Background of OpenHarmony

OpenHarmony is designed with a layered architecture. As illustrated in Fig. 1, it consists of four
layers. From bottom to top, the four layers are (1) the Kernel Layer, (2) the System Service Layer,
(3) the Framework Layer, and (4) the Application Layer. We now briefly detail these four layers to
help readers better understand this work.

Kernel Layer. The kernel layer of OpenHarmony contains two main sub-systems, namely a
kernel sub-system that powers an operating system kernel (such as the Linux Kernel) for sched-
uling the software execution of the whole system and a driver sub-system that is responsible for
connecting the software stack with the various hardware. Observant readers may have noticed
that, unlike other systems, there is a special component called the Kernel Abstract Layer (KAL) in
the Kernel Layer of OpenHarmony. This component is indeed a special OpenHarmony feature that
is designed to support multi-kinds of mobile devices. For different devices, OpenHarmony may
select different OS kernels (e.g., Linux or LiteOS) to power the system. KAL is proposed to mitigate
such a difference, aiming at offering the same capabilities for the upper software layers.

System Service Layer. The system service layer is the core part of OpenHarmony that provides
the actual implementation of all the system services required to run OpenHarmony apps. Except
for supporting basic capabilities such as the ones related to security control or providing intelligent
functions, it also includes components related to common software services such as Events and
Notifications, device-specific software services such as the ones dedicated to IoT devices or wearable
devices, as well as hardware-related services such as sensors and location services.

Framework Layer. The framework layer provides an interface for developers to implement
OpenHarmony applications and such an interface is often provided within a Software Development
Kit (SDK). As shown in Fig. 1, generally speaking, this layer provides similar capabilities as the
system service layer. However, this layer is specifically required as it keeps app code from directly
accessing system services, which might be abused by third-party developers if not controlled. Indeed,
through the framework layer, system services do not need to be exposed to third-party developers
and how they should be called or scheduled can be pre-defined. This layer is also very important
as it defines the set of APIs needed to be seen by third-party apps. This set of APIs needs to be
appropriate as defining fewer APIs may make the implementation of OpenHarmony apps difficult
while defining more APIs would increase the complexity and subsequently the maintainability of
the framework.

Application Layer. The application layer is the place where OpenHarmony apps are located.
There are two types of apps: system apps and third-party apps. The former one should be provided
by OpenHarmony itself, covering the basic functions that allow the OpenHarmony system to be
practically usable. The latter ideally should be supported by third-party developers that help the
Openharmony system to provide a good user experience, which is the key to the success of the
OpenHarmony ecosystem.

0.1 The App Development Framework

We now briefly introduce OpenHarmony’s app development framework. There are actually two
versions of app development frameworks supported by OpenHarmony to develop third-party apps:

2025. XXXX-XXXX/2025/1-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Application System : Third-party
Layer Applications | Phone Call Setting Applications WeChat
Framework Basic Capabilities Basic Enhanced Hardware Services
Layer Software Services Software Services

L OS Framework
[ArkUI

e ||

[Event/Notification J

{ loT-specific J

Sensor

System Service

[Multimedia]

[Wearable-specific J

[Ability] (security |

[loT Hardware J

Layer
}7 Kernel Abstract Layer 4{
Kernel .
Kernel) . Driver Hardware Driver
Layer Sub-systems [Linux Kernel } { LiteOS } Sub-systems

Fig. 1. The Software Architecture of OpenHarmony.

one based on Java program language and another based on ArkTS program language.! Since the
Java version will be gradually replaced by the ArkTS version, in this work, we will only focus on
the ArkTS version. Fig. 2 highlights the core components of the ArkTS-based OpenHarmony app
development framework. OpenHarmony actually supports two ways of app logic (named Ability)
developments, namely the FA (Feature Ability) model and the Stage model. The Stage model is
newly introduced (since API version 9) to replace the FA model. Hence, in this work, we will only
focus on the Stage model.

Stage-based Ability Framework. As shown in Fig. 2, in the Stage model, an OpenHarmony
app is made up of AbilityStage components. Each AbilityStage should contain one or more Ability
components. In OpenHarmony, there are two types of Ability components: UIAbility and Exten-
sionAbility. UIAbility, like Activity in Android, is responsible for implementing the app’s visual
parts (i.e., GUI pages). This is the reason why UIAbility component will include a WindowStage
component that further contains a Window module with an ArkUI page attached to it.

For other functions that are not directly relevant to the app’s Ul pages, OpenHarmony has
introduced the so-called ExtensionAbility component to support their implementation. Normally,
in Android, such functions should be implemented in one of the following three types of compo-
nents: Service, Broadcast Receiver, and Content Provider. In OpenHarmony, the ExtensionAbility
mechanism provides a more fine-grained way to implement such functions. For example, ServiceEx-
tensionAbility, a sub-class of ExtensionAbility, is designed to support background tasks, providing
equivalent functions as that of Service in Android. Another sub-class of ExtensionAbility, namely
DataShareExtensionAbility, is designed to support data sharing, providing equivalent functions as
that of Content Provider in Android.

Like what has been designed in Android’s components, there are lifecycle methods designed in
OpenHarmony’s ability components. Fig. 3 illustrates the lifecycle of OpenHarmony’s UIAbility
component, which by itself contains four states, namely Create, Foreground, Background, and
Destroy. Create state is at the stage when a UIAbility is started. At that time, the system will call the

LAYKTS (also known as €TS) is the preferred programming language introduced by Huawei to develop OpenHarmony
applications. It is extended from the famous TypeScript language.

, Vol. 1, No. 1, Article . Publication date: January 2025.

Background of OpenHarmony

ArkUI Page ArkUI Page
Window Window
WindowStage ExtensionAbility WindowStage
‘ AbilityContext %— UlAbility ‘ e ‘ ‘ porkSchiedtlen ‘ UlAbility
Context AbilityStage AbilityStage
Context - Application

Fig. 2. The Architecture of ArkTS-based App Development Framework (Stage Model) of OpenHarmony.

UlAbility WindowStage
onCreate } onWindowStageCreate ‘
onForeground *} Visible ’—»‘ Active ‘

onBackground } InVisible H InActive ‘

'

onWindowStageDestroy ‘

onDestroy

i

Fig. 3. The Lifecycle of OpenHarmony’s UlAbility component.

corresponding onCreate() callback method, in which certain resources could be initiated. After the
onCreate() method is called, the state moves to Foreground and the onForeground() callback method
will be invoked. At this stage, the UI page of the UIAbility becomes visible and will be displayed
to users. Once the Ul page becomes invisible (e.g., other Ul pages become visible), the state will
be moved from Foreground to Background. At this time, the onBackground callback method will
be called. When the UIAbility is going to be terminated, the onDestroy() callback method will be
invoked and this is the place to store relevant data and free requested resources. Observant readers
may have noticed that the lifecycle of UIAbility is associated with a WindowStage component,
which per se has a sequence of lifecycle methods to be invoked as the UIAbility’s state goes by.

ArkUI Module. As shown in Fig. 1 (with yellow background), the actual Ul pages are imple-
mented through the so-called ArkUI framework. ArkUI is a core module of ArkTS that is newly
introduced to support UI developments. Fig. 4 illustrates the architecture of the ArkUI module. This
module supports two ways of Ul implementation. The first way is to leverage Web-based technicals
(e.g., HTML, CSS, Javascript) and the other way is through the so-called declarative programming
(specifically designed to support the implementation of OpenHarmony apps). This module also
includes an UI Engine module to provide common Ul-related functions and other modules to allow
visual display of UI pages.

, Vol. 1, No. 1, Article . Publication date: January 2025.

Web-alike Programming Declarative Programming
(HTML, CSS, Javascript) (ArkTS)
g
Ul Wid t‘ ’ L t ‘ ’A‘ ti ‘ 2,
ArkCompiler & ul ’ iage ayou nimation g
Runtime Engine £
’ Interaction Events ‘ ’ Platform APIs ‘
Render Engine
Platform Adapter & Bridge

Fig. 4. The Architecture of OpenHarmony’s ArkUl Module.

, Vol. 1, No. 1, Article . Publication date: January 2025.

	0.1 The App Development Framework

