering results will be impacted by experimental settings without or with du-
plicated samples.
RQ4 Answer

Sample duplication has an impact on the performance of unsupervised machine learning mod-
els. The impact can be observed in all of our experiments with either different malware datasets
or different duplication types. Furthermore, unlike supervised learning for which insignificant
impact is observed, the impact of sample duplication on unsupervised learning is quite signifi-
cant, and such an impact is independent of the underline selected learning algorithms.

6 DISCUSSION

We now discuss the results of supervised learning with feature selection (Section 6.1) and the
experiment setting with realistic malware/goodware distribution in the test set (Section 6.2). We
then stress the importance of considering sample duplication for machine learning (Section 6.3),
and summarize the effect of parameter turning for ML-based malware detectors (Section 6.4) and
the potential threats to the validity of our study (Section 6.5).

6.1 Supervised Learning with Feature Selection

Recall that we have directly leveraged the features proposed by Arp et al. [8] to evaluate the impact
of sample duplication in machine-learning-based Android malware detection. The set of features
eventually considered in this work is hence comprehensive, which may subsequently overfit the
learning algorithm. Towards verifying this hypothesis, we replicate one of our previous experi-
ments by integrating feature selection into the working process. Specifically, for the experiment
conducted in Section 5.1.2, after the full feature set is extracted, we introduce a feature selection
step into our approach, aiming at retaining only such features that have importance weights higher
than a given threshold. In this experiment, we set the threshold to be the average weights calcu-
lated based on the full feature set. Table 14 illustrates the new experimental results. The seventh
column presents the numbers of selected features, which are significantly smaller (over 50%) than
those of the original features (as shown in the sixth column). Nonetheless, by comparing with the
experimental results shown in Table 8 (those obtained without involving feature selection), the
experimental results are not significantly impacted by involving feature selection in the process.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:27

Table 12. Summary of Major Misclassified Results with K-means

Dataset Type Setting # Mistakes (Ratio) Unidentified Families Top 3 Error

Drebin

Dex E1’ (Without Duplication) 771 (34.02%) BaseBridge, Geinimi, Opfake DroidKungfu-189/547->GinMaster,

Plankton-129/623->GinMaster,

Opfake-104/117->FakeInstaller
E2’ (With Duplication) 565 (24.93%) FakeDoc, Opfake GinMaster-144/329->DroidKungFu,

GinMaster-101/329->Plankton,

Opfake-77/117->Kmin
Opcode seq E3’ (Without Duplication) 538 (29.5%) BaseBridge, FakeDoc, Geinimi, Iconosys, Opfake Plankon-115/508->GinMaster,

Iconosys-88/89->FakeInstaller,

Opfake-81/81->FakeInstaller
E4’ (With Duplication) 408 (22.37%) Iconosys, Kmin, Opfake DroidKungFu-84/434->GinMaster,

Plankton-71/508->GinMaster,

Iconosys-57/89->Geinimi

API call E5’ (Without Duplication) 295 (17.46%) BaseBridge, Kmin, Opfake Plankton-67/482->GinMaster,

DroidKungFu-60/367->GinMaster,

BaseBridge-43/74->GinMaster
E6’ (With Duplication) 297 (17.57%) Kmin, Opfake DroidKungFu-80/367->GinMaster,

Plankton-60/482->GinMaster,

Kmin-44/44->Geinimi

AMD

Dex E1’ (Without Duplication) 2,821 (17.05%) BankBot, FakeInst, Fusob, Jisut Youmi-796/1290->Dowgin,

Airpush-500/7756->Dowgin,

FakeInst-356/375->DroidKungFu
E2’ (With Duplication) 4,626 (27.95%) BankBot, FakeInst, Fusob, Kuguo, Youmi Airpush-1250/7756->Dowgin,

Kuguo-1179/1180->Dowgin,

Youmi-946/1290->Dowgin
Opcode seq E3’ (Without Duplication) 1,953 (18.33%) BankBot, Fusob, Jisut, Mecor, Youmi Youmi-526/1079->Airpush,

Youmi-461/1079->Dowgin,

Airpush-228/4998->Dowgin
E4’ (With Duplication) 2,386 (22.4%) BankBot, Fusob, Mecor, Youmi Youmi-634/1079->Dowgin,

Airpush-347/4998->Dowgin,

Youmi-239/1079->Airpush

API call E5’ (Without Duplication) 697 (7.24%) BankBot, Fusob, Jisut, Mecor Kuguo-124/890->Dowgin,

Dowgin-89/2496->Airpush,

Fusob-73/73->Dowgin
E6’ (With Duplication) 3,140 (32.61%) BankBot, FakeInst, Fusob, Jisut, Kuguo, Mecor Kuguo-886/890->Dowgin,

Airpush-800/4470->Dowgin,

Youmi-491/988->Dowgin

RmvDroid

Dex E1’ (Without Duplication) 2,646 (34.05%) Dowgin, Gappusin, Kuguo, Viser Airpush-510/2883->Adwo,

Youmi-428/643->Adwo,

Gappusin-426/456->Adwo
E2’ (With Duplication) 2,889 (37.18%) Dowgin, Gappusin, Kuguo, Viser Airpush-630/2883->Adwo,

Youmi-430/643->Adwo,

Gappusin-430/456->Adwo
Opcode seq E3’ (Without Duplication) 2,180 (42.27%) Dowgin, Gappusin, Mobidash, Viser Airpush-366/1675->Kuguo,

Gappusin-326/431->Kuguo,

Youmi-307/570->Kuguo

E4’ (With Duplication) 1,924 (37.31%) Dowgin, Mobidash, Viser Youmi-329/570->Gappusin,

Airpush-314/1675->Gappusin,

Dowgin-249/272->Gappusin

API call E5’ (Without Duplication) 1,738 (38.29%) Dowgin, Mobidash Airpush-275/1509->Gappusin,

Youmi-253/506->Gappusin,

Dowgin-194/267->Gappusin
E6’ (With Duplication) 1,879 (41.4%) Dowgin, Gappusin, Mobidash, Viser Airpush-302/1509->Kuguo,

Gappusin-272/373->Kuguo,

Dowgin-242/267->Kuguo

Since the number of samples selected from the Drebin dataset is smaller than the other two datasets, the number of errors obtained for the Drebin dataset is also fewer than

that of the others.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:28 Y. Zhao et al.

Table 13. Summary of Major Misclassified Results with GMM

Dataset Type Setting # Mistakes (Ratio) Unidentified Families Top 3 Error

Drebin

Dex E1’ (Without Duplication) 577 (25.46%) Kmin, FakeDoc, Genimi DroidKungfu-100/547->GinMaster,

Kmin-73/85->FakeInstaller,

Plankton-73/623->GinMaster
E2’ (With Duplication) 405 (17.87%) Kmin, FakeDoc, Genimi DroidKungFu-54/547->GinMaster,

Kmin-85/85->BaseBridge,

Genimi-72/78->FakeInstaller
Opcode seq E3’ (Without Duplication) 386 (21.16%) Opfake, BaseBridge, Iconosys, Kmin GinMaster-64/328->DroidKungFu,

Iconosys-65/89->GinMaster,

Opfake-51/81->Genimi
E4’ (With Duplication) 517 (28.34%) Opfake, Iconosys, Kmin, FakeDoc, Genimi DroidKungFu-89/434->GinMaster,

Geinimi-72/72->GinMaster,

Plankton-52/508->GinMaster

API call E5’ (Without Duplication) 411 (24.32%) Opfake, BaseBridge, Kmin, Genimi DroidKungFu-109/367->GinMaster,

BaseBridge-67/74->GinMaster,

Genimi-64/68->FakeInstaller
E6’ (With Duplication) 389 (23.02%) Iconosys, Kmin, Genimi GinMaster-91/328->DroidKungFu,

Iconosys-74/75->Opfake,

Genimi-66/68->Opfake

AMD

Dex E1’ (Without Duplication) 4,258 (25.73%) FakeInst, Fusob, BankBot, Jisut, DroidKungFu
Dowgin-1265/3222->Kuguo,

Youmi-632/1290->Kuguo,

Airpush-536/7756->Kuguo

E2’ (With Duplication) 3,277 (19.8%) Youmi, Fusob, BankBot, Jisut, DroidKungFu
Youmi-734/1290->Airpush,

Dowgin-705/3219->Kuguo,

Youmi-529/1288->Dowgin

Opcode seq E3’ (Without Duplication) 3,465 (32.53%) Mecor, Kuguo, BankBot, Jisut, DroidKungFu
Airpush-828/4998->Youmi,

Kuguo-600/937->Dowgin,

Dowgin-467/2617->Youmi

E4’ (With Duplication) 2,345 (22.01%) Mecor, Fusob, Kuguo, BankBot, Jisut
Kuguo-691/937->Youmi,

Airpush-460/4998->Youmi,

Youmi-256/1079->Dowgin

API call E5’ (Without Duplication) 1,969 (20.45%) Mecor, Fusob, Kuguo, BankBot, Jisut
Kuguo-830/890->Dowgin,

Airpush-381/4470->Dowgin,

Youmi-201/988->Dowgin

E6’ (With Duplication) 2,487 (25.83%) Mecor, Youmi, BankBot, Jisut
Youmi-524/988->Dowgin,

Airpush-438/4470->Dowgin,

Kuguo-255/890->Dowgin

RmvDroid

Dex E1’ (Without Duplication) 2,612 (33.62%) Dowgin, Gappusin, Viser
Airpush-614/2883->Kuguo,

Gappusin-345/456->Kuguo,

Youmi-320/643->Kuguo,

E2’ (With Duplication) 2,423 (31.18%) Dowgin, Gappusin, Kuguo
Kuguo-365/388->Airpush,

Gappusin-309/456->Airpush,

Airpush-277/2879->Viser

Opcode seq E3’ (Without Duplication) 2,115 (41.01%) Dowgin, Gappusin, Mobidash, Viser Gappusin-302/431->Kuguo,

Airpush-265/1675->Kuguo,

Dowgin-247/272->Kuguo
E4’ (With Duplication) 2,169 (42.06%) Dowgin, Mobidash, Mecor, Gappusin

Gappusin-285/431->Kuguo,

Dowgin-241/272->Kuguo,

Airpush-240/1675->Kuguo

API call E5’ (Without Duplication) 1,870 (41.2%) Dowgin, Mobidash
Kuguo-328/371->Airpush,

Youmi-241/506->Gappusin,

Dowgin-231/267->Airpush

E6’ (With Duplication) 2,173 (47.87%) Dowgin, Gappusin, Adwo Airpush-269/1507->Viser,

Gappusin-263/373->Kuguo,

Dowgin-240/267->Kuguo

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:29

Table 14. Experimental Results (over the Drebin Dataset) with Feature Selection Applied

Type Setting |N D | Training Test # Original # Selected Malware Goodware
Set Set Features Features Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) F1 Score (%)

Dex
E1 (Without Duplication) 3,559 2,491*2 1,068*2 34,799 10,485 92.6 97.28 94.88 97.14 92.22 94.62
E2 (With Duplication) 3,559 2,491*2 1,068*2 31,299 8,970 93.62 95.07 94.34 94.99 93.52 94.26

Opcode seq
E3 (Without Duplication) 2,859 2,001*2 858*2 33,398 10,024 90.5 96.73 93.51 96.49 89.85 93.05
E4 (With Duplication) 2,859 2,001*2 858*2 29,843 8,789 92.23 94.78 93.48 94.63 92.01 93.3

API call
E5 (Without Duplication) 2,646 1,852*2 794*2 30,289 9,250 92.42 95.33 93.85 95.18 92.18 93.66
E6 (With Duplication) 2,646 1,852*2 794*2 26,942 8,011 92.99 94.36 93.67 94.28 92.89 93.58

The features are selected only if their importance weights are higher than the average weights calculated based on the full feature set.

Table 15. Experimental Results of SVM-Based Malware Classification Obtained Based on Realistic
Malware/Goodware Distribution (i.e., 1:9)

Type Setting Training Set Test Set # Features # Duplicated Malware Goodware

Vectors (Ratio) Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) F1 Score (%)

Balanced Training Set, Unbalanced Test Set

Dex E1 (Without Duplication) 2,491*2 1,068+9,612 34,799 581 (23.32%) 58.36 97.19 72.93 99.7 93.08 96.28

E2 (With Duplication) 2,491*2 1,068+9,612 31,299 1,341 (53.85%) 63.66 95.06 76.25 99.48 94.58 96.97

Opcode seq E3 (Without Duplication) 2,001*2 858+7,722 33,398 255 (12.74%) 60.75 96.62 74.59 99.54 92.16 95.71

E4 (With Duplication) 2,001*2 858+7,722 29,843 864 (43.17%) 65.2 94.74 77.24 99.3 93.65 96.39

API call E5 (Without Duplication) 1,852*2 794+7,146 30,289 206 (11.12%) 59.53 95.33 73.29 99.36 91.77 95.41

E6 (With Duplication) 1,852*2 794+7,146 26,942 756 (40.81%) 62.68 94.31 75.31 99.23 92.87 95.94

Unbalanced Training Set, Unbalanced Test Set

Dex E1 (Without Duplication) 2,491+22,419 1,068+9,612 34,799 581 (23.32%) 90.82 91.75 91.28 99.18 99.07 99.13

E2 (With Duplication) 2,491+22,419 1,068+9,612 31,299 1,341 (53.85%) 92.16 88.5 90.29 98.86 99.25 99.05

Opcode seq E3 (Without Duplication) 2,001+18,009 858+7,722 33,398 255 (12.74%) 88.93 90.9 89.9 98.85 98.58 98.72

E4 (With Duplication) 2,001+18,009 858+7,722 29,843 864 (43.17%) 90.87 86.76 88.76 98.34 98.91 98.63

API call E5 (Without Duplication) 1,852+16,668 794+7,146 30,289 206 (11.12%) 90.9 89.41 90.15 98.66 98.86 98.76

E6 (With Duplication) 1,852+16,668 794+7,146 26,942 756 (40.81%) 92.34 86.07 89.09 98.25 99.09 98.67

This evidence suggests that the selection of a large number of features has a limited impact on the
experimental results of this work.

6.2 Realistic Malware/Goodware Distribution in Test Set

For all the experiments conducted in the evaluation section, we have followed many of the ex-
isting works by fulfilling the test datasets with balanced apps (i.e., containing the same number
of malware and goodware). Unfortunately, this setting does not reflect the actual distribution of
malware/goodware in the real world. Subsequently, the corresponding experimental results may
not be able to represent the actual performance achievable in practice. We hence design additional
experiments to check if such more realistic settings will impact our experimental findings. To the
best of our knowledge, there is no ground truth about the actual distribution of malware/goodware,
and it is non-trivial to obtain that in practice. Pendlebury et al. [58] attempted to estimate such a
ratio based on samples collected from the public AndroZoo dataset, which contained over 8 mil-
lion apps at the time of their study. Eventually, they concluded that a reasonable estimation of
malware-to-goodware distribution could be 1:9.

In this work, we take this distribution ratio to fulfill the additional experiments, i.e., by prepar-
ing new test/training datasets. For the sake of simplicity, since only the Drebin dataset has been
provided with benign samples, we replicate the experiment (as presented in Section 5.1.2) on the
Drebin dataset only. The machine learning models are trained with the same algorithm and with
the same dataset when a balanced training dataset is concerned or with the newly prepared unbal-
anced dataset. Table 15 summarizes the new experimental results. Interestingly, for the experiment
of Unbalanced Training Set, Unbalanced Test Set, the experimental results are comparable to that

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:30 Y. Zhao et al.

achieved by Balanced Training Set, Balanced Test Set. When a balanced training set is concerned, i.e.,
Balanced Training Set, Unbalanced Test Set, while retaining very high recall of detecting malware
as such, the precision has significantly decreased compared to the experimental results achieved
by an unbalanced training set or a balanced test set. Nevertheless, similar to the findings we sum-
marized previously, based on these new experimental results, differences can still be observed
between such experiments trained with or without duplicated samples. This result once again
suggests that sample duplication should be carefully considered (and avoided) when performing
machine-learning-based Android malware detection.

6.3 The Importance of Sample Duplication for Machine Learning

In this work, we experimentally show that sample duplication indeed impacts the performance of
machine-learning-based Android malware detection approaches, w.r.t. both supervised and unsu-
pervised learning models. This result aligns with the results reported by Miltiadis Allamanis in
investigating the adverse effects of code duplication in machine learning models of code [4]. In
this work, we would like to emphasize that the impact of duplication on Android malware de-
tection is quite marginal for supervised ML approaches. Unfortunately, the rationale behind this
marginal impact is unclear at the moment. In our future work, we plan to fill this gap by conducting
advanced explainable machine learning techniques.

Nonetheless, we argue that sample duplication could introduce biases depending on the
ML-based classification approaches that may be used. We hence advocate that practitioners and
researchers should pay more attention to sample duplication in their ML-based classifications.
Ideally, sample duplications could be taken as a machine learning parameter, which needs to be
explicitly communicated when reporting the performance of given machine learning approaches.
Indeed, just like any other parameters of ML algorithms, such as k for the K-means algorithm, the
sample duplication rate is essential for supporting the reproducibility of the ML approaches. To
help practitioners and researchers better communicate the sample duplications in their datasets
for that of Android-oriented approaches, we further present to the community a prototype tool
for characterizing duplicated samples in an Android app dataset. This tool further provides
options for users to exclude duplicated samples from their datasets. We have made our prototype
tool available online at https://github.com/carol233/duplication.

6.4 The Effect of Parameter Turning for ML-Based Malware Detectors

As empirically revealed by Allix et al. [5] in their large-scale empirical assessment of machine-
learning-based malware detectors, no matter in which settings—10-fold cross-validation or train-
ing on one set and testing another set—RandomForest always achieves the best precision compared
with other machine learning algorithms (including C4.5, RIPPER, SVM [5]). This empirical finding,
surprisingly, is different from the one that we observed in this work. We hence go one step deeper
to check the possible reasons behind this difference. We followed the “Drebin” approach to set up
our experiments, for which an additional “grid-search” step is adopted by searching for suitable
parameter values for our learning algorithms. This is in contrast to the approach of Allix et al.,
who simply used the default options. Therefore, in this work, we re-launch all the experiments
with the “grid-search” feature disabled. In this circumstance, RandomForest indeed jumps up to
be the best learning algorithm for predicting Android malware. This contradictory result suggests
that it is vital to tune ML algorithm parameter values when performing machine-learning-based
malware classification. The algorithm that works best out of the box in default mode may not be
the most suitable one if parameter turning is concerned [16, 24, 65]. This implication is further
backed up by the fact that SVM rather than RandomForest is adopted by the “Drebin” approach,

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

https://github.com/carol233/duplication

On the Impact of Sample Duplication 40:31

although the RandomForest algorithm is frequently reported as one of the best algorithms in the
literature.

6.5 Threats to Validity

The main threat to the construct validity of our study concerns the exhaustiveness of classification
algorithms we selected and the experiments we set up in this work. Although we have selected four
well-known algorithms and both in-the-lab and in-the-wild experimental settings, which have also
been frequently leveraged by other researchers to achieve similar purposes, they may not be en-
tirely suitable for predicting Android malware [66]. Nonetheless, the four algorithms yield more or
less similar results, suggesting that our findings are not specific to a particular learning algorithm.
Another threat to construct validity lies in the process of preparing training/test datasets [65]. In
this work, to ensure a balance between the size of training and test datasets, we choose a threshold
of 30% to form the test set. This threshold may not be representative of this study. Ideally, to be
fully conclusive, we would need to experiment with more thresholds. However, this is not the main
focus of this work; we leave it as future work. Furthermore, when preparing the training and test-
ing datasets for evaluating the impact of sample duplication for supervised learning approaches,
as shown in Figure 6, there might be chances that some samples in the testing set have their
duplicated counterparts set in the training set. This setting may lead to slightly higher classifica-
tion performance as the malware detector could learn some malware information in advance. A
more realistic setting would be to limit the testing samples to not include duplicated versions of
the apps in the training set. An ideal approach could be to take app release time into consideration
when preparing the training/testing set; e.g., testing apps are all released after the testing set, which
is an ideal situation since the malware detector cannot learn from future samples, as suggested by
Li et al [42]. Nevertheless, this is also not the main focus of this article; we leave it as future work.

Yet another threat to construct validity concerns the feature extraction process of this work.
Recall that, in this work, we directly leverage the feature set of the “Drebin” approach to train
our machine learning models. However, the authors do not make their feature extraction scripts
publicly available. To this end, we had to resort to the re-implementation of Annamalai Narayanan9

to extract features from Android apps. Our re-implementation may not be identical to that of
the original authors. Nonetheless, our re-implementation has been successfully adopted by both
the authors themselves and many of our fellow researchers working in this community [54, 71].
Furthermore, the features extracted by the “Drebin” approach are mainly based on syntactic rules
(e.g., the appearance of certain strings), which may not be able to characterize the semantic features
of Android apps. Subsequently, the machine learning results might be impacted. In our future work,
we plan to alleviate this impact by leveraging semantic features such as the ones extracted based
on Android apps’ graph representations [21] and advanced deep learning algorithms such as the
ones driven by neural networks.

The key threat to internal validity concerns possible errors in the implementation of our exper-
imental tools and scripts used to run the experiments and gather experimental results. To reduce
this threat, we have carefully reviewed the code and scripts of our toolchain to ensure that the im-
plemented functions meet our expectations. We have further manually checked a random selection
of experimental results to verify their accuracy.

One threat to the external validity of our study concerns the representativeness of the malware
datasets that we selected. Although we have included four common malware datasets from the
literature, our results may still not be generalizable to other malware datasets. Nonetheless,
the fact that our experimental findings are similar among the selected datasets shows that the

9https://github.com/MLDroid/drebin.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

https://github.com/MLDroid/drebin

40:32 Y. Zhao et al.

external validity of our work is likely to be reasonable. Also, to avoid potential biases, we restrict
the test dataset to contain unduplicated samples only when conducting the supervised learning
experiments, which unfortunately may not reflect the real-world situation as it is likely to have
duplicated samples in a real-world dataset. Nevertheless, since this decision will not impact the
capability of the classifier (which only relies on the training dataset) and the duplication rate in
practice is not significant, such a decision should only bring limited threats to our experiments
and hence could be neglected. In this work, the performance of our family clustering experiments
is directly related to the authenticity of malware labels, which unfortunately may not be reliable,
as often discussed by other researchers [25, 32, 63]. To mitigate this threat, we have directly
leveraged the malware labels provided by the malware datasets, which have already been
leveraged by various prior research projects.

7 RELATED WORK

Machine-learning-based Android malware classification has been a hot topic in the software en-
gineering and security community. Below we summarize some representative prior work.

Android Malware Detection. Machine learning has been extensively leveraged by practi-
tioners and researchers to detect Android malware [56, 73]. One of the most common algorithms
leveraged by researchers for achieving this purpose is RandomForest, which has been reported
by researchers as one of the best algorithms for conducting binary classification. As an example,
Alam and Vuong [3] empirically demonstrated that RandomForest is optimal by comparing its
accuracy with BayesNet, Logistic Regression, DT, and so forth. Later on, Allix et al. [5] also
empirically confirmed this. In their experiment, they experimentally show that RF achieves the
best performance compared with C4.5, RIPPER, and SVM. A similar result was also backed up by
Li et al. [40] as well. In this work, although different datasets and feature sets are concerned, we
achieve more or less similar results; i.e., RandomForest is among the best algorithms for precisely
discriminating malware from goodware.

As discussed in the previous section, with “grid-search” enabled to optimize parameters, SVM
in many cases can achieve even better performance than that of RandomForest. Hence, SVM has
also been a very common machine learning algorithm for training to predict Android malware.
For example, Peiravian and Zhu [57] built a malware detector based on the features statically
extracted from Android APKs. One of the most famous works that leverage SVM to predict Android
malware is the one presented by Arp et al. [8]. They proposed the Drebin approach, for which they
extract machine learning features from Android APKs (or DEX files) into eight feature sets. In our
work, aiming at exploring the effect of sample duplication on machine-learning-based malware
detectors, we leveraged the same feature sets and included SVM as one of our four evaluated
machine learning algorithms. In many of our experimental settings, SVM indeed performs the
best compared to that of other machine learning algorithms.

Most of the aforementioned approaches extract features statically from Android DEX files,
which contain the core app code of the apps. In our work we have thus empirically explored
the impact of DEX duplication on machine learning approaches. Apart from the DEX file, we have
also included two extra duplication types involving app opcode and API calls. These two types
have been frequently leveraged by other researchers to form feature sets for learning the mali-
cious behaviors of Android apps. Indeed, as an example, Jerome et al. [34] proposed an ML-based
malware detection approach based on opcode sequences in 2014. Similar to their work, Canfora
et al. [15] and McLaughlin et al. [52] also respectively presented machine-learning-based mal-
ware detection approaches based on features statically extracted from the raw Dalvik bytecode
(i.e., opcode sequences). Since similar opcode sequences can be extracted from different apps,

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:33

i.e., opcode sequence duplication, the performance of the approaches mentioned above might be
impacted.

Similar to opcode sequences, Android APIs have also been recurrently leveraged as features for
machine-learning-based Android malware analysis. For example, in 2013, Aafer et al. [2] performed
a thorough analysis that leverages critical API calls as features to evaluate the difference among
selected classification algorithms. In their experiments, they employed four algorithms, including
DT, C4.5, KNN, and linear SVM. Their experimental results reveal that KNN is the best algorithm
for predicting malware when API calls are considered as features. This finding is quite different
from ours as we experimentally show that RF and SVM are among the best algorithms. We note
that our experiments are done on different datasets and use different feature sets, although API
calls are considered by both approaches. Similarly, in 2016, Wu et al. [70] leveraged the use of
dataflow-related API-level features to improve the performance of a KNN detector. We observe
that approaches of leveraging API calls as features may be impacted by API call duplication if the
authors do not carefully sanitize their training dataset.

In addition to traditional machine learning models, researchers have also started to leverage
deep learning models to detect Android malware. In 2014, Yuan et al. [75] built a deep learning
model with more than 200 features extracted from both static and dynamic analysis and stated
that deep learning techniques are especially applicable for Android malware detection. Likewise,
in 2018, Karbab et al. [35] proposed an Android malware detection and family identification frame-
work, MalDozer, which also leverages deep learning techniques to predict Android malware. In this
work, we only focus on investigating the effect of sample duplication on traditional machine learn-
ing models. We nonetheless believe deep learning models are also relevant to the sample duplica-
tion concerns that we highlighted in this work. We plan to explore this direction in our future work.

Android Malware Family Classification. In addition to machine-learning-based malware
detection, practitioners and researchers have also spent a significant amount of effort to identify
the family of Android malware [28]. For example, Garcia et al. [28] proposed a novel approach for
detecting malware families. By leveraging features extracted from specific Android API usages,
reflective calls, and native binaries, they designed and implemented a prototype tool, RevealDroid,
to achieve this purpose.

Most state-of-the-art approaches leverage unsupervised learning to identify Android malware
families. The rationale behind this is that similar malware (belonging to the same family) will be
grouped into the same cluster. As an example, Bayer et al. [12] identified and grouped malware
exhibiting similar behavior with a scalable clustering method. Similarly, in 2013, Hu et al. [30] de-
signed and implemented a framework, namely MutantX-S, to cluster samples into families based
on code instruction sequences efficiently. They have also proven that MutantX-S is highly accu-
rate in detecting previously unknown malware. In 2015, Aresu et al. [7] created Android malware
clusters by analyzing specific statistical information related to the HTTP traffic.

The above papers used clustering methods to aggregate malware with similar malicious be-
havior, which is of great significance for obtaining the family classification labels of malware.
Unfortunately, none of these approaches has taken into account the sample duplication problem
in their experimental setting, and thereby their performance might not be reliable.

Bias in Machine Learning. Apart from applying machine learning techniques to characterize
Android malware, researchers have also started to investigate the potential biases that appear in
the working processes of machine-learning-based techniques. Pendlebury et al. [58] recently pre-
sented a study discussing the potential biases in two dimensions: space (referred to as spatial bias)
and time (referred to as temporal bias). Spatial bias is caused by the unrealistic setting of the ratio
of benign-to-malware samples in training and test data. Temporal bias refers to the integration of
future knowledge about test data into the training stage. Similarly, Li et al. [42] experimentally

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

40:34 Y. Zhao et al.

showed that time inconsistency introduces significant biases to machine-learning-based malware
detection approaches.

In 2018, Li et al. [38] presented a study demonstrating that more features used by a machine
learning approach do not necessarily mean better performance. In a recent work reported by Irolla
and Dey [33], 49.35% of the samples in the Drebin dataset have at least one more sample containing
the same sequence of opcode. This result is in line with the findings of this work. Indeed it actually
motivated us to investigate the potential impact of such duplication on the performance of machine
learning approaches.

To the best of our knowledge, our work is the first to investigate the impact of sample duplica-
tion on machine-learning-based Android malware detection approaches. However, studies on the
adverse effects of code duplication in machine learning models have also been carried out. Alla-
manis [4] presented a technical report describing the impact of multiple file-level (near-) clones
appearing in large corpora of code. They discussed the biases introduced mathematically and em-
pirically proved that code duplication can lead to overestimating the performance when evaluating
machine learning models. Different from their work, our work in this article targets Android mal-
ware at the bytecode level.

8 CONCLUSION

In this article, we empirically investigated the impact of sample duplication on machine-learning-
based Android malware detection approaches. We started by recognizing common sample dupli-
cation types in well-known and used Android malware datasets. We then took into account these
sample duplication types to train distinctive machine learning models to classify Android malware.
We conducted our experiments on three common malware datasets. Our experimental results show
that sample duplication does indeed impact the performance of machine-learning-based malware
detection approaches. An in-depth exploration further revealed that this finding applied to not only
in-the-lab experiments (i.e., 10-fold cross-validation) but also in-the-wild analyses (i.e., trained
on one dataset and then tested on another). This finding also applies to experiments that were
conducted using different machine learning algorithms, including both supervised and unsuper-
vised learning approaches.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers who have provided insightful and
constructive comments to help in improving this article.

REFERENCES

[1] Wikipedia contributors. 2020. Sequential minimal optimization. https://en.wikipedia.org/wiki/Sequential_minimal_
optimization

[2] Yousra Aafer, Wenliang Du, and Heng Yin. 2013. Droidapiminer: Mining API-level features for robust malware de-
tection in android. In International Conference on Security and Privacy in Communication Systems. Springer, 86–103.

[3] Mohammed S. Alam and Son T. Vuong. 2013. Random forest classification for detecting Android malware. In 2013

IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber,

Physical and Social Computing. IEEE, 663–669.
[4] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine learning models of code. In Proceedings

of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming

and Software. ACM, 143–153.
[5] Kevin Allix, Tegawendé F. Bissyandé, Quentin Jérome, Jacques Klein, Radu State, and Yves Le Traon. 2016. Empirical

assessment of machine learning-based malware detectors for Android. Empirical Software Engineering 21, 1 (Feb.
2016), 183–211. DOI:https://doi.org/10.1007/s10664-014-9352-6

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

https://en.wikipedia.org/wiki/Sequential_minimal_optimization
https://en.wikipedia.org/wiki/Sequential_minimal_optimization
https://doi.org/10.1007/s10664-014-9352-6

On the Impact of Sample Duplication 40:35

[6] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016. AndroZoo: Collecting millions of An-
droid apps for the research community. In Proceedings of the 13th International Conference on Mining Software Repos-

itories (MSR’16). ACM, New York, NY, 468–471. DOI:https://doi.org/10.1145/2901739.2903508
[7] Marco Aresu, Davide Ariu, Mansour Ahmadi, Davide Maiorca, and Giorgio Giacinto. 2015. Clustering android

malware families by http traffic. In 2015 10th International Conference on Malicious and Unwanted Software (MAL-

WARE’15). IEEE, 128–135.
[8] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT Siemens. 2014. Drebin:

Effective and explainable detection of Android malware in your pocket.. In Proceedings of the Network and Distributed

System Security Symposium (NDSS’14), Vol. 14. 23–26.
[9] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. 2014. Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. ACM Sigplan Notices 49, 6 (2014), 259–269.

[10] Zarni Aung and Win Zaw. 2013. Permission-based android malware detection. International Journal of Scientific &

Technology Research 2, 3 (2013), 228–234.
[11] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven Arzt, Siegfried Rasthofer, and Eric

Bodden. 2015. Mining apps for abnormal usage of sensitive data. In Proceedings of the 37th International Conference

on Software Engineering-Volume 1. IEEE Press, 426–436.
[12] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel, and Engin Kirda. 2009. Scal-

able, behavior-based malware clustering. In Proceedings of the Network and Distributed System Security Symposium

(NDSS’09), Vol. 9. 8–11.
[13] Daniel Bilar. 2007. Opcodes as predictor for malware. International Journal of Electronic Security and Digital Forensics

1, 2 (2007), 156–168.
[14] Evgeny Burnaev and Dmitry Smolyakov. 2016. One-class SVM with privileged information and its application to

malware detection. In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW’16). IEEE, 273–
280.

[15] Gerardo Canfora, Francesco Mercaldo, and Corrado Aaron Visaggio. 2015. Mobile malware detection using op-code
frequency histograms. In 2015 12th International Joint Conference on e-Business and Telecommunications (ICETE’15),
Vol. 4. IEEE, 27–38.

[16] Joymallya Chakraborty, Tianpei Xia, Fahmid M. Fahid, and Tim Menzies. 2019. Software engineering for fairness: A
case study with hyperparameter optimization. arXiv preprint arXiv:1905.05786 (2019).

[17] Tanmoy Chakraborty, Fabio Pierazzi, and V. S. Subrahmanian. 2017. EC2: Ensemble clustering and classification for
predicting android malware families. IEEE Transactions on Dependable and Secure Computing 17, 2 (2017), 262–277.

[18] Luke Deshotels, Vivek Notani, and Arun Lakhotia. 2014. Droidlegacy: Automated familial classification of android
malware. In Proceedings of ACM SIGPLAN on Program Protection and Reverse Engineering Workshop 2014. ACM, 3.

[19] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F. Bissyandé, Tianming Liu, Guoai Xu, and Jacques Klein. 2018.
FraudDroid: Automated ad fraud detection for Android apps. In The 26th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’18).
[20] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua Zheng, and Ting Liu. 2018. Android malware famil-

ial classification and representative sample selection via frequent subgraph analysis. IEEE Transactions on Information

Forensics and Security 13, 8 (2018), 1890–1905.
[21] Ming Fan, Xiapu Luo, Jun Liu, Meng Wang, Chunyin Nong, Qinghua Zheng, and Ting Liu. 2019. Graph embedding

based familial analysis of android malware using unsupervised learning. In 2019 IEEE/ACM 41st International Confer-

ence on Software Engineering (ICSE’19). IEEE, 771–782.
[22] Ming Fan, Wenying Wei, Xiaofei Xie, Yang Liu, Xiaohong Guan, and Ting Liu. 2020. Can we trust your explanations?

Sanity checks for interpreters in Android malware analysis. arXiv preprint arXiv:2008.05895 (2020).
[23] Ivan Firdausi, Alva Erwin, and Anto Satriyo Nugroho. 2010. Analysis of machine learning techniques used in

behavior-based malware detection. In 2010 2nd International Conference on Advances in Computing, Control, and

Telecommunication Technologies. IEEE, 201–203.
[24] Wei Fu, Tim Menzies, and Xipeng Shen. 2016. Tuning for software analytics: Is it really necessary?Information and

Software Technology 76 (2016), 135–146.
[25] Jun Gao, Li Li, Pingfan Kong, Tegawendé F. Bissyandé, and Jacques Klein. 2019. Should you consider adware

as malware in your study? In IEEE International Conference on Software Analysis, Evolution and Reengineering

(SANER’19).
[26] Jun Gao, Li Li, Pingfan Kong, Tegawendé F. Bissyandé, and Jacques Klein. 2021. Understanding the evolution of

Android app vulnerabilities. IEEE Transactions on Reliability (TRel) 70, 1 (2021), 212–230.
[27] Jun Gao, Li Li, Pingfan Kong, Tegawendé F. Bissyandé, and Jacques Klein. 2020. Borrowing your enemy’s arrows:

The case of code reuse in Android via direct inter-app code invocation. In The 28th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’20).

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

https://doi.org/10.1145/2901739.2903508

40:36 Y. Zhao et al.

[28] Joshua Garcia, Mahmoud Hammad, and Sam Malek. 2018. Lightweight, obfuscation-resilient detection and fam-
ily identification of Android malware. ACM Transactions on Software Engineering and Methodology (TOSEM) 26, 3
(2018), 11.

[29] Benjamin Holland, Tom Deering, Suresh Kothari, Jon Mathews, and Nikhil Ranade. 2015. Security toolbox for de-
tecting novel and sophisticated android malware. In Proceedings of the 37th International Conference on Software

Engineering-Volume 2. IEEE Press, 733–736.
[30] Xin Hu, Kang G. Shin, Sandeep Bhatkar, and Kent Griffin. 2013. Mutantx-s: Scalable malware clustering based on

static features. In Presented as Part of the 2013 {USENIX} Annual Technical Conference ({USENIX} {ATC}’13). 187–198.
[31] Yangyu Hu, Haoyu Wang, Yajin Zhou, Yao Guo, Li Li, Bingxuan Luo, and Fangren Xu. 2019. Dating with scambots:

Understanding the ecosystem of fraudulent dating applications. IEEE Transactions on Dependable and Secure Comput-

ing (TDSC) (2019).
[32] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash, Tegawendé F. Bissyandé, Yves Le Traon, Jacques

Klein, and Lorenzo Cavallaro. 2017. Euphony: Harmonious unification of cacophonous anti-virus vendor labels for
Android malware. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR’17). IEEE,
425–435.

[33] Paul Irolla and Alexandre Dey. 2018. The duplication issue within the drebin dataset. Journal of Computer Virology

and Hacking Techniques 14, 3 (2018), 245–249.
[34] Quentin Jerome, Kevin Allix, Radu State, and Thomas Engel. 2014. Using opcode-sequences to detect malicious An-

droid applications. In 2014 IEEE International Conference on Communications (ICC’14). IEEE, 914–919.
[35] ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid Derhab, and Djedjiga Mouheb. 2018. MalDozer: Automatic

framework for android malware detection using deep learning. Digital Investigation 24 (2018), S48–S59.
[36] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F. Bissyandé, and Jacques Klein. 2018. Automated testing of Android

apps: A systematic literature review. IEEE Transactions on Reliability 68, 1 (2018), 45–66.
[37] Chenglin Li, Keith Mills, Di Niu, Rui Zhu, Hongwen Zhang, and Husam Kinawi. 2019. Android malware detection

based on factorization machine. IEEE Access 7 (2019), 184008–184019.
[38] Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-an, and Heng Ye. 2018. Significant permission identification

for machine-learning-based android malware detection. IEEE Transactions on Industrial Informatics 14, 7 (2018), 3216–
3225.

[39] Li Li. 2017. Mining Androzoo: A retrospect. In The Doctoral Symposium of 33rd International Conference on Software

Maintenance and Evolution (ICSME-DS’17).
[40] Li Li, Kevin Allix, Daoyuan Li, Alexandre Bartel, Tegawendé F. Bissyandé, and Jacques Klein. 2015. Potential compo-

nent leaks in Android apps: An investigation into a new feature set for malware detection. In The 2015 IEEE Interna-

tional Conference on Software Quality, Reliability & Security (QRS’15).
[41] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric

Bodden, Damien Octeau, and Patrick Mcdaniel. 2015. IccTA: Detecting inter-component privacy leaks in Android
apps. In Proceedings of the 37th International Conference on Software Engineering (ICSE’15).

[42] Li Li, Tegawendé F. Bissyandé, and Jacques Klein. 2018. MoonlightBox: Mining Android API histories for uncovering
release-time inconsistencies. In The 29th IEEE International Symposium on Software Reliability Engineering (ISSRE’18).

[43] Li Li, Tegawendé F. Bissyandé, and Jacques Klein. 2019. Rebooting research on detecting repackaged Android apps:
Literature review and benchmark. IEEE Transactions on Software Engineering (TSE) (2019).

[44] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques Klein. 2016. DroidRA: Taming reflection to support whole-
program analysis of Android apps. In The 2016 International Symposium on Software Testing and Analysis (ISSTA’16).

[45] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel, Damien Octeau, Jacques Klein,
and Yves Le Traon. 2017. Static analysis of Android apps: A systematic literature review. Information and Software

Technology 88 (2017), 67–95.
[46] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F. Bissyandé, Alexandre Bartel, Jacques Klein, and Yves

Le Traon. 2017. AndroZoo++: Collecting millions of Android apps and their metadata for the research community.
arXiv preprint arXiv:1709.05281 (2017).

[47] Li Li, Daoyuan Li, Tegawendé F. Bissyandé, Jacques Klein, Haipeng Cai, David Lo, and Yves Le Traon. 2017. On
locating malicious code in piggybacked android apps. Journal of Computer Science and Technology 32, 6 (2017),
1108–1124.

[48] Li Li, Daoyuan Li, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, David Lo, and Lorenzo Cavallaro. 2017.
Understanding Android app piggybacking: A systematic study of malicious code grafting. IEEE Transactions on In-

formation Forensics & Security (TIFS) 12, 6 (2017), 1269–1284.
[49] Tianming Liu, Haoyu Wang, Li Li, Guangdong Bai, Yao Guo, and Guoai Xu. 2019. DaPanda: Detecting aggressive

push notification in Android apps. In The 34th IEEE/ACM International Conference on Automated Software Engineering

(ASE’19).

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

On the Impact of Sample Duplication 40:37

[50] Tianming Liu, Haoyu Wang, Li Li, Xiapu Luo, Feng Dong, Yao Guo, Liu Wang, Tegawendé F. Bissyandé, and Jacques
Klein. 2020. MadDroid: Characterising and detecting devious Ad content for Android apps. In The Web Conference

2020 (WWW’20).
[51] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristofaro, Gordon Ross, and Gianluca

Stringhini. 2017. MaMaDroid: Detecting Android malware by building Markov chains of behavioral models. In Net-

work and Distributed Systems Security Symposiym (NDSS’17).
[52] Niall McLaughlin, Jesus Martinez del Rincon, BooJoong Kang, Suleiman Yerima, Paul Miller, Sakir Sezer, Yeganeh

Safaei, Erik Trickel, Ziming Zhao, Adam Doupé, et al. 2017. Deep Android malware detection. In Proceedings of the

7th ACM on Conference on Data and Application Security and Privacy. ACM, 301–308.
[53] Stuart Millar, Niall McLaughlin, Jesus Martinez del Rincon, Paul Miller, and Ziming Zhao. 2020. DANdroid: A multi-

view discriminative adversarial network for obfuscated Android malware detection. In Proceedings of the 10th ACM

Conference on Data and Application Security and Privacy. 353–364.
[54] Annamalai Narayanan, Guozhu Meng, Liu Yang, Jinliang Liu, and Lihui Chen. 2016. Contextual weisfeiler-lehman

graph kernel for malware detection. In 2016 International Joint Conference on Neural Networks (IJCNN’16). IEEE,
4701–4708.

[55] Damien Octeau, Somesh Jha, Matthew Dering, Patrick Mcdaniel, Alexandre Bartel, Li Li, Jacques Klein, and Yves Le
Traon. 2016. Combining static analysis with probabilistic models to enable market-scale Android inter-component
analysis. In Proceedings of the 43th Symposium on Principles of Programming Languages (POPL’16).

[56] Xiaorui Pan, Xueqiang Wang, Yue Duan, XiaoFeng Wang, and Heng Yin. 2017. Dark hazard: Learning-based, large-
scale discovery of hidden sensitive operations in Android apps. In NDSS.

[57] Naser Peiravian and Xingquan Zhu. 2013. Machine learning for android malware detection using permission and API
calls. In 2013 IEEE 25th International Conference on Tools with Artificial Intelligence. IEEE, 300–305.

[58] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo Cavallaro. 2019. TESSER-
ACT: Eliminating experimental bias in malware classification across space and time. In 28th USENIX Security Sym-

posium (USENIX Security’19). USENIX Association, Santa Clara, CA, 729–746. https://www.usenix.org/conference/
usenixsecurity19/presentation/pendlebury.

[59] Roberto Perdisci and ManChon U. 2012. VAMO: Towards a fully automated malware clustering validity analysis. In
Proceedings of the 28th Annual Computer Security Applications Conference. 329–338.

[60] Douglas A. Reynolds. 2009. Gaussian mixture models.Encyclopedia of Biometrics 741 (2009), 659–663.
[61] S. Rasoul Safavian and David Landgrebe. 1991. A survey of decision tree classifier methodology. IEEE Transactions

on Systems, Man, and Cybernetics 21, 3 (1991), 660–674.
[62] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia Bringas, and Gonzalo Álvarez. 2013.

Puma: Permission usage to detect malware in android. In International Joint Conference CISIS12-ICEUTE 12-SOCO 12

Special Sessions. Springer, 289–298.
[63] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. Avclass: A tool for massive malware

labeling. In International Symposium on Research in Attacks, Intrusions, and Defenses. Springer, 230–253.
[64] Xiaoyu Sun, Li Li, Tegawendé F. Bissyandé, Jacques Klein, Damien Octeau, and John Grundy. 2020. Taming reflection:

An essential step towards whole-program analysis of Android apps. ACM Transactions on Software Engineering and

Methodology (TOSEM) (2020).
[65] Chakkrit Tantithamthavorn, Ahmed E. Hassan, and Kenichi Matsumoto. 2018. The impact of class rebalancing tech-

niques on the performance and interpretation of defect prediction models. IEEE Transactions on Software Engineering

46, 11 (2018), 1200–1219.
[66] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto. 2016. An empirical com-

parison of model validation techniques for defect prediction models. IEEE Transactions on Software Engineering 43,
1 (2016), 1–18.

[67] Haoyu Wang, Junjun Si, Hao Li, and Yao Guo. 2019. RmvDroid: Towards a reliable Android malware dataset with app
metadata. In Proceedings of the 16th International Conference on Mining Software Repositories. IEEE Press, 404–408.

[68] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep ground truth analysis of current
Android malware. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment

(DIMVA’17). Springer, Bonn, Germany, 252–276.
[69] Zhihua Wen and Vassilios Tzerpos. 2004. An effectiveness measure for software clustering algorithms. In Proceedings

of the 12th IEEE International Workshop on Program Comprehension, 2004. IEEE, 194–203.
[70] Songyang Wu, Pan Wang, Xun Li, and Yong Zhang. 2016. Effective detection of android malware based on the usage

of data flow APIs and machine learning. Information and Software Technology 75 (2016), 17–25.
[71] Zhiwu Xu, Kerong Ren, Shengchao Qin, and Florin Craciun. 2018. CDGDroid: Android malware detection based on

deep learning using CFG and DFG. In International Conference on Formal Engineering Methods. Springer, 177–193.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury

40:38 Y. Zhao et al.

[72] Wei Yang, Mukul R. Prasad, and Tao Xie. 2018. Enmobile: Entity-based characterization and analysis of mobile mal-
ware. In Proceedings of the 40th International Conference on Software Engineering. 384–394.

[73] Xinli Yang, David Lo, Li Li, Xin Xia, Tegawendé F. Bissyandé, and Jacques Klein. 2017. Characterizing malicious
Android apps by mining topic-specific data flow signatures. Information and Software Technology 90 (2017), 27–39.

[74] Jian Yu, Miin-Shen Yang, and E. Stanley Lee. 2011. Sample-weighted clustering methods. Computers & Mathematics

with Applications 62, 5 (2011), 2200–2208.
[75] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014. Droid-SEC: Deep learning in android malware

detection. In ACM SIGCOMM Computer Communication Review, Vol. 44. ACM, 371–372.
[76] Xu Zhiwu, Kerong Ren, and Fu Song. 2019. Android malware family classification and characterization using CFG

and DFG. In 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE’19). IEEE, 49–56.
[77] Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization and evolution. In 2012 IEEE Sym-

posium on Security and Privacy. IEEE, 95–109.

Received March 2020; revised December 2020; accepted January 2021

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 40. Pub. date: May 2021.

